
Aiiia3

NIST

PUBLICATIONS
NISTIR 5146

Detailed Design Specification
for Conformance Testing of
Computer Graphics Metafile
(CGM) Interpreter Products

Daniel R. Benigni, Editor

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Computer Systems Laboratory

Information Systems Engineering Division

Gaithersburg, MD 20899

—oe-

100

.056

#5146

1993

NIST

NISTIR 5146

at
loO

ji-sH-

Detailed Design Specification
for Conformance Testing of
Computer Graphics Metafile
(CGM) Interpreter Products

Daniel R. Benigni, Editor

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Computer Systems Laboratory

Information Systems Engineering Division

Gaithersburg, MD 20899

March 1993

U.S. DEPARTMENT OF COMMERCE
Ronald H. Brown, Secretary

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
Raymond G. Kammer, Acting Director

Detailed Design Specification for

Conformance Testing of

Computer Graphics Metafile (CGM)
Interpreter Products

sM u * 0§ie9'CI telifiteQ

It) |,if:l;&T- tfOTS(5'noliio3

!.4S3) "sli'S,i. ??jM xaitlqaiit) tsttoqtaitCl

'.,*, r.l'"
'

•
' 'V :

.

w'wmm

Ht''
'

;

* ». l^ "V/..

' v^i*.

>

5

J

h\

ii

TABLE OF CONTENTS

EXECUTIVE SUMMARY V

1 Introduction 1

2 Testing strategy 2

2.1 Basic principles 2

2.2 C6M files 3

2.3 Test script 3

2.4 Hard copy reference pictures 4

3 Classes of Tests 5

3 . 1 Introduction 5

3.2 Structural Capability Tests 5

3.3 Primitive Capability Tests 6

3.4 Attribute Capability Tests 7

3.5 Prioritized list of capabilities 7

4 Detailed Design of First 100 Test Cases 15
4.1 Failure to implement primitives 16
4.2 Failure to implement attributes 24
4.3 Failure to support modes and precisions 25
4.4 Minimum capabilities not provided 29
4.5 Failure to implement structural features 30
4.6 MFD, PD and Control elements 32
4.7 Second priority capabilities — structural 34

5 Impact of Versions and Levels 44
5.1 Versions 44
5.2 Color levels in 28003A 44
5.3 Combinations and interactions of elements 44

6 Test Case Development Plan 45
6.1 Graphical primitive tests 45
6.2 Graphical attribute tests 46
6.3 Summary for Version 1 Interpreter Testing 47

iii

c

x-^

A

*

f y ^ * .,
: » * f

-
,

,-

" - ^ ^ ^ - i.s .A ‘’^;.:v-
- '

. .. „ . .. ^, . . , , 6 «i8iij^.^ 'Svs ' ^

M 'I

v ,x*e
-' . -v '.' y. ,

.. ' t-^i ;;, ,^,v
,.

> . . }rJudl-%^:=M 9>*t. ',

.. , . tr' -fT’fO ' i:*^
'

'
Vi"^’

'

. . ixvi; ’t9 ^pi''»^’-'

. ior wiisi.Xi j;idft,q[i*5»' .f?‘XJWL,^..#t.tK

. : . .i^yiMoo Sfm'm ®.>s*

r-
:»

. ;.a'.f5v^'«-!* r.ip

,r b »?S

.. • . Q « . ;",!';'12‘0 (':ii ;{|| ^

' > < .. •.. , ‘'<i3'?is>x>.:?

y.- ;./ V r

EXECUTIVE SUMMARY

PURPOSE

This report was prepared by the National Institute of Standards
and Technology/Computer Systems Laboratory (NIST/CSL) in support
of the Computer-aided Acquisition and Logistics Support (CALS)
initiative. It represents in particular a NIST/CSL FY92 contract
deliverable task to develop a detailed design specification for
determining conformance of CGM (Computer Graphics Metafile)
Interpreter Products to the requirements of FIPS 128, the CGM
standard, and the Military Specification MIL-D-28003A.

BACKGROUND

From CALS early beginnings in 1986, it was known that the CGM
standard offered no conformance statements concerning either
generators (writers) or interpreters (readers) of metafiles. An
international workshop on CGM certification convened in the UK in
1987 concluded that 'a CGM Testing Architecture must include
testing for CGM generators and interpreters.' So early on it was
realized that providing the standard would not be enough

—

conformance testing for CGM files, as well as for CGM generators
and interpreters, would be required to fulfill CALS requirements.

To meet these requirements, NIST/CSL first concentrated its
efforts on developing the Application Profile for CGM in CALS
(namely MIL-D-28003) , to guarantee 100% exchange of CGM files
between DoD and contractors. This has been an ongoing task,
resulting at present with version A of MIL-D-28003, and an
amendment to it. Then to meet the conformance testing
requirements, NIST/CSL developed a test requirements document to
test metafiles to both the Federal Information Processing
Standard for CGM (FIPS 128) and the MIL-D-28003. Test tools were
developed, and a conformance testing service for CGM metafiles
began in May 1991. This was the first of the three parts of a
total CGM conformance test suite.

Next NIST/CSL emphasis switched to conformance testing of CGM
generator products, and procedures were developed by NIST/CSL for
verifying that a CGM generator product produces conforming
metafiles which accurately and correctly define the intended
picture. Currently, these procedures are being used in a Beta
test environment, with CGM generator product testing to formally
begin shortly.

V

The last part of the total CGM conformance testing environment is
to ensure that a CGM interpreter product can correctly and
completely parse any CGM file and produce the intended picture.
The detailed design specification developed herein by NIST/CSL is
the first step in accomplishing this goal.

DISCUSSION

The objective of the CGM interpreter product testing program is
to determine whether a given product, in this case a CGM
interpreter, can correctly and completely parse any CGM file
(that satisfies both FIPS for CGM and MIL-D-28003A) , and produce
the intended picture.

The approach developed by NIST/CSL is a traditional one based on
falsification testing. A set of test CGM files is translated
using the CGM interpreter product to be tested. The resulting
translation is compared to a hard-copy set of reference pictures
and a pass/ fail decision is made based on the criteria described
in a test script. This strategy is similar to one successfully
used in testing conformance of implementations to the GKS
(Graphical Kernel System) standard. The testing strategy is
based on:

o a set of CGM files;
o a script; and
o a set of hard copy reference pictures.

A design-to-cost approach was adopted in selecting those aspects
of CGM interpreter products to be tested. This is in recognition
of several facts:

o a very large number of test cases is required for
thorough, exhaustive testing to the CGM standard and
MIL-D-28003;

o many simpler CGM elements are implemented correctly by
most CGM interpreter products; and

o where successful interchange is not possible today, it
is almost universally because of one or more of a small
set of defects.

Therefore, the detailed strategy selects and prioritizes test
cases based on their impact on effective interchange and on the
prevalence of incorrect implementations.

vi

CALS USE/IMPACT

This report provides a detailed design specification for testing
conformance of CGM interpreter products.

In addition this report provides a prioritized list as well as a
description of all the required test cases for a full interpreter
testing service. A complete, detailed test case design is
included only for the 100 highest priority tests, but a generic
description of the remaining cases together with estimates of how
many test files and associated images (at least another 100) are
required is included.

RECOMMENDATIONS

NIST/CSL recommends strongly that a full testing program for MIL-
D-28003A requires testing of CGM interpreters, and that testing
must be done to up-to-date versions of both the CGM standard and
MIL-D-28003. As new versions of the CGM standard and MIL-D-28003
are released, a maintenance effort is required to update this
design, test suite, and supporting test tools to be of use to
CALS in the future.

NIST/CSL also recommends that CALS provide funding to complete
the additional test cases, test files, and associated hardcopy
references and scripts required for a total CGM interpreter
product test service.

In addition NIST/CSL recommends that this design and the test
cases be used in an actual testing environment to determine its
effectiveness in testing CGM interpreters.

ACKNOWLEDGMENT

The editor would like to acknowledge the major technical
contributor to this report. Dr. G. Steven Carson of GSC
Associates, Inc.

vii

r

^nl lii^i -xQt mmo &m.
W

- . .,_
,
yi^KfjT

’«:

riiSisW.-.

:

!•

'.:j, .py'^

. „.., .
"--, fimxTsmmmxg

,«, , . J
'’^'>"‘'* »:S'<:H;<t». }« » tr«di€iqna 'WIW: based c.n»

p. pQ.,, -i.
'.'^

<&!'«?»

.

‘/.

.y 9-

Vl*'

r.: '3, H'C ^,.'' '-t^i:v;qw, 43^l^^0^^^^i^6J^-3^ .'o
't<(o:>^,>ir:-*r-

' y<^U j: -v'UiSj.ii:’! .tisef ^^«»©j0K3;^3ii»5r fjsn&iv-t't&bl* Sftt
.'^-- ;t ;j:?^ ;:0'r. , st):s^ji-: C ffi '*?/! a ICmhic

,

-'u^-och .,5,a ,' 4,2:^3.;;;,^:^^^,-

? ..r/'
: ;<i?,l. , ,r -f ‘Qm.P ::mit^ r%-,i;^S)iMWMnUmjmmMm

''' '- -u *t!'

!

Vni’^3,'-c;r'4^.:;«::'- no''' *4i^^y./''''it
..'WOiii,?;' '^n-<:. :.i^^ii:>
0|;,' v'-'it.i;#

,

‘t^
.-.(rs-.. ,

. t tu.r'Mf. mp^4tp:: r ts^t.. m®-

^i‘

,
vill

p'a*'
. ^ «

1 Introduction

The task for this CALS deliverable was to develop a strategy and
detailed design for CGM Interpreter product testing. The
strategy developed provides a prioritized list of CGM
capabilities and functions to test. The prioritization is based
on:

o impact on effective interchange; and
o prevalence of incorrect implementations.

This report provides a prioritized list as well as a description
of all the required test cases for a full interpreter testing
service. A complete, detailed test case design is included only
for the 100 highest priority tests, but a generic description of
the remaining cases together with estimates of how many test
files and associated images are required is included. The
reference hard copy pictures that should result from the
successful translation of these 100 files, and the test script
intended for use with the reference pictures to verify acceptable
translation of each file, are not included in this report.

This detailed design uses a testing strategy based on;

o a set of CGM files;
o a script; and
o a set of hard copy reference pictures

(integrated with the test script)

.

Section 5 addresses the impact on this testing strategy of

:

o versions of the CGM standard;
o color levels in 28003A; and
o combinations and interactions of CGM elements.

Section 6 gives a plan for developing a complete test service,
including manpower and time estimates to develop the remaining
test cases.

1

2 Testing strategy

The approach developed by NIST/CSL is a traditional one based on
falsification testing. A set of test CGM files is translated
using the CGM interpreter product to be tested. The resulting
translation is compared to a hard-copy set of reference pictures
and a pass/ fail decision is made based on the criteria described
in a test script. This strategy is similar to one successfully
used in the testing of GKS implementations. Thus, the testing
strategy based on:

o a set of CGM files;
o a script; and
o a set of hard copy reference pictures.

A design-to-cost approach was adopted in selecting those aspects
of CGM interpreter products to be tested. This is in recognition
of several facts:

o A very large number of test cases is required for
thorough, exhaustive testing to the CGM standard and
MIL-D-28003;

o Many simpler CGM elements are implemented correctly by
most CGM interpreter products; and

o Where successful interchange is not possible today, it
is almost universally because of one or more of a small
set of defects.

Therefore, the detailed strategy selects and prioritizes test
cases based on their impact on effective interchange and on the
prevalence of incorrect implementations.

2.1 Basic principles

Rather than using a few test cases, each of which tests numerous
aspects, test cases should mostly focus on a single aspect. This
is necessary to allow realistic test scripts with simple
pass/fail criteria to be developed. It also makes interaction
with the “vendor under test” simpler since errors can be clearly
identified and files illustrating them can be supplied.

Another important principle is that, where possible,
self-documenting and internally-validating tests should be used.
This means that the test images themselves contain labels and
marking points that serve to validate the output and reduce the
possibility of erroneous test result analysis. For example,
tests of circular arcs might use 2 point line segments to
indicate the extent of the expected arcs while tests of edge
attributes might use test labels to state the expected values.

2

A final principle is that of incremental testing. If tests are
properly divided into sets, then more advanced (and
time-consuming) testing need not be done until simpler test sets
are passed. For example, extensive testing of a graphical
primitive should be deferred until the testing service is sure
that the CGM interpreter product correctly implements the basic
and abstract CGM data types, as well as all coordinate types and
precisions. To do otherwise could waste the testing service's
time and lead to hard to diagnose problems and misleading
results

.

2.2 CGM files

The general principles that were followed in generating CGM test
files are as follows:

o Descriptive file names of 8 or fewer characters were
used due to file name length restrictions in some
primitive systems. For similar reasons all capital
letters were used. Standard computer graphics
abbreviations like those used in language bindings were
used where possible. For example, a file with the name
VDCEXTOl might test a VDC arrangement with an inverted
Y axis.

o Each test file should itself be a CALS-compliant file
(except if error handling is deliberately being tested
with non-compliant files)

.

o Default precisions and types are used as much as
possible in test cases. If precisions, types and
specification modes are independently varied as
graphical primitives and attributes are tested, it is
impossible to determine whether problems that are
observed are due to the failure to implement the
feature being tested or to a failure to correctly
implement some underlying data type that it requires.

2.3 Test script

Even with largely self-documenting tests, a test script is
essential to insure that relevant aspects are validated in a
uniform and consistent manner. Here are the general principles
used in developing the test scripts:

o Begin with a simple declarative instruction such as
“Interpret file XXX. CGM”.

o Number each step sequentially so that a failure report
can show exactly which steps failed.

3

o Include a place to indicate step accomplishment where
no pass/fail criteria is involved. This helps the
tester keep track of what steps have been accomplished,

o List all items on the output to be validated and
include a place to indicate pass/fail results,

o Provide a place to check off that intermediate steps
have been accomplished.

An example fragment illustrating these principles is given below:

Step 2. Interpret file VDCEXTOl.CGM.

Step 2.1 Verify that a blue line is
present from the lower left
to the upper right of the picture. /

pass fail

2.4 Hard copy reference pictures

There are several problems inherent in the production of hard
copy reference pictures. These are:

o High quality color hard copy is expensive,
o The process of mapping a local representation of the

test file to a local printer can itself
introduce approximations and distortions that must be
accounted for and documented.

o It is highly desirable to be able to produce multiple
copies of the test script with included hard copy on
demand and at low cost. It is also desirable that
single copies of reference images be cheaply producible
so that they may be provided to the “vendor under test”
to document failures.

Therefore, this approach maximizes the use of black and white
test files and uses as little color as possible. Use of a broad
spectrum of colors and of non-primary colors is also limited so
that almost all test hard copy can be produced quickly and simply
on low-cost widely-available dot-matrix and ink-jet printers.

4

3 Classes of Tests

3 . 1 Introduction

Some test suites are formulated by tracking through a standard
paragraph by paragraph and constructing tests for all
requirements. Some problems encountered in creating test suites
by this method are:

o they contain many tests cases;
o they check things that are almost always correctly

implemented;
o they give equal weight to little-used and widely-used

features; and
o they can fail (just as standards themselves sometimes

do) to recognize the interactions between parts of the
standard.

Therefore these tests are divided into three classes:

o structural capabilities;
o primitive capabilities; and
o attribute capabilities.

Structural capability tests check that the CGM interpreter
product can read basic and abstract data types correctly. They
also test that delimiter elements, metafile descriptor elements
and picture descriptor elements can be understood and processed
correctly. Finally, they test that certain concepts with near
universal effect on picture production are correct. These
include clipping and VDC extent. Primitive capability tests
check the correct implementation of graphical primitives with a
focus on basic geometry and specification. Attribute capability
tests focus on determining if attribute elements are correctly
interpreted and their values applied to the correct graphical
primitives.

3.2 Structural Capability Tests

Structural capability tests check features that affect the
interpretation of many different elements. Many CGM interpreter
products have serious errors in this category that are a prime
barrier to inter-operability. These tests should produce simple,
easily verified graphical output. Some incorrect implementations
will crash or otherwise behave unpredictably when interpreting
some of these test files.

In order of increasing difficulty of test case development, the
capabilities to be tested are:

5

o minimal CGM;
o CGM with no pictures;
o CGM with an empty picture;
o CGM with multiple pictures;
o background color;
o partitioned elements;
o minimal MDR;
o maximal MDR;
o default values;
o coordinate system options (VDC Extent)

;

o coordinate types;
o precisions;
o specification and selection modes (indexed vs. direct

color; bundled vs. individual attributes)

;

o MFD and PD attribute order;
o clipping; and
o all elements interpretable.

3.3 Primitive Capability Tests

This category of tests is organized into groups based upon
specification similarity. The groups are:

o lines;
o markers

;

o circular and elliptical specifications;
o circles and ellipses;
o arcs;
o closed arcs;
o filled areas;
o text ; and
o cell array.

The tests should be structured to insure that these CGM concepts
are correctly implemented:

o all primitives are implemented;
o basic geometry;
o specification points (the values used for fundamental

things like the centers of circles and the locations of
text strings are right)

;

o directions and extents (generally vector information
giving things like the up direction of text and the
extent of arcs)

;

o limits;
o geometric consistency among primitives (e.g. text is

drawn inside a rectangle that coincides with a
restricted text extent) ; and

o degenerate cases.

6

3.4 Attributes Capability Tests

These tests should be organized into groups based upon
specification similarity:

o lines;
o edges

;

o markers

;

o text

;

o filled areas; and
o cell array (note that cell arrays have no attributes

per se, but it must be insured that usage of different
color specification modes leads to correct cell
arrays .

)

Within each group, tests should be structured to insure;

o basic effectiveness (i.e. check a few of each to insure
that they work)

;

o all values of finite ranges implemented (e.g., all
marker types are implemented)

;

o default values are implemented correctly; and
o there is geometric consistency among primitives (e.g.

width 1 lines overlaid on width 1 rectangles do not
“come apart”)

.

Finally, bundled attributes should be tested. These are not
often used in CGM generator products in the United States, but
can be found in some European products. CALS is of such
importance in the European defense community that CGMs from
European products may find their way into US systems.
Implementation of the default MIL-D-28003 bundle tables should be
tested.

3.5 Prioritized list of capabilities

Experience with CGM interpreter products has helped in preparing
the prioritized list of capabilities to be tested. Most
capabilities require multiple test cases. Each test case will
consist of a single CGM file, a test script “fragment”, and a
reference hard copy. The intent is that the test script
fragments can eventually be combined into a single test script.

The initial 100 tests will be derived from the capabilities
below, starting in the first priority category at the top and
progressing down the list until 100 tests cases have been
reached. Section 4.0 expands on the material in this section,
giving a detailed design of each test case.

7

3.5.1 Highest priority capabilities — known shortcomings of
products

The highest priority capabilities are listed in order of relative
importance with the highest priority item being capability number
one (1) . A brief justification is given for each high priority
capability. The names of specific products with these
shortcomings are omitted.

failure to implement primitives or geometric attributes:

1. restricted and append text Many popular interpreters
fail to implement these elements. All high-quality CGM
generators use them.

2 . rotated text Either rotated text is not supported at
all, or only some angles are supported, or certain
angles are implemented incorrectly.

3 . text path Many interpreters support only text path
correctly.

4. elliptical elements Most implementation have errors,
often in arc sense. Technical illustrations from CAD
system commonly use this element.

5. circular elements Many implementation have errors,
often in arc sense.

6. cell array Cell array is not supported by most
interpreters. It is generated by all graphic arts
quality generators.

7. polygon set Polygon set is not supported by many
interpreters. It is used by some graphics arts quality
generators when they degenerate text into polygons. It
is also used to represent certain clipped polygons.

failure to implement attributes:

8. fill styles Most interpreters do not support patterns.
Most graphic arts quality generators use patterns.
Also many interpreters do not support empty and hollow
styles correctly - often using an incorrect edge color.

failure to support modes and precisions:

9. integer and real values of all precisions Most
interpreters fail to support real precision. Many CALS
CGMs are from engineering systems and use real
coordinates.

8

10. fixed point and floating point coordinates At least
one generator uses fixed point coordinates.

11. direct color Most graphics arts systems use direct
color.

12 . font list Most interpreters do not implement this
element.

minimum capabilities not provided:

13. 1024 point polylines and polygons Several products
have much smaller limits.

14. 256 color table entries Several products have much
smaller limits.

15. 254 characters in a string One product has a limit of
32.

failure to implement structural features correctly:

16. Metafile Defaults Replacement (MDR) Many interpreters
do not support this element at all. Others do not
correctly set all defaults.

17. partitioned elements These are very important for two
reasons. First, the limited curve and closed figure
capabilities of CGM Version 1 force many generators to
degenerate complex native objects into polygons or
polylines with many points. This in turn forces the
use of partitioned elements. Second, large cell arrays
must be partitioned. Most CGM interpreter products do
not implement partitioned elements correctly.

18. inverted y axis Inverted y axes are present in several
commercial products, especially ones based on X-windows
or Macintosh systems.

19 . long-form string counts Even though the maximum number
of characters in a single string is 254, and that count
can be encoded in a single octet, at least one CGM
generator product always uses long form strings.

Metafile Descriptor (MFD) , Picture Descriptor (PD) and Control
elements

:

20. cannot interpret elements in any order Elements are
not handled at all or are handled incorrectly if they
do not appear in the exact order listed in the CGM
standard.

9

21. ignore certain settings or only support a subset The
following important CGM elements not covered elsewhere
in the highest priority tests are very often not
implemented or are implemented incorrectly: scaling
mode, colour value extent, and various combinations of
index precision, color index precision, color
precision, and color value extent.

22. failure to correctly reset defaults at the beginning of
a picture.

3.5.2 Second priority capabilities — structural

The second priority capabilities are the remaining structural
capabilities not included in the highest priority tests. In
priority order, the capabilities to be tested (and specifically
the CGM elements to be covered) are:

1. all elements interpretable No legal CGM element should
cause a CGM interpreter product to crash, malfunction,
or generate a message that states the element is “not
supported”; this includes testing for the ability to
recognize and skip ESCAPE and GDP elements, even though
these are not allowed in MIL-D-28003, as well as NO-OP
and MESSAGE elements.

2. clipping Clipping rectangles must be effective on all
graphical primitives. Elements to be tested are:

CLIP RECTANGLE
CLIP INDICATOR

3 . CGM with multiple pictures The product must provide a
way to extract each picture.

4. background color The product must be able to read and
use background colors. The element to be tested is:

BACKGROUND COLOUR

5. specification and selection modes Bundled attributes
are often not supported. The elements to be tested
are:

ASPECT SOXJRCE FLAGS

6. remaining MFD, PD and control elements and values This
includes all 16 fonts allowed in the font list, to
insure they are supported and mapped to “equivalent”
fonts. The elements to be tested are:

Metafile Descriptor Elements:

10

METAFILE VERSION
METAFILE DESCRIPTION
VDC TYPE
INTEGER PRECISION
REAL PRECISION
INDEX PRECISION
COLOUR PRECISION
COLOUR INDEX PRECISION
MAXIMUM COLOUR INDEX
COLOUR VALUE EXTENT
METAFILE ELEMENT LIST
FONT LIST
CHARACTER SET LIST
CHARACTER CODING ANNOUNCER

Picture Descriptor Elements;

SCALING MODE

Control Elements:

AUXILIARY COLOUR
TRANSPARENCY

7. minimal C6M Default values should be safely used when
none are explicitly specified.

8 . coordinate system options Only inverted Y axis was
tested with highest priority test cases. Various
values and combinations of VDC extent must be allowed
and correctly mapped to the full extent of the picture.
Any coordinate types and precisions missed in the
highest priority tests should be picked up here. The
elements to be tested are:

VDC EXTENT
VDC INTEGER PRECISION
VDC REAL PRECISION

9. MDR testing, including multiple MDR elements Minimal
MDR must be tested in highest priority cases. The
element to be tested is:

METAFILE DEFAULTS REPLACEMENT

10. C6M with no pictures

11. CGMs with an empty picture These include those with
no graphical primitives and ones with no picture body.

12. default values Resetting defaults at beginning of
picture must be tested in highest priority cases.

11

3.5.3 Third priority capabilities — graphical primitives

The third priority capabilities to be tested are the remaining
graphical primitives not included in the highest priority tests.
This category of tests will be organized into groups based upon
specification similarity. The tests will be structured to insure
that:

o all primitives are implemented;
o basic geometry is correctly implemented;
o specification points (the values used for fundamental

things like the centers of circles and the locations of
text strings) are faithfully translated;

o directions and extents (mostly vector information
giving things like the up direction of text, the extent
of arcs, and the radius of circular elements) are
correctly implemented;

o there is geometric consistency among primitives (e.g.
restricted text is drawn inside a rectangle that
coincides with the restricted text extent.); and

o degenerate cases are handled gracefully.

The capability groups and the primitives to be tested under each
are:

1. lines Check that the line drawn is centered on the
geometric locus, and check line width. Elements to be
tested are:

POLYLINE
DISJOINT POLYLINE

2 . markers Check that markers are centered on the
specification point, and check marker size. The
element to be tested is:

POLYMARKER

4. circles and ellipses Check geometric integrity.
Elements to be tested are:

CIRCLE
ELLIPSE

5. arcs Test the effect of more complex VDC spaces,
especially an inverted y-axis, on arc sense, and check
geometric integrity. Elements to be tested are:

CIRCULAR ARC CENTRE
CIRCULAR ARC 3 POINT
ELLIPTICAL ARC

12

6. closed arcs Basics are tested with highest priority
tests, and check closure types. Elements to be tested
are

:

CIRCULAR ARC 3 POINT CLOSE
ELLIPTICAL ARC CLOSE
CIRCULAR ARC CENTRE CLOSE

7. filled areas Test geometric integrity. Elements to be
tested are:

POLYGON
POLYGON SET
RECTANGLE

8. text Test append text here, including append text with
a single null character; and test geometric text
attributes like CHARACTER SPACING and CHARACTER HEIGHT.
Elements to be tested are:

TEXT
RESTRICTED TEXT
APPEND TEXT

9. cell array Test the “path” of the cells and their
“line progression.” At least one generator inverts
cell array direction even though it uses an upright
coordinate system for other primitives. The element to
be tested is:

CELL ARRAY

3.5.4 Fourth priority capabilities — graphical attributes

The fourth priority capabilities to be tested are the remaining
attributes not included in the first priority tests. Within each
group, tests will insure:

o basic effectiveness (i.e. check a few of each to insure
that they work)

;

o all values of finite ranges are implemented (e.g. all
marker types are implemented) ; and

o the default values are correct.

Finally, additional tests should be run on bundled attributes.
(Basic tests were conducted under structural tests.)

Tests of capabilities in this category are organized into groups
based upon specification similarity. A list of attributes that
might be tested if not covered thoroughly elsewhere is given.

13

1 lines Elements to be tested are

LINE BUNDLE INDEX
LINE TYPE
LINE WIDTH
LINE COLOUR

2. edges Elements to be tested are:

EDGE BUNDLE INDEX
EDGE TYPE
EDGE WIDTH
EDGE COLOUR
EDGE VISIBILITY

3. markers Elements to be tested are:

MARKER BUNDLE INDEX
MARKER TYPE
MARKER SIZE
MARKER COLOUR

4. text Elements to be tested are:

TEXT BUNDLE INDEX
TEXT FONT INDEX
TEXT PRECISION
CHARACTER EXPANSION FACTOR
CHARACTER SPACING
TEXT COLOUR
CHARACTER HEIGHT
CHARACTER ORIENTATION
TEXT PATH
TEXT ALIGNMENT
CHARACTER SET INDEX
ALTERNATE CHARACTER SET INDEX

5. filled areas Elements to be tested are:

FILL BUNDLE INDEX
HATCH INDEX
PATTERN INDEX
FILL REFERENCE POINT (never used in commercial

products)
PATTERN TABLE
PATTERN SIZE

6. test for misapplied attributes Test that inheritance
of attributes is correctly applied to primitives.

14

4 Detailed Design of First 100 Test Cases

This section describes the first 100 test cases. A description
of how each test case is to be created is given and an
illustration of the test picture is included where it is helpful.
At the end of the title of each section the total number of test
cases in that section is given in parenthesis. The purpose of
each test case is described and each is assigned a unique 8

character name. In addition, the cases are numbered from 1

through 100.

The total numbers of tests by category are:

Category Nximber of tests

Highest priority test cases:

Failure to implement primitives 22
Failure to implement attributes 5

Failure to support modes and precisions 12
Minimum capabilities not provided 4

Failure to implement structural features 4

MFD and PD elements 5

Subtotal: 52

Second priority test cases:

All elements interpretable 2

Clipping 4

CGM with multiple pictures 1
Background color 2

Aspect source flags 10
Remaining MFD, PD & control element values 13
Minimal CGM 1

Coordinate system options 7

MDR testing, including multiple MDR el's 2

CGM with no pictures 1
CGM with empty pictures 3

Default values 1

Subtotal: 48

Total 100

15

4.1 Failure to implement primitives

4.1.1 Restricted and append text (2 test cases)

Case 1 (RESTXTOl) ; This case will draw a single string of
restricted text to detect the failure to implement the RESTRICTED
TEXT primitive. Width 1 lines should be exactly aligned on the
restricted text extent. Width 1 lines should identify the text
position point. Figure 1 illustrates this test case.

Case 2 (AFNTXTOl) : This case will be similar to RESTXTOl, only
using at least one piece of append text added to the initial
restricted text string. It will detect the failure to implement
APPEND TEXT.

Figure 1. Restricted text test

4.1.2

Rotated text (3 test cases)

Implementations often make mistakes only for certain values of
character orientation due to errors in trigonometric
computations. Thus, it is important to test some angles in each
quadrant as well as the cardinal cases. Further, some
implementations do not support restricted or appended rotated
text correctly, so a test case should be included for that too.
Note that typographic quality systems, such as those used in
CALS, use only a 90 degree angle between the character up and
character base vectors, making it unnecessary to test “skewed”
orientations

.

Case 3 (ROTTXTOl) : This case will test the four cardinal
orientations

.

Case 4 (ROTTXT02): This case will test one “random” angle in each
of the four quadrants.

Case 5 (ROTTXT03); This case will test one cardinal and one
rotated angle of restricted and of restricted plus append text.

Positioning lines should be overlaid on all text indicating the
character base and character up directions. Figure 2 illustrates
the first test case while Figure 3 illustrates the second.

16

|o degree rotation

00j60pwf

f\J

o
Q.
CD
(Q

CD

CD

Figure 2 . Cardinal text rotations

Figure 3. ^Random” text rotations

4.1.3 Text path (2 test cases)

Case 6 (TXTPTHOl) : This case will include one example of each of
the four possible text paths to detect the failure to implement
this attribute.

Case 7 (TXTPTH02): This case will check text path in combination
with RESTRICTED TEXT and rotated text. These cases are more
difficult than the four simplest cases tested in TXTPTHOl.
Consequently, more interpreters are likely to do them
incorrectly.

17

90

degree

4.1.4 Elliptical elements (7 test cases)

These tests are designed to uncover first the failure to
implement the primitive and second any incorrect implementation
in critical areas. Since some implementations may act
unpredictably when unsupported elements are encountered, test
files should be dedicated to testing a single type of element.
The key things to be checked for are:

1. Is the primitive implemented?
2. Is the geometry about right?
3 . Are the extents of the arcs correct?
4. Is closure implemented correctly?

The three CGM elements to be tested are:

ELLIPSE
ELLIPTICAL ARC
ELLIPTICAL ARC CLOSE

Case 8 (ELLIPSOl) : This case will check the ELLIPSE element
itself. It is important to check both “rotated” ellipses (i.e.,
ones whose major and minor axes are not parallel to the VDC axes)
and “skewed” ellipses (i.e., ones whose major and minor axes are
not perpendicular) . More interpreters fail to implement the
latter two correctly.

The second, third and fourth test cases will check the ELLIPTICAL
ARC element. There are several very common mistakes in
implementing this element. First, test that arc sense is derived
from the CDPl to CDP2 direction and not from the start vector to
end vector direction. Second, test that arcs of various lengths
that start and end in various quadrants are all implemented
correctly. It is not unusual for trigonometry mistakes to become
evident only for certain combinations of angles. Finally, arcs
based on ellipses of various orientations and skewness should be
checked. This will require 3 test cases since there are so many
combinations to be checked.

Case 9 (ELLARCOl) : This case tests ellipses whose axes are
perpendicular and oriented parallel to the x and y axes. It
attempts to detect failure to implement the primitive or to do
certain combinations of start and end angles correctly.

Case 10 (ELLARC02): This case will check rotated, but non-skewed
ellipses.

Case 11 (ELLARC03): This case will check a few skewed ellipses.
Figures 4 and 5 illustrate these test cases.

18

CDP 1 at 0 degrees, CDP 2 at 90 degrees -- CCW arc sense

CDP 1 at 90 degrees, CDP 2 at 1 80 degrees -- CCW arc sense

CDP 1 at 1 80 degrees, CDP 2 at 90 degrees -- CW arc sense

CDP 1 at 0 degrees, CDP 2 at 270 degrees -- CW arc sense

Figure 4. Normal elliptical arcs

CDP 1 at 180 degrees, CDP 2 at 90 degrees -- CW arc sense

Figure 5. Rotated elliptical arcs

The fifth, sixth and seventh test cases will check the ELLIPTICAL
ARC CLOSE element. They will be based on the ELLIPTICAL ARC
tests, adding closure types and fills in a random way.

Case 12 (ELARCCOl) : This case will determine if the ELLIPTICAL
ARC CLOSE element is implemented. Both pie and chord closures
should be checked as well as various interior styles.

Case 13 (ELARCC02): This case will check a few rotated ELLIPTICAL
ARC CLOSE elements.

Case 14 (ELARCC03) : This case will check a few skewed ELLIPTICAL
ARC CLOSE elements.

20

4.1.5 Circular elements (5 test cases)

These tests are designed to uncover both the failure to implement
the primitive and any incorrect implementation in critical areas.
Since some implementations may act unpredictably when unsupported
elements are encountered, test files should be dedicated to
testing a single type of element. The key things to be checked
for are:

1. Is the primitive implemented?
2. Is the geometric specification faithfully translated?
3 . Are the extents of the arcs correct?
4. Is closure implemented correctly?

The five CGM elements to be tested are:

CIRCLE
CIRCULAR ARC CENTRE
CIRCULAR ARC 3 POINT
CIRCULAR ARC 3 POINT CLOSE
CIRCULAR ARC CENTRE CLOSE

Additional coverage of the CIRCLE element will be gained since it
is used to test the geometric integrity of the arc elements.

Case 15 (CIRCLEOl) : This case will check that the circle
primitive is implemented, and that the center and radius are
faithfully translated. This can be accomplished by using width 1

lines to mark the center and extents of the circle. Figure 6

illustrates this test case.

Figure 6. Basic CIRCLE test

21

Case 16 (CIRARCOl) : This case will check the CIRCULAR ARC CENTRE
element. It is important to test various combinations of start
and end vector as well as start and end vectors whose “end
points” do not lie on the circle itself. Lines and circles
should be used to indicate arc extent and make the pictures
self-validating. Figure 7 illustrates this test case.

Figure 7. CIRCULAR ARC CENTRE test

Case 17 (CRARCCOl) ; This case will check the CIRCULAR ARC CENTRE
CLOSE element. It is important to test various combinations of
start and end vector as well as start and end vectors whose “end
points” do not lie on the circle itself. Lines and circles
should be used to indicate arc extent and make the pictures
self-validating. Figure 8 illustrates this test case.

22

Figure 8. CIRCULAR ARC CENTRE CLOSE test

Case 18 (CRARC301) : This case will check the CIRCULAR ARC 3 POINT
element. The basic test picture looks like the CIRCULAR ARC
CENTRE test. In this case, it is important that both clockwise
(CW) and counterclockwise (CCW) directions be tested, since the
arc sense is determined by the arrangement of the points and not
the positive angular direction.

Case 19 (CRAR3C01) : This case will check the CIRCULAR ARC 3 POINT
CLOSE element. The basic test picture looks like the CIRCULAR
ARC CENTRE CLOSE test. In this case, however, it is important
that both CW and CCW directions be tested, since the arc sense is
determined by the arrangement of the points and not the positive
angular direction.

4.1.6 Cell array (2 test cases)

Case 20 (CELARYOl) ; This case will check a simple black and white
cell array. Since we are looking for failure to implement the
primitive, the test need not be complex or include a lot of
points.

23

Case 21 (CELARY02): This case will check a color cell array.
Again, this test need not be large or complex since it is
designed to uncover the failure to implement the primitive at
all.

4.1.7 Polygon set (1 test case)

Case 22 (FL6SET01) : This case will include a polygon set using
all four possible values of the edge out flag. It need not be
complex since again we are looking at this stage of testing for a
complete failure to implement the primitive.

4.2 Failure to implement attributes

4.2.1 Interior styles (5 test cases)

These should be 5 test cases, one for each of the 5 interior
styles allowed in the CGM standard. Each test case should
contain two copies of three objects — a rectangle, a polygon, and
a circle — one with edge visibility on and the other with edge
visibility off. These tests must be done in color since correct
implementation of hollow and empty styles can only be checked if
distinct fill and edge colors are used. Figure 9 shows the
intended picture from the pattern test case.

Case 23 (INTSTLOl) : This case should test solid interior style.

Case 24 (INTSTL02)

:

This case should test hollow interior style.

Case 25 (INTSTL03)

:

This case should test empty interior style.

Case 26 (INTSTL04)

:

This case should test hatch interior style.

Case 27 (INTSTL05)

:

This case should test pattern interior style

24

Edge visibility on

Edge visibility off

Figure 9. Pattern fill tests

4.3 Failure to support modes and precisions

4.3.1 Integer and real values of all precisions (6 test files)

The relevant COM elements and values whose correct interpretation
is to be ascertained are:

REAL PRECISION
(1,16,16) fixed point and (0,9,23) floating point

COLOUR PRECISION
8 and 16

COLOUR INDEX PRECISION
8 and 16

Separate test files should be used for each element to be tested
with the remaining elements set to default values. This will

25

allow isolation of the problem (s) if several elements are not
correctly implemented. Each test file should contain some simple
output whose correct translation relies on the precision being
tested. Scaled line widths and marker sizes are used since they
are convenient, testable capabilities that depend on real
numbers

.

Case 28 (REALFROl) : This case will
reals.

Case 29 (REALPR02): This case will
reals.

Case 30 (COLRPROl) : This case will
and 8 bit colour index precision.

Case 31 (COLRPR02) : This case will
and 16 bit colour index precision.

Case 32 (COLIPROI) : This case will
and 8 bit colour index precision.

Case 33 (COLIPR02): This case will
and 16 bit colour index precision.

check fixed point (16,16)

check floating point (0,9,23)

check 8 bit colour precision

check 8 bit colour precision

check 16 bit colour precision

check 16 bit colour precision

4.3.2 Fixed point and floating point coordinates (3 test cases)

The relevant CGM elements and values whose correct interpretation
is to be ascertained are:

VDC TYPE
integer and real

VDC INTEGER PRECISION
16 and 32

VDC REAL PRECISION
(1,16,16) fixed point and (0,9,23) floating point

Separate test files should be used for each element to be tested
with the remaining elements set to default values. This will
allow isolation of the problem (s) if several elements are not
correctly implemented. A single line drawn from lower left to
upper right will detect the failure to implement these values.

Case 34 (VDCINTOl) : This case will check 32 bit VDC INTEGER
PRECISION. (16 bit precision is covered in most other cases since
it is the default.)

Case 35 (VDCRPROl) : This case will check 32 bit fixed point
(16,16) VDC REAL PRECISION.

26

Case 36 (VDCRPR02) : This case will check 32 bit floating point
(0,9,23) VDC REAL PRECISION.

4.3.3 Direct color (1 test case)

Case 37 (DIRCOLOl) : This case will set a color selection mode of
direct. Then several objects should be drawn as the directly
specified colors are switched. The test can be done in black and
white as illustrated in Figure 10.

white fill

black edge

black fill

white edge

Figure 10. Direct color test

4.3.4 Font lists (2 test cases)

Several of the 16 Hershey fonts listed in MIL-D-28003, such as
the German, Cyrillic, and Gothic, are not likely to be seen in
DoD technical manuals and are not worth testing for at this
highest priority level. What is important to test for are that:

o the serif and sans serif fonts are mapped to local
equivalents if available;

o attributes such as relative boldness and italic slant
are mapped to local equivalents if available; and

o the Greek characters are mapped to a local Greek font
if one is available.

27

Further, it is unnecessary to exhaustively test the mapping of
each character in the repertoire at this level. The check is for
the basic capability to recognize and process the FONT LIST
element. Thus, the mapping of the following Hershey fonts.

Case 38 (FNTLSTOl) : This case will set a FONT LIST containing
these four fonts:

o SIMPLEX ROMAN
O DUPLEX ROMAN
O COMPLEX ROMAN
o TRIPLEX ROMAN

Case 39 (FNTLST02): This case will set a FONT LIST containing
these four fonts:

O COMPLEX ITALIC
O TRIPLEX ITALIC
o SIMPLEX GREEK
O COMPLEX GREEK

The pictures created by the test files are shown in Figures 11
and 12. Note that only four simultaneous fonts are supported by
the overly-restrictive AP.

SIMPLEX ROMAN - sans-serif font

DUPLEX ROMAN - bolder sans-serif font

COMPLEX ROMAN - serif font

TRIPLEX ROMAN - bolder serif font

Figure 11. Font list test 1

28

COMPLEX ITALIC - serif, italicfont

TRIPLEX ITALIC- bolder serif italicfont

SIMPLEX GREEK - thin sans-serif greek font

ABXAE<E)rapx5£(t)7012345-^

COMPLEX GREEK- bolder serif greek font

ABXAE<l>ra(3x58(t)70 1 2345-r-

Figure 12 . Font list test 2

4.4 Minimum capabilities not provided

4.4.1 1024 point polylines and polygons (2 test cases)

Case 40 (POLYLMOl) : This case will contain a 1024 point polyline.
By choosing points that make a basic shape, such as a circular
arc, testing can readily show if points have been ignored.

Case 41 (POLY6N01) : This case will contain a 1024 point
polyline. By choosing points that make a basic shape, such as a
circle, testing can readily show if points have been ignored.

Note that either of these tests will also necessarily test
partitioned elements.

29

4.4.2 256 color table entries (1 test case)

Case 42 (COLTABOl) : This case will contain a colour table with
256 entries. It should produce some simple self-described
graphical output using colour table entries near the end of the
table. The color used should be one that is not likely to be the
default primary colour. If this test case is done in black and
white, then two color table entries—one set to black and the
other set to white—should be used. Figure 13 illustrates a
picture from a test case that accomplishes this.

Figure 13. Color table test

4.4.3 254 characters in a string (1 test case)

Case 43 (TXTLENOl) : This case will contain a TEXT element with
254 characters. Note that this string can and should be coded
with the short form string count.

4.5 Failure to implement structural features correctly

4.5.1 MDR (1 test case)

Case 44 (MDRTSTOl) : This case will contain a simple, minimal MDR
element to discern whether the implementation supports processing
this element. The MDR element should set the default marker type
to a circle (instead of an asterisk) since this change is easily
distinguished. The test should then draw a single marker (with
text explaining that it should be a circle)

.

30

4.5.2
Partitioned elements (1 test case)

Case 45 (PARTELOl) : This case will test proper implementation of
partitioned elements independent of element buffer size. (Proper
handling of partitioned elements will also be tested at the same
time that 1024 point polygons and polylines are tested.) To
insure that the failure is not caused by an overflow, a small
element that need not be partitioned should be used in the test.4.5.3

Inverted y axis (1 test case)

Case 46 (VDCEXTOl) ; This case will use a VDC element with a lower
left (first corner) value of (0,1000) and an upper right (second
corner) value of (1000,0). The file should contain a single line
drawn from (0,1000) to (1000,0). A default orientation text
string should be included so that the image is not accidentally
inverted. Figure 14 illustrates the design of this test case (on
the left) and the common incorrect translation (on the right)

.

box illustrates

VDC extent

(
100 ,0)

(0 ,
100

)

correct translation

typical incorrect translation

Figure 14 . Inverted Y axis

4.5.4

Extended string counts (1 test case)

Case 47 (EXTSTROl) : This case will check a CGM file with short
text string (about 10 characters) coded with a long form count
(that is, the first octet of the string is set to FF(hex)
indicating that the next two octets contain the actual count.)

31

4.6 MFD, PD and Control elements
4.6.1

Cannot interpret elements in any order (1 test case)

The CGM standard lists metafile descriptor elements in a
particular order from 1 through 15. Similarly, the seven picture
descriptor elements are listed in a given order. Several CGM
interpreter products can only accept the elements in that order.
For example, these interpreters get confused if INDEX PRECISION
(the sixth element) comes after COLOUR PRECISION (the seventh
element)

.

Case 48 (DESORDOl) : This case will contain metafile and picture
descriptors elements not in the most common order. It will do
some simple output.
4.6.2

Ignore certain settings or only support a subset (3 test
cases)

The test files for this case will each contain all metafile
descriptor and picture descriptor elements. The elements will be
set to their default values except that the value of one element
per test case will be set to a less common value.

4 . 6 . 2 .

1

SCALING MODE

Case 49 (SCLMODOl) : This case will set the scaling mode to
metric. A simple rectangle should be drawn with dimensions 4 cm.
on each side. The output can then be measured to see if the
metric instruction is faithfully followed.

4.

6.2.2

SPECIFICATION MODES

The two possibilities are absolute values in VDC units and as
scaled “multiples” of a nominal device-dependent value.

Case 50 (SPECMDOl) : This case will set LINE WIDTH, MARKER SIZE,
and EDGE WIDTH SPECIFICATION MODES to absolute. The picture
should be self-validating through use of geometry points to
validate the widths and sizes. Tests of the default values
(1/ 100th of the longest size of VDC EXTENT) can be included.
Figure 15 shows the picture from this test case.

32

f T f

Size 3 Size 6 Size 8

Width 1 lines indicate marker position

Figure 15. Specification modes

Case 51 (SPECMD02): This case will set LINE WIDTH, MARKER SIZE,
and EDGE WIDTH SPECIFICATION MODES all be set to scaled (the
default) . The same picture as in case SPECMDOl should be drawn.

4.6.3 Failure to correctly reset defaults at the beginning of a
picture (1 test case)

33

Case 52 (DEFALTOl) : This case will contain two pictures. The
first should draw a few objects without setting attributes (to
determine the default settings) and then change attributes in a
way that the default ones would not be selected for all the
objects. The second picture should then draw the same objects
with default attributes as the first picture. Figure 16
illustrates the image from this test case. The second picture
need only contain the objects on the left side.

Default line Black width 4 line

Default edge and fill White edge with black solid fill

Default marker White circle marker on black rectangle

*

Figure 16. Defaults reset test

4.7 Second priority capabilities — structural

Fifty test cases were required to test the highest priority
capabilities. Additional test cases are now drawn from the
second priority capabilities list. These are the remaining
structural capabilities not included in the highest priority
tests.

34

4.7.1 All elements interpretable (2 test cases)

This test case verifies that no legal CGM element causes a CGM
interpreter product to crash, malfunction, or generate a message
that states the element is “not supported”. Test are included
that show a legal ESCAPE or Graphical Drawing Primitive (GDP)
element can be recognized and skipped, even though it is not
allowed in MIL-D-28003. NO-OP and MESSAGE elements are tested at
this time, too.

Case 53 (ALLELMOl) : This case will contain one instance of each
legal CGM element (except NO-OP) to verify that all elements can
be accepted.

Case 54 (NOPTSTOl) : This case will contains long strings of NO-OP
elements interspersed in all sections of the CGM file.

4.7.2 Clipping (4 test cases)

These test cases verify that the clipping rectangle is settable
and has an effect on all primitives. They also verify that
clipping can be turned on and off. There will be four test
cases, all of which contain identical graphical primitives from
each “class” - lines, markers, filled areas, text, and cell
array. The first two cases will have the default clipping
rectangle (VDC extent rectangle) and one will have the CLIP
INDICATOR on while the other has it off. The last two cases will
set a smaller clip rectangle that is chosen so that some part of
each object should be clipped off.

Case 55 (CLIFNGOl) : This case will set a clipping rectangle equal
to all of VDC Extent but will leave clipping off. Nothing should
be clipped.

Case 56 (CLIPNG02) : This case will set a clipping rectangle equal
to all of VDC Extent and will turn clipping on. Again, nothing
should be clipped.

Case 57 (CLIPNG03): This case will set a clipping rectangle equal
to a subset of VDC Extent chosen so that some of each primitive
in the picture will be clipped when clipping is on. This file
will leave clipping off. Nothing should be clipped.

Case 58 (CLIPMG04) : This case will set a clipping rectangle equal
to a subset of VDC Extent chosen so that some of each primitive
in the picture will be clipped when clipping is on. This file
will turn clipping off. Part of each primitive should be
clipped.

35

4.7.3
C6M with multiple pictures (1 test case)

Case 59 (MnLPIC04) : This case will contain a CGM file with
multiple, distinguishable pictures. The script will require that
all be translated.
4.7.4

Background color (2 test files)

This test case will verify that the product can read and use
background colors. Since the default background color will
commonly be black or white, two test cases are required.

Case 60 (B6COLR01) : This case will set a black background color
and will draw a white object on it.

Case 61 (B6COLR02) : This case will set a white background color
and will draw a black object on it.

4.7.5

Aspect source flags (10 test cases)

These test cases will verify that the ASPECT SOURCE FLAGS element
functions correctly. Ten test cases are necessary to verify both
the static and dynamic behavior of these elements. The first
five test cases will tests the default bundle tables for the
line, marker, text, fill and edge bundles respectively.
Appropriate graphical output in each case will be designed to
show that bundle indices 1 through 5 are implemented. Figure 17
illustrates the test case for the line bundle.

Test cases six through 10 will test the dynamic behavior of
bundles for each of the five classes of bundles. First, a bundle
index will be selected and a default object will be drawn in that
index. Next the ASPECT SOURCE FLAGS element will be used to set
some attributes to individual. That attribute will be directly
set to a non-default value and appropriate output produced to
verify that the attribute is taken from the direct value and not
the default bundle table. Next all attributes will be set to
individual and some output produced. Finally all attributes will
be set to bundles again and some more output produced.

Case 62 (ASFTSTOl) : This case will verify the correct
implementation of the line bundles.

Case 63 (ASFTST02): This case will verify the correct
implementation of the marker bundles.

Case 64 (ASFTST03) : This case will verify the correct
implementation of the text bundles.

36

Bundle Index 1

Line Type solid

Line Widthi

Line Color 1

Bundle Index 2

Line Type dash

Line Widthi

Line Color 1

Bundle Index 3

Line Type dot

Line Widthi

Line Color 1

Bundle Index 4

Line Type dash-dot

Line Widthi

Line Color 1

Bundle Index 5

Line Type dash-dot-dot

Line Widthi

Line Color 1

Figure 17. Default line bundle test

Case 65 (ASFTST04) : This case will verify the correct
implementation of the fill bundles.

Case 66 (ASFTST05) : This case will verify the correct
implementation of the edge bundles.

Case 67 (ASFTST06) : This case will verify the correct dynamic,
behavior of individual and bundled line attributes.

37

Case 68 (ASFTST07) : This case will verify the correct dynamic
behavior of individual and bundled marker attributes.

Case 69 (ASFTST08) : This case will verify the correct dynamic
behavior of individual and bundled text attributes.

Case 70 (ASFTST09) : This case will verify the correct dynamic
behavior of individual and bundled fill attributes.

Case 71 (ASFTSTIO) : This case will verify the correct dynamic
behavior of individual and bundled edge attributes.

4.7.6 Remaining MFD, FD and control element values (16 test
cases)

The next 16 test cases will check MFD, PD and control elements
not already tested.

4. 7.

6.1

METAFILE VERSION (1 test case)

Case 72 (MFVERSOl) ; This case will set metafile version to 5 to
ascertain that this element is processed and that a version too
“advanced” for the implementation can be recognized. This is the
only way to test that this element is processed.

4.7.

6.2

METAFILE ELEMENT LIST (3 test cases)

These three test cases will test the ability of the product to
accept the most common legal values of this element.

Case 73 (MFELLSOl) : This case will use a METAFILE ELEMENT LIST
containing the code for each possible value.

Case 74 (MFELLS02); This case will use a METAFILE ELEMENT LIST
containing the code for the drawing set.

Case 75 (MFELLS03): This case will use a METAFILE ELEMENT LIST
containing the code for the drawing-plus-control set.

4. 7. 6.

3

METAFILE DESCRIPTION (1 test case)

Case 76 (MFDESCOl) : This case will contain a long METAFILE
DESCRIPTION with the CALS profile indicative string embedded
inside rather than being at the front to verify that it can be
recognized inside the string. One way to ascertain that the
profile has been recognized is to test some profile-dependent
information. One example is the default bundle tables.

38

4. 7. 6. 4 COLOUR VALUE EXTENT (4 test cases)

These four test cases will check that the COLOUR VALUE EXTENT
element is correctly implemented. Two cases will check 8 bit
COLOUR PRECISION and two others will test 16 bit COLOUR
PRECISION. All four cases will set two “random” color value
extents less than the full range allowed in 8 or 16 bits
respectively. The test case will draw a set of rectangles filled
in solid gray-scale colors ranging from (min-red, min-green,
min-blue) through (max-red, max-green, max-blue)

.

Figure 18. Colour value extent tests

Case 77 (COLVALOl) : This case will use 8 bit colour precision.
The maximum range is 0 - 255 in this case. This case will set a
subset range (colour value extent) from 0 - 100.

Case 78 (COLVAL02): This case will use 8 bit colour precision.
The maximum range is 0 - 255 in this case. This case will set a
subset range (colour value extent) from 100 - 255.

Case 79 (COLVAL03) : This case will use 16 bit colour precision.
The maximum range is 0 - 65,535 in this case. This case will set
a subset range (colour value extent) from 0 - 1200.

Case 80 (COLVAL04) : This case will use 16 bit colour precision.
The maximum range is 0 - 65,535 in this case. This case will set
a subset range (colour value extent) from 20,100 - 50,000.

39

4. 7. 6.

5

FONT LIST (2 test cases)

Eight of the fonts were tested in the highest priority
capabilities. The remaining eight will be tested in these two
test cases. Note that the character sets for these fonts are not
defined in MIL-D-28003 and many systems will have no close local
equivalent. The best that can be hoped for is a mapping to a
local equivalent.

Case 81 (FNTLST03) : This case will test fonts 9 through 12 of
Table VI of MIL-D-28003.

Case 82 (FNTLST04) : This case will test fonts 13 through 16 of
Table VI of MIL-D-28003.

4. 7. 6.

6

CHARACTER SET LIST (1 test case)

Case 83 (CHRSETOl) : This case will verify that characters from
the “right-hand” part of the code table can be successfully
translated. It should use a single string in a standard font
(like SIMPLEX ROMAN) that contains characters—such as A, A, and A
—from the right hand part of the table.

4. 7. 6.

7

AUXILIARY COLOUR and TRANSPARENCY (2 test cases)

Even though MIL-D-28003 has inadequacies that hinder their
effective use, these elements should be tested for completeness.
MIL-D-28003 allows transparency to be set only to on, even though
the “native” mode of most quality graphics arts systems has
transparency set to off. Thus, the contents of the AUXILIARY
COLOUR element should be ignored since they are only used when
transparency is off. By overlaying the figures on a black
background the effectiveness of these elements can be
ascertained.

Case 84 (TRANSPOl) ; This case will set transparency to on and
auxiliary color to white. Several objects will be drawn over a
black background so that any use of auxiliary color in their
rendition can be detected. This test case is illustrated in
Figure 19.

40

transparency on

transparency off

transparency on

transparency off

Figure 19. AUXILIARY COLOUR and TRANSPARENCY tests

4.7.7 Minimal CGM (1 test case)

Case 85 (MINCGMOl) : This case will use a CGM file with no
non-required metafile descriptor or picture descriptor elements.
It will draw a single line. The purpose is to verify that
default values are used when none are specified.

4.7.8 Coordinate system options (7 test cases)

The highest priority test cases checked for implementation of an
inverted Y axis. These test cases will check other combinations
of VDC extent. They will also verify that the full extent of VDC
is correctly mapped to the full extent of the picture. Both
integer and real VDC will be checked in each case since
interpreters often use separate code in each case to compute
internal scale factors. The same sort of simple output used in
the inverted Y axis case (a line drawn from lower left to upper
right) can be used to distinguish mistakes in these other cases.

41

Case 86 (VDCEXT02) : This case will use integer VDC in normal
orientation and will have a picture that draws a single,
rectangle with edge width 1 just inside the VDC extent rectangle.
The script will verify that it is visible and fills the entire
picture area.

Case 87 (VDCEXT03) : This case will use real VDC in normal
orientation and will have a picture that draws a single,
rectangle with edge width 1 just inside the VDC extent rectangle.
The script will verify that it is visible and fills the entire
picture area.

Case 88 (VDCEXT04): This case will use integer VDC with an x-axis
inverted from the default and will draw a single width 1 line
from the lower left to the upper right. The script will verify
that it is visible has the correct orientation.

Case 89 (VDCEXT05) : This case will use real VDC with an x-axis
inverted from the default and will draw a single width 1 line
from the lower left to the upper right. The script will verify
that it is visible has the correct orientation.

Case 90 (VDCEXT06) : This case will use integer VDC with an x-axis
inverted from the default and a y-axis inverted from the default.
The picture will have a single width 1 line from the lower left
to the upper right. The script will verify that it is visible
has the correct orientation.

Case 91 (VDCEXT07); This case will use real VDC with an x-axis
inverted from the default and a y-axis inverted from the default.
The picture will have a single width 1 line from the lower left
to the upper right. The script will verify that it is visible has
the correct orientation.

Case 92 (VDCEXT08) : This case will use real VDC with a y-axis
inverted from the default. The picture will have a single width
1 line from the lower left to the upper right. The script will
verify that it is visible and that it has the correct
orientation.

4.7.9 MOR testing, including multiple MDR elements (2 test
cases)

A minimal MDR was tested in highest priority cases. This test is
expanded on to determine not only that MDR elements are allowed,
but that their values are correctly processed. Also the ability
to correctly process more than one MDR element will be verified

Case 93 (HDRTST02): This case will include a MDR element that
includes most picture descriptor, control and attribute elements.
Attributes will be set to a non-default value. The picture will
contain no attribute elements and at least one primitive from

42

each class (line, marker, filled area, cell array) and verify
that the values set in the MDR element are used for widths,
styles, and colors.

Case 94 (MDRTST03) : This case will be identical to MDRTST02, only
the MDR data will be split into multiple MDR elements.
4.7.10

CGM with no pictures (1 test case)

Case 95 (NOPICTOl) : This case will contain a CGM with no picture.
The CGM interpreter product should handle it gracefully and
should not produce a blank picture.

4.7.11 CGM with an empty picture (3 test cases)

This test case will contain a CGM with a single picture that
contains no graphical primitive elements. The CGM interpreter
product should handle it gracefully, producing an empty picture
where appropriate.

Case 96 (EMTPCTOl) : This case will have only BEGIN PICTURE and
END PICTURE with no BEGIN PICTURE BODY. No picture should be
produced.

Case 97 (EMTPCT02): This case will have BEGIN PICTURE, END
PICTURE, and BEGIN PICTURE BODY. It will include control and
attribute elements but no graphical primitives. A blank picture
should be produced.

Case 98 (EMTPCT03): This case will have BEGIN PICTURE, END
PICTURE, and BEGIN PICTURE BODY, but no other elements within the
picture. A blank picture should be produced.

4.7.12 Default values (1 test case)

Case 99 (DEFVALOl) : This case will be a minimal CGM with no
non-required MFD or PD elements and no attribute elements. The
picture will contain at least one primitive from each class
(line, marker, filled area, cell array) and verify that correct
default values are used for widths, styles, and colors.

4.7.13 Graphical attribute tests (1 test case only for now)

To round out the “top 100” test cases, case 100 begins the
graphical primitive tests.

Case 100 (POLTLN02) : This case will verify that the five line
types are implemented correctly.

43

5 Impact of Versions and Levels

This section briefly discusses the impact on this testing
strategy of

:

o
o
o

versions of the CGM standard;
color levels in 28003A; and
combinations and interactions of CGM elements.

5.1 Versions

Testing later versions of the CGM standard means adding
additional test cases to cover the new elements. This is not yet
necessary since no commercial products support features beyond
those in Version 1 (as of the published date of this report) . So
far as is known, no previously developed tests will need to be
changed to test CGM interpreter products that support later
versions of the CGM standard or MIL-D-28003A.

Adding test cases for the new features in CGM: 1992 and MIL-D-
28003A will be an iterative process since no products yet support
them. Tests can be developed and tested incrementally as
features of Version 2 and Version 3 of CGM: 1992 become
implemented in commercial products.

5.2 Color levels in 28003A

Since many of the capabilities can be tested using black and
white only, the effects of testing color levels in MIL-D-28003A
is minimized. Additional tests which address full color and gray
scale must be developed. The major impact will be in organizing
the test cases for the level of color supported and ensuring that
testing coverage at each level is complete.

5.3 Combinations and interactions of elements

The testing strategy developed here will account for the most
obvious effects of the interactions of CGM elements. Experience
has shown that the most common error in this category is that
some implementations misapply attributes. For example, a product
might use the edge color as both the line color and the edge
color.

A second type of error that might be considered to be in this
category involves the effect of picture descriptor and metafile
descriptor information, such as integer precision, on the
interpretation of graphical elements later in the file. The test
strategy that NIST/CSL has developed explicitly tests for this
type of interaction.

44

6 Test Case Development Plan - Version 1

This section summarizes information about the number of test
cases remaining to be developed for CGM Version 1 interpreter
testing. It also estimates the time required to develop the
remaining tests and to establish a test service based on them.

6.1 Graphical primitive tests

The general strategy of these tests is to thoroughly and
exhaustively test the geometric integrity of the primitive. The
goal is to establish that the “right” locations are selected to
be part of the primitive and that all geometric distances, such
as widths of lines and edges, are correct. Here is an expanded
description of the tests to be done and an estimate of the test
cases required.

Description Test cases

lines
check that the line drawn is centered

on the geometric locus 1

test disjoint polyline 1

check the geometric integrity of line width 1

markers
check that all markers are centered

on the specification point 1

circles and ellipses
test geometric integrity, i.e. is the

correct locus of points used
check edge location and edge width

arcs
test geometric integrity, i.e. is the

correct locus of points used
test the effect of more complex VDC

spaces—especially an inverted
y-axis—on arc sense

closed arcs
test geometric integrity, i.e. is the

correct locus of points used 4

test the effect of more complex VDC
spaces—especially an inverted
y-axi&—on arc sense 4

4

2

2

4

45

filled areas (POLYGON, POLYGON SET, RECTANGLE)
test geometric integrity, i.e. is the

correct locus of points used 3

do more thorough test of POLYGON SET 2

do more thorough test of RECTANGLE 1

test geometric integrity, especially the
relationship of edge location and edge width 3

test implicit and explicit polygon closure (i.e.
check cases where the first and last
point are equal and where they are not) 2

text
test append text, including append text
with a single null character 2

test the effect of more complex VDC
spaces—especially an inverted
y-axis—on character up direction and text path 4

test geometric integrity of TEXT ALIGNMENT 10
test geometric integrity of CHARACTER SPACING 1

test geometric integrity of CHARACTER HEIGHT 2

cell array
test “path” of the cells and their

”line progression " 3

do a more thorough test of CELL ARRAY 3

Total: 60

6.2 Graphical attribute tests

The emphasis in these tests is checking “non-geometric”
attributes not yet tested. Here is an expanded description of
the tests to be done and an estimate of the test cases required.

Description
lines

test LINE COLOUR
edges

test all 5 edge types
test EDGE COLOUR

Test cases

1

2

2

markers
test all 5 marker types 1

test MARKER COLOUR 1

text
test attribute changes in

restricted strings 2

test TEXT COLOUR 1

46

filled areas
test that hatches 1-6 are supported 1

test that 8 distinct patterns are supported 1

test FILL REFERENCE POINT 1

test PATTERN TABLE options, including
dimensions and local color precision 6

test PATTERN SIZE 2

misapplied attributes
several test files that intermix
primitives with attribute changes
to detect e.g. line attributes
mistakenly applied to edges 5

Total 27

6.3 Summary for C6M Version 1 Interpreter Testing

Initial estimates show that 87 additional test cases are required
for Version 1 CGM:1992 and MIL-D-28003 interpreter testing.
Allowing for a few additional tests whose need might be
discovered during detailed design, an estimate of 100 additional
test cases is reasonable. Following this effort it will be
necessary to beta test the interpreter testing service based on
the suite of 200 tests.

In addition, test tools and the test suite for MIL-D-28003A
Version 1 must be upgraded. Finally, the test suite will need to
be upgraded to Versions 2 and 3 of CGM:1992 as products become
available.

47

'"^fe .
." A. 'r^io€ 'aornHsm# 4J

;vr.'' ^ tt'T SaiAT.

^.
'

•
>1 . v'r . ,» WS» •*;•'>.. M^»5J‘>l*l|lfe'ie.i» .

>' ,MAi
.> .,;^33; r,>f|

’'''- '“
'‘ •«.''

•.>.'> 5 '
' '

'

< ' -«' <V' t:

3Si.i anx i : » ^

"'^ '"''''
’'---3V ,.

'

'.}• ., '„j..<.= "'•r";''*;v.'-'
'

'^''
“....Kv, ^

' •'
-I '?'•' .: '

4
'

V4;3=: ’. ''4 '

^
'

.:
*.

"I, f.

•“
^l,J^to^^:'T^••. m 'ifr^

- ‘' •"'
;

' -'•^'-'•vr.vc'

,„. :Ji

M''iii;-/.r. ^><=141',^ 4>r}Offw i 6sisn,i,? xbDS @'' "' ’*

'.5
jHt''''i ;

'; i '’‘X/i ‘^<-<5' nf- npXKAi^b &4»i fo.5t‘:i'»vas^i:fe

f(r, i>i>-•r^:>'{ -T^yi»-\q‘xs:Tn.^ iidl^ pn'^ :^,
•.. «fe -3 rv-':. -:-;

,.

'”>'• -U ' •.''

1
.^.':='^-.' OO^' .. '5|&

l-MO-. ;.'<{ r.X' >r'>‘'v:r7 £i?vi. ':rv:'-:j U- him & 3‘;..:*' ad

j'l.

t ";
' .?,. .,

.? i I" '.4

"

jE'Q/nestricP ,."'

14. 'if''

VI

K*/|ijS'"''."i'''!''""-?

•>i,-‘'., ‘i.y

"V .‘r *5..i"*uj(-

:' '

'3r: 3.j.

'

’’
.' '< CVU ' ''’v^S

4,6

' iV^^ ,;
''

1,
t"i*r;;

.
!•'

*

-li^t'-' - f
'

