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Bibliographic notes on Voronoi diagrams

Javier Bernal

National Institute of Standards and Technology, Gaithersburg, MD 20899

Abstract. This paper presents a comprehensive annotated bibliography on various theoretical

and algorithmic aspects of Voronoi diagrams and related diagrams. Bibliographic notes on the

relationship between Voronoi diagrams and solutions to the Euclidean traveling salesman problem

are also presented.

Key words. Algorithm, arrangement, complexity, convex hull, Delaunay triangulation, power

diagram, traveling salesman problem, Voronoi diagram
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1.

Initial papers

The following papers and textbook are among the first to investigate mathematical aspects

of Voronoi diagrams and Delaunay triangulations.

1. G. L. Dirichlet, Uber die Reduktion der positiven quadratischen Formen mit drei unbes-

timmten ganzen Zahlen, J. Reine Angew. Math. 40 (1850), 209-227.

2. G. Voronoi, Nouvelles apphcations des parametres continus a la theorie des formes

quadratiques, J. Reine Angew. Math. 134 (1908), 198-287.

3. B. Delaunay, Sur la sphere vide. Bull. Acad. Sci. USSR (VII), Classe Sci. Mat. Nat.

(1934), 793-800.

4. C. A. Rogers, Packing and Covering, Cambridge University Press, Cambridge, England

(1964).

2.

Sources for material on Voronoi diagrams and related topics

The following papers present surveys about Voronoi diagrams and related topics.

1. D. T. Lee and F. P. Preparata, Computational Geometry - A survey, IEEE Transactions

on Computers C-33 (1984), 1072-1101.

2. L. De Floriani and E. Puppo, A survey of constrained Delaunay triangulation al-

gorithms for surface representation. Issues on Machine Vision, G. G. Pieroni (Ed.),

Springer-Verlag, New York (1989), 95-104.

3. F. Aurenhammer, Voronoi diagrams - A survey of a fundamental geometric data struc-

ture, ACM Computing Surveys 23 (1991), 345-405.

4. S. Fortune, Voronoi diagrams and Delaunay triangulations. Computing in Euclidean

Geometry, D.-Z. Du and F. K. Hwang (Ed.), World Scientific (1992), 193-233.

5. S. Fortune, Computational Geometry, Directions in Geometric Computing, R. Martin

(Ed.), Information Geometers, to appear (1993).

The following textbooks are sources for material on Voronoi diagrams and related topics.

1. F. P. Preparata and M. I. Shamos, Computational Geometry - An Introduction,

Springer-Verlag, New York (1985).
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2. H. Edelsbrunner, Algorithms in Combinatorial Geometry, Springer-Verlag, New York

(1987).

3. Optimality of Delaunay triangulations

In the first of the following two papers planar triangulations that are locally equiangular

are suggested for interpolation work, and a diagonal-flipping algorithm for computing them

from arbitrary triangulations based on this criterion is proposed. In the second paper it is

proven that given a set of points in the plane, a triangulation for the set is Delaunay if and

only if it is locally equiangular. Essentially, a triangulation is locally equiangular if given any

two triangles in the triangulation that share a common edge and whose union is a strictly

convex quadrilateral, then replacement of the common edge by the alternative diagonal of

the quadrilateral does not increase the minimum of the six angles in the two triangles making

up the quadrilateral.

1. C. L. Lawson, Generation of a triangular grid with apphcations to contour plotting,

TM 299, California Inst. Tech. Jet Propulsion Lab (1972).

2. R. Sibson, Locally equiangular triangulations. The Comput. J. 21 (1978), 243-245.

In the first of the following papers the local optimahty principle is proven for triangulations

in the plane. Essentially, this principle says that if a triangulation satisfies the empty circle

criterion on a local basis then it satisfies it on a global basis. It is also proven in this paper

that a triangulation satisfying the empty circle criterion on a global basis is Delaunay. In

the third paper these results are generalized to higher dimensions. These results are useful

in the development of algorithms for computing unconstrained and constrained Delaunay

triangulations. Finally, in the first two papers it is proven that a triangulation for a set of

points in the plane is Delaunay if and only if among all triangulations for the set it has the

lexicographically largest increasing sequence of interior minimum angles of triangles.

1. C. L. Lawson, Software for surface interpolation. Mathematical Software III, J. R.

Rice (Ed.), Academic Press, New York (1977), 161-194.

2. D. T. Lee, Proximity and reachability in the plane, Ph. D. thesis. Tech. Rep. R-831,

Coordinated Sci. Lab., Univ. of Ilhnois (1978).

3. C. L. Lawson, Properties of n— dimensional triangulations. Computer Aided Geometric

Design 3 (1986), 231-246.
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In the following textbook it is proven that given a triangulation for a set of points in the plane,

if the triangulation is globally equiangular then it is Delaunay. Essentially, a triangulation

is globally equiangular if among all triangulations for the set it has the lexicographically

largest increasing sequence of interior angles of triangles.

1. H. Edelsbrunner, Algorithms in Combinatorial Geometry, Springer-Verlag, New York

(1987).

It follows that in the absence of degeneracies the concepts of Delaunay, locally equiangular,

and globally equiangular are equivalent. In the following paper it is shown how to obtain a

Delaunay triangulation that is globally equiangular in the presence of degeneracies.

1. D. Mount and A. Saalfeld, Globally-equiangular triangulation of co-circular points in

0(n log n) time, Proc. 4*^ Ann. ACM Symp. on Computational Geometry (1988),

143-152.

In the following paper it is proven that among aU triangulations for a set of points in the plane

a Delaunay triangulation minimizes the largest of the circumscribed circles of the triangles.

It is also shown in this paper that given a convex quadratic surface and a set of points in

the plane, a triangulation for the points can be obtained such that a linear interpolation of

the convex quadratic surface over each triangle in the triangulation minimizes the maximum
error in any triangle among all triangulations for the points. It is shown in this paper that by

scaling the points according to the coefficients of the function representation of the convex

quadratic surface, this triangulation is induced by a Delaunay triangulation of the scaled

points.

1. E. F. D’Azevedo and R. B. Simpson, On optimal interpolation triangle incidences,

SIAM J. Sci. Stat. Comput. 10 (1989), 1063-1075.

Given an arbitrary finite set of points in the plane and function values assigned to each

point, let T be a triangulation for the points, and for each triangle f in T let |f| denote the

area of t and Ot, 6t, c* the numbers for which z = atx -f bty -1- c* is the equation of the plane

that at each vertex of t has as z—coordinate the function value assigned to the vertex. In

the following paper it is proven that if T is Delaunay then the Sobolev seminorm

teT

is minimized. Since this seminorm is a measurement of the roughness of the piecewise hnear

interpolation surface obtained by restricting each plane of the form above to its defining

triangle, it is said that the Delaunay triangulation is a minimal roughness triangulation.
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1.

S. Rippa, Minimal roughness property of the Delaunay triangulation, Comput. Aided

Geom. Design 7 (1990), 489-497.

In the following paper it is proven that the maximum min-containment radius of a Delaunay

triangulation for a set of points in d—space is less than the maximum min-containment

radius of any other triangulation for the set. Essentially, the min-containment radius of a

d—dimensional triangle is the radius of the smallest d— dimensional sphere containing the

triangle.

1. V. T. Rajan, Optimahty of the Delaunay triangulation in Proc. Ann. ACM
Symp. on Computational Geometry (1991), 357-372.

A triangulation for a set of points in the plane is said to be optimal if it minimizes the total

Euclidean edge length over all triangulations for the set. In the first of the following papers

it is proven that Delaunay triangulations are not optimal. In the second paper it is shown

that Delaunay triangulations are not approximately optimal. In the third paper it is shown

that Delaunay triangulations can be asymptotically as long as any arbitrary triangulation.

Finally, in the fourth paper it is shown that Delaunay triangulations are close to optimal on

the average.

1. E. L. Lloyd, On triangulations of a set of points in the plane, Proc. 18*^ Ann. IEEE
Conference on the Foundations of Computer Science (1977), 228-240.

2. G. K. Manacher and A. L. Zobrist, Neither the greedy nor the Delaunay triangulation

of a planar point set approximates the optimal triangulation. Inform. Process. Lett.

9 (1979), 31-34.

3. D. G. Kirkpatrick, A note on Delaunay and optimal triangulations. Inform. Process.

Lett. 10 (1980), 127-128.

4. A. Lingas, The greedy and Delaunay triangulations are not bad in the average case.

Inform. Process. Lett. 22 (1986), 25-31.

4. Visibility in Delaunay triangulations

In the first of the following papers it is shown that given a Delaunay triangulation for a

set of sites in the plane, for each site there exists a partial ordering of the triangles that is

consistent with the order in which the triangles are visible from the site. In the second paper

it is shown that given a Delaunay triangulation for a set of sites in d—dimensional space, for

each point in the space this partial ordering exists.
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1. L. De Floriani, B. Falcidieno, G. Nagy, and C. Pienovi, On sorting triangles in a

Delaunay tessellation, Algorithmica 6 (1991), 522-532.

2. H. Edelsbrunner, An acyclicity theorem for cell complexes in d dimension, Proc. 5

Ann. ACM Symp. on Computational Geometry (1989), 145-151.

5. Convex combinations from Voronoi diagrams

In the first of the following papers it is shown that given a set of points S in d—dimensional

space, every point p in 5 whose Voronoi cell in the Voronoi diagram for S is bounded can

be expressed as a convex combination of the other points in 5, in such a way that given q in

S, q ^ p, the coefficient that corresponds to q in this convex combination is the percentage

of the Voronoi cell of p closer to q than to any other point in 5 \ {p, q}. In the second paper

it is shown how these combinations can be used to compute a Gale transform for S.

1. R. Sibson, A vector identity for the Dirichlet tessellation. Math. Proc. Camb. Phil.

Soc. 87 (1980), 151-155.

2. F. Aurenhammer, A relationship between Gale transforms and Voronoi diagrams. Dis-

crete Applied Mathematics 28 (1990), 83-91.

6. Combinatorial properties of Voronoi diagrams

In the following papers expectations of various random variables are derived concerning

Voronoi diagrams and Delaunay triangulations for stationary Poisson point processes in 2—

and 3—dimensional spaces, such as the expected number of faces of various dimensions of

any Voronoi region.

1. J. L. Meijering, Interface area, edge length, and number of vertices in crystal aggregates

with random nucleation. Philips Res. Rep. 8 (1953), 270-290.

2. E. N. Gilbert, Random subdivisions of space into crystals, Ann. Math. Statist. 33

(1962), 958-972.

3. R. E. Miles, On the homogeneous planar Poisson point process. Mathematical Bio-

sciences 6 (1970), 85-127.

4. R. E. Miles, The random division of space, Proc. Symp. on Statistical and Probabilistic

Problems in Metallurgy, August 1971, Suppl. Adv. Appl. Prob. (1972), 243-266.
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In the following paper expectations of various random variables are derived concerning the

portion within a cube of side of the Delaunay triangulation for an infinite random point

set in d— dimensional space.

1.

M. Bern, D. Eppstein, and F. Yao, The expected extremes in a Delaunay triangulation,

International J. of Computational Geometry & Applications 1 (1991), 79-91.

In the following papers examples are given that show that the complexity of the Voronoi

diagram for a set of n points in 3—dimensional space is 0{v?).

1. A. K. Dewdney and J. K. Vranch, A convex partition of with applications to Crum’s

problem and Knuth’s post-office problem, Utilitas Mathematica 12 (1977), 193-199.

2. F. P. Preparata, Steps into computational geometry. Tech. Rep., Coordinated Science

Laboratory, University of Ilhnois (1977).

The complexity of Voronoi diagrams in d— dimensional space is addressed in the following

papers. In the second and third papers an exact upper bound is derived for the number of

z—dimensional faces of Voronoi diagrams for n points in d—dimensional space, for each z,

z = 0, . .
.

,

d — 1.

1. V. Klee, On the complexity of d—dimensional Voronoi diagrams, Archiv. Math. 34

(1980), 75-80.

2. I. Paschinger, Konvexe Polytope und Dirichletsche ZeUenkomplexe, Ph. D. disserta-

tion, Inst. Math., Univ. Salzburg, Austria (1982).

3. R. Seidel, The complexity of Voronoi diagrams in higher dimensions, Proc. 20*^ Ann.

AUerton Conference on Communication, Control, and Computing (1982), 94-95.

7. Algorithms for computing Voronoi diagrams and Delaunay triangulations

The following papers present O(nlogn) worst-case optimal divide-and-conquer algorithms

for computing the Voronoi diagram or a Delaunay triangulation for a set of n points in the

plane.

1. M. I. Shamos and D. Hoey, Closest-point problems, Proc. 16‘^ Ann. IEEE Symp. on

Foundations of Computer Science (1975), 151-162.

2. D. T. Lee, Proximity and reachability in the plane, Ph. D. thesis. Tech. Rep. R-831,

Coordinated Sci. Lab., Univ. of Ilhnois (1978).
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3. M. I. Shamos, Computational geometry, Ph. D. thesis, Dept, of Comput. Sci., Yale

Univ. (1978).

4. D. T. Lee and B. J. Schachter, Two algorithms for constructing a Delaunay triangula-

tion, Int. J. Comput. Inf. Sci. 9 (1980), 219-242.

5. L. Guibas and J. Stolfi, Primitives for the manipulation of general subdivisions and the

computation of Voronoi diagrams, ACM Transactions on Graphics 4 (1985), 74-123.

6. R. A. Dwyer, A faster divide-and-conquer algorithm for constructing Delaunay trian-

gulations, Algorithmica 2 (1987), 137-151.

The following papers present incremental algorithms for computing 2—dimensional Voronoi

diagrams or Delaunay triangulations.

1. D. H. McLain, Two dimensional interpolation from random data. The Comput. J. 19

(1976), 178-181.

2. C. L. Lawson, Software for surface interpolation. Mathematical Software III, J. R.

Rice (Ed.), Academic Press, New York (1977), 161-194.

3. H. Akima, A method of bivariate interpolation and smooth surface fitting for irregularly

distributed data points, ACM Trans. Math. Softw. 4 (1978), 148-159, 160-164.

4. P. J. Green and R. Sibson, Computing Dirichlet tessellations in the plane. The Comput.

J. 21 (1978), 168-173.

5. K. E. Brassel and D. Reif, A procedure to generate Thiessen polygons. Geographical

Analysis 11 (1979), 289-303.

6. D. T. Lee and B. J. Schachter, Two algorithms for constructing a Delaunay triangula-

tion, Int. J. Comput. Inf. Sci. 9 (1980), 219-242.

7. M. J. McCullagh and C. G. Ross, Delaunay triangulation of a random data set for

isarithmic mapping. The Cartographic J. 17 (1980), 93-99.

8. A. K. CHne and R. L. Renka, A storage-efficient method for construction of a Thiessen

triangulation. Rocky Mountain J. of Mathematics 14 (1984), 119-139.

9. L. Guibas and J. Stolfi, Primitives for the manipulation of general subdivisions and the

computation of Voronoi diagrams, ACM Transactions on Graphics 4 (1985), 74-123.

10



10. S. W. Sloan, A fast algorithm for constructing Delaunay triangulations in the plane,

Adv. Eng. Software 9 (1987), 34-55.

The following paper presents an 0(n log n) plane-sweep algorithm for computing the Voronoi

diagram for a set of n points in the plane.

1.

S. Fortune, A sweephne algorithm for Voronoi diagrams, Algorithmica 2 (1987), 153-

174.

In the following paper it is shown how to maintain dynamically a Voronoi diagram for a set

of n points in the plane in 0{n) time per insertion and O(nlog n/A:(n)) time per deletion

using 0(nlog(A:(n))) storage, where k{n) = (9(logn).

1. I. G. Gowda, D. G. Kirkpatrick, D. T. Lee, and A. Naamad, Dynamic Voronoi dia-

grams, IEEE Transactions on Information Theory IT-29 (1983), 724-731.

The following paper presents an 0{n log n) procedure for computing a globally equiangular

triangulation for a set of n co-circular points in the plane.

1. D. Mount and A. Saaheld, GlobaUy-equiangular triangulation of co-circular points in

O(nlogn) time, Proc. 4‘^ Ann. ACM Symp. on Computational Geometry (1988),

143-152.

The following papers present algorithms for computing the Voronoi diagram or a Delaunay

triangulation for a set of n points in 3—dimensional space. AU three algorithms have worst

case time complexity 0(n'*). The algorithm in the first paper first computes the facets of

each Voronoi region and from them the edges and vertices of the region. In practice the

complexity for this algorithm is actually O(n^logn). The algorithm in the second paper

computes the vertices of each Voronoi region and by identifying the sites that define each

vertex computes the edges and facets of the region. Finally, the algorithm in the third paper

computes the Voronoi region for each site by computing aU Delaunay tetrahedra that have

the site as a common vertex.

1. W. Browstow, J.-P. Dussault, and B. L. Fox, Construction of Voronoi polyhedra, J.

Comput. Phys. 29 (1978), 81-97.

2. J. L. Finney, A procedure for the construction of Voronoi polyhedra, J. Comput. Phys.

32 (1979), 137-143.

3. M. Tanemura, T. Ogawa, and N. Ogita, A new algorithm for three-dimensional Voronoi

tessellation, J. Comput. Phys. 51 (1983), 191-207.
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The following papers present algorithms for computing the Voronoi diagram or a Delaunay

triangulation for a set of n points in d—dimensional space. The algorithms in the first two

papers are insertion algorithms for computing, respectively, the Voronoi diagram and the De-

launay triangulation for the set. Inductively, with these algorithms the point in the set

is inserted into the Voronoi diagram or Delaunay triangulation for the first A: — 1 points and

the Voronoi diagram or Delaunay triangulation for the k points is then obtained. In these

papers it is claimed that on the average the complexity of the algorithms is and

respectively, for a random set. Finally, the third paper presents two algorithms.

The first algorithm employs a breadth first search for computing the Voronoi diagram for

the set of points in worst-case time logn) in the absence of de-

generacies. The second algorithm employs linear prograiiuning techniques for computing a

Delaunay triangulation for the set.

1. A. Bowyer, Computing Dirichlet tessellations. The Comput. J. 24 (1981), 162-166.

2. D. F. Watson, Computing the n—dimensional Delaunay tessellation with application

to Voronoi pol5d;opes. The Comput. J. 24 (1981), 167-172.

3. D. Avis and B. K. Bhattacharya, Algorithms for computing d—dimensional Voronoi

diagrams and their duals, Adv. Comput. Res. 1 (1983), 159-180.

The following papers present an incremental triangle-flipping algorithm for computing a De-

launay triangulation for a set of n points in 3—dimensional space in at most O(n^) time.

Results for random problems are presented in these papers from which it can be seen that

the empirical time complexity of the algorithm is 0(n‘^/^) or 0(n(logTi)^) for sets of ran-

dom points. In the first paper it is also shown that improving an arbitrary 3—dimensional
triangulation by triangle-flipping does not necessarily terminate in a Delaunay triangulation.

1. B. Joe, Three-dimensional triangulations from local transformations, SIAM J. Sci.

Stat. Comput. 10 (1989), 718-741.

2. B. Joe, Construction of three-dimensional Delaunay triangulations using local trans-

formations, Computer Aided Geometric Design 8 (1991), 123-142.

The following paper presents an incremental triangle-flipping algorithm for computing a De-

launay triangulation for a set of n points in d—space in at most logn -|-

time.

1. V. T. Rajan, Optimahty of the Delaunay triangulation in R^, Proc. 7*^ Ann. ACM
Symp. on Computational Geometry (1991), 357-372.
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The following paper presents an incremental triangle-flipping algorithm for computing a

Delaunay triangulation for a set of n points in <i—space in expected 0(n log n + time

if the points are added in a random sequence.

1.

H. Edelsbrunner and N. R. Shah, Incremental topological flipping works for regular

triangulations, Proc. Ann. ACM Symp. on Computational Geometry (1992),

43-52.

The following papers present data structures for storing Voronoi diagrams and Delaunay

triangulations that are convenient for the implementation of divide-and-conquer and incre-

mental algorithms for computing Voronoi diagrams and Delaunay triangulations. The first

and second papers deal with the 2— and 3—dimensional cases, respectively. The last two

papers deal with the d—dimensional case.

1. L. Guibas and J. Stolfl, Primitives for the manipulation of general subdivisions and the

computation of Voronoi diagrams, ACM Transactions on Graphics 4 (1985), 74-123.

2. D. P. Dobkin and M. J. Laszlo, Primitives for the manipulation of three-dimensional

subdivisions, Algorithmica 4 (1989), 3-32.

3. E. Brisson, Representing geometric structures in d dimensions: topology and order,

Proc. 5*^ Ann. ACM Symp. on Computational Geometry (1989), 218-227.

4. P. Lienhardt, Subdivisions of n—dimensional spaces and n—dimensional generaflzed

maps, Proc. 5‘^ Ann. ACM Symp. on Computational Geometry (1989), 228-236.

The following papers present perturbation schemes of input data for geometric programs

that eliminate degeneracies. Softwares for computing Voronoi diagrams and convex hulls

in d— dimensional space are examples of geometric programs for which it is practical to use

these techniques.

1. C.-K. Yap, Symbolic treatment of geometric degeneracies, J. Symbohc Computation

10 (1990), 349-370.

2. C.-K. Yap, A geometric consistency theorem for a symbolic perturbation scheme, J. of

Computer and System Sciences 40 (1990), 2-18.

3. H. Edelsbrunner and E. P. Miicke, Simulation of simphcity: A technique to cope with

degenerate cases in geometric algorithms, ACM Transactions on Graphics 9 (1990),

66-104.
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4. I. Emiris and J. Canny, A general approach to removing degeneracies, Proc. 32”^ Ann.

IEEE Symp. on the Foundations of Computer Science (1991), 405-413.

5. I. Emiris and J. Canny, An efficient approach to removing geometric degeneracies,

Proc. 8*^ Ann. ACM Symp. on Computational Geometry (1992), 74-82.

8. Voronoi diagrams from convex hulls or intersections of half-spaces

In the following papers it is shown how to compute a d—dimensional Voronoi diagram by

transforming the data points to (d-f- 1)—space using geometric inversion, computing the con-

vex hull of the transformed points, and then transforming the convex hull back to d—space.

1. K. Q. Brown, Voronoi diagrams from convex hulls. Info. Proc. Lett. 9 (1979), 223-228.

2. K. Q. Brown, Geometric transforms for fast geometric algorithms, Ph. D. thesis. Rep.

CMU-CS-80-101, Dept, of Comput. Sci., Carnegie-Mellon Univ. (1980).

In the following papers it is shown how to compute d—dimensional Voronoi diagrams as

perpendicular projections onto d— dimensional space of the boundaries of polyhedra that are

intersections of half-spaces in (d -|- 1)— dimensional space.

1. I. Paschinger, Konvexe Polytope und Dirichletsche ZeUenkomplexe, Ph. D. disserta-

tion, Math. Inst., Univ. Salzburg, Austria (1982).

2. H. Edelsbrunner and R. Seidel, Voronoi diagrams and arrangements. Discrete Comput.

Geom. 1 (1986), 25-44.

3. H. Edelsbrunner, J. O’Rourke, and R. Seidel, Constructing arrangements of lines and

hyperplanes with applications, SIAM J. Comput. 15 (1986), 341-363.

4. F. Aurenhammer, Power diagrams; properties, algorithms and apphcations, SIAM J.

Comput. 16 (1987), 78-96.

The following paper presents a result for computing certain kinds of 3—dimensional convex

hulls that implies a hnear algorithm for deleting a site from a Voronoi diagram in the plane

and updating the diagram. The same result imphes a linear algorithm for computing the

Voronoi diagram for the vertices of a convex polygon.

1. A. Aggarwal, L. J. Guibas, J. Saxe, and P. W. Shor, A Hnear-time algorithm for

computing the Voronoi diagram of a convex polygon. Discrete Comput. Geom. 4

(1989), 591-604.
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9. Convex hulls

Convex hulls are closely related to Voronoi diagrams, and algorithms for computing convex

hulls can be used for computing Voronoi diagrams and Voronoi cells. The following papers

present algorithms for computing planar convex hulls. With n as the size of the input and

A as the size of the output, the first and fourth papers present algorithms with complexity

nlogn, the second and third papers present algorithms with complexity nA, and the last

paper presents an algorithm with complexity n log A.

1. R. L. Graham, An efficient algorithm for determining the convex hull of a finite planar

set. Inform. Proc. Lett. 1 (1972), 132-133.

2. R. A. Jarvis, On the identification of the convex hull of a finite set of points in the

plane. Inform. Proc. Lett. 2 (1973), 18-21.

3. W. F. Eddy, A new convex huU algorithm for planar sets, ACM Trans. Math. Software

3 (1977), 398-403, 411-412.

4. J. L. Bentley and M. 1. Shamos, Divide and conquer for hnear expected time. Inform.

Process. Lett. 7 (1978), 87-91.

5. D. G. Kirkpatrick and R. Seidel, The ultimate planar convex hull algorithm?, SIAM
J. on Computing 15 (1986), 287-299.

The following paper presents divide-and-conquer algorithms of 0{n log n) worst-case optimal

complexity for computing the convex hulls for sets of n points in two and three dimensions.

1. F. P. Preparata and S. J. Hong, Convex huUs of finite sets of points in two and three

dimensions. Comm. ACM 20 (1977), 87-93.

In the following paper it is shown how to compute in 0{n log n) worst-case optimal complexity

the steady-state convex hull for a set of n points in A:—motion in d— dimensional space, d < 3.

A point is in A:—motion if its position in the space can be described in terms of a polynomial

with degree < k. Steady-state refers to conditions at time t = oo.

1. M. J. AtaUah, Dynamic computational geometry, Proc. 24*^ Ann. IEEE Symp. on

Foundations of Computer Science (1983), 92-99.

The following papers and textbooks present algorithms for computing convex hulls in higher

dimensions. In the third paper it is shown that the worst-case complexity of the gift-wrapping

15



algorithm in the first paper is 4- logn) for computing the con-

vex hull for n points in d—dimensional space. In the second paper an algorithm is presented

which is optimal for even d, for computing in 0{n\ogn time and 0(n +
space the convex hull for n points in d— dimensional space, d > 4. The fifth paper or text-

book presents an on-hne beneath-beyond algorithm for computing in time the

convex hull for n points in d— dimensional space. The sixth paper or textbook presents

an algorithm based on the same technique for computing in 0(nlogn -f time and

)
space the convex hull for n points in d— dimensional space. Finally, the seventh pa-

per presents an algorithm for computing the convex huU for n points in d—dimensional space

in optimal
)
time for any d > 3. A consequence of this algorithm is that the Voronoi

diagram for n points in d— dimensional space can be computed in optimal 0(n log n -\-

time for any d.

1 . D. R. Chand and S. S. Kapur, An algorithm for convex polytopes, J. Assoc. Comput.

Mach. 17 (1970), 78-86.

2. R. Seidel, A convex hull algorithm optimal for point sets in even dimensions, M. S.

thesis. Tech. Rep. 81-14, Dept, of Comput. Sci., Univ. of British Columbia (1981).

3. B. K. Bhattacharya, Worst-case analysis of a convex huU algorithm. Tech. Rep., Dept,

of Comput. Sci., Simon Fraser Univ. (1982).

4. G. Swart, Finding the convex hull facet by facet, J. of Algorithms 6 (1985), 17-48.

5. F. P. Preparata and M. I. Shamos, Computational Geometry - An Introduction,

Springer-Verlag, New York (1985).

6 . H. Edelsbrunner, Algorithms in Combinatorial Geometry, Springer-Verlag, New York

(1987).

7. B. Chazelle, An optimal convex hull algorithm and new results on cuttings, Proc. 32”^

Ann. Symp. on Foundations of Computer Science (1991), 29-38.

The size of the convex huU of a set of n points in d—space can be as large as ).

However, since at times it is smaller than this number, it may be desirable to use an algorithm

for computing convex hulls in d dimensions whose complexity depends on the size of the

output. The following paper presents one such algorithm. For fixed d it has worst case time

complexity 0{n^ -f Flogn), where n is the size of the input and F is the size of the output.
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1. R. Seidel, Constructing higher-dimensional convex hulls at logarithmic cost per face,

Proc. 18‘^ Ann. ACM Symp. on Theory of Computing (1986), 404-413.

The following papers present a randomized incremental algorithm for computing the convex

hull for a nondegenerate set of n points in d—dimensional space that requires 0(n log n)

expected time for d = 3, and expected time for d > 3. The second paper presents

an algorithm that through the use of random samphng computes the convex hull for a set

of n points in 3— dimensional space in O(nlog A) expected time, where A is the size of the

output.

1. K. L. Clarkson and P. W. Shor, Algorithms for diametral pairs and convex hulls that are

optimal, randomized, and incremental, Proc. 4‘^ Ann. ACM Symp. on Computational

Geometry (1988), 12-17.

2. K. L. Clarkson and P. W. Shor, Apphcations of random sampling in computational

geometry, II, Discrete Comput. Geom. 4 (1989), 387-421.

The following paper presents a randomized incremental algorithm for computing the convex

hull for a nondegenerate set of n points in d—dimensional space, d > 3, in
)
expected

time without having to maintain conflict graphs.

1. R. Seidel, Linear programming and convex hulls made easy, Proc. 6*^ Ann. ACM
Symp. on Computational Geometry (1990), 211-215.

The following paper presents an algorithm for computing in 0(n log n) time the convex hull

for a set of n discs in the plane.

1. D. Rappaport, A convex hull algorithm for discs, and applications. Computational

Geometry: Theory and Applications 1 (1992), 171-187.

10. Optimal expected-time algorithms

The following papers present linear expected time algorithms for computing the Voronoi

diagram or a Delaunay triangulation for a set of uniformly distributed points in a square or

rectangle in the plane.

1. J. L. Bentley, B. W. Weide, and A. C. Yao, Optimal expected-time algorithms for

closest point problems, ACM Trans. Math. Softw. 6 (1980), 563-580.

2. A. Mans, Delaunay triangulation and the convex hull of n points in expected hnear

time, BIT 24 (1984), 151-163.
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3. T. Ohya, M. Iri, and K. Murota, A fast Voronoi diagram algorithm with quaternary

tree bucketing, Inf. Process. Lett. 18 (1984), 227-231.

4. T. Ohya, M. Iri, and K. Murota, Improvements of the incremental methods for the

Voronoi diagram with computational comparison of various algorithms, J. Operations

Res. Soc. Japan 27 (1984), 306-337.

5. T. Asano, M. Edahiro, H. Imai, M. Iri, and K. Murota, Practical use of bucketing tech-

niques in computational geometry. Computational Geometry, G. T. Toussaint (Ed.),

North-Holland (1985), 153-195.

The following papers present a Hnear expected time algorithm for computing the Voronoi

diagram for a set of uniformly distributed points in a 3—dimensional cube.

1. J. Bernal, On the expected complexity of the 3— dimensional Voronoi diagram. National

Institute of Standards and Technology IR 4321 (1990).

2. J. Bernal, An expected Hnear 3—dimensional Voronoi diagram algorithm, National

Institute of Standards and Technology IR 4340 (1990).

The following paper presents a general method for determining the expected complexity of

Voronoi diagrams for random point sets in d— dimensional space. It also presents a linear

expected time algorithm for computing the Voronoi diagram for a set of uniformly distributed

points in a d—dimensional ball.

1. R. A. Dwyer, Higher-dimensional Voronoi diagrams in linear expected time. Discrete

Comput. Geom. 6 (1991), 343-367.

11. Randomized 2—dimensional increment 2d algorithms

Incremental algorithms for computing Voronoi diagrams in the plane have the advantage

of being simple to implement. Even though for certain situations their complexities can be

undesirably high, it has been shown that if the points in the set are introduced in random
order then the Voronoi diagram or a Delaunay triangulation for the set can be computed in

expected 0(n log n) time and expected 0{n) space, where n is number of points in the set.

The following papers deal with the incremental randomized construction of 2— dimensional
Voronoi diagrams or Delaunay triangulations. The first paper introduces a data structure

called the Delaunay tree which Hnks together in a hierarchical fashion aU triangles that arise

in the incremental construction of a Delaunay triangulation. This structure can be used
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to implement simple algorithms for the incremental construction of Delaunay triangulations

in any dimension since it can be updated efficiently each time a new site is introduced.

A data structure similar to the Delaunay tree is used to define the algorithm in the fifth

paper. The second and third papers deal with the incremental randomized construction of

3—dimensional convex hulls. The algorithms in the fourth and fifth papers are based on

the technique presented in the second paper. The algorithm in the fourth paper extends to

a subset of the class of abstract Voronoi diagrams. Finally, in the sixth paper it is shown

that using dynamic sampling a random site can be added to a Voronoi diagram or Delaunay

triangulation for n sites in expected O(logn) time, and deleted in expected 0(1) time.

1. J.-D. Boissonnat and M. TeiUaud, An hierarchical representation of objects: The De-

launay tree, Proc. 2”^ Ann. ACM Symp. on Computational Geometry (1986), 260-268.

2. K. L. Clarkson and P. W. Shor, Algorithms for diametral pairs and convex hulls that are

optimal, randomized, and incremental, Proc. 4*^ Ann. ACM Symp. on Computational

Geometry (1988), 12-17.

3. K. L. Clarkson and P. W. Shor, Apphcations of random sampling in computational

geometry, II, Discrete Comput. Geom. 4 (1989), 387-421.

4. K. Mehihorn, C.O’Dunlaing, and S. Meiser, On the construction of abstract Voronoi

diagrams, Springer-Verlag Lecture Notes in Computer Science 415 (1990), 227-239.

5. L. J. Guibas, D. E. Knuth, and M. Sharir, Randomized incremental construction of

Delaunay and Voronoi diagrams, Springer-Verlag Lecture Notes in Gomputer Science

443 (1990), 414-431.

6. K. Mulmuley, Randomized multidimensional search trees: dynamic sampling, Proc.

7*^ Ann. ACM Symp. on Computational Geometry (1991), 121-131.

12. Parcdlel computation of Voronoi diagrams and convex hulls

The following paper presents an algorithm for the parallel computation of the convex hull

for a set of n points in 3— dimensional space in O(log^n) time using 0(n) processors.

1. A. Chow, Parallel algorithms for geometric problems, Ph. D. dissertation. Dept, of

Comput. Sci., Univ. of Illinois at Urbana-Champaign (1980).

The following paper presents an algorithm for the parallel computation of the convex hull

for a set of n points in the plane in O(log^n) time using n processors and 0((l/a) log n)

time using processors, 0 < a < 1.
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1. A. Chow, A parallel algorithm for determining convex hulls of sets of points in two di-

mensions, Proc. 19*^ AUerton Conference on Communication, Control and Computing

(1981), 214-233.

The following paper presents an algorithm for the parallel computation of the convex hull

for a set of n points in the plane in O(log n) time using 0{n) processors.

1. M. J. Atallah and M. T. Goodrich, Efficient parallel solutions to geometric problems,

Proc. 1985 IEEE Inti. Conf. on Parallel Processing (1985), 411-417.

The following paper presents algorithms for the parallel computation of the Voronoi diagram

for a set of n points in the plane in 0(log^ n) time using 0{n) processors, and the convex hull

for a set of n points in 3— dimensional space in O(log^nlog*n) time using 0(n) processors.

1. N. Dadoun and D. G. Kirkpatrick, Parallel processing for efficient subdivision search,

Proc. 3’’'^ Ann. ACM Symp. on Computational Geometry (1987), 205-214.

The following paper presents algorithms for the parallel computation of the convex hull

and Voronoi diagram for a set of n points in the plane in O(log n) and 0(log^ n) times,

respectively, using 0{n) processors, and the convex hull for a set of n points in 3—dimensional
space in O(log^n) time using 0{n) processors.

/

1. A. Aggarwal, B. ChazeUe, L. Guibas, C. O’Dunlaing, and C. Yap, Parallel computa-

tional geometry, Algorithmica 3 (1988), 293-327.

The following paper presents an O(log^ n) algorithm for computing the Delaunay triangula-

tion for n points in the discrete universe of grid points in the plane of the form p = {puPy),

Px, Py integers, 0 < p^, Py < 2'^ — 1, k a. fixed integer, using processors with word length

0{k -f log n).

1. O. Schwarzkopf, Parallel computation of discrete Voronoi diagrams, Springer-Verlag

Lecture Notes in Computer Science 349 (1989), 193-204.

The following paper presents a randomized algorithm for the parallel computation with high

probabihty of the convex hull for a set of n points in 3—dimensional space in O(log n) time

using n processors.

1. J. H. Reif and S. Sen, Polling: A new randomized sampling technique for computational

geometry, Proc. 21*^ Ann. ACM Symp. on Theory of Computing (1989), 394-404.

20



The following paper presents two algorithms for the parallel computation of the Voronoi

diagram for a set of n points in the plane in O(log n log log n) time and O(nlog^n) work,

and O(log^ n) time and (9(nlogn) work, respectively.

1. R. Cole, M. T. Goodrich, and C. O’Diinlaing, Merging free trees in parallel for efficient

Voronoi diagram construction. Springer-Verlag Lecture Notes in Computer Science 443

(1990), 432-445.

13. Robustness and stability

The following papers present methods for computing in a numerically stable manner Voronoi

diagrams in the plane. The Voronoi diagrams computed in this fashion are not necessarily

correct but converge to the true Voronoi diagrams as the computational precision is increased.

1. K. Sugihara and M. Iri, Geometric algorithms in finite-precision arithmetic, RMI 88-10,

Faculty of Engineering, Univ. of Tokyo, Japan (1988).

2. K. Sugihara and M. Iri, Construction of the Voronoi diagram for over one million

generators in single-precision arithmetic, Proc. 1** Canad. Conf. Comput. Geom.

(1989).

The following paper presents a method for computing correct Delaunay triangulations in the

plane while avoiding numerical errors and nonexistent degeneracies.

1. K. Sugihara, A simple method for avoiding numerical errors and degeneracy in Voronoi

diagram construction, RMI 88-14, Faculty of Engineering, Univ. of Tokyo, Japan

(1988).

The following paper presents a general framework for implementing robust geometric algo-

rithms using finite precision arithmetic. In this framework algorithms compute an exact

result for a perturbed version of the input data, and return a bound on the size of the

required perturbation based on the size of the rounding errors observed during the compu-

tation. In this paper special consideration is given to the implementation of basic geometric

predicates of 2—dimensional geometry such as predicates for testing whether two points are

distinct, whether three points are colhnear, whether a point is between two other points, etc.

It is also shown in this paper how these basic predicates can be combined to produce more

complex algorithms.

1. L. Guibas, D. Salesin, and J. Stoffi, Epsilon geometry: Building robust algorithms from

imprecise computations, Proc. 5*^ Ann. ACM Symp. on Computational Geometry

(1989), 208-217.
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The following paper presents stable algorithms for computing 2—dimensional convex hulls

and maintaining a planar triangulation if the arithmetic operations involved make relative

error e. The first algorithm computes a convex hull that is the correct convex hull for points

that have been relatively perturbed by at most 0(e). The second algorithm maintains a

triangulation for a set of n points in the plane through the operations of point location,

point addition, point deletion, and diagonal flipping, in such a way that after any sequence

of operations the graph structure of the triangulation and the coordinates of the input points

are maintained, and the triangulation can be made planar by relatively perturbing the points

by at most O(n^e).

1. S. Fortune, Stable maintenance of point set triangulations in two dimensions, Proc.

30*^ Ann. IEEE Symp. on the Foundations of Computer Science (1989), 494-499.

In the following paper it is shown how long integer words must be in a binary computer in

order to compute exact Delaunay triangulations using integer arithmetic.

1. M. Jiinger, G. Reinelt, and D. Zepf, Computing correct Delaunay triangulations. Com-

puting 47 (1991), 43-49.

The following paper presents adaptive-precision algorithms for accelerating the performance

of rational arithmetic during the computation of the sign of the determinant of a matrix.

Reduced running times are reported in this paper for a rational arithmetic implementation

of a Delaunay triangulation algorithm into which these algorithms have been integrated.

1. M. Karasick, D. Lieber, and L. R. Nackman, Efficient Delaunay triangulation using

rational arithmetic, ACM Transactions on Graphics 10 (1991), 71-91.

In the following paper it is shown that a diagonal-flipping algorithm and an incremental

algorithm for computing 2—dimensional Delaunay triangulations can be implemented reli-

ably in approximate arithmetic. The output of each algorithm is a triangulation which is an

approximate Delaunay triangulation in the sense that a sfight contraction of the circumcircle

of each triangle contains no sites in its interior.

1. S. Fortune, Numerical stabihty of algorithms for 2D Delaunay triangulations, Proc.

8*^ Ann. ACM Symp. on Computational Geometry (1992), 83-92.

14. Voronoi diagram recognition

In the following papers algorithms are given for deciding whether a simple cell complex in
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ci— dimensional space is a Voronoi diagram for some set of points and for computing the set if

it exists. Essentially, the algorithm in the first paper tests for the concurrence in each cell of

rays that originate at the vertices of the cell and that are obtained by extending into the cell

the edges in the complex adjacent and exterior to the cell, and by reflecting each extension

in the bisector of the angle of the cell adjacent to the extension, and if these concurrences

exist computes from them the set of points. Under the requirement that a cell complex be

given by its incidence lattice, the algorithm in the second paper essentially computes an

orthogonal dual for the cell complex if it exists and from this dual computes the set of points

if it exists. The time required by the algorithm in the first paper is proportional to the

number of vertices in the cell complex. The time required by the algorithm in the second

paper is proportional to the number of facets. A d— dimensional cell complex is simple if

each of its vertices is a vertex of exactly d + 1 cells in the complex.

1. P. F. Ash and E. D. Bolker, Recognizing Dirichlet tessellations, Geometriae Dedicata

19 (1985), 175-206.

2. F. Aurenhammer, Recognising polytopical cell complexes and constructing projection

polyhedra, J. Symbolic Comput. 3 (1987), 249-255.

For practical situations it is unlikely that a diagram obtained through an observation process

should turn out to be an exact Voronoi diagram even if from thoretical considerations it is

supposed to be one. For such a diagram, geometrical methods used for deciding whether a

tessellation is Voronoi most hkely would produce a negative answer. In the following paper

the problem of obtaining a Voronoi diagram that approximates a given tessellation of a

bounded set in the plane is considered. This problem includes the problem of computing

the generators for a known Voronoi diagram. In this paper this problem is formulated as an

optimization problem and an algorithm is proposed that computes a possibly locally optimal

solution for it.

1. A. Suzuki and M. Iri, Approximation of a tessellation of the plane by a Voronoi diagram,

J. Operations Res. Soc. Japan 29 (1986), 69-96.

15. Constrained and conforming Delaunay triangulations

Given a collection of vertices V and edges E in the plane such that the endpoints of the

edges in E belong to V and two edges in E intersect at most at endpoints, a Delaunay

triangulation for V constrained by E is essentially a triangulation for V that contains all

edges in E and that best approximates a Delaunay triangulation for V

.

On the other hand.
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a Voronoi diagram for V contrained by E can be defined in which the edges in E are viewed

as obstacles in the diagram and whose dual structure essentially turns out to be a Delaunay

triangulation for V constrained by E. In the following paper it is proven that a triangulation

is constrained Delaunay if and only if it is constrained locally equiangular.

1.

D. T. Lee and A. K. Lin, Generalized Delaunay triangulation for planar graphs, Dis-

crete Comput. Geom. 1 (1986), 201-217.

The following papers estabhsh the duahty between a Delaunay triangulation and the Voronoi

diagram for a set of points constrained by a set of line segments.

1. C. A. Wang and L. Schubert, An optimal algorithm for constructing the Delaunay

triangulation of a set of line segments, Proc. 3^*^ Ann. ACM Symp. on Computational

Geometry (1987), 223-232.

2. R. Seidel, Constrained Delaunay triangulation and Voronoi diagrams with obstacles.

Rep. 260, IIG-TU Graz, Austria (1988), 178-191.

3. A. Lingas, Voronoi diagrams with barriers and the shortest diagonal problem. Inf.

Process. Lett. 32 (1989), 191-198.

The following papers present algorithms for computing a constrained Delaunay triangulation

for a simple polygon. The last paper presents an 0(n log n) algorithm, where n is the number
of vertices of the polygon.

1. B. A. Lewis and J. S. Robinson, Triangulation of planar regions with appHcations, The
Comput. J. 21 (1978), 324-332.

2. L. De Floriani, B. Falcidieno, and C. Pienovi, Delaunay-based representation of sur-

faces defined over arbitrarily shaped domains. Computer Vision, Graphics, and Image

Processing 32 (1985), 127-140.

3. D. T. Lee and A. K. Lin, Generalized Delaunay triangulation for planar graphs. Dis-

crete Comput. Geom. 1 (1986), 201-217.

The following papers present algorithms for computing a Delaunay triangulation or a Voronoi

diagram for a set of n points constrained by a set of line segments. The second and sev-

enth papers present 0(n log n) divide- and-conquer algorithms. The sixth paper presents an

0(n log n) plane-sweep algorithm.
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1. D. T. Lee and A. K. Lin, Generalized Delaunay triangulation for planar graphs, Dis-

crete Comput. Geom. 1 (1986), 201-217.

2. C. A. Wang and L. Schubert, An optimal algorithm for constructing the Delaunay

triangulation of a set of line segments, Proc. 3^''^ Ann. ACM Symp. on Computational

Geometry (1987), 223-232.

3. J. Bernal, On constructing Delaunay triangulations for sets constrained by hne seg-

ments, National Institute of Standards and Technology Technical Note 1252 (1988).

4. J. D. Boissonnat, 0. D. Faugeras, and E. Le Bras-Mehhnan, Representing stereo data

with the Delaunay triangulation, Proc. IEEE Inti. Conf. Robotics and Automation

(1988), 24-29.

5. L. De Floriani and E. Puppo, Constrained Delaunay triangulation for multiresolution

surface description, Proc. 9‘^ International Conference on Pattern Recognition (1988),

566-569.

6. R. Seidel, Constrained Delaunay triangulation and Voronoi diagrams with obstacles.

Rep. 260, IIG-TU Graz, Austria (1988), 178-191.

7. L. P. Chew, Constrained Delaunay triangulations, Algorithmica 4 (1989), 97-108.

It is not known whether a constrained Delaunay triangulation for a simple polygon can be

computed in less than O(nlogn) time. The following two papers leave open the possibihty

of the existence of a linear algorithm.

1. A. Aggarwal, L. J. Guibas, J. Saxe, and P. W. Shor, A hnear-time algorithm for

computing the Voronoi diagram of a convex polygon. Discrete Comput. Geom. 4

(1989), 591-604.

2. B. Chazelle, Triangulating a simple polygon in linear time. Discrete Comput. Geom.

6 (1991), 485-524.

Given a collection of vertices V and edges E such that the endpoints of the edges in E
belong to V and two edges in E intersect at most at endpoints, a conforming Delaunay

triangulation for V and E is essentially a Delaunay triangulation for a set of points 5 such

that V is contained in S and every edge in E is the union of edges in the triangulation. In

the following paper it is proven that given as above sets V and E oi n vertices and m edges,

respectively, a set S of 0{m^n) points can be obtained in O(m^n-t-n^) time such that a

25



Delaunay triangulation for 5 is a conforming Delaunay triangulation for V and E, provided

infinite precision arithmetic in constant time is assumed.

1. H. Edelsbrunner and T. S. Tan, An upper bound for conforming Delaunay triangula-

tions, Proc. 8*^ Ann. ACM Symp. on Computational Geometry (1992), 53-62.

16. Voronoi diagrams for general figures

The concept of Voronoi diagrams can be generalized to figures more general than points.

The following papers present algorithms for exclusively computing the medial axis or Voronoi

diagram for the boundary edges of a simple polygon. The second paper presents an 0{n log n)

algorithm, where n is the number of boundary edges of the polygon.

1. F. P. Preparata, The medial axis of a simple polygon, Proc. 6*^ Ann. Internat. Symp.

Math. Found. Computer Sci. (1977), 443-450.

2. D. T. Lee, Medial Axis transformation of a planar shape, IEEE Trans. Patt. Anal.

Mach. InteU. PAMI-4 (1982), 363-369.

The following paper presents a hnear algorithm for computing the medial axis for a convex

polygon.

1. A. Aggarwal, L. J. Guibas, J. Saxe, and P. W. Shor, A hnear-time algorithm for

computing the Voronoi diagram of a convex polygon. Discrete Comput. Geom. 4

(1989), 591-604.

The following paper presents an 0(nmax[log n, /i]) algorithm for computing the Voronoi

diagram for the boundary edges of a multiply connected polygon, where n is the number of

boundary edges and h is the number of holes in the polygon.

1. V. Srinivasan and L. R. Nackman, An algorithm to compute the Voronoi diagram of

a multiply connected polygonal domain. Research Report, Computer Science, IBM
Thomas J. Watson Research Center (1985).

The following papers present 0(ncV^^°®”) and O(nlog^n) algorithms, respectively, for com-

puting the Voronoi diagram for a set of n disjoint circles and line segments in the plane.

1. R. L. Drysdale and D. T. Lee, Generahzed Voronoi diagram in the plane, Proc. 16*^

Ann. AUerton Conference on Communications, Control and Computing (1978), 833-

842.
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2. D. T. Lee and R. L. Drysdale, Generalization of Voronoi diagrams in the plane, SIAM
J. Comput. 10 (1981), 73-87.

The following paper presents an 0(nlog n) algorithm for computing the Voronoi diagram for

a set of n hne segments in the plane.

1. D. G. Kirkpatrick, Efficient computation of continuous skeletons, Proc. 20*^ Ann.

IEEE Symp. Found. Computer Sci. (1979), 18-27.

The following papers present 0{n log^ n) divide-and-conquer algorithms for computing, re-

spectively, the Voronoi diagram for a set of n possibly intersecting circles in the plane and

the Voronoi diagram for a set of n disjoint planar convex objects of relatively simple shape.

1. M. Sharir, Intersection and closest-pair problems for a set of planar discs, SIAM J.

Comput. 14 (1985), 448-468.

2. D. Leven and M. Sharir, Intersection and proximity problems and Voronoi diagrams,

Adv. Robotics 1 (1986), 187-228.

In the following paper it is shown that the Voronoi diagram for a set of n spheres in

d— dimensional space can be obtained Hnearly from the power diagram for some set of n
spheres in [d -f 1)— dimensional space.

1. F. Aurenhammer, Power diagrams: properties, algorithms and apphcations, SIAM J.

Comput. 16 (1987), 78-96.

The following paper presents an 0(n log n) algorithm for computing the Voronoi diagram for

a set of n simple curve segments in the plane.

1. C. K. Yap, An O(nlogn) algorithm for the Voronoi diagram of a set of simple curve

segments. Discrete Comput. Geom. 2 (1987), 365-393.

The following paper presents 0{n log n) plane-sweep algorithms for computing Voronoi dia-

grams for sets of n line segments or n possibly intersecting circles in the plane.

1. S. Fortune, A sweephne algorithm for Voronoi diagrams, Algorithmica 2 (1987), 153-

174.

The following papers address the problem of identifying the Voronoi complex of free place-

ments of a line segment or ladder of length d in the plane for a set of polygonal obstacles.

Essentially, this complex consists of all possible line segments of length d in the plane that
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are equidistant from their two closest obtacles. In the first paper the complex is introduced

and analyzed. In the second paper it is shown that if the polygonal obstacles have bound-

aries that consist of n segments and corners then a skeleton representation of the complex

can be constructed in time 0{n'^ log for some fixed integer s, where a{n) is the

inverse of Ackermann’s function.

1. C. O’Dunlaing, M. Sharir, and C. K. Yap, Generalized Voronoi diagrams for moving a

ladder. I: Topological analysis, Comm. Pure Appl. Math. 39 (1986), 423-483.

2. C. O’Dunlaing, M. Sharir, and C. Yap, Generahzed Voronoi diagrams for a ladder: II.

Efficient construction of the diagram, Algorithmica 2 (1987), 27-59.

The first of the following papers presents a randomized incremental construction technique

that can be used for computing the Voronoi diagram for a set of n line segments in the

plane in 0(n log n) expected time. Based on the same technique, the second paper presents

a randomized algorithm for computing in expected 0(n log n) time certain abstract Voronoi

diagrams in the plane that include the Voronoi diagram for a set of n line segments and the

Voronoi diagram for a set of n disjoint convex objects.

1. K. L. Clarkson and P. W. Shor, Algorithms for diametral pairs and convex hulls that are

optimal, randomized, and incremental, Proc. Ann. ACM Symp. on Computational

Geometry (1988), 12-17.

2. K. Mehlhorn, C.O’Dunlaing, and S. Meiser, On the construction of abstract Voronoi

diagrams. Springer-Verlag Lecture Notes in Computer Science 415 (1990), 227-239.

The following paper presents an algorithm for the parallel computation of the Voronoi dia-

gram for a set of n line segments in the plane in O(log^ n) time using 0{n) processors.

1. M. T. Goodrich, C. O’Dunlaing, and C. Yap, Constructing the Voronoi diagram of a

set of line segments in parallel. Springer-Verlag Lecture Notes in Computer Science

382 (1989), 12-23.

In the following paper the Voronoi diagram for the boundary of a bounded connected set in

3—dimensional space that satisfies a certain set of axioms is considered. The set of axioms

has been chosen to produce maximal generahty while allowing the definition of Voronoi

diagrams that are suitable for motion planning.

1. S. Stifter, An axiomatic approach to Voronoi-diagrams in 3D, J. of Computer and

System Sciences 43 (1991), 361-379.
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17. Voronoi diagrams for general distance measures

The following papers present 0(n log n) divide-and-conquer algorithms for computing the

Voronoi diagram for a set of n points in the plane based on the Li metric, the Li and Too

metrics, the Lp metric, 1 < p < oo, any convex distance function, and any metric induced

by a fixed set of orientations, respectively.

1. F. K. Hwang, An 0{n\ogn) algorithm for rectilinear minimal spanning trees, J. ACM
26 (1979), 177-182.

2. D. T. Lee and C. K. Wong, Voronoi diagrams in Li (Too) metrics with 2— dimensional
storage apphcations, SIAM J. Comput. 9 (1980), 200-211.

3. D. T. Lee, Two-dimensional Voronoi diagrams in the Tp—metric, J. ACM 27 (1980),

604-618.

4. L. P. Chew and R. L. Drysdale, Voronoi diagrams based on convex distance functions,

Proc. 1^‘ Ann. ACM Symp. on Computational Geometry (1985), 235-244.

5. P. Widmayer, Y. F. Wu, and C. K. Wong, On some distance problems in fixed orien-

tations, SIAM J. Comput. 16 (1987), 728-746.

The following paper presents an 0{n log n) divide-and-conquer algorithm for computing a

Delaunay triangulation for a set of n points in the plane based on the Tp metric, 1 < p < oo,

whose expected running time is O(nloglogn) for any quasi-uniform distribution in a rect-

angle.

1. R. A. Dwyer, A faster divide-and-conquer algorithm for constructing Delaunay trian-

gulations, Algorithmica 2 (1987), 137-151.

The following paper presents an O(nlogn) plane-sweep algorithm for computing a Delaunay

triangulation for a set of n points in the plane based on the Ti metric or the Loo metric.

1. G.M. Shute, L. L. Deneen, and C. D. Thomborson, An 0(n log n) plane-sweep algo-

rithm for Ti and Too Delaunay triangulations. Tech. Rep. 87-5, Dept, of Comput.

Sci., Univ. of Minnesota (1987).

The following paper presents an 0(cn log cn) plane-sweep algorithm for computing the

Voronoi diagram for the boundary of a closed set in the plane that has n bounding seg-

ments based on a convex distance function defined with respect to a convex polygon that

has c bounding edges.
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1. S. J. Fortune, A fast algorithm for polygon containment by translation, Springer-Verlag

Lecture Notes in Computer Science 194 (1985), 189-198.

The following paper presents an 0{n log N) algorithm for computing the Voronoi diagram

based on a convex distance function for a set of N interior-disjoint convex polygons having

n corners.

1. D. Leven and M. Sharir, Planning a purely translational motion for a convex object in

two-dimensional space using generahzed Voronoi diagrams. Discrete Comput. Geom.

2 (1987), 9-31.

In the following paper it is shown how to compute in an 0(n log n) divide-and-conquer

fashion the Voronoi diagram for a set of n points in the plane based on a metric that satisfies

a certain set of axioms. The set of axioms has been chosen to ensure that Voronoi diagrams

based on such metrics satisfy certain desirable properties. The class of metrics that satisfy

the set of axioms contains aU symmetric convex distance functions and many combinations

of well-known metrics.

1. R. Klein and D. Wood, Voronoi diagrams based on general metrics in the plane.

Springer-Verlag Lecture Notes in Computer Science 294 (1988), 281-291.

In the following textbook it is shown how to compute in an 0{n log n) divide-and-conquer

fashion, relative to the complexity of elementary bisector operations, the Voronoi diagram

for a set of n sites based on a ‘nice’ metric that admits acyclic partitions of the set of sites.

One such metric is the Moscow metric which is defined by the regular part of the fan-shaped

street layout of Moscow and for which elementary bisector operations can be carried out in

constant time.

1. R. Klein, Concrete and abstract Voronoi diagrams. Springer-Verlag Lecture Notes in

Computer Science 400 (1989).

The following paper presents a randomized algorithm for computing in expected 0{n log n)

time certain abstract Voronoi diagrams in the plane that include the Voronoi diagram for

a set of n points in the plane based on the Lp metric with additive weights, 1 < p < oo,

any convex distance function, and the Moscow metric, and the Voronoi diagram based on a

convex distance function for a set of disjoint convex polygons having n corners.

1. K. Mehihorn, C.O’Dunlaing, and S. Meiser, On the construction of abstract Voronoi

diagrams. Springer-Verlag Lecture Notes in Computer Science 415 (1990), 227-239.
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In the following paper Voronoi or Dirichlet tessellations of simply connected complete rie-

mannian manifolds without conjugate points are investigated.

1. P. E. Ehrhch and H.-C. Im Hof, Dirichlet regions in manifolds without conjugate points,

Comment. Math. Helvetici 54 (1979), 642-658.

In the following paper expectations of random variables concerning the Voronoi diagram for

a finite random set of points on the surface of a 3— dimensional sphere are derived. Here the

length of the shortest geodesic between two points is used as the measure of distance.

1. R. E. Miles, Random points, sets and tessellations on the surface of a sphere, Sankhya:

The Indian Journal of Statistics: Series A 33 (1971), 145-174.

The following papers present incremental diagonal-flipping algorithms for computing a De-

launay triangulation for a set of points on the surface of a 3—dimensional sphere. Here the

edges of the triangles are geodesics and an empty circle criterion in the spherical setting

is used for choosing, whenever necessary, between the two possible dissections of a strictly

convex spherical quadrilateral.

1. C. L. Lawson, surface interpolation for scattered data on a sphere. Rocky Mountain

J. of Mathematics 14 (1984), 177-202.

2. R. J. Renka, Interpolation of data on the surface of a sphere, ACM Transactions on

Mathematical Software 10 (1984), 417-436, 437-439.

The following paper presents an algorithm for computing the Voronoi diagram for a set

of sites lying on the surface of a possibly nonconvex 3—dimensional polyhedron, using the

Euclidean length of the shortest path between two points along the surface of the polyhedron

as the measure of distance. The running time of the algorithm is 0{n^ log^)} where n is the

maximum of the number of edges and sites on the polyhedron. The output of the program

requires O(n^) space.

1. D. M. Mount, Voronoi diagrams on the surface of a polyhedron, CS-TR-1496, Dept,

of Comput. Sci., Univ. of Maryland (1985).

The following paper presents an 0(n log n) sweepcircle algorithm for computing the Voronoi

diagram for a set of n sites lying on the surface of a 3—dimensional cone, using the minimum
Euclidean length of all curves on the surface of the cone that connect two points as the

measure of distance. The algorithm uses a circle that emanates from the peak of the cone for

computing a certain transformation of the Voronoi diagram that preserves its combinatorial

structure.
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1.

F. Dehne and R. Klein, An optimal algorithm for computing the Voronoi diagram on

a cone, SCS-TR-122, School of Comput. Sci., Carleton Univ. (1987).

The third of the following papers shows how to compute in 0(mn + m log logm + nlogn)

time and 0{m + n) space the geodesic Voronoi diagram for a set of n points in a simple

polygon of m vertices in the plane, using the length of the shortest internal path between

two points in the polygon as the measure of distance. The method is based on an algorithm in

the second paper that can be used to compute in 0{mn + mloglogm) time and 0{m + n)

space the shortest path trees from the n points to the vertices of the polygon. It is also

observed in the third paper that in the presence of polygonal obstacles of m vertices, the

geodesic Voronoi diagram for a set of n points in the plane can be computed in a similar

manner in 0(m^ + mn + nlogn) time and 0
(
771^ + n) space. The method uses an algorithm

in the first paper for finding a Euchdean shortest path between two points in the presence

of polygonal obstacles.

1. T. Asano, T. Asano, L. Guibas, J. Hershberger, and H. Imai, Visibihty of disjoint

polygons, Algorithmica 1 (1986), 49-63.

2. L. Guibas, J. Hershberger, D. Leven, M. Sharir, and R. E. Tarjan, Linear-time algo-

rithms for visibility and shortest path problems inside a triangulated simple polygon,

Algorithmica 2 (1987), 209-233.

3. T. Asano and T. Asano, Voronoi diagram for points in a simple polygon. Perspectives

in Gomputing, Discrete Algorithms and Complexity, Proc. Japan-US Joint Seminar,

1986, D. S. Johnson, T. Nishizeki, A. Nozaki, H. S. WiR (Eds.), Academic Press, New
York (1987), 51-64.

Employing a divide-and-conquer strategy, the following paper presents an algorithm for

computing in 0((n -f A:)log(n J- k)\ogn) time the geodesic Voronoi diagram for a set of k

points in a simple polygon with n sides in the plane, using the length of the shortest internal

path between two points in the polygon as the measure of distance. It is also shown in this

paper that the worst-case total size of this diagram is 0(n J- A:), and a simphfied version of

the algorithm is sketched that computes in 0((n + A:)log(n + k)) time the diagram for a set

of points that contains aU reflex vertices of the polygon. In particular it is observed in this

paper that the simpler algorithm can be used to compute the geodesic Voronoi diagram for

the vertices of a simple polygon with n vertices in 0(n log n) time, and that the dual of this

diagram is essentially the constrained Delaunay triangulation for the polygon.

1. B. Aronov, On the geodesic Voronoi diagram of point sites in a simple polygon, Algo-

rithmica 4 (1989), 109-140.
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The following paper addresses the problem of identifying the Voronoi complex of free place-

ments of an arbitrary 3— dimensional polyhedron A for a set of 3—dimensional polyhedral

obstacles based on a particular measure of distance p which is not a true metric. Essen-

tially, this complex consists of all possible 3—dimensional polyhedra that can be obtained

by translating and/or rotating A and that are equidistant under p from their two closest

obstacles.

1.

J. Canny and B. Donald, Simplified Voronoi diagrams. Discrete Comput. Geom. 3

(1988), 219-236.

The following paper presents an 0(n log n) divide-and-conquer algorithm for computing a

convex shape Delaunay triangulation for a set of n sites in the plane. Given a convex shape,

a convex shape Delaunay triangulation for a set of sites in the plane is a maximal graph in

which each node is a site and each edge intersects no other edges or sites except at nodes,

and for which, given an edge, it is possible to scale and/or translate the convex shape so

that both nodes of the edge are on the boundary of the shape while no other site is in its

interior.

1. R. L. Drysdale, A practical algorithm for computing the Delaunay triangulation for

convex distance functions, Proc. 1*‘ Ann. ACM-SIAM Symp. on Discrete Algorithms

(1990), 159-168.

18 . Furthest point Voronoi diagrams

The following papers present methods for computing in 0{n log n) time furthest point

Voronoi diagrams for sets of n points in the plane, i. e. order— (n — 1) Voronoi diagrams.

1. M. I. Shamos and D. Hoey, Closest-point problems, Proc. 16‘^ Ann. IEEE Symp. on

Foundations of Computer Science (1975), 151-162.

2. F. P. Preparata, Steps into computational geometry. Tech. Rep., Coordinated Science

Laboratory, University of Ilhnois (1977).

3. M. I. Shamos, Computational geometry, Ph. D. thesis. Dept, of Comput. Sci., Yale

Univ. (1978).

4. D. T. Lee, Farthest neighbor Voronoi diagrams and applications. Tech. Rep. 80-11-

FC-04, Dept, of Elec. Eng. and Comput. Sci., Northwestern Univ. (1980).
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In the following paper geometrical properties of the furthest point Voronoi diagram in the

plane are derived.

1. B. K. Bhattacharya and G. T. Toussaint, On geometric algorithms that use the fur-

thest point Voronoi diagram, Computational Geometry, G. T. Toussaint (Ed.), North-

HoUand (1985), 43-61.

In the following paper it is shown how to maintain dynamically a furthest point Voronoi

diagram for n points in 0{n) time per insertion and 0(nlog nfk(n)) time per deletion using

0(nlog(A;(n))) storage, where fc(n) = O(logn).

1. I. G. Gowda, D. G. Kirkpatrick, D. T. Lee, and A. Naamad, Dynamic Voronoi dia-

grams, IEEE Transactions on Information Theory IT-29 (1983), 724-731.

In the first of the following papers an asymptotically tight upper bound is derived for

the number of i— dimensional faces of furthest point Voronoi diagrams for n points in

d—dimensional space, for each f, i = 0, . .
.

,

d — 1. In the second paper exact upper bounds

are derived.

1. R. Seidel, The complexity of Voronoi diagrams in higher dimensions, Proc. 20*^ Ann.

AUerton Conference on Communication, Control, and Computing (1982), 94-95.

2. R. Seidel, On the number of faces in higher-dimensional Voronoi diagrams, Proc. 3’"'^

Ann. ACM Symp. on Computational Geometry (1987), 181-185.

In the third of the following papers it is shown how to compute in 0(n^ log log n) time the

furthest point geodesic Voronoi diagram for the vertices of a simple polygon, where n is the

number of vertices, using the length of the shortest internal path between two points in the

polygon as the measure of distance. The method is based on an 0(n log log n) algorithm in

the second paper for determining which points in the polygon are further from one of two

given points in the polygon, which itself is based on an 0{n log log n) algorithm in the first

paper for computing a shortest path tree from a point in the polygon to the vertices of the

polygon.

1. L. Guibas, J. Hershberger, D. Leven, M. Sharir, and R. E. Tarjan, Linear-time algo-

rithms for visibility and shortest path problems inside a triangulated simple polygon,

Algorithmica 2 (1987), 209-233.

2. T. Asano and T. Asano, Voronoi diagram for points in a simple polygon. Perspectives

in Computing, Discrete Algorithms and Complexity, Proc. Japan-US Joint Seminar,

1986, D. S. Johnson, T. Nishizeki, A. Nozaki, H. S. Wilf (Eds.), Academic Press, New
York (1987), 51-64.
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3. T. Asano and G. Toussaint, Computing the geodesic center of a simple polygon, Per-

spectives in Computing, Discrete Algorithms and Complexity, Proc. Japan-US Joint

Seminar, 1986, D. S. Johnson, T. Nishizeki, A. Nozaki, H. S. Wilf (Eds.), Academic

Press, New York (1987), 65-79.

The following paper presents an algorithm for computing in 0{{n + k)log[n -f k)) time and

0{n k) space the furthest point geodesic Voronoi diagram for a set of k points in a simple

polygon with n sides in the plane, using the length of the shortest internal path between two

points in the polygon as the measure of distance.

1. B. Aronov, S. Fortune, and G. Wilfong, The furthest-site geodesic Voronoi diagram,

Proc. 4*^ Ann. ACM Symp. on Computational Geometry (1988), 229-240.

In the following paper a linear time algorithm for computing the furthest point Voronoi

diagram for the vertices of a convex polygon is discussed.

1. A. Aggarwal, L. J. Guibas, J. Saxe, and P. W. Shor, A hnear-time algorithm for

computing the Voronoi diagram of a convex polygon, Discrete Comput. Geom. 4

(1989), 591-604.

The following paper presents a general method for determining the expected complexity of

further point Voronoi diagrams for random point sets in d— dimensional space.

1. R. A. Dwyer, Higher-dimensional Voronoi diagrams in linear expected time. Discrete

Comput. Geom. 6 (1991), 343-367.

In the following paper it is proven that among all triangulations for a set of points in general

convex position, the furthest point Delaunay triangulation has the lexicographically smallest

increasing sequence of interior angles of triangles. A set of points is in general convex position

if the points form the vertices of a convex polygon and no four of them are cocircular.

1. D. Eppstein, The farthest point Delaunay triangulation minimizes angles. Computa-

tional Geometry: Theory and Applications 1 (1992), 143-148.

The following paper presents an algorithm for computing in (9(nlogn) time the furthest

point Voronoi diagram for a set of n discs in the plane.

1. D. Rappaport, A convex hull algorithm for discs, and applications. Computational

Geometry: Theory and Applications 1 (1992), 171-187.

35



19. Order— A: Voronoi diagrams

In the following papers expectations of random variables concerning order— A: Voronoi dia-

grams for stationary Poisson point processes in 2— and 3—dimensional spaces are discussed.

1. R. E. Miles, On the homogeneous planar Poisson point process, Mathematical Bio-

sciences 6 (1970), 85-127.

2. R. E. Miles, The random division of space, Proc. Symp. on Statistical and Probabilistic

Problems in Metallurgy, August 1971, Suppl. Adv. Appl. Prob. (1972), 243-266.

In the following paper the total number of bounded and unbounded Voronoi regions in all

of the k—order Voronoi diagrams, k = 1, . .
.
,n — 1, for a set of n points in the plane is

computed.

1. M. I. Shamos and D. Hoey, Closest-point problems, Proc. 16^^ Ann. IEEE Symp. on

Foundations of Computer Science (1975), 151-162.

The first of the following papers presents an algorithm for computing the order— A; Voronoi di-

agram for a set of n points in the plane, l<A:<n— l,in 0{k^n\ogn) time and 0{k^{n — k))

space. Using a hnear procedure presented in the second paper for ehminating a site from a

planar order-1 Voronoi diagram, the time of this algorithm can be reduced to O(nk^-I-Tilog n).

The algorithm computes the order— A: Voronoi diagram from the order— (A: — 1) Voronoi di-

agram for the set. Exact upper bounds for the complexity of order— A; Voronoi diagrams in

the plane are also estabhshed in the first paper.

1. D. T. Lee, On A;—nearest neighbor Voronoi diagrams in the plane, IEEE Trans. Corn-

put. C-31 (1982), 478-487.

2. A. Aggarwal, L. J. Guibas, J. Saxe, and P. W. Shor, A hnear-time algorithm for

computing the Voronoi diagram of a convex polygon. Discrete Comput. Geom. 4

(1989), 591-604.

The following paper presents an algorithm for computing in O(n^) time all order— A: Voronoi

diagrams for a set of n points in the plane, k = l,...,n — 1. The algorithm is optimal if

exphcit hsts of closest points are required for each region in each order— A; Voronoi diagram,

k = l,...,n — 1.

1. F. Dehne, An optimal algorithm to construct all Voronoi diagrams for k nearest neigh-

bor searching in the Euchdean plane, Proc. 20*^ Ann. AUerton Conference on Com-
munication, Control, and Computing (1982), 85-93.
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The following paper presents an 0{kn^) algorithm for computing directly the order—/:

Voronoi diagram for a set of n points in the plane and an arbitrary value oi k, 1 < k < n — 1.

The space requirement is 0{k^n) if explicit lists of closest points are required for each region

in the order— A: Voronoi diagram, 0{kn) otherwise.

1. B. Bhattacharya, An algorithm for computing order k Voronoi diagrams in the plane,

Tech. Rep. 83-9, Comput. Sci. Dept., Simon Fraser Univ. (1983).

The following paper presents an optimal algorithm for computing in 0{n'^) time the ar-

rangement for n hyperplanes in d—dimensional space, d > 2. It implies an optimal algo-

rithm for computing in time all order—/: Voronoi diagrams for a set of n points in

d—dimensional space, d>2, k = l,...,n — 1. The algorithm requires a geometric transfor-

mation that maps the set of points to a set of hyperplanes in (d + 1)— dimensional space.

All order—/: Voronoi diagrams are then obtained by computing the arrangement of the set

of hyperplanes and then projecting vertically all levels of all orders in the arrangement onto

d—dimensional space. A level of order k in an arrangement is essentially the collection of

cells in the arrangement that he below k and above n — k hyperplanes.

1. H. Edelsbrunner, J. O’Rourke, and R. Seidel, Constructing arrangements of lines and

hyperplanes with applications, SIAM J. Comput. 15 (1986), 341-363.

The following papers present algorithms for computing the order—/: Voronoi diagram for a

set of n points in the plane, 1 < fc < n — 1. All algorithms require a geometric transformation

that maps the set of points to a set of planes in 3—dimensional space. The order—/: Voronoi

diagram is then obtained by computing certain edges in the arrangement of these planes

and then projecting them vertically onto the plane. The first paper presents an algorithm

that requires 0{k{n — k)y/n\ogn) time and 0{k{n — k)) space. The second paper presents

two versions of an algorithm that require 0(n^ log n + k{n — k) log^ n) time and 0{k{n — k))

space, and 0{n^ 4- k{n — /:)log^n) time and 0{n^) space, respectively. This paper also

discusses a generahzation of this algorithm for computing the order—/: Voronoi diagram for

a set of n points in 3— dimensional space, 1 </:<n — l,in 0{n^ logn -f c{n)y/n\ogn) time

and 0(c(n)) space, where c(n) is the maximum number of edges in an order—/: Voronoi

diagram for a set on n points.

1. H. Edelsbrunner, Edge-skeletons in arrangements with applications, Algorithmica 1

(1986), 93-109.

2. B. Chazelle and H. Edelsbrunner, An improved algorithm for constructing order

Voronoi diagrams, IEEE Trans. Comput. C-36 (1987), 1349-1354.
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The following paper presents an algorithm for computing the order— A: Voronoi diagram for

a set of n points in d—dimensional space, 1 < A: < n — 1, which is space optimal for any d

and that requires 0{k^nlogn) time for d equal to 2. For each k the algorithm associates the

set of n points to a dual set Qk in (d+ 1)—dimensional space. The order— A: Voronoi diagram

is then obtained by computing the lower part of the convex hull of Qk and then dualizing

it to d—dimensional space. The algorithm computes the lower part of the convex hull of Qk
from the lower part of the convex hull of Qk-i-

1. F. Aurenhammer, A new duahty result concerning Voronoi diagrams, Discrete Comput.

Geom. 5 (1990), 243-254.

In the following paper, given e > 0, an algorithm is discussed for computing the order— A:

Voronoi diagram for a set S oi n points in the plane, l<A:<n — 1, in expected 0(n^‘''^A:)

time. It is assumed that no four points in S are cocircular. The algorithm associates the

set 5 to a set S' in 3—dimensional space and through the use of random samphng computes

certain triples of points in S' that are closely related to A:— sets of S' from which the order— A:

Voronoi diagram can be computed. A A:— set of S' is a subset of S' of size k that is all on

one side of some hyperplane, while the other points in S' are all on the other side of the

hyperplane.

1. K. L. Clarkson, New appHcations of random sampling in computational geometry.

Discrete Comput. Geom. 2 (1987), 195-222.

The following paper presents a randomized algorithm for computing aU Voronoi diagrams of

order 1 to A:, 1 < A: < n — 1, in d— dimensional space in expected time (9 (A:r(‘^+i)/ 2l 7
T,L(£*-i-i)/ 2j^

for d > 3 and 0{nk^ + nlogn) for d = 2. The algorithm computes these diagrams by essen-

tially computing levels of order 1 to A: in some speciahzed arrangement in (d+l)— dimensional

space.

1. K. Mulmuley, On levels in arrangements and Voronoi diagrams. Discrete Comput.

Geom. 6 (1991), 307-338.

The following paper presents an on-line randomized incremental algorithm for computing

the order— A: Voronoi diagram for a set of n points in the plane, l<A;<n— l,in expected

time 0(A:^(n — A:)logn -f nAjlog^n) and optimal worst-case space 0{k{n — k)). It is also

shown in this paper how this algorithm can be speeded up to have an optimal expected

time complexity of 0{k^[n — k) nk log^ n) without affecting the space complexity. The
algorithm requires a duahty transform that allows the insertion and deletion of sites in the

diagram in a simple fashion through the computation of 3—dimensional convex hulls.
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1.

F. Aurenhammer and 0. Schwarzkopf, A simple on-line randomized incremental algo-

rithm for computing higher order Voronoi diagrams, Proc. Ann. ACM Symp. on

Computational Geometry (1991), 142-151.

20. Multiplicative and additively weighted Voronoi diagrams

In the following papers expectations of random variables concerning additively weighted

Voronoi diagrams for stationary Poisson point processes in 2— and 3— dimensional spaces

are derived.

1. J. L. Meijering, Interface area, edge length, and number of vertices in crystal aggregates

with random nucleation. Philips Res. Rep. 8 (1953), 270-290.

2. E. N. Gilbert, Random subdivisions of space into crystals, Ann. Math. Statist. 33

(1962), 958-972.

3. R. E. Miles, The random division of space, Proc. Symp. on Statistical and Probabilistic

Problems in Metallurgy, August 1971, Suppl. Adv. Appl. Prob. (1972), 243-266.

The first of the following papers presents an optimal O(n^) algorithm for computing the

multiphcative weighted Voronoi diagram for n points with positive weights in the plane.

The second paper presents an optimal 0(n log n) algorithm for computing the multiphcative

weighted Voronoi diagram for n points with positive weights on a line.

1. F. Aurenhammer and H. Edelsbrunner, An optimal algorithm for constructing the

weighted Voronoi diagram in the plane. Pattern Recognition 17 (1984), 251-257.

2. F. Aurenhammer, The one-dimensional weighted Voronoi diagram. Inf. Proc. Letters

22 (1986), 119-123.

In the following paper a criterion is given for recognizing certain multiphcative and additively

weighted Voronoi diagrams in the plane, and for computing their sources and weights.

1. P. F. Ash and E. D. Bolker, Generahzed Dirichlet tessellations, Geometriae Dedicata

20 (1986), 209-243.

In the first of the following papers it is shown that the (order— 1) additively weighted Voronoi

diagram for a set of d—dimensional n points with weights can be obtained linearly from

the (order— 1) power diagram for some set of n spheres in [d + 1)—dimensional space. In

this paper it is also shown that aU order— fc multiphcative weighted Voronoi diagrams for
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a set of d— dimensional n points with positive weights, A:= — 1, can be obtained

linearly from the order— A: power diagrams for some set of n spheres in (d + 1)—dimensional

space, A: = l,...,n— 1. In the second paper a similar result is presented for computing

multiphcative as well as additively weighted Voronoi diagrams of all orders in d—dimensional
space, and in addition it is shown how to compute efficiently in d—dimensional space an

order— A; power diagram as an (order— 1) power diagram.

1. F. Aurenhammer, Power diagrams: properties, algorithms and appHcations, SIAM J.

Comput. 16 (1987), 78-96.

2. F. Aurenhammer and H. Imai, Geometric relations among Voronoi diagrams, Geome-

triae Dedicata 27 (1988), 65-75.

The following papers present, respectively, an O(nlog^n) divide-and-conquer algorithm and

an 0(71 log n) plane-sweep algorithm for computing the additively weighted or hyperbohc

Voronoi diagram for n points with weights in the plane or, equivalently, the Voronoi diagram

for 71 possibly intersecting circles in the plane.

1. M. Sharir, Intersection and closest-pair problems for a set of planar discs, SIAM J.

Comput. 14 (1985), 448-468.

2. S. Fortune, A sweepHne algorithm for Voronoi diagrams, Algorithmica 2 (1987), 153-

174.

The following paper presents a randomized algorithm for computing in expected 0{n log n)

time certain abstract Voronoi diagrams in the plane that include the Voronoi diagram for a

set of 71 points in the plane based on the Lp metric with additive weights, 1 < p < oo.

1. K. Mehlhorn, C.O’Dunlaing, and S. Meiser, On the construction of abstract Voronoi

diagrams. Springer-Verlag Lecture Notes in Computer Science 415 (1990), 227-239.

The following paper presents a plane-sweep t 3rpe algorithm for computing the order— A:

Voronoi diagram for a set of n points with additive weights in the plane, 1 < A: < ti — 1,

in 0{k'^n\ogn) time and 0(kn) space. The algorithm is based on a relationship between

order— A: Voronoi diagrams for points with additive weights in the plane and certain ar-

rangements of cones in 3—dimensional space. Upper bounds for the complexity of order— A:

Voronoi diagrams with additive weights in the plane are also established in this paper.

1. H. Rosenberger, Order— A: Voronoi diagrams of sites with additive weights in the plane,

Algorithmica 6 (1991), 490-521.
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21. Power diagrams and arrangements

The following paper presents an O(nlogn) algorithm for computing the power diagram for

n circles in the plane. It is also shown in this paper that a planar power diagram is the

intersection of the x—y plane and the Voronoi diagram for a set of points in 3— dimensional
space whose perpendicular projections on the x—y plane are the centers of the circles, and

vice versa.

1. H. Imai, M. Iri, and K. Murota, Voronoi diagram in the Laguerre geometry and its

apphcations, SIAM J. Comput. 14 (1985), 93-105.

The following paper presents an incremental triangle-flipping algorithm for computing a

regular triangulation, i. e. the dual of a power diagram, for a set of n points in d— space in

expected 0(n log n 4- time if the points are added in a random sequence.

1. H. Edelsbrunner and N. R. Shah, Incremental topological flipping works for regular

triangulations, Proc. Ann. ACM Symp. on Computational Geometry (1992),

43-52.

In the following paper Voronoi diagrams in the plane are generalized through the distortion

of the Euclidean distance by a smooth increasing function and the weighting of sites by

additive constants. It is shown in this paper that 2—dimensional ordinary and hyperbolic

Voronoi diagrams or Dirichlet tessellations, power diagrams or sectional Dirichlet tessella-

tions, and multiplicative weighted Voronoi diagrams or circular Dirichlet tessellations satisfy

this definition for the proper choice of the distorting function and weighting constants. Cri-

teria are given in this paper for recognizing some of these generahzed Dirichlet tessellations

and a study is presented of how the choice of the distorting function affects the shapes of

the regions in the tessellation.

1. P. F. Ash and E. D. Bolker, Generahzed Dirichlet tessellations, Geometriae Dedicata

20 (1986), 209-243.

In the following paper a general definition for ordinary and higher order Voronoi diagrams

in d— dimensional space is presented in terms of arrangements in (d-f 1)—dimensional space,

i. e. partitions of (d -f 1)—dimensional space induced by a finite collection of real-valued

functions on d— dimensional space. In this definition no notion of a metric is required. It

is shown in this paper that ordinary, order— fc, degree— fc Voronoi diagrams, and power dia-

grams in d—dimensional space satisfy this definition in terms of arrangements of hyperplanes.

Consequently, algorithms for computing intersections of half-spaces and arrangements of hy-

perplanes can be used for computing all of these diagrams.
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1. H. Edelsbrunner and R. Seidel, Voronoi diagrams and arrangements, Discrete Comput.

Geom. 1 (1986), 25-44.

The following paper presents a plane-sweep algorithm for computing the arrangement for a

set of hyperplanes in d—dimensional space.

1. H. Bieri and W. Nef, A recursive sweep-plane algorithm, determining all cells of a finite

division of Computing 28 (1982), 189-198.

The following paper presents an 0{n^ log n) plane-sweep algorithm for computing the ar-

rangement for a set of n hnes in the plane.

1. H. Edelsbrunner and E. Welzl, Constructing belts in two-dimensional arrangements

with applications, SIAM J. Comput. 15 (1986), 271-284.

The following paper presents an optimal algorithm for computing in O(n^) time the arrange-

ment for n hnes in the plane.

1. B. Chazelle, L. J. Guibas, and D. T. Lee, The power of geometric duahty, BIT 25

(1985), 76-90.

The following paper presents an optimal algorithm for computing in 0(72*^) time the arrange-

ment for n hyperplanes in d—dimensional space, d > 2.

1. H. Edelsbrunner, J. O’Rourke, and R. Seidel, Constructing arrangements of lines and

hyperplanes with applications, SIAM J. Comput. 15 (1986), 341-363.

In the following papers it is shown that a power diagram for a set of d— dimensional spheres

is obtained by projecting verticaUy onto d—space the boundary of a (d + 1)— dimensional

polyhedron which is expressible as the intersection of upper halfspaces. It is also shown in

these papers that every power diagram can be obtained in this fashion. In the second paper

power diagrams are generalized to higher order and it is shown that d—dimensional maximal

power diagrams, i. e. order— (n — 1) power diagrams for sets of n d—dimensional spheres, can

also be characterized in terms of convex polyhedral surfaces in (d 4- 1)— dimensional spaces.

In addition, it is shown in this paper that the power diagram and the maximal power diagram

for a set of spheres in d—dimensional space are dual to the lower and upper parts, respectively,

of the convex hull of some finite set of points in (d -1- 1)—dimensional space, and vice versa.

Moreover, it is shown in this paper that the collection of power diagrams of all orders for

a set of n d— dimensional spheres corresponds to a (d + 1)—dimensional arrangement of

hyperplanes and vice versa, and that in particular the order— A: power diagram for the set
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of spheres is the vertical projection of the intersection of levels of order k and fc + 1 in the

arrangement, for each k, k = . .
.
,n — 1. From these results it follows that the order— 1 and

the maximal power diagrams for a set of d— dimensional spheres can be obtained through

the computation of either a convex hull or certain intersections of hyperplanes in (d + 1)—

dimensional space, and that all higher order power diagrams for the set of spheres can be

obtained through the computation of a (d + 1)—dimensional arrangement of hyperplanes.

Finally, it is shown in this paper that given a set S of n spheres in d— dimensional space

there is a set 5* of n spheres in d— dimensional space such that the order— power diagram

for 5 equals the order— (n — k) power diagram for 5* for each k, k = 1, . .
.
,n — 1. From this

result it follows in particular that ordinary power diagrams and maximal power diagrams

have the same complexity.

1. I. Paschinger, Konvexe Polytope und Dirichletsche Zellenkomplexe, Ph. D. disserta-

tion, Math. Inst., Univ. Salzburg, Austria (1982).

2. F. Aurenhammer, Power diagrams: properties, algorithms and appHcations, SIAM J.

Comput. 16 (1987), 78-96.

In the first and second of the following papers it is shown that a cell complex in 2— dimensional
space is the power diagram for some set of circles if and only if it has an orthogonal dual. In

the second paper this result is generalized to d—dimensional space, d > 1. Using this result it

is shown in this paper that order— A: power diagrams and arrangements are (order— 1) power

diagrams for d > 1, and a new proof is presented for the fact that simple cell complexes are

(order— 1) power diagrams for d > 3. A cell complex in d— dimensional space is simple if each

of its vertices is a vertex of exactly d + 1 cells in the cell complex. Under the requirement

that a cell complex be given by its incidence matrix, the third paper presents an algorithm

for deciding whether a simple d—dimensional cell complex is an (order-1) power diagram for

d = 2, and for computing a (d -f 1)—dimensional polyhedron if it exists whose perpendicular

projection is the cell complex for d > 2. Essentially, the algorithm computes an orthogonal

dual for the cell complex if it exists in time proportional to the number of facets of the cell

complex, and from this dual computes the (d -1- 1)— dimensional polyhedron.

1. P. F. Ash and E. D. Bolker, GeneraHzed Dirichlet tessellations, Geometriae Dedicata

20 (1986), 209-243.

2. F. Aurenhammer, A criterion for the affine equivalence of cell complexes in and

convex polyhedra in Discrete Comput. Geometry 2 (1987), 49-64.

3. F. Aurenhammer, Recognising pol3rtopical cell complexes and constructing projection

polyhedra, J. Symbolic Comput. 3 (1987), 249-255.
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In the following paper afSne Voronoi diagrams for sets of sites in d— dimensional space,

i. e. Voronoi diagrams based on distance functions for which each set of points in the space

equidistant from two sites forms a hyperplane, are shown to be power diagrams. In addition,

affinely transformable Voronoi diagrams for sets of sites in d—dimensional space, i. e. Voronoi

diagrams based on distance functions for which each set of points in the space equidistant

from two sites can be transformed in a certain way into a set in (d + 1)—dimensional space

whose affine huU is a hyperplane, are shown to be perpendicular projections of certain sections

of power diagrams in (d+1)—dimensional space. In particular, it is shown that multipHcative

and additively weighted Voronoi diagrams for sets of n points in d—dimensional space are

affinely transformable and can be obtained linearly from power diagrams for the correspond-

ing sets of n points and power functions in (d -1- 1)—dimensional space. It is also shown in

this paper that given a d—dimensional set G oi n sites and a power function / for G, for

each A;, A: = 2, . .

.

,n — 1, by letting Fi = (7 and = /, a set of generators r* and a power

function <f>k for can be computed iteratively and hnearly from the power diagram for Tk-i

based on in such a way that the order— A: power diagram for G based on / equals

the (order— 1) power diagram for based on <f>k, and the size of Ffc does not exceed the

maximal number of d— dimensional cells that a d—dimensional order— A: power diagram for

n points can have. Finally, it is shown in this paper that order— A: Voronoi diagrams for sets

in d—dimensional space are perpendicular projections of certain sections of order— A: power

diagrams in (d -|- 1)— dimensional space if they are based on distance functions for which

the (order— 1) Voronoi diagram is affinely transformable. In particular, this result impHes

methods for computing linearly order— A: multipHcative and additively weighted Voronoi di-

agrams for sets of n points in d—dimensional space from order— A: power diagrams for the

corresponding sets of n points and power functions in (d -|- 1)—dimensional space.

1. F. Aurenhammer and H. Imai, Geometric relations among Voronoi diagrams, Geome-

triae Dedicata 27 (1988), 65-75.

In the following paper the relationship between the power diagram for a set of discs or

balls in d—dimensional space and computations that concern their union and intersection is

demonstrated.

1. F. Aurenhammer, Improved algorithms for discs and balls using power diagrams, J. of

Algorithms 9 (1988), 151-161.

In the following paper it is shown that given a cell complex in d—dimensional space that is the

vertical projection onto d—dimensional space of the lower boundary of a (d-|- 1)—dimensional

polytope, for each point in the space there exists a partial ordering of the cells that is

consistent with the order in which the cells are visible from the point.
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1.

H. Edelsbrunner, An acyclicity theorem for cell complexes in d dimension, Proc.

Ann. ACM Symp. on Computational Geometry (1989), 145-151.

In the first of the following papers it is shown that given a set of points S in d— dimensional

space with nonnegative weights, every point p in S' whose power cell in the power diagram

for S is bounded and nonempty can be expressed as a convex combination of the other points

in 5, in such a way that given q 'm S
, q ^ p, the coefficient that corresponds to q in this

convex combination is the percentage of the power cell of p that is more under the power of

q than under the power of any other point in 5 \ {p,q}. In the second paper this result is

generalized to order— power cells, l<A:<n— 1. In the third paper it is shown how these

combinations can be used to compute a Gale transform for S if the (order— 1) power cell for

each point in 5 in the (order— 1) power diagram for S is nonempty.

1. R. Sibson, A vector identity for the Dirichlet tessellation. Math. Proc. Camb. Phil.

Soc. 87 (1980), 151-155.

2. F. Aurenhammer, Linear combinations from power domains, Geometriae Dedicata 28

(1988), 45-52.

3. F. Aurenhammer, A relationship between Gale transforms and Voronoi diagrams. Dis-

crete Apphed Mathematics 28 (1990), 83-91.

In the following paper it is shown that an assignment induced by a power diagram in

d—dimensional space is a least-squares assignment, i. e. given a set S of sites and a fi-

nite or bounded measurable set of points X in d— dimensional space, among aU functions

that assign a site in S to each point in X and that according to the site assignment partition

X into subsets of prescribed sizes (capacities), for some set of weights W, the function in-

duced in the obvious manner by the power diagram for S with weights W minimizes the sum
or integral of the square of the distances between sites and their assigned points in X. It is

also shown in this paper how to compute the set of weights W for a given set of capacities.

1. F. Aurenhammer, F. Hoffmann, and B. Aronov, Minkowski-type theorems and least-

squares partitioning, Proc. 8‘^ Ann. ACM Symp. on Computational Geometry (1992),

350-357.

A A:— set of a finite set of points S in d—dimensional space is a subset of S of size k that is all

on one side of some hyperplane, while the other points in 5 are aU on the other side of the

hyperplane. Since there is a one-to-one correspondence between A:— sets in d— dimensional
space and order— A: power cells in (d — 1)—dimensional space, results about the number of
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/s— sets of sets of points in d— dimensional space can be used for deriving results about the

complexity of order— A: power diagrams in (d — 1)—dimensional space. Let 5 be a finite set

in d—dimensional space. A set of is a (< A:)—set of 5 if j < k. Let gd{k,n) denote the

maximum number of (< A:)—sets of any set of n points in d—dimensional space. In the follow-

ing papers the computation of gd{k,n) is considered. In the first and second of the following

papers it is shown, respectively, that g 2 {k,n) < 2nk — 2k'^ — k and g2 {k,n) = kn for 2k < n.

In the fourth paper it is shown that g-i{k,n) = 0{n^k). In the fifth paper it is shown that

g3{k,n) = 0{nk^). In the sixth paper it is shown that g3{k,n) = 0(nA:^ log® n/(log log n)®).

Finally, in the seventh paper it is shown that gd{k,n) =
)

as n/k —> oo for

fixed d.

1. J. E. Goodman and R. Pollack, On the number of A;—subsets of a set of n points in

the plane, J. of Combinatorial Theory, Series A 36 (1984), 101-104.

2. N. Alon and E. Gyori, The number of small semispaces of a finite set of points in the

plane, J. of Combinatorial Theory, Series A 41 (1986), 154-157.

3. E. Welzl, More on A:— sets of finite sets in the plane. Discrete Comput Geom 1 (1986),

95-100.

4. R. Cole, M. Sharir, and C. K. Yap, On A:— hulls and related problems, SIAM J. Comput.

16 (1987), 61-77.

5. B. Chazelle and F. P. Preparata, Halfspace range search; An algorithmic application

of As—sets. Discrete Comput Geom 1 (1986), 83-93.

6. K. L. Clarkson, New apphcations of random sampling in computational geometry.

Discrete Comput Geom 2 (1987), 195-222.

7. K. L. Clarkson and P. W. Shor, Apphcations of random sampling in computational

geometry, II, Discrete Comput Geom 4 (1989), 387-421.

The second of the following papers presents a randomized algorithm for computing all levels

of order 1 to A:, 1 < A; < n, in an arrangement of n hyperplanes in d—space in expected

time
)
for d > 4, 0(A;^nlogn/A;) for d = 3, and 0{kn\ognl k) for d = 2. From

results in the first paper it follows that for fixed d > 4 these bounds are worst-case optimal

as n/k —> oo.

1. K. L. Clarkson and P. W. Shor, Apphcations of random sampling in computational

geometry, II, Discrete Comput. Geom. 4 (1989), 387-421.
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2. K. Mulmuley, On levels in arrangements and Voronoi diagrams, Discrete Comput.

Geom. 6 (1991), 307-338.

The following paper presents an algorithm that makes use of randomization in the data

structure for the fast insertion or deletion of a hyperplane in an arrangement of hyperplanes

in d— space, d < 4. For d = 2 the insertion or deletion of a hne in the arrangement with

this algorithm requires expected 0{v?) space and with high probability 0(nlog n) time and

0(n^ log n) space. For d = 3 the insertion or deletion of a hyperplane in the arrangement

with this algorithm requires expected O(n^) space and with high probability 0(n^ log n) time

and 0(n^ log n) space. Finally, for d = 4 it requires with high probability O(n^logn) time

and 0{n^\ogn) space.

1. K. Mulmuley and S. Sen, Dynamic point location in arrangements of hyperplanes,

Proc. 7*^ Ann. ACM Symp. on Computational Geometry (1991), 132-141.

The following paper proposes a method for designing a correct finite precision algorithm for

computing an arrangement of a set of lines in the plane. With this method infinite precision

parameters that are close to the finite precision parameters for the hnes are used without

actually being represented.

1. V. J. Milenkovic, Verifiable implementations of geometric algorithms using finite pre-

cision arithmetic. Artificial Intelligence 37 (1988), 377-401.

In the following paper it is shown how to replace exact arithmetic with rounded arithmetic in

an algorithm for computing hne arrangements in the plane in such a way that the precision

requirements of the algorithm are maintained while its complexity is reduced by a constant

factor.

1. V. Milenkovic, Double precision geometry: A general technique for calculating line and

segment intersections using rounded arithmetic, Proc. 30‘^ Ann. IEEE Symp. on the

Foundations of Computer Science (1989), 500-505.

The following paper presents an analysis of the behavior of algorithms for computing line

arrangements in the plane if the arithmetic operations involved make relative error e. Using

n lines in the plane as input, it is shown in this paper that two line arrangement algorithms,

an O(n^) incremental algorithm and an 0{n^\ogn) sweepline algorithm, when implemented

in a specific manner, will have 0(ne) relative error, i. e. will produce an arrangement of n
pseudoHnes each of which differs relatively from the corresponding hne in the set of n lines by

at most 0(ne). It is also shown in this paper that an 0(n^ logn) line arrangement algorithm

exists which is perhaps of no practical interest but that has 0(e) relative error.
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1 . S. Fortune and V. Milenkovic, Numerical stability of algorithms for line arrangements,

Proc. 7*^ Ann. ACM Symp. on Computational Geometry (1991), 334-341.

22. Abstract Voronoi diagrams, discrete Voronoi diagrams, etc.

In the following textbook a unifying approach to Voronoi diagrams in the plane is proposed

through the introduction of abstract Voronoi diagrams. These diagrams are not based on

sites and distance measures but on systems of bisecting curves. Given a finite index set S it is

assumed that for each pair of indices p and g in 5, p 7^ g, a bisecting curve J{p,q) = J{q,p)

exists which divides the plane into a p—region and a g— region. The Voronoi region for

an index p in 5 is then defined as the intersection of all p—regions for different g’s, and

the abstract Voronoi diagram is accordingly defined as the union of the boundaries of the

Voronoi regions for the indices in S. Assuming that the two regions separated by a bisecting

curve are unbounded and that the Voronoi regions defined as above are path-connected and

partition the plane, it is shown in this textbook that abstract Voronoi diagrams satisfy many
of the properties satisfied by Voronoi diagrams that are based on the concept of distance,

and that a class of metrics called ‘nice’ which includes many well-known metrics can be

viewed in terms of the notion of abstract Voronoi diagrams. Finally, it is shown in this

textbook how to merge two abstract Voronoi diagrams V{L) and V{R) for index sets L and

R, L D R = ih, in a number of steps proportional to the cardinahty of LU R ii the bisector

of L and R contains no cycles, and how to compute in an 0(n log n) divide-and-conquer

fashion, relative to the complexity of elementary bisector operations, the Voronoi diagram

for a set of n sites based on a nice metric that admits acyclic partitions of the set of sites.

1. R. Klein, Concrete and abstract Voronoi diagrams. Springer-Verlag Lecture Notes in

Computer Science 400 (1989).

The following paper presents an expected 0 (ti log n) randomized algorithm for computing

certain abstract Voronoi diagrams in the plane without the assumption about the existence

of acychc partitions.

1 . K. MehUiorn, C.O’Dunlaing, and S. Meiser, On the construction of abstract Voronoi

diagrams. Springer-Verlag Lecture Notes in Computer Science 415 (1990), 227-239.

In the following paper the parallel computation of discrete Voronoi diagrams in the plane

is considered. Given a positive integer n, a discrete universe U is defined as the set of grid

points in the plane of the form p = (px,Py), Px, Py integers, 1 < p^, py < n, and each point

in U is identified with a processor. Given a subset S of U, to compute the discrete Voronoi
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diagram for S means to store for every point p 'm U the coordinates of a point in S closest to

p in a specified register of the processor assigned to p. In this paper algorithms are presented

for computing in O(log n) time the discrete Voronoi diagram for S based on the Li metric,

and in O(log^ n) time an approximation of the discrete Voronoi diagram for S based on any

Lk metric, 1 < k < oo.

1. 0. Schwarzkopf, Parallel computation of discrete Voronoi diagrams. Springer-Verlag

Lecture Notes in Computer Science 349 (1989), 193-204.

In the first of the following papers Voronoi diagrams of point clusters are considered. For

each cluster, i. e. a finite set of points in d— dimensional space, the distance from a point

to the cluster is defined as the maximum Euchdean distance from the point to any point in

the cluster. The Voronoi diagram of a finite set of clusters is then defined as the partition

of the space into maximal domains, one for each cluster, such that a point belongs to the

domain associated with a cluster if the point is closer to the cluster than it is to any other

cluster. In this paper the close relationship between Voronoi diagrams of point clusters in

d—dimensional space and the lower and upper envelopes of certain piecewise linear functions

in (d -|- 1)— dimensional space is demonstrated. It is also shown in this paper how this

relationship can be exploited to compute the Voronoi diagram of a finite set of clusters in

the plane in 0(n^a(n)) time, where n is the sum of the cardinahties of the clusters and

a(n) is the inverse of Ackermann’s function. In particular, it is shown that if each cluster

is of size one or two, then 0{'n?) time suffices and this is worst-case optimal. Finally, in

the second paper a result about the complexity of the upper envelope of Voronoi surfaces in

3—dimensional space is presented that implies that the complexity of the Voronoi diagram

of m clusters with a total of n points in the plane is 0{mna{mn)).

1. H. Edelsbrunner, L. J. Guibas, and M. Sharir, The upper envelope of piecewise linear

functions: algorithms and apphcations. Discrete Comput. Geom. 4 (1989), 311-336.

2. D. P. Huttenlocher, K. Kedem, and M. Sharir, The upper envelope of Voronoi surfaces

and its apphcations, Proc. Ann. ACM Symp. on Computational Geometry (1991),

194-203.

In the following two papers the peeper’s Voronoi diagram for a set S of sites in the plane

is considered. Given a site p, the region of p is the set of points in the plane for which p is

the closest site visible from each point in the set. Here visibihty is constrained to a window,

i. e. a fine segment on a line that avoids the convex hull of 5. The collection of regions of

all sites is then the peeper’s Voronoi diagram for S. In the second paper the relationship

between peeper’s Voronoi diagrams in the plane and upper envelopes in 3— dimensional space
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is demonstrated. It is also shown in this paper how this relationship can be exploited to

compute the peeper’s Voronoi diagram for a set of n sites in worst-case optimal O(n^) time.

1. A. Baltsan and M. Sharir, On the shortest paths between two convex polyhedra, J.

ACM 35 (1988), 267-287.

2. F. Aurenhammer and G. Stockl, On the peeper’s Voronoi diagram, SIGACT News 22

(1991), 50-59.

In the following paper dynamic Voronoi diagrams are considered. Given sets P and Q oi m
and n points in the plane, respectively, and assuming Q is moving along a fixed direction,

the problem considered is that of computing the Voronoi diagram for P U Q ai any time

t. In this paper an 0(nm log nm) algorithm is presented for processing the history of the

Voronoi diagram for P U Q as time passes. It is shown in this paper that this algorithm

can be improved to require 0(m logm -|- n-^/mlogn) time on average, and that 0(nm) space

is required to store the history of the diagram in order to retrieve in 0(n -f m) time the

Voronoi diagram for P U Q at any time t.

1. T. Tokuyama, Deformation of merged Voronoi diagrams with translation. Rep. TR87-

0049, IBM Tokyo Research Laboratory (1988).

In the following paper an analysis is presented that can be used to obtain nontrivial bounds

for the complexity of dynamic nearest and furthest point Voronoi diagrams in the plane. In

particular it is observed in this paper that this analysis can be used to prove that 0{rP) is a

bound for the complexity of nearest and furthest Voronoi diagrams for n points in the plane

moving in different fixed directions at different constant velocities.

1. K. Imai, S. Sumino, and H. Imai, Minimax geometric fitting of two corresponding sets

of points, Proc. 5*^ Ann. ACM Symp. on Computational Geometry (1989), 266-275

In the following paper dynamic Voronoi diagrams are considered. Given a set of n points

in the plane that are moving, the problem considered is that of computing the Voronoi

diagram for the set of points at any time t. In this paper preprocessing and query processing

algorithms are presented for solving this problem. Assuming the points are in A;—motion, i. e.

their positions in the plane can be described in terms of polynomial functions of time with

degree < k, and that it takes 0{k) time to find the roots of a polynomial with degree 0{k),

it is shown in this paper that the preprocessing algorithm requires 0{k^Tplogn •

time and uses space to store the preprocessing result, where a[n) is the

inverse of Ackermann’s function, and that the query processing algorithm is optimal, i. e.

takes 0(n) time, at any time t.
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1. J.-J. Fu and R. C. T. Lee, Voronoi diagrams of moving points in the plane, International

J. of Computational Geometry & Applications 1 (1991), 23-32.

In the following paper dynamic Voronoi diagrams are considered. Given a set of n points in

the plane that are continuously moving along trajectories that satisfy certain assumptions,

the problem considered is that of maintaining over time the Voronoi diagram for the set of

points. In this paper a method for maintaining the Voronoi diagram over time in some useful

data structure is presented and a numerically stable algorithm is given for the update over

time of the topological structure of the diagram, using O(log n) worst-case optimal time per

topological event. The main result in this paper is a proof that 0(n^A,(n)) is an upper bound

on the number of topological events, where Aa(n) is the maximum length of a Davenport-

Schinzel sequence on n alphabets of order s, and 5 is a constant depending on the motions of

the points. In the special case where the points are moving at constant speed along straight

lines, it is shown in this paper that this upper bound becomes 0(n^2“(”l), where a(n) is the

inverse of Ackermann’s function. Finally, it is shown in this paper that in the case where

only k of the n points are moving, this bound becomes 0{kn\g{n) + (n — ky\g[k)) which is

nearly quadratic for fixed k.

1. L. J. Guibas, J. S. B. Mitchell, and T. Roos, Voronoi diagrams of moving points in the

plane, Graph-Theoretic Concepts in Computer Science, International Workshop,

June 1991, Springer-Verlag Lecture Notes in Computer Science 570 (1992), 113-125.

In the first of the following papers P—Euclidean Voronoi diagrams in the plane are consid-

ered. Given polygons P and Q in the plane with m and n vertices, respectively, P convex,

and assuming P is given together with a reference point p in the interior of P, for a point

u in the interior of Q, P{u) is said to denote the polygon obtained by translating P so that

the reference point p coincides with u. The feasible region of P inside Q is defined as the

set of points u in the interior of Q for which P{u) is contained in Q. The feasible region is

denoted by F{P,Q) and may consist of several connected components, each of which is a

polygon. Essentially, given edges r and s that are linear components of the boundaries of

P and Q, respectively, the Voronoi region for the pair (r, 5
)

is defined as the set of points

u in F{P,Q) for which the minimum Euclidean distance between P(u) and Q is achieved

by a point in r and a point in s. Essentially, the P—Euchdean Voronoi diagram for Q is

defined as the planar skeleton formed by the boundaries of such Voronoi regions. In this

paper it is observed that the boundary of P(P, Q) has 0{mn) edges and can be computed in

0(mn log mn) time by computing the Voronoi diagram for Q based on the convex distance

function defined with respect to P. It is also shown in this paper that the Euchdean Voronoi

diagram for the boundary edges of F{P,Q) and the P—Euclidean Voronoi diagram for Q are
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identical in F[P, Q) so that the P—Euclidean Voronoi diagram for Q can be computed in

0(mn log mn) time. In this paper dynamic P(0)—Euclidean Voronoi diagrams in the plane

are also considered, where P{0) denotes the rotation of the polygon P around the reference

point p by an angle 0 < 0 < 27r. In this paper it is shown that for 6 changing from 0 to

27r the P(^)—Euclidean Voronoi diagram for Q can be computed in 0(m^nAi6(mn) log mn)
time, where Ai6(mn) is the maximum length of Davenport-Schinzel sequences on mn alpha-

bets of order 16. Finally, the dynamic Voronoi diagram for k n—point rigid sets is considered

in both of the following two papers. Assuming that the movement of each set is rigid and

specified by a low-degree polynomial or well behaved rational functions of time, it is shown

in the first paper that the complexity of the dynamic Voronoi diagram for the k sets is

O(n^) for k = 2,3, and 0{n^k^\og* k) for A; > 4. In the second paper the last complexity is

improved to 0{n'^k^Xa{k)) for some fixed s.

1. H. Aonuma, H. Imai, K. Imai, and T. Tokuyama, Maximin location of convex objects

in a polygon and related dynamic Voronoi diagrams, Proc. Ann. ACM Symp. on

Computational Geometry (1990), 225-234.

2. D. P. Huttenlocher, K. Kedem, and J. M. Kleinberg, On dynamic Voronoi diagrams

and the minimum Hausdorff distance for point sets under Euchdean motion in the

plane, Proc. 8*^ Ann. ACM Symp. on Computational Geometry (1992), 110-119.

In the following paper multiphcatively weighted crystal growth Voronoi diagrams are consid-

ered. These diagrams are essentially multiphcatively weighted Voronoi diagrams in which all

regions are connected. They are obtained by allowing regions to grow simultaneously from

their sites at their assigned growth rates while measuring the distance from a site to a point

in the region of the site along a shortest path lying entirely within the region. In this paper

an algorithm is presented for computing the crystal growth Voronoi diagram for n sites. It

is also shown in this paper that the optimal worst-case complexity of the diagram is 0{n^)

even though it is made up of n connected regions.

1. B. F. Schaudt and R. L. Drysdale, Multiphcatively weighted crystal growth Voronoi

diagrams, Proc. Ann. ACM Symp. on Computational Geometry (1991), 214-223.

23. Delaunay triangulations and the Euclidean traveling salesman problem

Solutions to Euchdean travehng salesman problems in the plane have been found to be related

to Delaunay triangulations. The following paper presents an example of a set of points in

the plane with a degenerate Delaunay triangulation that is not Hamiltonian. EssentiaUy, a

graph is Hamiltonian if it contains a cycle that passes through aU of its nodes.
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1. V. Kantabutra, Traveling salesman cycles are not always subgraphs of Voronoi duals,

Inform. Process. Lett. 16 (1983), 11-12.

The following paper presents an example of a set of points in the plane with a nondegen-

erate Hamiltonian Delaunay triangulation that does not contain a traveling salesman cycle.

Essentially, a travehng salesman cycle for a set of points is a Hamiltonian cycle of minimum
total length in the complete graph for the set.

1. M. B. Dillencourt, Traveling salesman cycles are not always subgraphs of Delaunay

triangulations or of minimum weight triangulations. Inform. Process. Lett. 24 (1987),

339-342.

The following paper presents an example of a set of points in the plane with a nondegenerate

Delaunay triangulation that is not Hamiltonian.

1. M. B. Dillencourt, A non-Hamiltionian, nondegenerate Delaunay triangulation. Inform.

Process. Lett. 25 (1987), 149-151.

In the following paper it is shown that Delaunay triangulations are 1—tough. Essentially,

a graph is 1—tough if the removal of k nodes and the arcs incident to these nodes leaves

at most k connected components. It is known that all Hamiltonian graphs are 1—tough.
Thus, the result in the following paper seems to indicate that a Delaunay triangulation of a

randomly generated set of points in the plane is almost certainly Hamiltonian.

1. M. B. Dillencourt, Toughness and Delaunay triangulations, Proc. 3’’'^ Ann. ACM
Symp. on Computational Geometry (1987), 186-194.

In the following papers it is shown that in a certain sense Delaunay triangulations approx-

imate complete Euchdean graphs. In the first paper it is shown that given a Delaunay

triangulation defined with the Li metric, between any two vertices in the triangulation there

is a path in the triangulation such that the ratio of the Euclidean length of this path to the

Euclidean distance between the two vertices is bounded above by \/l0. In the second paper

it is shown that if the Delaunay triangulation is defined with a convex distance function

based on an equilateral triangle then the ratio is bounded above by 2. In the third paper it

is shown that if the Delaunay triangulation is defined with the Euclidean (Z/ 2 )
metric then

the ratio is bounded above by ((1 + \/5)/2)7r « 5.08. In the fourth paper the upper bound

for the ratio is improved to 27r/3 cos(7r/6) ~ 2.42. Finally, in the first paper it is claimed

that an example exists that shows that 7r/2 is a lower bound for the ratio.

1. L. P. Chew, There is a planar graph almost as good as the complete graph, Proc. 2^

Ann. ACM Symp. on Computational Geometry (1986), 169-177.
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2. L. P. Chew, There are planar graphs almost as good as the complete graph, J. of

Computer and System Sciences 39 (1989), 205-219.

3. D. P. Dobkin, S. J. Friedman, and K. J. Supowit, Delaunay graphs are almost as good

as complete graphs. Discrete Comput. Geom. 5 (1990), 399-407.

4. J. M. Keil and C. A. Gutwin, The Delaunay triangulation closely approximates the

complete Euchdean graph. Springer-Verlag Lectures Notes in Computer Science 382

(1989), 47-56.

In the following paper it is shown how to obtain near-optimum heuristic solutions for large

Euclidean travehng salesman problems in a short amount of time using Delaunay triangula-

tions.

1. G. Reinelt, Fast heuristics for large geometric travehng salesman problems, ORSA J.

on Computing 4 (1992), 206-217.

In the following paper experimental results are reported about the relation between solutions

to Euclidean travehng salesman problems in the plane and Delaunay triangulations. These

results show that the optimal tour for large Hamiltonian Delaunay triangulations averages

about 0.1% above the optimal solution for the complete graph. They also show that regard-

less of its size, one can expect a Delaunay triangulation to contain on the average 99% of

the arcs in the optimal solution for the complete graph.

1. W. R. Stewart, Euchdean travehng salesman problems and Voronoi diagrams. School

of Business Administration, College of Wilham and Mary, Manuscript (1992).
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