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Surveillance Schemes

with

Applications to Mass Calibration

Moshe Poliak, The Hebrew University of Jerusalem*

Carroll Croarkin, National institute of Standards and Technology

CtiarlGS HagWOOd, National Institute of Standards and Technology

1 Abstract

One of the activities at the NIST is calibrating mass standards. In order to

ensure the quality of calibration, the NIST personnel monitor the values of

check standards over time. The current standard surveillance technique is a

Shewhart control chart with 3a--hmits.

Here we explore the applicability of other, recently developed, control

charts. While Shewhcirt charts are typically designed to detect large changes,

the schemes regarded here are geared towards detecting medium-sized ones.

Some of these procedures eire parametric, others are nonparaunetric. They

axe applied here to a sequence of measurements of mass standards, made
at the NIST over a period of time. Two types of surveillance problems are

regcirded: monitoring for a change in mean and monitoring for a change of

standard deviation. The control charts considered are shown to be effective.

•ASA/NSF/NIST FeUow

^Key words and subject class. : control charts, Shiryayev- Roberts, Cusum, mass stan-

dards
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2 Introduction

One of the activities of the National Institute of Standards and Technology

(NIST) is precision measurement of mass standards. Mass standards are cal-

ibrated at the NIST by comparison measurements which relate the mass of a

client’s standard to the NIST standard kilograms, and thence to the defined

unit for mass, the Paris kilogram.

The NIST has a large stake in monitoring its calibration process to en-

sure that the tie to the unit of mass, as quantified by the NIST statement of

uncertainty, is maintained. Any significant change in this process, whether it

is caused by changes in the masses of the NIST kilograms or changes in the

operation of the calibration process itself, invalidates the NIST uncertainity.

The check on the validity of this process is maintained by a series of check

standards which are calibrated with the client’s weights.

The kilogram level is the critical level in the calibration process because

weights of higher and lower denominations are calibrated relative to the NIST
working kilograms through a series of intercomparison designs. Prior to 1989,

the same two kilograms were used for calibration purposes, and the check

standard was the measured difference between these two kilograms as es-

timated from a comparison design. In this report, we present an analysis

of these check standard determinations made at a sequence of (nonequally

spaced) time points between 1975 and 1988. The data base includes all

check standard determinations which were made in the process of calibrating

weight sets of 1000,500,300 and 200 g denominations during that period.

The design pertaining to the data is illustrated in Figure 1.

The calibration design involves 6 intercomparison measurements as fol-

lows: yi =:the difference between the two the NIST 1 kg standards, y 2 =the

difference between one of the NIST’s 1 kg standards and the chent’s, =the

difference between the NIST’s other 1 kg standard and the client’s, yz =the

difference between the NIST’s 1 kg standard and the sum of the client’s

500,300,200 g standards, ys =the difference between the NIST’s other 1 kg

standard and the sum of the client’s 500,300,200 g standards, and ye =the

difference between the client’s 1 kg standard and the sum of the 500, 300, 200

g standards. (See Jaeger and Davis, 1984).

2
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ya =
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Figure 1: The design of the mass difference measurements.

One can writeyi = /ii + €i,y2 = Ma + ej.ya = /^a + ea.yH = /^a-Mi+f-t.ys =
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+ £5 , 2/6 = /^3 — /^2 + £6 where the €j are independent, and identically

distributed and each /i,- is a mass difference. The standard assumption is that

the ej have a N[0,a^) distribution, unknown. The least squares estimates

of fii (calculated separately at each point in time) are depicted in Figure 2.

Figure 2: 217 estimates in milligrams of mass differences of two standard

weights of 1 kilogram each, made at the NIST between 1975 and 1988.

The mass differences are measured in milligrams. Appendix 1 contains

the numerical data. (We will henceforth refer to these estimates of fj,i as

mass difference data.)

Post facto, it seems clear that a change occurred a short time after the

150th observation with perhaps a few local fluctuations before. A second

glance suggests that the change is an increase in mean, of the order of mag-

nitude of one standard deviation. Shewhart charts (cf Shewhart, 1931, or

4



Aimer and Keller, 1977), designed for detecting larger chcinges, fadled to

notice this increase, and it was only discovered after its occurrence by a

nonroutine retrospective reappraisal. (See Appendix 2.) Our goal here is

to construct monitoring schemes which would have discovered this change

within a reasonably short time after its occurrence.

In this report, we describe applications of recently developed surveillance

methods to these and other related data. In order to enable the reader feist

access to the application, we start with a minimal technical description of

the Shiryayev-Roberts approach to surveiUance, leaving a theoretical justifi-

cation to the later sections. The paper is therefore organized in the following

way. After presenting the Shiryayev-Roberts approach, we apply it to the

mass data portrayed in Figure 2, first parametrically and then nonparamet-

ricahy. Next we investigate data related to the standard deviation of the

measurements. Only after these applications do we return to more detailed

explanations of the theoretical considerations involved.

3 Introduction to the Shiryayev-Roberts Ap-
proach to Surveillance

The classical surveillance problem consists of being able to view sequentially a

series of independent observations ATi
,
Xj

,
X3 , . .

.

such that ATi
,
ATj , . .

.

,

Xi,. 1

have distribution Fq which changes at an unknown time u, so that Xt,, X^^i, . .

.

have distribution Fi. One apphes a surveillance scheme which raises an eilarm

at time N, declaring that a change is in effect. Typicailly iV is a random vari-

able; it is a stopping time, directed by the past-to-present observations when

to stop and raise an alarm. A surveillance scheme is considered good if it

detects a true change quickly, yet seldom raises a false alarm.

We will denote the probabihstic setup described above by Pi,. Expecta-

tion will be denoted by Ei,. Probability and expectation when there is no

change throughout the sequence will be denoted by Poo and Poo, respectively.

Every reasonable detection scheme may give rise to false aJarms. The rate

of false alarms is usually characterized by the index Poo-N, the average run

5



length (ARL) to faJse alairm. The standard constreiint regarding false alairms

is that N satisfy

EooN>B
(
1
)

where 5 is a prespecified constant. (For examaple, in a problem of surveil-

laince of a sequence of independent normally distributed observations for a

change of mean, EooN for the one-sided 3c7-limit Shewhairt control chart is

% 740, and the two-sided chart has EgoN « 370.)

The speed of detection of a surveillance scheme is typically an expression

of the expected delay. A common index is

sup Ei,{N — V
\

N > v).
1 <l'< oo

A basic statistic when conducting a surveilllance is

which is the likehhood ratio of the observations until time n, for i/ = k versus

u = oo. Cusum procedures (page, 1954; van Dobben de Bruyn, 1968) are

actually m<iximum likelihood procedures (Lorden, 1971); a Cusum scheme

can be defined as computing the sequence of statistics

= max A?
l<k<n

and raising an alarm the first time that Mn crosses a level A; that is

Na = min{n
|

> A}.

Given B, the threshold A must be such that (1) is satisfied.

The Shiryayev-Roberts procedure (Shiryayev, 1963, and Roberts, 1966,

eind hence SR) is somewhat different; it requires computing the sequence of

statistics

a. = I;a;
k=l

and raising an alarm the first time that exceeds a threshold A; that is

N = Na = min{n
|

> A}.

6



Again, given B, the threshold A must be such that (1) is satisfied.

Both Cusum and SR have optimality properties in terms of speed of de-

tection (PoUeik, 1985; Moustakides, 1986; Ritov, 1990), and the differences

between their performances are usually marginal (Shiryayev, 1963; Poliak

and Siegmund, 1985). An advantage of SR is that it can handle depen-

dent data much more easily than Cusum procedures. If the data are not

independent, understanding the sequence of Cusum statistics becomes very

comphcated and standau’d tables become useless. For the SR technique, one

can show fairly generally that

> A.

This means that setting A = B satisfies (1), with no further complications.

This is true even when the observations are dependent, a case which is of

wide interest, as we shall soon show. Obviously, setting A = B is somewhat

conservative. Often it is possible to show the existence of a constant C such

so that setting A = ^ satisfies (1) approximately. Computation of C is usu-

ally not a hard problem.

To see where the technical point concerning dependent observations makes

a real difference, consider the data of Section 1. Even if we assume that the

observations are norm<d, there is no baseline and there is no knowledge of the

standard deviation. In other words, we are observing a sequence XijXj , . .

.

where before a change Xi ~ N{fj.o,cT^), and we are concerned that this may
change to a N{no + (7, a^) or a — distribution. Neither /io nor a are

known. Therefore one cannot compute AJ (since both pre- and post-change

densities are unknown), and standard surveillance theory (Shewhart, Cusum,

Shiryayev- Roberts) cannot be applied to the sequence Xi,X2 ,
• • •• (Estimat-

ing the unknown parameters and applying Cusum is a tricky propositon. If

there is a change, the estimates may be influenced by it. In addition, esti-

mates have standard errors; Cusum techniques are notoriously sensitive to

misspecification of parameters. See van Dobben de Bruyn, 1968, Section 2.4.

7



The following technique (Poliak and Siegmund, 1991) circumvents these

difficulties. Let X, and construct the sequence of standardized

recursive residuals (Brown, Durbin and Evans, 1975)

= i = 2,3,....

The distribution of the sequence of Ti’s is independent of Now construct

the sequence
Y

= I = 3,4,5,....

The distribution of the sequence of Z,’s is independent of both and a. If,

instead of monitoring the process of X,’s we monitor the sequence of Z,’s,

the pre-change and post-change densities of our observations (the Z,’s) are

completely specified. It is therefore possible to compute the Ukelihood ratios

AJ (for the series). The technical difficulty in applying a Cusum control

chart is that the ZiS are not independent. On the other hand, as mentioned

above, for the SR procedure this is no obstacle.

The same technique can be applied to many other surveiUcince problems.

Essentially, the idea is to get rid of nuisance parameters by exploiting struc-

tures of invariance inherent to the problem. Thus, one can handle surveillance

for a change in a standard deviation, for a change in the parameter of an ex-

ponential distribution, as well as nonpairametric problems, even when there

is no in-control baseline.

In the following sections we will apply such schemes, both paraunetric emd

nonpaxametric, to detecting a change of mean and to detecting a change of

standard deviation.

4 Detecting a change of mean - parametric

analysis of the data of Figure 2

We continue with the notation of the previous section. We first write down

the statistics A]J, the change sX v = k versus the no-change (v = oo) hkeh-

hood ratio of the Z^ values of the first n observations, i.e. of Z3 , . .

. , Zn.

8



First note that A" = 1. The reason for this is that if the change is in effect

at onset - that is, from the beginning all AT, are distributed N{fio + cr,a^)

(or A/’(/xo — cr, cr^)) - then this will not be noticeable, as there is no baseline

for comparison, and the distribution of the Z, sequence will be the same as

when there is no change at all. (Another way of looking at this is that if all

of the observations are N{fj^ + then there is no change.) Hence, the

likehhood when i/ = 1 is the same as when u = oo, and so A” = 1.

Since the Zi’s start with i = 3, Aj = 1. In Appendix 5 it is shown that

for k > 3,n > k > 2

IZo I

^ + gfc.n I""
^ e

I

u h-2
J — OO I I

where /() is the indicator function of the set
( ), Z 2 = 1 and

0-k,n =

As detailed in Appendix 5, the ratio of the integrals in A]J can be computed

by a recursion formula, and a computer program (Figure 24) can calculate

the sequence of Rn's. This allows one to construct a control chart by plotting

the points (i,i2,) on a plane, with i the values on the i— axis and on the

y— cLxis (Figure 3).

In order to specify a stopping rule, one must specify B and set A so that

(1) is satisfied. The meaning of B is the ARL to false cdarm. Specifying B
requires consideration, as we shall see in the sequel. For the sake of a first

example, suppose the alternative to a Shiryayev-Roberts procedure would be

a 2— sided 3cr-limit Shewhart chart. As mentioned above, the ARL to false

alarm of that procedure is % 3/0. Hence we should specify B = 370 for the

Shiryayev-Roberts procedure. There being an average of about 17 observa-

tions per year, B = 370 means that it will take an average of 370/17 ~ 22

years to raise a false alarm.

As mentioned above, a conservative way to satisfy (1) is to set A = 5 =

370. An approximate equality in (1) may be obtained by computing the

9



observation number i

Figure 3: The Shiryayev-Roberts control chart with stopping threshold A.

limit as i4 — oo of EgoNji/A. By employing Theorem 1 of Gordon and

Pollak(1990) and Theorem 1 of Poliak (1987), one would expect that

lim
A—*oo

EqqNa

A
= 1.7

(see Appendix 7 in the sequel). Hence setting A = 370/1.7 = 220 satisfies

(1) approximately. The control chart will be as in Figure 4.

One should let the process keep going as long as all the points (i, Rt) are

such that Ri < A. One should stop the process the first time n that R^ > A,

cind declare that a change had taken place.

Applying this control scheme to the data of Figure 2 yields Figure 5.

We would stop right after the 23rd observation eind declare that a change

is in effect. Retiirning to reappraise Figure 2, the decision doesn’t look

10



observation number i

Figure 4: The Shiryayev- Roberts control chart with stopping threshold A =
220 .

unreasonable. (See Figure 14.)

What would have happened had we chosen a larger value of B1 Suppose

we were willing to risk one false alarm every 50 yc&rs, leading to B = 850

(A = 500). Figure 6 gives this picture. It would have taken einother 17

observations to reach the conclusion that a change is in effect.

To what level would B have had to be set in order to altogether miss

calling a change in the first part of the series? Figure 7 gives a plot of

for the first 162 observations. It seems as if 5 would have had to be about

10000. (This way A « 10000/1.7 « 5829 = i^o-) In that case, a change

would have been declared to be in effect after observation 162.

To complete the picture, the entire R, sequence is given in Figure 8.



Figure 5: Parametric surveillance for a change of the mean of the mass

difference data; i?t, 1 < -^220 = 23.

What value of B should one choose? There are a number of ways of go-

ing about choosing B. One way is to set B directly as the lowest tolerable

ARL to false alarm. For instance, if Shewhart’s claissical specification seems

reasonable, one should set B = 370 ox B = 740 for a one or two-side surveil-

lance scheme, respectively. Sometimes the value of the lowest tolerable ARL
to false alarm is nebulous. In that case, another way to set B is by regarding

the post-change characteristics of Nj^. For instance, if one regards changes of

the type appearing early in the Figure 2 sequence as serious, one would not

set B above 10000. If one were to regard such changes as mere local flucta-

tions which should not set off an alarm, then one would fix S > 10000. To

fix B more precisely, one can regard the expected delay Eu{N — u
\

N > u).

If the detection scheme is geared to detect a change of 8a in the meam
(

i.e.

the observations change from N{fMi,a^) to N{fj,o -I- 8a, a^) or — 8a, a^))

12



600

observation number i

Figure 6: Parametric surveillance for a change of the mean of the mass

difference data: Kt, 1 < Nsoo = 40.

and the true change in mean is /xcr, then a first-order approximation to the

expected delay Ev{Na. — ^
|
Na. > i^)

(
for u not close to 1 md /i > 5/2) is

{logA)|[6{^l — 5/2)]. In the case contemplated above, 5=1. If;i = l( i.e.

the true change equals the putative one), the expected delay is very roughly

2logA. So, if one would tolerate an expected delay of, say, no more than 10

observations, it would mean setting A w 150, or J5 « 260. See Poliak and

Siegmund (1991) for a more precise picture.

Finally, from the discussion above there emerges a data-anaiytic aspect

of the SR control cheirt not enjoyed by the other control charts. (See Kenett

and Poliak, 1992.) One may regard a present value of Rn. in light of the

following question: what level would B have had to be in order for an alarm

to be raised at time n? The answer is (approximately) l.lRn- Thus, up to

a multiplicative constant, the height of a point on a SR control chart has a

simple data-analytic meaning, similar in vein to that of a p-value.

13



observation number i

Figure 7: Parametric surveillance for a change of the mean of the metss

difference data: R^,l < iVgooo = 162.

xU)ii

Figure 8: Pzirametric surveillance for a change of the mean of the mass
difference data: R^, 1 < i < 217.
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5 Detecting a change of mean - nonparamet-
ric analysis of the data of Figure 2

The analysis in the previous section was based on the assumption that the

observations Xi axe normally distributed . Not always is the distribution of

the observations known. Even when it is, there may be concern that some

of the observations are contaminated. In such Ccises, nonpaxametric schemes

are of interest. The decision to go nonparametric need not be difficult, as

the efficiency of some of the nonparametric procedures is very high.

The natural analogue of the Z, of the previous section is the zth sequen-

tial rank r^ = I{Xj < X^), which is the rank of the ith observation

among the first i observations. Surveillance will be based on the sequence

’"i, ^ 2 , 7'3) • • • instead of Xi, X2 ,
X3 , . . .. A nonparametric Shiryayev- Roberts

(NPSR) procedure will be based on the sequence Rn = Ylkzzi >
n, = 1, 2, . .

.

,

where is a, u = k versus u = 00 likelihood ratio of ri, . .
.

, r^. The technical

details are relegated to Appendix 6, where a recipe for choosing an appro-

priate nonparametric scheme is given, along with a program for computing

the statistics R^.

We return to the analysis of the previous section. Suppose one is not

quite sure about the distribution of the observations, but surmises a normal

distribution. Suppose again that one is alert for a change of ±cr in the mean.

Then, following the recipe in Appendix 6, the parameters of the NPSR pro-

cedure should be p = .8413, a = .53,^3 = 1.7.

Here lim^_oo EooNaIA = 1.89. (For lower values of A, 1.8 will be a better

approximation than 1.89. See Gordon and Poliak, 1991.) Thus, ii B = 370

(to make things comparable to tjie analysis of the previous section), A should

be set to B/l.S w 210. Figure 9 is the nonparametric analog of Figure 5.

Clearly, the NPSR procedure with B = 370 does not catch the apparent

rise starting at the I5th — 20th observations. This is typical of early changes:

the nonparametric technique is weaker than the parametric procedure if the

change is early (within the first 30 observations). Here, it catches a change

only at the 42nd observation. (It should be borne in mind that the parametric
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procedure with B = 370 barely detects a change; the parametric sequence

barely exceeds A before the 39t/i observation.) Figure 10 is a nonpaxametric

analog of Figure 7.

The configuration is similar, but the larger values of lU are usually lower

for the nonparametric scheme. This is only naturad: for instance, increasing

the largest observation will not affect its rank, thereby not affecting the NPSR
statistic, but affecting the parametric one. In other words, the NPSR scheme

is less sensitive to extreme observations. (This is ailso the reason why the R,

of the NPSR scheme have a larger ”blip” at 65 < x < 95; comparison of the

ranks of X, madces the 65 < x < 95 observations seem larger with respect

to the 20 < i < 50 observations than comparison of the actual values.) So,

&s usual, the nonparametric scheme is less sensitive to extreme values and

is therefore robust, but it is a little slower in detecting a change (about

7% slower on the average, see Gordon and Poliak, 1991). To complete the

picture. Figure 11 is a nonparametric analog of Figure 8.

Figure 9: Nonpau’ametric surveillance for a change of the mean of the mass

difference data: Rt, 1 < x < N210 = 42.
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3()00

Figure 10: Nonparametric surveillance for a change of the mean of the mass
difference data: R^, 1 < i < 161.

xlO"

Figure 11: Nonpaxametric surveillance for a change of the mean of the mass
difference data: Hi, 1 < i < 217.
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6 Post-detection analysis

Suppose the series crosses over the threshold A. What should one do

next? In principle, one should take stock of one’s new position, get one’s

bearings and continue. However, in practice these actions mean different

things in different situations.

In some industrial contexts, crossing the threshold A causes a machine

to be replaced or overhauled, and surveillance will have to be completely

restarted, disregarding all previous observations. Clearly, surveillance re-

sumes under completely new circumstances. For example’s sake, suppose we
adopt this attitude towards the data of Figure 2.

If our scheme is the parametric setup of Section 3, then after the 23rd

observation we will discard the first 23 observations, and reapply the same

surveillance scheme (with A = 220) to the sequence starting with observa-

tion 24. As it turns out, we will stop after the 74t/i observation. Reapplying

the scheme starting with the 75th observation we will stop after the 113th

observation. The next stop will be after the 16Ath observation. After that,

we will not stop again before the end of the data. The control charts are

detailed in Figure 12. The resulting segmentation of the data is illustrated

in Figure 14.

Similarly, if we do this for the nonparametric scheme of Section 4 with

A = 210, the stopping times are after the 60th, llAth and 16l5t observations.

The control charts are detailed in Figure 13. The resulting segmentation of

the data is illustrated in Figure 15.

In the mass difference example discussed in the previous sections, cross-

ing the level A may bring about a recalibration of the two NIST working

standards. The measuring process may continue without change only if the

statement of uncertainity is expanded to account for the fact that one or

both of the working standards may have changed.

Therefore, there is information in the most recent observations concern-

ing the present level of the process; which is indicative of the level to be

expected of the mass differences in future observations. Surveillance should

18



(•)

obaervation number i

(c)

Figure 12: Post-detection parametric analysis of mass difference data:

surveillance for a change of mean. ARL to false alarm=370, starting anew
after each observation, (a) R,,24 < i < N220 = 74. (b) R,,75 < : < N220 =
113. (c) R,, 114 < t < N220 = 164. (d) R,, 165 < i < 217.
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(«)

(b)

observation number i

(=)

observation number i

Figure 13: Post-detection nonparametric analysis of mass data: surveillcince

for a change of mean. ARL to false alarm=370, starting anew after each

observation, (a) R,,43 < i < N210 = 60. (b) 72^,61 <i< N210 = 114. (c)

R,, 115 < i < N210 = 161. (d) R., 162 < z < 217.

20



(*)

Figure 14: Surveillance segments of meiss difference data, based on pcirametric

control for change of mean. ARL to false alarm=370. Putative change= 1

standard deviation.

(t)

Figure 15: Surveillamce segments of mass difference data, based on non-

parametric control for change of mean. ARL to false alarm=370. Putative

change= 1 stcindard deviation.
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now be geared towards detecting a change from the new level. Of course,

one can forget the past and act as if no past exists, as in the first part of this

section. This, however will make detection of an early chainge more difficult.

It would intuitively make sense to maJce use of the peist observations most

recent to the detection time.

A strong word of caution is in order here. Though it is very tempting

to use such information, there are formidable technical difficulties involved.

For one thing, there’s always the possibihty that the detection was actuedly

a false alarm. If this possibility cannot be ruled out, any attempt to use the

information prior to detection will stand on shaky ground. Even if one is

confident that a real change is in effect, there remains the question of how to

make use of this information. At the time of this writing, there is no clear

cut recipe of how best to estimate the point of change after a detection has

been made (and how to estimate the present level), and there is virtually

no discussion in the literature of how to make use of such estimates should

they be available. (See Kenett and Zacks, 1992, for a Bayesian approach.

See James, James euid Siegmund, 1987, for estimation in the fixed sample

retrospective change point problem. See Siegmund and Venkatraman, 1992,

for the only paper to date dealing with estimation in the sequential Ceise from

a non-Bayesian point of view.)

Had one known the point of change, one could have regarded the post-

change observations made until the time of detection ais constituting a learn-

ing sample; and one could have continued with a modified Shiryayev-Roberts

procedure along the lines of Poliak and Siegmund (1991). Since the point of

change must be estimated, at present no method is known which will pro-

duce a surveillance procedure which utilizes the pre-detection observations

and honestly satisfies (1).

Nonetheless, we will now present an analysis wherein we estimate the

point of change, and continue with a modified Shiryayev-Roberts procedure,

as suggested above. We conjecture that (1) is satisfied approximately. The

reasoning: AJJ for small k do not play a dominant role in i2n = Ylk ^fc> '"^^en

Rn is large, (see Gordon and Poliak, 1991 and Figures 16 and 18 in the se-

quel). It must be reemphasized that at present we have no proof of this. We
hope to work on this in the future.
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Our estimate 0 of the change point time u is i. maximum Ukelihood type

estimate. Consider Figure 5 and the accompanying discussion. Our thresh-

old is = 220, and we stop after the 23rd observation. Here u = 17. (See

Figure 16(a).) Instead of starting surveillance anew from the 2ith observa-

tion, we delete only the first 16 observations. Now, the "first” observation is

observation 17 in the original chronology. Detection was made on the sev-

enth observation in the new count, and the first future observation will be

(new) 8. We will regard X\, X2,
,
Xy (in the new count; these are the old

-^17 ,
-^18 )

• • • ,
^23 )

as a "learning sample”, all of which have the saime (post-

first-change) distribution.

The new Z, are computed in the same way as the old ones; they will be

based on Xi, X2, X3 , . .

.

(of the new chronology). The likelihood ratios AJ
are calculated accordingly.

Under our assumptions, there is no (second) change prior to the Sth

observation. Therefore, AJ will not be meaningful for A; < 8; the change point

1/ cannot have a value less than 8 in our present circumstances. Therefore,

the statistic Rn will now be

R^ = t.K
k=S

and we will stop and declare that a change is in effect at N220, the first time

that Rn exceeds 220. The resulting control chart is given in Figure 17(a).

(In order to facilitate reference to Figure 2 and Appendix 1, the index i of

the Rt is translated back again to match the original serial numbers of the

observations. Thus the first 72, to be depicted in Figure 17(a) is not denoted

as R% but as 7^34 .) The fact that the first post-learning-scimple observation

is Xi is coded by the input kay = 8. We stop after the 63rd (original count)

observation.

From Figure 16(b), we obtain u = 51. Since the next observation will be

the 6Ath, it means that to continue we should set kay = 14. The resulting

analysis is given in Figure 17(b) and Figure 16(b). We stop ageiin after the

113th observation, and u = 107.
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Therefore, for the continuation kay = 8. The analysis is given in Figure

17(c) and Figure 16(c). We stop again after the 164t/i, and u = 151.

Hence, kay = 15 for the continuation. The analysis is given in Figure

17(d). There is no further change detected by the time of the 2\lth obser-

vation. (For the sake of completeness and comparison, is presented in

Figure 16(e).)

The same type of analysis can be made with the nonparametric approach.

The progression of analyses is given in Figures 18 and 19.
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(*) w

(c)

(a) 1 < fc < 23; P = 17; n = ^320 — 23.

(b) 17 < i < 63; j> = 51; n = = 63.

(c) 51 < i < 113; £> = 107; n= N320 = 113.

(d) 107 < i < 164; i> = 151; n = N220 = 164.

(e) 151 < i < 217; n= 217.

FiKure 16: Post-d.tection parametnc analysis of mass differenca data also us-

dctection data for surveillanct for a change in mean: t as a unc ion
mg pre

of k.
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(a) iZi, 1 < t< 23; P= 17.

(b) Ri,2A<i< 63; kay = 8; i> = 51.

(c) Ri,M<i< 113; kay = 14; = 107.

(d) Ri, 114 < t < 164; kay =8;u= 151.

(e) R^,l65<i< 217; kay = 15.

obaervation number i

Figure 17: Post-detection parametric analysis of mass difference data:

surveillance for a change in mean adso using pre- detection data. ARL to

false alarm=370.
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k

(c)

(a) 1 < 4 < 42; i> = 27; n = N,30 = 42.

(b) 27 <k< 62; = 51; n = ATjjo = 62.

(c) 51 < fc < 113; i> = 107; n = N330 = 113.

(d) 107 <k< 161;i/= 151;n= N320 = 161.

(e) 151 < i < 217; n = 217.

k

Figure 18 : Post-detection nonparcunetric analysis of mass difference data
also using pre-detection data for surveillance for a chcinge in mean: AJ as a

function of k.
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(*)

{^) Ri,l<i< N210 = 42; i> = 27.

(b) iZt, 43 < i < N210 = 62; kay = 17; i> = 51.

' (c) Ri,63<i< N210 = 113; kay = 14; ^ = 107.

(d) Ri, 114 < i < .Yaio = 161; kay = 8; «/ = 151.

(e) Ri, 162 <» < 217; kay = 12.

Figure 19; Post-detection nonparametric analysis of mass difference data:

surveillance for a change in mean zdso using pre-detection data. ARL to

false alarm=370.
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7 Surveillance of the standard deviation

Typically, two types of control are exercised in a quality setting: (1) the pro-

cess mean is monitored via statistics computed from samples of size m and

(2) the precision of the process is monitored via standard deviations com-

puted from each sample of m values. In Sections 2-4, the surveillance scheme

for the process mean is based on the Shiryayev-Roberts method. Invauiance

structures, similar to those of Sections 2-4 can be exploited to construct a

surveillance scheme for the process precision, both parametrically and non-

parametricaUy (see Gordon and Poliak, 1991, 1992).

For the mass cahbration process, the statistic for monitoring the process

mean is a least-squares estimate (check standard) from six difference mea-

surements. The statistic for monitoring the process precision is the residual

standard deviation of the fit to the six difference measurements. The latter

characterizes the precision of the balance and any degradation or change in

the balance is of special interest in this process.

Recall Figure 1 and the notation thereafter. Each set of difference mea-

surements, {j/j}®-! yields an estimate s of (7*. The residual standard devi-

ation is given by s = Ej=i(yj “ V])^, where yi = Ai, Vj = A2 , ys = As,

= A2 — Ai) ys = As “ All ye = As “ As- (Note that in the absence of

components of error other than tbe a of Sections 3-6 would equal cre/\/2).

Estimates of cTf from each intercomparison design are given in the 6th column

of Appendex 1 and plotted in Figure 20.

Since three parameters o. mea are estimated and there are

six observations, the distribution c. each Zs^/a^ is xfs)
= Gamma( 1.5, .5).

So letting denote the ith estimate of the sequence of observations Y",

with unknown baseline is b^ing monitored for a chemge. In order to get

rid of the nuisance parameter denote Ti = 0 and

J=1 J=1

for n > 1. The distribution of the sequence {Tn} does not depend on cTj.

(Since our procedure is bcised on Ukehhood ratios, amy eqivalent invariant set
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0,16

Figure 20: 217 estimates in milligrams of the standard deviation, of the

difference between two 1 kilogram weights, made at NIST between 1975 and

1988.

of statistics - such as = YnlY\ - will yield the same A^’s, hence the same

control scheme. Our choice is T„ in order to use the formulae of Gordon aind

PoUak, 1990.)

Consider first the one-sided detection problem (that is, the change can

only be an increase of the standard deviation; or, alternately, the change can

only be a decrease). Suppose it is of importance to detect a change of a

magnitude ga^
(
or more extreme); that is, if after change the value of the

standetrd deviation becomes gcr^
(
or more extreme), it would be of interest

to raise an alarm. Then the u = k versus i/ = oo likelihood of Ta, . .
.

,

T„

for n > > 1 (Gordon and Poliak, 1990, Theorem 2) is

a; = + (1 _
j-k

To emphasize the dependence oh g, write Rf^ instead of R^. The foregoing

analysis uses g = 2 and ^ = 1/2. To put the two together - i.e. the putative

chajige is to double the original standard deviation or to half of it - we re-

define Rn = {Rfr^ + Rf^^^^)/2, and stop at Na = min{n
|

R^ > A}. In the

limit (as A —+ oo), we expect Eoo^aI-^ ~ 2.6 (see Appendix 7). Following

the previous sections, if we set B = 370, then A = B/2.6 % 140.

Analysis analogous to Figures 5 and 12 is portrayed in Figure 21.
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(»)

(b)

obfervation number i

(=)

xlO'

15
I

2

1.5

1

0.5

Ql
^ 1 J

175 180 185 190 195 200 205 210

observation number i

(d)

Figure 21: Pairametric analysis of mass difference data: surveillance for a

change of standard deviation. ARL to faJse alarm=370, starting anew after

each detection, (a) R^,l < i < Nno = 47. (b) iZt,48 < : < Ni^o = 177. (c)

R,, 178 < I < ^140 = 207. (d) R,, 208 < x < 217.
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That is, if after each detection we start cinew, the stopping times are im-

mediately after the 47t/i, \llth «md 207t/i observations. (An anedysis analo-

gous to Figures 16-19 is also possible).

It is clear from an inspection of the data that observation 207 is an out-

lier. If this observation is deleted, one obtains Figure 22. In other words, in

reality there seems not to have been a change, and the alarm raised after the

207th observation is a false alarm.

Figure 22: Parametric surveillance for a change of standard deviation,

starting with observations #178, deleting observation #207; ARL to false

£Llarm=370, R,, 178 <i< 216.

The details of a nonpeu’ametric analysis will be given elsewhere. We do

remark, however, that ein analogous nonparametric analysis would not have

stopped after the 207th observation, even without deleting it, implicitly rec-
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ognizing it for what it is (an outlier).

As a final comment, we remark that the changes seem to be somewhat
smaller than the putative ones. Had we taken, for instance, g = and

g = l/\/2, (doubhng or halving the variance), the stopping times for an

analysis analogous to Figure 21 are 47, 166 and 207 (with no stopping at

207 if observation 207 is deleted). In other words, a better guess of the

post-change value will result in (somewhat) earlier detection.

8 Summary and Conclusion

We have presented a number of surveillance schemes, both parametric and

nonparametric, for detecting a change in mean and for detecting a change

in standard deviation, where no baseline is known. We probed the meaning

and ramifications of various surveillance schemes and choices of parameters.

We find that the surveillance schemes presented are powerful, and should

be considered for use instead of a Shewhart scheme: the change in mean

following the 150th obervation would have been discovered within the 15

subsequent observations, by all of the schemes we presented. (The Shewhart

control chart leaves one unaware of the change almost to the end of the

sequence. See Appendix 2.)
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9 Appendix 1. Check standard data from

the mass calibration process

1 75.884 41 .
- 19.51836 12 . .0217 41 .

2 75.922 41 .
- 19.49785 12 . .0118 41 .

3 76.013 41 .
- 19 .47795 12 . .0232 41 .

4 76.129 41 .
- 19.49223 12 . .0210 41 .

5 76 . 642 41 . - 19.52728 12 . .0265 41 .

6 76.723 41 .
- 19.50172 12 . .0317 41 .

7 77.220 41 .
- 19.49191 12 . .0194 41 .

8 77 .277 41 .
- 19.46912 12 . .0316 41 .

9 77.551 41 .
- 19.49717 12 . .0274 41 .

10 77.742 41 .
- 19 . 46766 12 . .0361 41 .

11 77.742 41 .
- 19.52115 12 . .0362 41 .

12 77 . 839 41 .
- 19.52576 12 . .0320 41 .

13 77.954 41 .
- 19.43922 12 . .0096 41 .

14 77.954 41 .
- 19.49868 12 . .0238 41 .

IS 78.097 41 .
- 19.50119 12 . .0224 41 .

16 78.218 41 .
- 19.50662 12 . .0117 41 .

17 78.220 41 .
- 19.43984 12 . .0175 41 .

18 78 .277 41 .
- 19 .46826 12 . .0314 41 .

19 78.398 41 .
- 19.46286 12 . .0445 41 .

20 79 . 113 41 .
- 19.43884 12 . .0122 41 .

21 79 . 137 41 .
- 19.45812 12 . .0132 41 .

22 79.140 41 .
- 19.47232 12 . .0409 41 .

23 79.142 41 .
- 19.44036 12 . .0206 41 .

24 79 . 153 41 .
- 19.51258 12 . .0295 41 .

25 79. 133 41 .
- 19.51992 12 . .0391 41 .

26 79 . 188 41 .
- 19.50532 12 . .0339 41 .

27 79 . 199 41 .
- 19.43229 12 . .0250 41 .

28 79 . 242 41 .
- 19.43039 12 . .0391 41 .

29 79.261 41 .
- 19.43908 12 . .0365 41 .

30 79.261 41 .
- 19.44265 12 . .0164 41 .

31 79.312 41 .
- 19.50940 12 . .0203 41 .

32 79.312 41 .
- 19.42423 12 . .0274 41 .

33 79.315 41 .
- 19.50140 12 . .0317 41 .

34 79.315 41 .
- 19.43997 12 . .0338 41 .

35 79 . 503 41 .
- 19.51249 12 . .0399 41 .

36 79 . 530 41 .
- 19.44913 12 . .0399 41 .

37 79.546 41 .
-19.46149 12 . .0275 41 .

38 79.661 41 .
- 19.45838 12 . .0362 41 .

39 79.680 41 .
-19.45370 12 . .0177 41 .

40 79.731 41 .
- 19.44111 12 . .0356 41 .

41 79.812 41 .
-19.49213 12 . .0424 41 .

42 79.965 41 .
- 19.39213 12 . .0487 41 .

43 80.199 41 .
- 19.41918 12 . .0413 41 .

44 80.363 41 . - 19.44048 12 . .0463 41 .

45 80.390 41 .
- 19.45164 12 . .0431 41 .

46 80.390 41 .
- 19.44348 12 . .0275 41 .

47 80.538 41 .
- 19.46043 12 . .0724 41 .

48 81.645 41 . - 19.45428 12 . .0297 41 .

49 81.653 41 .
-19.44764 12 . .0054 41 .

50 82.030 41 .
- 19.45455 12 . .0340 41 .

51 82.215 41 .
- 19.49673 12 . .0275 41 .

52 82.304 41 .
- 19.47514 12 . .0376 41 .

53 82.384 41 .
- 19.49357 12 . .0482 41 .

54 82.444 41 .
- 19.50361 12 . .0290 41 .

55 82.481 41 .

*

-

19.48108 12 . .0326 41 .

56 82.489 41 .
- 19.50317 12 . .0338 41 .

57 82.489 41 .
- 19.45445 12 . .0381 41 .

58 82.737 41 .
- 19.48382 12 . .0373 41 .

59 82.804 41 .
- 19.50324 12 . .0245 41 .

60 82.836 41 .
- 19.50624 12 . .0212 41 .

61 82.839 41 .
- 19.45943 12 . .0194 41 .

62 82 .968 4 1 .
- 19 . 49146 12 . .0216 41 .

63 83.051 41 .
- 19 .47940 12 . .0322 41 .

64 83 . 124 41 .
- 19 . 52737 12 . .0482 41 .

65 83 . 277 41 .
- 19 .45800
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66 83.376
67 83.570
68 83.664
69 83.841
70 83.852
71 83.855
72 83.855
73 83.855
74 84.022
75 84.024
76 84.070
77 84.086
78 84 . 105
79 84. 140
80 84.159
81 84.242
82 84.258
83 84.293
84 84 . 387
85 84.425
86 84.452
87 84 . 492
88 84. 522
89 84 . 540
90 84.637
91 84 . 774
92 84.793
93 84 . 809
94 84.828
95 84.911
96 84.944
97 84.949
98 84.962
99 84.989

100 85.005
101 85.016
102 85.024
103 85.027
104 85.083
105 85.094
106 85.613
107 85.677
108 85.718
109 85.755
110 85.758
111 85.788
112 85.887
113 85.903
114 85.941
115 86.070
116 86.137
117 86.156
118 86.172
119 86.183
120 86.183
121 86.199
122 86.202
123 86.202
124 86.312
125 86.323
126 86.325
127 86.328
128 86.333
129 86.333
130 86.333
131 86.336

41 .
- 19.45857

41 .
- 19.45041

41 .
- 19.50471

41 .
- 19.49776

41 .
- 19.45337

41 .
- 19.46320

41 .
- 19.49746

41 .
- 19.49578

41 .
- 19.48234

41 .
- 19.52780

41 .
- 19.51346

41 .
- 19.51361

41 .
- 19.52000

41 .
- 19.48437

41 .
- 19.50596

41 .
- 19.49994

41 .
- 19.45018

41 .
- 19.51104

41 .
- 19.46231

41 .
- 19.50418

41 .
- 19.45169

41 .
- 19.52187

41 .
- 19.45963

41 .
- 19.51361

41 .
- 19.46240

41 .
- 19.52267

41 .
- 19.51634

41 .
- 19.45103

41 .
- 19.45056

41 .
- 19.48777

41 .
- 19.46407

41 .
- 19.49652

41 .
- 19.42983

41 .
- 19.51739

41 .
- 19.46179

41 .
- 19.50977

41 .
- 19.52705

41 .
- 19.46708

41 .
- 19.45906

41 .
- 19.47887

41 .
- 19.49657

41 .
- 19.45073

41 .
- 19.45205

41 .
- 19.44903

41 .
- 19.47174

41 .
- 19.48791

41 .
- 19.44142

41 .
- 19.43279

41 .
- 19.43431

41 .
- 19.51034

41 .
- 19.48098

41 .
- 19.46938

41 .
- 19.49175

41 .
- 19.46907

41 .
- 19.46479

41 .
- 19.47025

41 . .- 19.43449
41 .

- 19.52758
41 .

- 19.45366
41 .

- 19.43107
41 .

- 19.41757
41 .

- 19.44877
41 .

- 19.50286
41 .

- 19.53529
41 .

- 19.46749
41 .

- 19.43112

12 . .0272 41
12 . .0336 41
12 . . 0452 41
12 . .0459 41
12 . .0359 41
12 . .0251 41
12 . .0254 41
12 . . 0243 41
12 . .0284 41
12 . . 0094 41
12 . .0179 41
12 . .0423 41
12 . .0228 41
12 . .0211 41
12 . .0256 41
12 . .0170 41
12 . . 0221 41
12 . .0196 41
12 . .0192 41
12 . .0237 41
12 . .0294 41

12 . .0422 41
12 . .0315 41

12 . .0424 41
12 . .0303 41
12 . .0159 41
12 . .0289 41

12 . .0363 41

12 . .0423 41
12 . .0140 41
12 . .0132 41

12 . .0290 41
12 . .0132 41 ,

12 . .0251 41 ,

12 . .0234 41 ,

12 . .0182 41 ,

12 . .0173 41 ,

12 . .0305 41 ,

12 . .0340 41 ,

12 . .0392 41 .

12 . .0407 41 ,

12 . .0367 41 .

12 . .0124 41 .

12 . .0387 41 .

12 . .0207 41 .

12 . .0094 41 .

12 . .0430 41 .

12 . .0167 41 .

12 . .0167 41 .

12 . .0351 41 .

12 . .0412 41 .

12 . .0134 41 .

12 . .0143 41 .

12 . .0226 41 .

12 . .0320 41 .

12 . .0373 41 .

12 . .0252 41 .

12 . .0454 41 .

12 . .0226 41 .

12 . .0241 41 .

12 . .0321 41 .

12 . .0162 41 .

12 . .0296 41 .

12 . .0663 41 .

12 . .0266 41 .

12 . .0241 41 .



132 86.336 41 .
- 19 .45043 12 . .0204 41

133 86.344 41 .
- 19 . 44215 12 . .0140 41

134 86.349 41 .
- 19.46783 12 . .0233 41

135 86.352 41 .
- 19.47338 12 . .0222 41

136 86.352 41 . - 19 . 42965 12 . .0267 41

137 86.352 41 .
- 19 . 42965 12 . .0267 41

138 86.352 41 .
- 19.48007 12 . .0117 41

139 86.355 41 .
- 19.54186 12 . .0500 41

140 86.363 41 . - 19.45274 12 . .0102 41
141 86.368 41 .

- 19.44563 12 . .0267 41
142 86.384 41 . - 19.47038 12 . .0306 41
143 86.430 41 .

- 19.45087 12 . .0147 41
144 86.438 41 .

- 19.45068 12 . .0324 41
145 86.460 41 .

- 19.53243 12 . .0079 41
146 86.473 41 .

- 19.54010 12 . .0143 41
147 86.473 41 .

- 19 .51144 12 . .0398 41
148 86.478 41 .

- 19.45766 12 . .0205 41
149 86.473 41 .

- 19.45766 12 . .0205 41
150 36.489 41 .

- 19 . 52988 12 . .0247 41
151 86.505 41 .

- 19.40143 12 . .0260 41
152 86.503 41 .

- 19 . 47424 12 . .0291 41
153 86.511 41 .

- 19.43663 12 . .0415 41
154 86.511 41 .

- 19.37900 12 . .0267 41
155 86.513 41 .

- 19.42834 12 . .0326 41
156 86.513 41 .

- 19.53802 12 . .0147 41
157 86.516 41 .

- 19.40812 12 . .0578 41 ,

153 86.522 41 .
- 19.43325 12 . .0355 41 .

159 86.524 41 .
- 19.42678 12 . .0323 41 ,

160 86.524 41 .
- 19.42678 12 . .0323 41 .

161 86.535 41 .
- 19.41479 12 . .0582 41 .

162 86.540 41 .
- 19.42376 12 . .0309 41 .

163 86.608 41 .
- 19.45083 12 . .0102 41 .

164 86.643 41 .
- 19.41340 12 . .0521 41 .

165 86.672 41 .
- 19.44090 12 . .0459 41 .

166 86.677 41 .
- 19.43733 12 . .0514 41 .

167 86.710 41 .
- 19.44411 12 . .0498 41 .

168 86.723 41 .
- 19 . 44415 12 . .0191 41 .

169 86.723 41 .
-19.44415 12 . .0191 41 .

170 86.734 41 .
- 19.55097 12 . .0483 41 .

171 86.763 41 .
- 19.47477 12 . .0309 41 .

172 86.801 41 .
- 19.44680 12 . ,0590 41 .

173 86.328 41 .
- 19.44596 12 . .0427 41 .

174 86.833 41 .
- 19 . 44680 12 . .0590 41 .

175 86.349 41 .
- 19 . 40648 12 . .0486 41 .

176 86.858 41 .
- 19.39246 12 . .0307 41 .

177 86.858 41 .
- 19 . 40120 12 . .0237 41 .

178 86.995 41 .
- 19.42234 12 . .0331 41 .

179 87.016 41 .
- 19.37848 12 . .0279 41 .

180 87.019 41 .
-19.44577 12 . .0459 41 .

181 87.019 41 .
-19.47299 12 . .0142 41 .

132 87.022 41 .
- 19 . 44447 12 . .0504 41 .

183 87.022 41 .
- 19.46441 12 . .0310 41 .

184 87.134 41 .
- 19.46499 12 . .0241 41 .

185 87.191 41 .
- 19.42126 12 . .0349 41 .

186 87.228 41 .
- 19.43429 12 . .0233 41 .

187 87.255 41 .
- 19.42879 12 . .0175 41 .

188 87 . 290 41 .
- 19.48356 12 . .0539 41 .

189 87.312 41 .
- 19 . 44399 12 . .0349 41 .

190 87.333 41 .
- 19.46733 12 . .0246 41 .

191 87.457 41 .
- 19.44769 12 . .0503 41 .

192 87.481 41 .
- 19 .41426 12 . .0206 41 .

193 87.492 41 .
- 19.39112 12 . .0388 41 .

194 87.524 41 .
- 19.44205 12 . .0332 41 .

195 87.591 41 .
- 19.42656 12 . .0226 41 .

196 87.694 41 .
- 19 . 40541 12 . .0456 41 .

197 87.742 41 .
- 19 . 44173 12 . .0156 41 .
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198 87 . 788 4 1 .
- 19.41108 12 . .0377 41

199 87 . 798 41 .
- 19 .41254 12 . .0471 41

200 87 . 801 41 .
- 19.43138 12 . .0592 41

201 87.820 41 .
- 19 .45783 12 . .0102 41

202 87 . 847 41 .
- 19.47197 12 . .0445 41

203 87 .866 41 .
- 19.46213 12 . .0454 41

204 87.922 41 .
- 19 .45791 12 . .0240 41

205 87.925 41 .
- 19.45214 12 . .0409 41

206 87.957 41 .
- 19.46248 12 . .0570 41

207 88.027 41 .
- 19.50108 12 . . 1492 41

208 88.027 41 .
- 19.43155 12 . .0469 41

209 88.094 41 .
- 19 . 44742 12 . .0275 41

210 88. 151 41 .
- 19.43895 12 . .0180 41

211 88.204 41 .
- 19.41520 12 . .0106 41

212 88.207 41 .
- 19.39467 12 . .0252 41

213 88.277 41 .
- 19 . 43458 12 . .0523 41

214 88.315 41 .
- 19 .41401 12 . .0275 41

215 88.339 41 .
- 19 . 44789 12 . .0376 41

216 88 . 398 41 .
- 19.43033 12 . .0215 41

217 88.433 41 .
- 19 .43883 12 . .0403 41

Column 1:

Column 2:

Column 3:

Column 4:

Column 5:

Column 6:

Column 7:

Serial number of observation.

Date by year.

Check standard ID.

Check standard value.

Balance ID.

Residual standard deviation.

Design ID.
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milligrams

10 Appendix 2: Shewhart Chart for the data

of Figure 2

A Shewhart chart for the data of Figure 2 would typicadly be constructed in
X X

the following way: stop when
| |

exceeds 3. Here is the mean of

the first n' = 114 mass differences in column 6 of Appendix 1, and s„/ is the

standeu’d deviation computed from the n' = 114 differences. The resulting

chart is given in Figure 23.

observation number

Figure 23: A Shewhart chau’t for the data of Figure 2.

The Shewart chart raised an aiarm at observation #154. This observation

was initially regarded as an outlier, and since no other observations came in

which crossed the Zc - limit until a half year later when #179 crossed the 3c7

- limit
,
a change in mean level was not detected until a deeper retrospective

analysis was made.
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The reason for Shewhart’s ineffectiveness is clear, post-facto; the average

of the first 114 observations is —19.4771 mg; the average of the last 103 is

— 19.4506 mgl. The standard deviation of the first 114 observations is 0.030

mg.. Hence the change of 0.026 mg was an increase of less than 1 standard

deviation. Shewhart charts are known to be ineffective in detecting such

changes.

11 Appendix 3. Rationale of the SR proce-

dure

We continue with the notation of Section 3. Assume first that the observa-

tions are independent.

The idea behind the SR procedure regards the problem in a Bayesian

context. Consider the following structure: one stands to lose one unit for

raising an alarm and c units (c < 1) for each observation taken after change

until detection. Suppose u has a Geometric (p) prior distribution. Heuris-

tically, because of the memoryless property of the geometric distribution,

one would expect that at any point in time, the only relevant information is

the posterior distribution that a change is in effect, P[u < n
|

ATi, . .
.

,

X^)-

Given that there was no change, the future as seen in two different points

in time is stochastically the same, due to the memoryless of the geometric

prior; therefore, if the posterior probability of a change being in effect is the

same for two different points, one’s actions should be the same. In other

words, one would expect to raise an alarm whenever the posterior probabil-

ity of a change in effect exceeds a certain threshold. (For a formal proof, see

Shiryayev, 1963 or 1978.)

Using Bayes’ theorem, letting q = l—p and noting that fi,=k{Xi , . .
. ,
Xn) =

fu=oo{Xi , . .
.

,

Xn) for k > n, vf€ obtain

P{u = k\Xu...,Xn)
fu=k{Xu.. .,Xn)pq’‘

^

f.=k{Xu...,Xn)pq>^-^

Ej= l fu=A^U • •
• , ^n)pq^-'^ + U=oo{Xi,. . .,Xn)q^'
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Therefore the posterior probability that a change is in effect is

E"=. Xn)pq=-' +
,

En fu=h{Xi,...,Xn)
f

1 \n-fc-H
U=co{Xu...,Xn)^qJ

Y'n / 1 W-fe-l-l
I

l'
^*=1 /..= =o(A-i

Since this expression is an increasing function of its numerator, the stopping

rule has the form: stop the first time that

) ^n) ,
1 Nn-A;+1

t,U=oo{X,,...,X^Yq>
(
2

)

exceeds a prespecified threshold.

Now consider the case p 5^ 0. This is approximately a noninformative

prior. But p « 0 implies g 1, so (2) « and the Bayes rule is approxi-

mately Na (
for an appropriate A).

For a rigorous treatment in the case of independent observations, see Pol-

iak (1985).

When the observations are not independent, nothing changes in the deriva-

tion oi (2). What does change is the heuristics; it is not true any more

that everything depends only on the posterior probability that a change is in

effect. Nonetheless, one can still proceed with a SR procedure. Although it

won’t be optimed any more, in many cases it is almost optimal. (Cf. Poliak

and Siegmund, 1991; Gordon and Poliak, 1991.)
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12 Appendix 4. Operating characteristics of

the SR procedure: theoretical details

We continue with the notation of Section 3. Note that under Poo when k is

fixed, the sequence Aj,n > 1 is a martingale with unit expectation;

£:„(Ar‘ = E„(

and

oo^'-jfe = /

= I
= 1 .

U=oo{X,,...,Xr.)

“V.= oc(X„4.1
I

‘
^

J.=k{Xr,^l\X„...,Xr.)

f,=oo{Xu...,X^)

fx^+,\Xi,...,Xn;i'=k[^)
= [ r , ^

J /X„+l|Xl Xr.-,U=Oo[^)

= ^k J fx^^,\x, Xr.-u=k{x)dx

fXn+l \Xl ,...,Xn;l'=Oo{^)dx

= A]?

fi/=k{^l )
• • • )fJ^

/i/=oo(^l) • • • )
^Jn)

y /u=oo (xi , . .
. ,

Xxi)dx\ • • • dxji

fv=oo (xi, . . . ,
Xn)dxi • • • dx,

Hence, Rn — n\% a. Poo -martingale with zero expectation; for

Eoo{Rtx^I — (’T' + 1) I

ATi, . .
. ,
Xn)

Tl+1

£~(EAr' |X„...,Jf„)-(n+l)
Jt=l

E£;„(Ar‘ |x„...,Ar„)
fc=l

+£„(A;;:i|X„...,X„)-(n + l)

Eaj + aJ+i-(" + i)

Jt=l

Rn + 1 — (n + 1)

Rn-n
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and

Eoo{Rn — n) = Eoo Afc - n = ^ ^'ooAJJ — n = n~n = 0.

fc=l k=l

Now apply the optional sampling theorem to — n with the stopping time

Na (cf. Chow, Robbins and Siegmund, 1967) to obtain

EooiRffji ~ 0

or

EooNa = E^Rsj^- (3)

Since by definition Rsj^ ^ this implies

E^Na > A.

In case the observations are independent, a renewal theoretic analysis of the

overshoot Rs^lA promises the existence of the limit EooRnj^IA, which by

(3) equals E^Na!A. The argument also provides a means of calculating the

limit. See Poliak (1987) for details.

A somewhat more involved analysis of the overshoot does the same for

many problems involving dependent observations. See Gordon and Poliak

(1990) for details.

Note that the 2-sided schemes considered in previous sections are cov-

ered by the argument delineated above. For example, consider the two-sided

scheme for a change in standard deviation. The one-sided scheme had

and eis their statistics; for the two-sided case Rn = {R^^ +
This is obtained by postulating a 50% — 50% prior on {g = 2) — {g = 1/2) after

the change; an easy calculation shows that AJ = 0.5AJ(^ = 2) -I- 0.5AJ(p =

1/2), so that Rn = (R®=2 + RJ:=i*/2)/2.
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13 Appendix 5. A 2-sided SR scheme for de-

tecting a change in a normal mean with

unknown initial mean and unknown ini-

tial variance

We use the notation of Section 2; i.e.

... ~ + S<7, (7^)

are independent, are unknown, 6 is known (viewed as a representa-

tive of the post-chcinge parameter); ^ = 0)

y, = (a:. 1 = 2,3,...

2.
= : = 2,3,....

Note that CoVi^jf(yt, Yj) = 0 so that {VJ} is a sequence of independent nor-

mally distributed random variables (under any of the probabilities

k < 00 ). Calculate

= [fiQ + 6a-
(t - k){fiQ + 6a) + {k - 1 )^0 , /t - 1

V— l(i > k)

/ zii(i > *)

= 6a

i — 1

k — I

\/(t -
l(i > k).

For n > k > 2, obtain (by first conditioning on Y2 and then integrating)

fu=k,Zi 2'n(^3) • • • , ^n)

dn-2

1=3

> t))i(n > 0)

V(«
- 1)»
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+ nil - < 0)
t=3 \/(» - i)«

- F , I
v i"-2f J_'in-2- £..=k|r!l

•/— oo \/27r

X

(V" -J— )*

1 I
^‘-* v'‘(‘-l) 1 1r^'( 1

f h-( =^-^) 1"-“

where 22 = !> and similarly

z,(^3, . .
. , 3„) = (^r ‘(^3;:^)"^ r I

« 1"-^ e-i
V 27r } ,:—o z, J-00

Letting

flfc.n = —

obtain for n > A: > 2 that

v/eS7^

du.

» n /°^
I

V — ajtn I”
^ e 7" dv 1 r 2 /L I\ 2 r 1

SZo 1 3' I"-"

(4)

Note that A]J doesn’t change if we insert —6 instead of d; i.e. -\-ak,n and — afc,r

will give the same value of A]J.

The analogous calculation when n > k = 2 yields

^ jr^
I

U - a2.n r-^

/“oo I
^ h-^ e-^^du

(
5

)

Clearly, A” = 1, and Aj = 1.
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It remains to calculate the integrals on the right side of (4) and (5).

Each can be computed by a recursion formula. However, for purposes of

programming, computing each integral separately will cause problems, as

the integrals become very large as n progresses. It is better to write out a

recursion-as it turns out, it’s a double recursion - for the ratio of the integrals.

Denote

^m(a)

/m(a)

Wm(a)

Ja

r (a-ure-H
*/ — OO

L
ffm(a)

fm{a)

dv

V r

Thus

(6)

Now for m > 2

hm = 2 [ dv
Jo

= 2[u”‘-'(-e-^') 1“ +(m-l)
Jo

= {Tn-l)hm-2

where

ho =

hi = 2 f dv = 2.

Jo

Also, for m > 2

gm{a) = f (u - a)”'-^(u -a)e"3'''du
Ja
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= J
(u - a)”‘"^t;e dv - agm-i{a)

= {v- ar-^(-e-W) 1~ +(m -
1) J"

{v -

= (m - l)^„»_ 2 (a) - aPm-i(a)

where

go{a) = V^(l - ^(a))

gi(a) = — a>/2T(l — $(a)).

Similarly, for m > 2

/m(a) = (m - l)/^_2(a) + afm.i(a)

where

Now

Denote

/o(a) = v^§(a)

/i(a) = + a\/^$(a).

Uo(a) = = 1 - $(a)
h,Q

vo(a) = #(a)

vi(a) = + a\jTri2^{a).

Wm(a) =

ym(a) =

ym(a)

^m— 1

/m(a)

^m— 1

For m > 3

(m - l)ff^, 2 (a) - affm-i(a)

(m - 2)hm-z

m — 1

m — 2
^^m-2(a) - aum-i(

aym-i(a)

) (7)
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and

..
(’7^-l)/m-2(a) + a/^_l(a) m-1

ym{a) = — — = — ;ri/m-2(a) + a^^m-i(a) (8)(m - 2 )/i^_3 m — 2

'

where

u;i(a) = 9i{<^) — a\/^(l — 4*(a))

ho \/2^

W2{a) =
92{a) go{a) - agi{a) V^(l - ^(a))

h. hi

yi(a) = /i(^) + aV^4>(a)

ho

y2{a) = /2 (a) /o(a) -1- a/i(a) + a[e

h. hi

Finally, note that for m >2

^m{a) = — = —7 = Um-2(a) -Wm-l- (9)(m - l)hm-2 m — I

/ ^
fm{a) (m - l )/^_2 + a/^_i a

^^m(a) = — = —7 =Vm-2{a) + -ym-i.(lO)
(m - l)hm-2 m — I

Formulae (7)-(10) give values of u^, Vm, Wm, Vm in terms of previous u^, u,, u;,, j/,.

So, starting by calculating u^{a),v^{a),w^{a),y^{a) (in this order) for i =

0, 1, 2, . .

.

,m yields a recursive way of computing 'u„_ 2 ,u„_2 needed to calcu-

late A]t (as in (6)).

All of this is brought together in the computer program given in Figure

24, which calculates the series . The program is written in the MATLAB
language. (See The Math Works, 1989, for a description.) The program uses

the homogeneity of Aj in II”_2 Zf and replaces Zi by Y^. Pressing R after

the program has run will display the R^^ 1 < f < en. Pressing t displays the

values Aj", I < k < en (when en > 3).
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^This is a program designed for detecting
%an abrupt change in the mean of independent
\Normal observations, the variance of which is
%un)<nown. The change may be to either side of
%the initial unknown mean. The detection scheme is
%a Shiryayev-Roberts parametric control chart
Abased on the likelihood ratios of ratios of
%recursive residuals.

%Input Parameters: data (row vector of size en)
% d (“delta, the reresentat ion of
% the change in the mean)

%Output: R (row vector of size en, giving the values
% of the Shiryayev-Roberts statistic for n»l:en)

en“iength(data)

;

X“cum3um ( data )

;

R=zeros ( 1 : en )

;

Y“R;
W«R;
R(l)=l;
R(2)-2;
for n“3:en

t=zeros ( 1 : n)

;

t(l)-l;
for i=2:n

Y(i)-(data(i)-(X(i-l)/(i-l) ) )*3qrt( (i-l)/i)

;

H(i)“Y(i)/sqrt(i*(i-l) ) ;

end
S“3qrt ( Y*Y

' )

;

W-W(
: ,n:-l:l) ;

W“cumsum( W)

;

W-W(:,n:-l:l);
x“ones(l:n)

;

X“cumsum ( x ) - 1

;

a“ ( d/s ) “x . ‘W;
u-zeros ( 1 : n )

;

v“u

;

w*u

;

ynu

;

for k“2;n
P“(exp( (-a(k)*2)/2).)/2;
q«(erf (a(k)/sqrt{2) ) )/2+0.5;
u(l)«p-a(k)«(l-q)«sqrt(pi/2);
v(l)=p+a(k) •q*sqrt(pi/2)

;

w(l)»u(l)*sqrt(2/pi) ;

y ( 1 ) -V ( 1 ) • sqrt ( 2 /pi )

;

u(2)«l-q-a(k)«w(l);
v(2)-q+a(k)*y(l);
w(2)-(l-q)«sqrt(pi/2)-a(k) •u(l);
y(2)-q*3qrt(pi/2)+a(k) •v(l)

;

for j“3:n
u(j)-u(j-2)-a(k)*w(j-l)/(j-l);
w{j)-({j-l)/(j-2))«w(j-2)-a(k)-u(j-l);
v( 3)»v( j-2)+a(k)«y( j-l)/{ j-1) ;

y(j)-( (
j-l)/{j-2) )•y(j-2)+a(k)•v(j-l);

end
t(k)-(u(n-2)+v(n-2) )«9xp(-0.5*( ( d« ( k-1

)

)

*2 )
• ( ( 1/ ( k-1

) )
- . . .

(l/n)-(W(k)/s)*2));
t(2)-t(2)*exp(-0.25*(d*2) )

;

end
R(n)>*sum(t) ;

end

Figure 24: MATLAB-language computer program for computing Rn for the

parametric SR scheme of section 2.
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14 Appendix 6. A nonparametric surveil-

lance scheme for detecting a change

We follow the notation of Section 5. The foregoing is an attempt to explain

the ideas behind the nonparametric scheme. For exact details and rigorous

proof see Gordon and Poliak (1992).

Suppose first that the post-change observations are stochastically larger

than pre-change. Clearly the problem has an invariance structure; applying

any increasing function to the observations will not change the problem, and

will not chajige the rank of the observations.

The main difficulty in constructing a SR procedure is to calculate a likeli-

hood ratio for the ranks ri, rj, . .

.

,

r„. The denominator is obvious; d i/ = oo,

all observations are interchangeable and every configuration ri, rj, . .
.

,

has

the same probability (namely, 1/n!). It is the numerator which causes prob-

lems.

The primary idea is to find any two densities, /o and /i, which allow a

(tractable) calculation of the numerator. If such be found, they will yield like-

lihood ratios A]f of r^, rj, . .
.

, r„. While these likehhood ratios are calculated

under the assumption that fo is the true pre-change density, this assumption

makes no difference when regarding the Aj’s (hence the Rn's) behavior under

Poo ', after all, if the true pre-change distribution is, say. Go, transforming the

observations by Fq^{Go{)) (where Fq is the cdf whose density is fo and Fq^

is the inverse transform of Fq) will make the transformed observations have

density fo without changing the observed ranks. (However, there is a dif-

ference when regarding the speed of detection: transforming the obsevations

transforms their post-change density, too. The density fi should therefore be

seen as a representation of the post-change density of the Go-transformed

observations.)

The choice of /o and /i as proposed by Gordon and Poliak (1991) is

/o(x) = (l/2)exp{-
I

X
I /2} and /i(i) = pa exp{—ai}l(i > 0) 4- (1 -

p)/3 exp{/3i}l(x < 0), where 1/2 < p < 1,0 < a < 1 < < oo. (Thus the

post-change distribution is stochastically larger.) This choice of fo and fi
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enables computation of AJ via the following lemma (Savage, 1956 ):

Lemma: Let Yi,Y2, . .
.
,Ynhe i.i.d. exp(l)-distributed random variables and

let xi, X2, . .
.
,Xn be positive constants. Then

^2 If— I ^i~k

(This can be proven either directly, or by induction on n.)

To see how this can be used to compute fu=k{f'\
,
^'2, • • • ,

t^) (the numerator

of A]t ), consider the first five mass difference obsevations (the first five values

of Column 4 of Appendix 1). Clearly, rj = l,r2 = 2,r3 = 3,r4 = 3,r5 = 1;

i.e. ATs < ATi < ^2 < ^4 < X^. Therefore, /i.=A:( 7'i, 7*2, • • • , ’’s) is equal

to Pu=k{Xs < Xi < X2 < X^ < X3). Without loss of generality, imagine

that we made the transformation Fq^Gq, so the transformed observations are

X*, . .
.

,

X^, and the ranks are unchanged, and X* ~ fo pre-change, X* ~ fi,

post-change. For example’s sake, consider the case k = 3 .

Let B = Ef=i 1 {X: < 0 ); that is, B is the number of observations below

the pre-change median. Of course, we don’t observe B (because we only

know the ranks). Nonetheless, B can be of technical help in computing the

probability P,=2iX5 < Xi < X2 < X^ < X3) = P.=3{X^ < X* < X; <

XI < X^), as we shall now show. Clearly

< X- < x; < x: < x;) = < x- < x; < x; <xib = i).

t=0

(11)

Consider, for example, the element in this sum corresponding to i = 2 . If

B = 2
,
for the event (X^ < X* < X2 < X^ < X^) to occur, necessarily

Xj > X^ > X2 > 0 and 0 > X * > X^. Therefore

p.=3(x* < x; < x; < x; < x*, b = 2)

= P„=3({X3', x;, X* are positive and X* > X; > X*}

n{X*,X5 are negative and
|

X5 |>| X* |})

= P„=3(X3, X4 , Xj are positive and X3 > X4 > Xj) x

Pi/=3({X*,X5 are negative and
|

X5 |>| X* |).
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Note that if X* is positive, then X* ~ exp(l) if i < 3 and X* ~ exp(Q) if

i > 3. Likewise, if X* is negative,
|

X* |~ exp(l) if z < 3 and
|

X* |~ exp(/3)

if z > 3. Also, Pu=z{Xx > 0) = 1/2 or p corresponding to whether z < 3 or

z > 3. Finally, note that Yi/x ~ exp(i) if ~ exp(l). Putting this together

one obtains by the Lemma that

Pi,= 2{Xl^Xl,Xl are positive and X^ > XI > X^)

= Pi,=z{Xl > XI > XI
I

X^, X4 ,
X2 are positive

)
• Px,= 3(X2 ,

X^, X^ are positive
)

= p(— > — >—) p p
a a 1 2

a a

ct Q + a 1 + Q + a 2

1 P^

42a + 1’

In a similar fashion,

P,^ 3{X*Xl are negative and I X* |>| X: \)
= = iijlZ.

^ 1 > 5 6 I 5 I I 1 1

; 2 ^ 21+/3

The other elements on the right side of (11) can be computed analogously.

The same considerations yield a calculation of Aj for general n > k > 1 .

A computer program for the sequence of statistics Fin Is given in Figure 25.

The program is written in MATLAB language. (See The Math Works, 1989,

for a description.)

In Section 5, the nonparametric scheme used is two-sided. of this

scheme is obtained by running the program in Figure 25 once on the data (in

Column 4 of Appendix 1) and once on the same data multipUed by —1, and

averaging the two outputs
(
in a manner analogous to the analysis in Section

6 ).

As for the choice of parameters p,a,/3 we follow the hnes of Gordon and

Poliak (1989). If Go and G\ are the true pre-and post-change distributions,

one can show (for u not too close to the beginning of surveillance, and for

large A) that

E,(N^ - 1/
i

> ^) = (12)
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Inputs

:

data row of en entries
procpartn row of procedure parameters: {alpha, beta, p>

% Outputs: ren row of en entries, one for each Shiryayev-
% Roberts statistic computed
% get parameters
en • length ( data )

;

alpha » procparm(l); beta » procparm ( 2 ) ; p - procparm(3); q » 1-p;
ln2palpha log ( 2*p*alpha) ; ln2qbeta log (

2 *q*beta )

;

Inratio » ln2palpha - ln2qbeta;
% initialize ren
ren » zeros ( 1, en)

;

for n 2:en, % compute ren(n)
Inbnmlt zeros ( 1 , n-1 ) ; % computation of log of binomial ( n , 1/2 )

probs
y = 1 : 1 : n

;

Iny » log ( y )

;

culny cumsum( Iny)

;

for i*l: (n-1)

,

Inbnmlt(i) = culny ( n) -culny ( i
) -culny ( n-i ) -n* ( log (2));

end
Inbnml = [-n»(log(2)) Inbnmlt -n»(log(2))
datan = data ( : , 1 : n )

;

initialize and allocate vectors

%row of logs of bin(n,l/2) probs

incr =

deer “

reverse «

lambda)cn

[ dummy , invr an)ct
]

invran)c =•

compute vector of
for )c - l:n,

timege)t
vsub)c

% for i= 1 to n care for
usub)c
Invdenom

l:l:n;
((n-l:-l:l) 1];
(n+l:-l: 1)

;

zeros ( 1 , n ) ; %

sort ( datan
' ) ; %

invranJet •
; %

lambda sub nk '

s

% compute little
» ( invrank>»k )

;

% 1 to n row vector
\ n-1 to 1 then 1

% row vector to reverse order
% to hold little lambda su kn '

s

% index of smallest in invrankt(l)
% row of inverse ranks

lambda sub kn '

s

% time not less than

i»0
cumsum(timegek)

;

I

(n+l-k) - vsubk;
log([ 1

Inudenom

( l+(vsubk. /incr)

.

M beta-1)
) ] )

;

( l+(usubk. /deer)

.

• (alpha- 1) ) ] )

;

%lnvdenom and Inudenom are n+1 vectors containing

log ( [ ( 1+ ( n-k+1 )
• ( alpha- 1 ) /n

)

%

% index
%

end
ren( 1 )

>

end
ren(n)

' 1 ;

of vectors is on# plus number of

Inprodneg cumsum( Invdenom)

;

dumroyl = Inudenom ( reverse )

;

dummy2 = cumsum ( dummy 1 )

;

Inprodpos dummy 2 (reverse)

;

usubkmod » [(n+l-k) usubk];
lambda)cn(k) “ sum ( exp ( Inbnml + ( n+l-k) • ln2qbeta

.

+ usubkmod'lnratio - Inprodneg -

> sum( laaibdakn )

;

log-denominators
putative
negatives m

Inprodpos ) )

;

Figure 25: MATLAB - language computer program for computing Rn for the

a (one-sided) nonparametric SR scheme for detecting an increase.

52



where

D = (1 -G,(0))log(2pQ) + G.(0)log(2(l -p)^)

+ {I - c) r F^-\Go{x))dG,{x)
Jo

+ (/3-l)r F,-\Go{x))dG,{x).
»/ — oo

Therefore, if Go and Gi are surmised to be (approximately) the pre-and-

post change distibutions, p,oc,l3 can be chosen to maximize D (so as to

minimize (12)). For the example worked out in Section 4, Go = a^) and

Gi = 7V’(/xo + cr, cr^). Here D is maximized by p = .8413, a = .531, /? = 1.703.

The integral in the definition of D must be evaluated numerically. See Gordon

and Poliak (1989, 1991) for details.

15 Appendix 7. Computation of limyi_^oo^oo^>i/^-

Suppose first that the observations are independent, having density /o pre-

change and fi post-change. As in Section 2, Na = min{n
|

> A} where

Rn = . .
. ,Xr^)l . .

.
,Xn). Denote x+ = max(x,0)

and Srx = Ylk=i^og{fi{Xk)/fo{Xk))- It can be shown (Poliak, 1987, in con-

junction with Siegmund, 1985) that

lim
A—*oo

EqqNa

A
rp q

(13)

If the pre-and post-change distributions are not known, but an invariance

structure enables one to construct one-sided schemes as in the problems of

Sections 3, 4 and 6 then it can often be shown that (13) still holds (Gordon

and Poliak, 1990), with any choice of nuisance parameters (since the proce-

dure is invariant with respect to them). Thus, if the pre-and post-change

distributions are N{fXo, cr^) and N{po + <x, cr^) respectively, one may compute

(13) with po = 0, a = 1.

Calculation of (13) usually requires a numerical analysis. An exception

is the nonparametric procedure of Figure 25; it can be shown that if 2pa

and 2(1 — p)/3 are both less than one then (13)= l/a. A table of (13) for

values of S for the parametric procedure of Section 3 can be found in Poliak
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(1987). For Section 6, the values of (13) have not been tabled anywhere, and

the constants were calculated by a computer program specially written to

evaluate (13) for the problem of Section 6.

When the problem is 2-8ided, when fo is known when i2n is an average of

the statistic for each side, and when Ci, cj are the values of (13) for each of the

two sides, then (Poliak, 1987) for the 2-sided procedure (13)= l/[0.5(l/ci) -I-

0.5/(1/c2)]. We used this for the 2-sided procedures used in (3), (4) and (6),

though it must be admitted that we did not formally prove that this is valid

also when the pre-change distribution is not (completely) known.

16 Appendix 8. Diagnostics

The basic assumption made in the analysis of the data appearing in Appendix

1 is independence of the observations. For the parametric procedures, nor-

medity was assumed to underlie the observations (causing the observations

in Column 4 to be normally distributed and those of Column 6 to have a

(7^X(3) distribution after being squared). Here we will try to check these as-

sumptions.

These checks are perforce done after the other analyses: if other data au-e

not available for compaxison, case must be taken in the diagnostic analysis

so that change points do not influence the results in a wrong way.

In the parametric analysis, points of change of the mass differences were

estimated to be at observations 17,51,107,151 (Figure 16). The nonpara-

metric analyses estimated them to be at observations 27, 51, 107, 151 (Figure

18). Also, the parametric analyses of the residual standard deviations esti-

mated observations 41 and 166 (
and 207) to be points of change. (This is

derived from figures analogous to Figures 16 and 18; they are not produced

here.) It seems therefore that the sets of observations 51 — 106 and 107 — 150

axe homogeneous sets of observations. Therefore we ran diagnostics on these

sets. (The first changepoint is not clear cut; observations 14, 17 and 27 are al-

most equally likely candidates (Figure 18(a)), and the anedysis of the residual

standard deviations indicates another change at observation 41. Therefore

we didn’t run diagnostics on the first 50 observations.)
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(a) Diagnostics for the mass difference data

The Kolmogorov-Smirnov two-sided statistic for normality (with estimation

of the mean and standard deviation) is 1.0169/\/M and .8735/\/44 for the

sets of observations 51 — 106 and 107 — 150, respectively. (The critical value

for a = 20% without parameter estimation is approximately j ^Jn.) Even

if one combines the two sets and looks at the single set 51 — 150, the statistic’s

value is .8211/\/100.) So, at least approximate normality of these observa-

tions is reasonably well established.

As for independence, two-sided runs tests produce p— values .1056 and

.1272 for the sets of observations 51 — 106 and 107 — 150 when taken sepa-

rately, and .1984 when taken together (i.e. 51 — 150). Autocorrelation plots

(made by Dataplot; see Filliben, 1981) are given in Figure 26. (The hori-

zontal lines are critical values for a 2-sided test, for each lag separately, at a

5% level of significance.) So, independence isn’t something to worry about,

either.

If one were to do diagnostics for the set 166 — 217 with the 207t/i obser-

vation deleted (see Appendix 6 for a rationale), the two-sided Kolomogorov-

Smirnov statistic is .7389/\/M . The autocorrelation plot of the data is given

in Figure 27.

Things there also look pretty good so far. But, the runs test gives cause to

worry: the p— value of the (two-sided) run statistic is .00027. Perhaps a closer

look at the observations (see Figure 28) may offer a possible explanation:

there seem to be a few medium-sized changes, each of small duration, so that

in all there is a normal distribution, there is no serial correlation, but there

are clumps of observations at different levels, accounting for too few runs.

(The duration of each run is too short for the control chart to catch.)
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autocorrelation

(b)

(a) obeervatioM 51 — 106

(b) obtervationi 107 — 150

(e) obicrvationa 51 - 150.

Figure 26: Autocorrelation plots for mass difference data:
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Figure 27: Autocorrelaton plot for mass difference data; observations 166 —

217, with observation 207 deleted.

Figure 28: Detail of the mass difference data: observations 166 — 217, with

observation 217 deleted.
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(b) Diagnostics for the residual standard deviation data

Based on the essential normality of the observations, the distribution of

Zsi/al should beX( 3
)

= gamma{\.h, .5). The Kolmogorov-Smirnov two-sided

statistic computed with an estimate for is .5225/\/56, .8939/-\/44, .343/\/l00

and .5186/%/125 for the sets of observations 51 — 106, 107 — 150,51 — 150 and

41 — 165, respectively. The autocorrelation plots for these sets are given in

Figure 29. There may be some 1 — lag autocorrelation in the 51 — 106 data,

though it disappears when the set is enlarged.

(The autocorrelations are computed for the data transformed to N{0,1)

observations; i.e., since are xfa)) 7V’(0,1). The

transformation was made in order for the critical values (the horizontal lines

in Figure 29) to have valid meaning.)

The p—values of two-sided run tests are .003, .7603, .1594 and .0064 for

the sets of observations 51 — 106, 107 — 150, 51 — 150 and 41 — 165, respectively.

Again, a closer look at the observations may offer a possible explanation (see

Figure 30). There seems to be a small trend in observations 51 — 106, and

observations 41 — 165 seem somewhat U — shaped.

Finally, if one wanted to do diagnostics for the set 166 — 217 with the

201s< observation deleted, the two-sided Kolmogorov-Smirnov statistic has

the value .609/-\/M; the two-sided runs test has p—value .2431; and the

autocorrelation plot (for the observations transformed to ^"(0, 1)) is given in

Figure 31.
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autocorrelation

j

I

I

Figure 29: Autocorrelation plots for residual standard deviations transformed

to A^(0,1) variables: (a) observations 51 — 106, (b) observations 107 — 150,

(c) observations 51 — 150 (d) observations 41 — 165.
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milligrams

(^) (b)

Figure 30: Detail of the mass difference data: (a) observations 51 — 106 (b)

observations 41 — 165.

Figure 31: Autocorrelation plot for residual standard deviatons transformed

to iV(0,l) variables: observations 166 -217 with observation 207 deleted.
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17 Appendix 9. Remarks

1.

We reiterate the comment made in the last paragraph of Appendix 7:

there is some theoreticcd work left to do in order to prove existence of the

limit in (13) amd its cadculation when there are nuisance parameters. Heuris-

ticaUy, because of the considerations of Gordon and Poliak (1991), it’s hard

to believe that the method is wrong.

2. In Section 3 we presented a two-sided parametric detection scheme.

(The scheme is obviously two-sided; multiplying all the observations by —1

doesn’t change the Rn sequence.) If one wants a one-sided scheme, 3xgn[Yi)

should be added to the data on which surveiUcince is based, and AJ calculated

accordingly.

3. If the pre-change observations can be assumed to have a distribution

which is symmetric about zero, then a somewhat stronger nonparametric

procedure can be proposed in Section 4. (Its relative strength lies most in

detection of an eairly chajige.) See Gordon and Poliak (1989).

4. A nonparametric procedure for Section 6 Ccin be obtained from Bell,

Gordon and Poliak (1992).

5. The relative efficiency of the nonpcirametric schemes used here are

above 90%. (In other words, for changes not occurring early, one will be

detecting the change with a less than 10% added average delay than the

parametric schemes which would have been used were /, known. See Gordon

and Poliak, 1992. Comparison of Figures 12 and 13 corroborates this.)

6. Running the program of the parametric scheme (Figure 24) generally

tadces longer thain the nonparametric one (Figure 25). As a matter of fact,

running Figure 24 on the 217 observations in Column 4 of Appendix 1 took

3.25 hours on a Sun Sparc station 2, whereeis running Figure 25 (twice - once

for each side) took (altogether) only 20 minutes. However it should be noted

that when actually doing surveillance on line, one does not have to recompute

the whole sequence; should we have now obtained an observation 218, one

would have only had to compute Rjis- A small change in the program will

do this. The computation of R218 only would be at most a matter of minutes.
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