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ABSTRACT

Liquefaction causes a large portion of all damage done by earthquakes. The damage
is especially severe to lifeline structures such as pipelines. This report examines the state-of-

the-art of the application of System Identification (SI) methods to the liquefaction problem,

with special attention to lifelines. System identification is seen as the best way to ascertain

large strain soil properties in situ. A thorough introduction to SI methods and spectral

analysis is given. The traditional Fourier-based methods are found to be inexact since the

sample variance is equal to the sample mean if averaging techniques are not used. There

is an additional problem since earthquake signals are not stationary. Autoregressive-moving

average models are seen as a better analysis method, especially the newer adaptive methods

that are designed for non-stationary signals. A significant bibliography is included.

KEYWORDS : ARMA modeling, building technology, earthquakes, in situ testing, lifelines,

liquefaction, spectral analysis, system identification
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CHAPTER 1 INTRODUCTION

1.1 Background

1.1.1 Earthquakes and Liquefaction

Over the years, some of the most spectacular, and costly damage caused by

earthquakes has been due to liquefaction of sands. A functional description of liquefaction

can be given quite simply. When a suitably intense earthquake shakes a loose, saturated

sand, the grains tend to consolidate into a more compact packing. Since all these

movements are happening very rapidly, there is no chance for the volume to reduce through

pore water dissipation. The incompressible pore fluid then takes up all the applied stress,

the effective stress goes to zero, and the deposit "liquefies." Since a liquid has no shear

strength, disastrous consequences occur.

The disastrous consequences of liquefaction was brought to the fore in 1964 by the

Niigata and Alaska earthquakes of that year. Liquefaction also triggers earth slides and

large displacements of earthen dams. A large slide caused by the 1970 Peruvian earthquake

killed over 18,000 people (EERI, 1986). A terrible disaster was narrowly avoided when the

San Fernando dam suffered very large displacements due to the 1971 San Fernando

earthquake. Similar damage has occurred over the years in locations as diverse as China,

Nicaragua, Japan, Charleston, SC, San Francisco, the Imperial Valley, CA, and Idaho.

The effects of liquefaction-caused damage to lifelines are especially costly. Damage
to roads, rail, telecommunications, power, and pipelines of all types is always harmful, but

is especially so during time of emergency. One of the most striking examples of the effect

of lifeline damage on public safety is the occurrences during the 1906 San Francisco

earthquake. After that earthquake, over 490 city blocks were totally destroyed by a fire, the

largest, most deadly fire in U.S. history (O’Rourke et al., 1991). Little could be done to stop

the spread of the fire since the pipelines carrying water were broken due to liquefaction-

induced ground displacements. It was estimated that 56 percent of the municipal water

supply was completely cut off.

1.1.2

Estimation Techniques and Liquefaction

The reader might wonder, what does system identification and estimation of large

strain soil properties have to do with liquefaction? While not immediately obvious, there

are several important reasons to pay attention to these methods.

The most important piece of knowledge to be gained is that concerning the actual

behavior of soils under strong motion excitation. At present, the modulus degradation and

effective damping ratio curves are based only on laboratory tests. Laboratory tests will all

yield at best approximate results since no one can run a laboratory test on an undisturbed



loose sand. The preliminary reports from back calculating earthquake response imply that

the laboratory degradation curve might be too high at intermediate strains. In addition, the

results from two independent methods (Chang et al., 1990; Abdel-Ghaffar and Scott, 1979)

show that the customary hyperbolic shape of the laboratory damping curve might be

incorrect, and actually is S-shaped.

Knowledge about the interplay between pore water pressure build-up, strength of

shaking, and soil nonlinearity is fundamental to rational design for earthquake loading. This

interplay can only be studied by an analysis of undisturbed real-life situations using complete

sets of data such as available from Lotung. It is of utmost importance for the database to

be enlarged with results from other well-instrumented site. Unfortunately, there is a grave

lack of such sites.

The response of soil to strong motion can be used for site characterization and

microzonation (Finn, 1991). In this case, the amplification factor, or spectral ratio, is the

important parameter being sought. The amplification factor is just the transfer function,

which can be estimated much more accurately using the system identification methods. A
simplified microzonation analysis of Charleston, South Carolina was made using SHAKE as

the analysis tool (Elton and Martin, 1989), and the amplification effects of geological

structures have been examined theoretically (e.g. Faccioli, 1991) and experimentally (e.g.

Silva, 1989; Bard and Gabriel, 1986).

A final incentive to study in situ behavior of soils during earthquake strong motion

is brought up in a late paper by Rolhns and Seed (1990). This is the question of what

influence structures have on their founding soils. In particular, does a structure increase or

decrease the liquefaction potential, and if the soil does liquefy, will the resulting

displacement be more or less than the free-held? These are important questions since the

present method of analysis and design implies a free-held condition. The available data is

quite scanty, based mostly on a few shaking table and centrifuge tests.

Rollins offers some conclusion as to the effects of different types of structures. These

include indications that excess pore pressure ratios might be signihcantly lower beneath a

structure, and that the soil near a foundation is more susceptible to generation of excess

pore pressure than the free-held. Free held analysis appears to be too conservative for long-

period structures on medium-dense sands, and unconservative for short-period buildings on

loose to medium sands.

In a wide-ranging paper, Ambraseys and Sarma (1969) give calculations showing that

concentrated loads from a structure "may cause much more widespread liquefaction effects

than local inhomogeneities." This is through local failure acting as seed for widespread

progressive failure. On the other hand, the local increased vertical effective stress due to

the structure will decrease the chance of liquefaction. Finding the balance between the two

effects leads to the same questions as Rollins and Seed.
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The ideal way to find definitive conclusions to these important questions is to utilize

input and output soil motions recorded in the free-held and adjacent to a structure. This

data is available right now for one case — the Lotung site. A detailed analysis using state-of-

the-art system identification techniques is needed.

1.1.3 Purpose

This report was written to evaluate the current state-of-the-art of in situ methods of

soil property measurement, which allow accurate prediction of liquefaction potential, and

the possible displacements if liquefaction did occur. The report summarizes and evaluates

significant technical papers on the use of system identification methods for estimating soil

parameters needed to understand large strain soil behavior during earthquake loading. This

topic is of direct import to the behavior of lifelines. This report makes no attempt to

identify and enumerate every paper or technical publication written on these subjects. It

serves, rather, as a thorough overview and evaluation of where the profession is today.

The report assumes some degree of technical sophistication by the reader, although

an attempt is made to explain complicated or unfamiliar material. The liberal use of

references should allow the reader to find an understandable source of explanation for most

topics discussed. The report often takes a "critical" point of view when examining proposed

methods. This is to examine the underlying suppositions made by a given approach, which

define the validity and applicability of that method.

1.2 Scope

This report examines the field of system identification, and its applicability to

estimating the behavior of soils undergoing strong motion. Since the field of system

identification is unfamiliar to most geotechnical engineers. Chapter 2 gives an introduction

to the meaning of relevant techniques. Of great importance is the thorough evaluation of

the implications of spectral analysis.

Chapter 3 examines pertinent applications of system identification to liquefaction-type

problems. Special attention is given to using system identification methods to estimate

mechanical properties of soil undergoing intermediate-to-large strains, which can not be

examined by geophysical in situ techniques.

Chapter 4 contains the important conclusions reached in this report, and briefly

summarizes key concepts. A very thorough bibliography is documented in the final chapter.

Finally, it should be mentioned that the most thorough and complete work on the

subject of liquefaction is the report written by the Committee on Earthquake Engineering

of the National Research Council, 1985.
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CHAPTER 2 PRINCIPLES OF PROCESS CHARACTERIZATION IN
THE TIME AND FREQUENCY DOMAINS

2.1 Estimates of Soil Properties from Dynamic Behavior

2.1.1 Introduction

A major component of the lifeline infrastructure are buried pipelines. Over the years,

analytical computer programs have been developed to calculate the effects of earthquakes

on these lifelines. As the programs are able to make more and more accurate predictions,

the significance of the accuracy and relevancy of the input data becomes more and more
important. Most of these analyses use a Winkler model, which replace the soil with springs

and dashpots (Zhang et al., 1991). The relevant soil parameters become dynamic stiffness

and damping. Since earthquakes excite the soil past the elastic range, estimates of the

strain-dependant soil stiffness and damping are essential for further improvements in lifeline

design.

Field geophysical techniques are relevant to liquefaction analysis in so far as they

provide the shear-wave velocities of a site. The velocities can easily be converted to soil

stiffness, or correlations with liquefaction potential derived directly for S-wave velocity.

However, the shear modulus thus calculated is the small strain modulus, or and is only

valid for the elastic region of the soil. The limitation is due to the inability to reliably impart

strains into the soil much greater than IxlO"^. Therefore, it has been impossible to measure

threshold strain, y-p, and the modulus degradation curve, G/Gjjjax^ in situ. Direct knowledge

of these variables would bring the ability to make quantitative estimates of potential and

possible displacements closer to reality. Another important benefit would be the possibility

to measure nonlinear material damping.

Attempts to input enough energy into the ground to cause intermediate to large

strains have not been very successful. The amount of energy needed would destroy a bore-

hole, and would be destructive on the surface as well. There is also the problem of the

transducers being in the near-field if they are close to a source large enough to cause large

strains in an immediate area. One exception was a project undertaken for the Nuclear

Regulatory Commission (Shannon-Wilson, 1976) where intermediate-to-large strains were

input in a large scale field experiment.

An obvious example of large strain experiment would be the use of high explosives.

While explosives have been used in the Soviet Union to estimate liquefaction parameters

(Florin and Ivanov, 1961), it was done to develop a correlation with settlement, and no

geophysical measurements were made. Positive results of a large in situ impulse test were

reported (Shannon-Wilson, 1976). However, there has been no follow-up on this work, and

other researchers have not attempted similar studies. It is not known at the present time

whether that is because of lack of interest or problems with the reported method.



The optimum situation would be the ability to make measurements during different

magnitudes of earthquake excitement. In this case shear strain in the layers of interest, and

stiffness (velocity), would be continually monitored. Since earthquakes can not be made-to-

order, the chances of this situation happening are virtually nonexistent. The instrumentation

would also be extremely difficult. However, use of inverse theory allows the soil parameters

of interest to be calculated from attainable data — the ground motion records of the motion

going into the layers of interest, and above the layer itself. This set of information is

available for several sites (Chang et al., 1991, 1990; Holzer et al., 1989).

The modeling of a mechanical system as a transfer function calculated from known
a input-output history is commonly called system identification (SI). If a suitable model is

chosen to represent the system of interest, the model parameters derived will correspond

to important mechanical parameters of the system, such as damping, natural frequency, and

stiffness. Often times, SI is the only method available to estimate these properties, especially

since the method does not actively interfere with the material properties being measured.

This chapter will investigate the theory required to undertake this system identification for

liquefiable soils.

2.1.2 Modeling a System

In the simplest case, a layer of soil can be modelled as a linear system, as diagramed

in Fig. 2.1. In the time domain, the filtering process of a signal passing through this layer

is represented as convolution, Eq. 2.1:

n-l

yin)=Yl x(myh(n-m)=x*h, (2-1)

OT =0

where y,

Xt

ht

n

= output time series,

= input time series,

= filter vector or impulse response function,

= 1...length of y(t),

= convolution.

The process of inversion, or deconvolution, allows the estimation of the system response

function (filter) if the input and output signals are known. Theoretically, the input and
output vectors represent the coefficients of a polynomial (Z-transform) and the system

response function h^ can be solved for by polynomial division (Bracewell, 1978). However,

if there is any noise present, and there ALWAYS is (due to quantization error if nothing

else), the quotient is irrational and frequently becomes unstable.

The usual method of time domain deconvolution is the least squares approach (Silvia

and Robinson, 1979). While the deconvolution process is non-unique, the least squares

method yields a system filter that is unique in a mathematical (least squared error) and

6



physical sense (minimum phase). There are other, more involved, time domain solutions

which are not in general use (e.g. Simmons, 1991). The time domain schemes, while

possessing certain advantages, are very computation intensive. The common solution is to

deconvolve in the frequency domain.

In the frequency domain, convolution becomes a simple multiplication (Bracewell,

1978), and Eq. 2.1 transforms into Eq. 2.2:

(2 .2)y(cD)=X(a))*/f(co),

where o) = circular frequency.

= frequency function of input time series,

= frequency function of output time series,

Hy = system frequency response function.

For this report, time domain functions will be indicated by lower case variables and

frequency domain functions by upper case variables, with t and (> dropped when obvious.

The transformation into the frequency domain speeds computation but does not diminish

the impact of noise on the calculation. If the variance of the measurement is close to the

same order of magnitude as the signal energy at a given frequency, the results of the simple

calculation shown in Eq. 2.2 are seriously flawed (Newland, 1984).

2.2 A Traditional Approach to System Identification

2.2.1 Introduction

As in the time domain, there is an acceptable frequency domain alternative method

for computing the frequency response function using the auto and cross spectrum. Using

these functions, the frequency response function is defined strictly for stationary input signals

as (Bendat and Piersol, 1986):

(2.3)

G, (XX-)

where = auto-spectrum = XX* = Fourier transform of R^x

Gxy = cross-spectrum = YX* = Fourier transform of R^y

Rx^ = autocorrelation of x

Rxv = cross-correlation of x with y

(2.3a)

(2.3b)

= complex conjugate.

7



The use of the cross-spectrum in calculating the frequency response function is little more
complicated than Eq. 2.2, but has the added benefit that the statistical variability of is

canceled by the variability of The real part of H is called the system gain factor, while

the phase information is carried by the imaginary part. The frequency response of the

system is now experimentally characterized by H, but useful mechanical parameters such as

damping and sti^ess are still unknown. The key is to link the frequency response function

to the defining equations of the system.

2.2.2 Modeling Simple Mechanical Systems - Force Input and Displacement Output

The simple layered soil system in question can be characterized as a damped single-

degree-of-freedom (SDOF) system. The most basic dynamic situation is with a known input

force, and the resultant displacement measured, as pictured in Fig. 2.2. While this degree

of knowledge is unrealistic for the earthquake system in question, it is a good model for

surface excitation methods. The forces acting on the mass are given by Eq. 2.4:

(2-4)

and the equation of motion is

nty+cy+ky=f. (2.5)

where f(t) = input force

fk(t) = -ky = spring force

fc(t) = -cy = damping force)

f.(t) = -my = inertial force

y = output system displacement

y = dy/dt = velocity

y = dVdt^ = acceleration.

The system response function is defined for an impulsive forcing function. The Fourier

transform of the impulse response function, Y, is the frequency response function, H. Based

on the definition of the Fourier transform and related theorems (Bracewell, 1978) the

transform of Eq. 2.5, with f(t) = becomes

(-Ci)^m+i(oc+it)T=l

where i =7-1

and the frequency response function is

Equation 2.7 is simplified by defining the damping ratio

and the undamped circular natural frequency

8



(2.7)H=Y=-
1

c=-
2^/i^

(2 .8)

(2.9)

Equation 2.7 is now written as

H =

1

k

1
-

(

+ i2C

)

/

h)

(2, 10)

For ease of analysis, the frequency response function can be broken into a system

gain factor and a phase factor by writing Eq. 2.10 in polar form. The gain factor is defined

as

\

k

\

1
-

\fn,

12

2C
\fn/

(2 . 11 )

and the phase factor

(J)=taii
^

2C

1
-
-T

\-^«j j

(2 . 12)

The gain factor is shown graphically in Fig. 2.3. The gain factor for this particular forced

system is called the magnification function. Note that for zero frequency the magnification

9



function is the inverse of the spring constant k. The resonant frequency fj. can be read from
the graph of the gain factor, while the fundamental frequency 4 always corresponds to a

phase factor of 1.57 The damping ratio can be calculated from Eq. 2.13:

Sr

/.

2

(2.13)

or by a simple half-power graphical technique (Richart et al., 1970). All the system

parameters can be derived from the plots of the frequency response function H calculated

by Eq. 2.3.

2.2.3 Modeling Earthquake Response — Displacement Input and Displacement Output

The field problem being addressed is that of a soil layer where the displacement into

the layer (the bottom) and the displacement at the top of the layer are known. This system

is modeled by the mechanical analog shown in Fig. 2.4. The goal is to use system parameter

identification techniques to compute the soil stiffness and damping from input and output

records, as in the previous example.

The equation of motion for this system is:

my^cy+ky = kx+cx. (2-14)

All the variables are defined as in the previous example. Applying the Fourier transform

to Eq. 2.14 yields the frequency domain equation Eq. 2.15:

(-a)^/w+i(oc+A:)y'=(Jt+zci)c) (2-15)

and the frequency response function H is defined as

—
.

(2.16)

k-isp-m+imc

10



Xt
^

Constant Parameter Linear System
Yt

X,
h,

Ho, Yco

Fig. 2.1 Diagram of a linear system (filter).

Fig. 2.2 Single-Degree-of-Freedom system, force input-displacement output (Bendat and Piersol, 1986).

Fig. 2.3 Frequency response function (Gain Factor) of SDOF system with force input (Bendat and Piersol, 1986).
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Substituting damping ratio (Eq. 2.8) and fundamental frequenq^ (Eq. 2.9) into Eq. 2.16 yields

l+i2C £
\fn,

1
- + i2C

'£

/rtj

(2.17)

The gain factor of H, defined in Eq. 2.18, is called the transmissibility function since

it defines how much of the forcing displacement is transmitted through the system.

1+ 2C /)

/J

2

( fV
1- ^

12

+ 2C f/)?
£/

.

(2.18)

The phase factor is given by:

4) =taii 1

2C

1
- f/

\fnf

\2

+ 4C^

v-^«/

(2.19)

The transmissibility function is shown in Fig. 2.5.

While the graph of the gain factor for the displacement-displacement system look

similar to that of the force-displacement system (Fig. 2.3), the equations are very different.

From Fig. 2.5 it is seen that for any system parameters, the gain factor equals one at a

frequency

(i) = v^*(»)^
(2.20)

The maximum value of the gain factor is related to the damping ratio by

|g|= ^
(2.21)

\/l6C‘'-8C’-2+2yi+8C^

which is shown in graphical format in Fig. 2.6 (Crede, 1957). For this system, values can

12



y(0

Fig. 2.4 Single-Degree-of-Freedom system, displacement input-displacement output

(Bendat and Piersol, 1986).

Fig. 2.5 Frequency response function of SDOF system with foundation motion input (Crede, 1951).
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0.01 0.02 0.05 0.1 0.2 0.5 1.0

Viscous damping ratio (-^)
t

Fig. 2.6 Graphical relationship between Transmissibility and dannping ratio for SDOF system
with foundation motion input (Crede, 1951).
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only be derived for the damping ratio and resonant frequency. There is not enough
information to directly identify the actual system stiffness and damping. In this case, mass
is an unknown that prevents identification of these parameters. The concept of parameter

mass is not straight-forward for a layer of soil. However, it is quite possible that the use of

the mass of a unit area column of soil will provide a correct solution.

2.2.4 Evaluation of Simple System Identification Techniques

The inability to define all the system parameters highlights an important difficulty of

the system identification method. Even for a simple SDOF system with realistic boundary

conditions there is not a closed-form solution for all the basic parameters. For more
complicated systems the equations get even more intractable and arcane. Often times it is

not possible to find a suitable equation to define the real-world system of interest.

The solution given above is not even valid for the real-life situation of earthquake

loading of a soil profile. The derivation is strictly valid for a time invariant system, which

does not accurately describe a soil strained past threshold strain. The stiffness and damping
of the soil are not linear, and measuring this non-linearity is one goal of utilizing system

identification. In addition, the earthquake forcing function is not time-stationary, so common
spectral estimation methods cannot be used to reduce effects of noise without extensive

increase in the difficulty of the computation. The non-stationary methods solve for the

frequency response function for input excitations that vary through time (Bendat and Piersol,

1986; Newland, 1984). For the traditional "Bendat and Piersol" approach, this involves using

energy spectral density estimates rather than power spectral density estimates since the

period T is finite rather than infinite time for which the power spectrum is defined. The
single summations of Eqns. 2.3 become double summations, since the effect of change

through time must be actively accounted for. The double sum estimates are not as robust

as the ones for time invariant systems since the estimation are made for two stochastic

variables with cumulative variances.

Assuming for the moment a time invariant system, the question is whether the

excitation is stationary or not. If the input is stationary, then the cross-spectral technique

can be used to define the frequency response function, minimizing the effects of noise.

Stationary excitation is only to be expected for some ambient vibration tests or from

controlled oscillatory sources. For these two cases the strain levels are small and the soil will

behave linearly. The forcing function of the oscillatory source is known so that all system

parameters can be estimated using the force displacement model. If the masses of the

system are known, the problem can be solved uniquely for a multiple layered soil profile

(Udwadia, 1985).

Earthquake excitation is obviously non-stationary. It is an unique event changing

through time that can not ever be repeated so the effects of noise can not be eliminated

through direct averaging. Because the input is non-stationary the power spectrum methods
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are strictly invalid since they depend on a statistically representative sampling of an infinite

length signal. However, claim has been made that the spectral methods are equally valid

for non-stationary transient data if there are a sufficient number of trials so that a valid

expected value of the auto- and cross-correlations can be calculated (Bendat, 1990; Bendat

and Piersol, 1986). This ensemble averaging serves to improve the statistical certainty of the

estimates.

2.3 Estimates of a Process in the Frequency Domain
2.3.1 Fourier-based Methods

At this point it is important to examine what exactly is meant by the spectral

representation of a time series, and the results of the various methods of calculating the

"spectrum." The most familiar form of spectral estimation is based on the Fourier transform

of a continuous signal.

F((o)=ffit)€-'^‘dt. (
2 -22)

This estimate is non-parametric since no particular model of process is assumed in the

formulation of the estimate. However, the process is arbitrarily assumed to be representable

by an orthogonal basis function of harmonic sinusoids. The basis function could just as easily

be assumed to be a linear combination of damped exponentials (Prony’s method), a finite

number of arbitrary complex sinusoid in white noise (Pisarenko harmonic decomposition),

or the output of a sharp bandpass filter centered at each ft'equency of interest (Capon’s

Maximum Likelihood Method) (see Kay and Marple, 1981).

Since F(o) is a complex value, the following relation exists:

F(a))=|F(a))| (2-23)

where
|

F(ci))
|

= amplitude spectrum
gi<^)(«) _ pj^ase delay spectrum.

The conservation of energy between the time and Fourier domain is given by Parseval’s

energy theorem in terms of the square of the amplitude spectrum (Bracewell, 1978). The
energy spectral density is defined as the square of the amplitude spectrum,

|

F(ci>)
|

and

gives the distribution of energy as a function of a set of harmonic sinusoid. The square of

the amplitude spectrum is commonly called the periodogram or power spectrum (Robinson,

1982). It is related to the autocorrelation of the same time function by the Wiener-

Khintchine theorem which states that the power spectrum is the Fourier spectrum of the

autocorrelation.
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In practice, the data is available for a finite time period, and the data is in discrete

form for manipulation by a digital computer. This necessitates the development of the

discrete Fourier transform (DFT) (Brigham, 1974):

Ff—

]

UA(j

N-l

=Y:xikAt)
*=0

(2.24)

Where n

N
T
Af
At

= 0, 1, 2, ..., N-l = discrete frequency counter

= number of samples

= digitized period = NAt
= frequency resolution 1/NAt
= time between samples.

The amplitude spectrum and the energy spectral density are defined as for the continuous

case. However, the values for the discrete case, taken at the preassigned regular Fourier

frequencies, do not match those for the analog function. This is because the sampled

spectrum is actually the product of F(ci>) with the sine function (transform of the time domain
boxcar windowing function which is convolved with the signal during sampling). "Thus the

discrete spectrum based on a finite data set is a distorted version of the continuous spectrum

based on an infinite data set." (Kay and Marple, 1981).

The unavoidable windowing of the data in the time domain, and multiplication of the

spectrum with the transform of the window, leads to a smearing of the data referred to as

leakage. For the simplest example of the boxcar window, the DFT representation of a

simple sinusoid will be spread out over a main lobe width proportional to 1/NAt with ripples

occurring at discrete intervals. These ripples are a function of the mathematics alone, and

are not present in the actual infinite length analog signal. Use of other window shapes can

decrease the amount of ripple, but at the expense of widening the main-lobe, thus decreasing

the frequency resolution of the transform. The various windows used also have the

unwanted effect of biasing the data towards the time associated with the peak of the window

(Geckinli and Yavuz, 1978).

The windowing of data is based on the assumption that the portions of the times

series outside the window are zero. For the case of a transient such as an earthquake

seismogram, this assumption is realistic and bias is held to a minimum. For an ongoing

process such as due to a mechanical oscillator, the assumption is unrealistic and the resulting

spectrum will be smeared and biased. For narrow-band signals, the overlapping of adjacent

side-lobes can hide the existence of close-by lower-energy components. However, for wide-

band processes leakage is not such an important problem. For a soil-structure interaction

problem there probably would not be much difficulty identifying the first-mode resonant

frequency, but other modes might be hidden.
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Reference to Shannon’s sampling theorem shows that the DFT estimate is good over

the frequency band of 0 to l/(2At) Hz (Brigham, 1974). It is important to note that the

derivation of the DFT forces both the time and frequency domain data series to become
periodic with a period T, even if this is not the case in reahty. In order to approximate the

infinite length of signal utilized by the integral transform, the discrete transform implicitly

assumes that the input data series is infinitely repeated, beginning to end. If the beginning

and end of the data do not match and have zero slope, an infinitely quick jump is added to

the data series, with attendant illegitimate high frequency energy.

2.3.2 The DFT and Real-World Systems

As presented by Aki and Richards (1980), a serious problem exists when estimating

the amplitude spectrum when the data is "contaminated" by noise. The DFT model of the

spectrum does not expressly take the presence of noise into account, and the noise must be

modeled by the same harmonic sinusoids as the signal of interest. Since real field data is

to be used, noise will always be present from the environment. In addition, digitized data

will always have "noise" due to quantization error. The Fourier transform of the noisy data

Nis

N-FX (2.25)

where F = discrete transform of the signal

X = discrete transform of white noise.

Since the noise is a statistical variable, the linear combination N is also a statistical

variable. Given reasonable approximations (Bloomfield, 1976), the energy spectral density

|Np is the sum of two squared Gaussian variables (real and imaginary parts of N) and

follows the chi-squared distribution with two degrees of freedom. In this case there is little

confidence that the sample Fourier spectrum is close to the "true" spectrum, since the

standard deviation is now equal to the mean. There is little certainty whether an outlier is

a peak value of site amplification, or acceleration, etc., or a random error.

The most common method of calculating the frequency response function was shown

to be the spectral ratio, Eq. 2.2. A spectral ratio is also used to define site specific

"amplification" of ground motion (Murphy et al., 1971). The spectral ratio is now seen to

be a ratio of two chi-squared variables with a common mean (from a common source) and

described by the Fisher F distribution with 2x2 degrees of freedom (Aki and Richards, 1980).

There is very little statistical certainty with so few degrees of freedom. For this estimate

there is a ninety percent probability that the spectral ratio will lie between 0.053 and 19!
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Simply taking more data is of no help in reducing uncertainty since the only effect is

to increase the frequency resolution AF

AF=^. (2.26)
NAt

where N = number of digitized points

At = inverse of digitization rate.

Digitizing at a faster rate will have the same effect. The only way to improve the certainty

of the estimate of the spectrum is to average adjacent values, so that the variable now has

four degrees of freedom. If AF is very fine, many values can be averaged, giving a robust

estimate of the spectrum. In order to avoid time-domain aliasing, the number of frequency

values must be reduced each time adjacent frequency bins are averaged. The trade-off is

confidence for frequency resolution.

When an average of adjacent values is taken, an assumption is made that the signal

frequency has not changed between the two bins. Therefore, if the signal is rapidly

changing, with the rate of change being on the order of the desired frequency resolution,

frequency averaging can not be used and the Fourier spectrum gives a very poor estimate

of the "actual" spectrum. Averaging also runs opposite to the need to maximize frequency

resolution. This conundrum is the so-called Uncertainty Principle, where the frequency

resolution is inversely proportional to the length of time signal, which in turn needs to be

maximized to reduce variance (McClellan, 1982).

A very effective approach to improving the statistical reliability, or variance, was

introduced by Welch and employs a form of ensemble averaging (Otnes and Enochson,

1978; Welch, 1967). In this method the signal is broken into blocks, the spectral estimate

made for each block, and the resulting spectra averaged. If the blocks of data are

overlapped, e.g. fifty percent when the Hamming window is used, the bias towards the

central values is largely counteracted. This method can only be implemented if there is a

large length of relatively stationary data available.

In order to compare and understand the results of the various estimation techniques

discussed, it will be helpful to introduce an example data series and the actual, calculated

spectrum of this process. The time history is shown in Fig. 2.7a, and is taken from Kay and

Marple (1981). Figure 2.7b shows the true, calculated spectrum of this process. The process

has both narrow- and wide-band information, with two line components very close together.

While the spectrum looks simple, this combination is quite difficult to estimate.

Figure 2.8 shows a typical frequency spectrum calculated using the periodogram

method, in this case the normalized square of the DFT. The oscillatory nature of the

estimate is a result of the windowing process. Also, leakage causes broadening of the peaks

which can merge the closely adjacent line spectra, shown in Fig. 2.7b.
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Fig. 2.7a The example data process to test spectral estimates. From Kay and Marple (1981).

Tru« PSD

Fig. 2.7b The true, theoretical spectrim for the above test case (Kay and Marple, 1981).
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A much improved estimate is given by the Welch estimate shown in Fig. 2.9. In this

case the signal has been windowed so that the large side-lobes (oscillatory shapes in Fig. 2.8)

have been reduced. The variance has been greatly reduced by the averaging process.

However, the two closely spaced line spectra expected around 0.2 have been merged due

to the loss of resolution. In this estimate the locations of the spectral peaks are correct and

the shape of the broadband portion is similar to the true spectrum.

2.3.3 An Improved Non-Parametric Estimator

An extremely powerful non-parametric spectral estimator for almost stationary time

series has been proposed by Thomson (1982). This is the so-called multi-taper method. The
method is derived for short time series which may contain line spectra as weU as wide-band

components. The method is rationally derived, as opposed to the ad hoc windowing and

filtering of the classical approach.

In the classical method described above, the data is windowed to try to control

leakage (bias), Fourier transformed, and smoothed to reduce the variance. The initial

v^ndowing increases variance and weights the data from the middle of the time series much
more heavily than equally valid data from the beginning and end of the series. The
smoothing (frequency averaging) is only rational if the actual spectrum is smooth. Finally,

the information from the phase spectrum is discarded. The periodogram estimates are not

a "sufficient statistic" of the data due to the phase information being discarded. Any finite

spectral estimate is an under-determined problem (Thomson, 1982):

Since this equation {the Fourier-based spearum - ed} is the frequency-domain expression

of the projection from the infinite stationary sequence generated by the random orthogonal

measure dZ(f) onto the finite sample, it does not have an inverse; hence it is not possible to

obtain exact or unique solutions. What we desire are the statistics of those approximate

solutions that are both statistically and numerically plausible.

Thomson explicitly deals with these problems by proposing a unified method which

justifies the data windows used, gives consistent estimates, eliminates bias against low

amplitude areas, contains separate metrics for the variance of line and broadband

components, and for which the size of the time series enters into the method directly. The
solution gives local independent estimates so that the spectrum at a given frequency does

not depend on the spectrum at a distant frequency. Both the spectrum and the log of the

spectrum are "good" estimates, while for the periodogram method the log spectrum is

impossible since use of lag windows when fi'equency data is rapidly changing yields negative

estimate values.

The multi-taper method starts with the Cramer spectral representation of a function

and estimates the solution to this integral equation by a complex orthonormal eigenvector

expansion. The user chooses the number of expansion terms (tapers) used: the more terms

used the less biased the estimate, at the expense of frequency resolution. The class of
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Fig. 2.8 Periodogram estimate made from the absolute square of the DFT. The typical

oscillatory shape is a result of windowing.

Fig. 2.9 Classical spectral estimation using the Welch method. The spectrum

is to be compared to the actual spectrum shown in Fig. 2.7b.
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realizable eigenvalues is limited by weighting the expansion coefficients by prolate spheroidal

wave functions, which happen to be the eigenfunctions of the Dirichlet kernel, so the method
stands as a coherent whole.

The solution is reached over individual local intervals surrounding the

eigenfrequencies f, i.e. (f±w). The resulting estimate is chi-square distributed, but with (2*#

of tapers) degrees of freedom. This is equivalent to (4Nw) DOF, where N is the length of

time series, and w is the frequency radius of interest. With the use of a reasonable number
of tapers, the effective window is very rectangular over the given frequency bin, and there

are very low side lobes (-80 dB for 5 tapers) effectively eliminating bias. A simple check to

see if too many tapers are being used is to examine the eigenvalues in full precision; if they

exceed unity, too many tapers are being used.

The method is non-parametric since the estimation is based exclusively on the time

series supplied rather than on a particular model of the process producing the data. If any

a priori information is known about the signal, e.g. whether the data is bandwidth-limited,

or that no line spectra are present, or the exact nature of the noise, then "estimations of

higher apparent resolution can be made." The power of Thomson’s method is that very

good estimations can be made without making imprecise a priori estimations that can skew

the results towards often arbitrarily predetermined results. One of the major problems of

traditional analysis is that the researcher processes and processes the data until it yields the

results that were expected. However, if good prior information about the system is available,

a method optimized for the particular situation should give results superior to those from

a general solution.

The power of this method for a knowledgeable user is shown in Fig. 2.10, which is

from Thomson’s paper (1982). The estimate for the test time series is for all practical

purposes the same as the true spectrum. However, Thomson did much more than just

apply his algorithm, which gives the poor result shown in Fig. 2.11. Thomson utilized the

following multi-step estimation procedure.

(1) Apply the multi-taper algorithm.

(2) Calculate the variance using the F-statistic and identify the frequencies of suspected

line components. This step takes a fair amount of experience and knowledge.

Thomson makes decisions that a user of lesser experience might not be able to make.

(3) Subtract the effects of the line components.

(4) Further pre-whiten the spectrum with an autoregressive (AR) prediction error filter.

Thomson uses a fifth-order filter. Pre-whitening is a method used to remove bias

from the estimate (Hardin, 1986; Newland, 1984). By removing spectral peaks, bias

due to leakage is reduced since bias is proportional to the second derivative of the

spectrum. In addition, since the variance of the estimate is proportional to the mean
of the estimate, making the estimate smaller reduces the error. By making the

spectral estimate flat — white — bias is reduced towards zero and the variance is

constant for all frequencies. An initial spectral estimate is made to locate peak
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Fig. 2.10 Spectral estimation of the test data made by Thomson using his multi-taper method
and preprocessing (Thomson, 1982).

Fig. 2.1 1 Spectral estimate of the test data made by applying multi-taper method with no preprocessing.
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frequencies, a filter designed to remove these peaks (prediction error filter), new
spectral estimate made, and the estimate postdarkened by recombination of the

removed peaks.

(5) Residual spectrum postdarkened and the line components added, giving the final

estimate.

2.4 Parametric Methods of Process Estimation

2.4.1 Introduction

For the non-parametric approach to spectral estimation, no assumption was made
about the nature of the data except that the time series values are identically zero outside

the windowed section. This condition is true for a complete transient, but obviously is not

for a stationary segment of a transient. Very often some information is known about the

signal or the source. It might be something as simple as the fact that the frequency content

of the region of interest is band-limited. For example, the resonant frequency of a building

is known to lie within a narrow frequency range. Use of a priori information can allow a

very appropriate model of the process to be used to estimate a very accurate spectrum with

a small amount of data.

The energy spectral density, as represented by the standard periodogram approach

discussed above, can be shown to be identical to a parametric model of a least squares fit

of the time series to a simple harmonic model — the DFT (Kay and Marple, 1981). The
discrete Fourier frequencies are preassigned, as well as the number of frequency bins, based

on the digitized period and digitization speed used to sample the data. In addition, noise

is not accounted for in the model, the energy of which is included in the frequency estimates.

The effects of noise must be removed through the various averaging schemes discussed.

In the above discussion of Thomson’s approach, it was pointed out that an

unresolvable limitation of the classical DFT approach to spectral estimation is the fact that

a finite set of values (the frequency domain time series) and observations are used to

represent a function in actuality continuous in both the time and frequency domains. In the

parametric approach, a model with a finite number of parameters characterizes the process.

The recorded data is used to estimate the parameters of the chosen model. Note that there

is an implicit requirement that the model be a good representation of the actual physical

process being studied.
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2.4.2 Autoregressive (AR) Models

The most common approach is to model the system as a linear filter, given by Eq.

2.27

V,-"V.-i (2.27)

where
yj

t

= actual data sequence (modeled as the filter output)

= system input sequence (assume white noise for spectral estimation)

= time step counter.

The output is seen as a combination of the input white noise history acted upon by the "b"

coefficients plus the past outputs acted upon by the "a" coefficients. The input series,

involving the "b" coefficients, is a causal moving average (MA) process (convolutional). The
series involving weighted past output values ("a" coefficients) is a noncausal autoregressive

(AR) process. The lengths of the MA and AR processes must be explicitly chosen so that

the model best represents the actual process (an additional piece of required information

compared to the DFT).

In order to solve for the model parameters, Eq. 2.27 is rearranged to give

9 p

k=0 jfc=l

The Fourier transform of Eq. 2.28 is taken by applying the shifting theorem to yield

Applying the Z-transform, where 2* = e^, to Eq. 2.29, and rearranging, gives

„ (2.30)

The amplitude spectrum of the actual data now becomes

(2.31)

since the amplitude spectrum of the white noise input is a constant equal to one. The

numerator polynomial (in order q) is the MA process while the denominator polynomial

contains the AR coefficients.
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If a process is thought to be a function only of the white noise input being acted upon
by the filter model the process is said to be a moving average process. The denominator

of Eq. 2.31 becomes identically one, and the roots of the factored numerator (MA)
polynomial are all "zeros" of the equation. If the roots are close to the unit circle, then the

amplitudes of the frequencies close to the zeros will become very small. The spectrum will

be able to model smooth spectra with sharp notches very well, but will poorly define sharp

peaks unless a very large number of parameters are solved for. The AR model is popular

since it can describe a complex process with very few parameters calculated from a small

length of data, and there have been many improvements of the estimation procedure.

The standard periodogram approach to spectral estimation can be shown to be a

special case of the MA process (Cadzow, 1982). This is reflected in the fact that for the

time domain analog, the autocorrelation (from the Weiner-Khintchine theorem), it is only

possible to calculate a finite number of time lags (q+1) for finite data. The autocorrelation

was assumed to be zero outside the time of interest, with attendant leakage problems. For

broad-band signals, this assumption is "almost correct", and it was just shown that a MA
estimation would work very well for such a process.

Since any parametric approach is useful only if it actually is a representative model

of the data process, it is important to develop a feel for AR processes. It has been shown

above that an AR process is a feedback process, described in the time domain as

(2.32)

The current output of the model is a function of the current input (assumed to be random
for spectral estimation) and a weighted sum of the past outputs. In this sense, the AR filter

can be seen to model discrete integration, combining past outputs, while the MA filter

models a difference (Robinson, 1982).

Robinson (1982) describes the derivation Yule used in 1927 (Yule, 1927) to formulate

the AR spectrum. Yule imagined a simple, damped SDOF oscillator — in this case an air-

damped pendulum. This system can be described in a discrete sense by the homogeneous

difference equation

c(f) +a^c{t- 1) =0 (2.33)

where c(t)

Si

displacement amplitude at time t

model parameters, a
2

is the reflection coefficient.
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(2.34)

The solution to Eq. 2.33 can be shown to be

sin(f+l) cOq

c=e
sin (Oq

where

(2.35)

CDQ=tan”^
(2.36)

and Cj = impulse response function

(j)o
= fundamental frequency of the impulse response function.

This result should be compared to Eq. 2.3, where an equivalent system was modeled from

mechanical principles rather than by a parametric feedback process.

The pendulum is then excited by a white noise driving function. Yule postulated

several boys with pea shooters irregularly pelting the pendulum from different locations.

The graph of the motion of the pendulum through time will be quite smooth, with the

amplitude and phase varying continuously as given by

y(n)+a^y(n-l)+a^n-2)=x(n) (2.37)

where Xj = white noise input excitation.

The solution for Eq. 2.37 is

N

y(t)=Ylc(k)x(t-k) (2-38)

ifc=0

where N = number of measurements of amplitude taken

c(t) = impulse response function given by Eq. 2.34.

The model uses a finite number of chosen parameters, aj and a2. Using the data

series y(t), the coefficients are found by regressing yj on the past of yj
— self-regression or

autoregression. The solution utilizes the least squares normal equations filled with the

empirical autocorrelation values for the data series, and are called the Yule-Walker

equations. They result in a Toeplitz matrix and the equations are rapidly solved using

Levinson recursion (Levinson, 1947).
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The AR coefficients can now be used to estimate both the amplitude and phase

spectra of the data series. The AR coefficients model the process in the time domain - they

model the time series. The frequency response of the model, i.e. filter, can be realized by

transforming the model parameters. Evaluating the time domain results around the unit

circle, i.e. taking the Z-transform, yields

N

C^=j:C(n)z" =

n=0 l+a^z+a^z^

(2.39)

The AR model is much different than the MA-type approach made by the

periodogram, which assumed a sinusoidal process with added white noise. If the amplitude

of the white noise increases, the graph will look confusing, but the periodogram will do a

fairly good job (given enough observations) of picking out the sinusoid. However, the

improved resolution given by the AR approach is dependant on the signal-to-noise ratio

between the sinusoid and background white noise, doing a poor job in noisy environments

(Marple and Lawrence, 1987)

For the AR case, the roots of the factored AR polynomial are all "poles." For

frequencies adjacent to poles near the unit circle, amplitudes will be very large, reminiscent

of the shape of a circus tent close to the poles. If it is expected that the spectrum is

dominated by sharp spikes, then the process can be well modeled as an autoregressive

process.

A serious problem can occur if the actual autocorrelation is not zero outside the

limited number of lags available. This problem occurs when the process is actually made
up of sinusoid and white noise. A more suitable model for this system would be one that

does not window the signal, i.e. does not violently truncate the autocorrelation. The most

common such model is the AR model. This model is merely Eq. 2.31 with the numerator

terms are set to zero, except for the zero time lag which is unity (from autocorrelation of

the input white noise series xj.

Insight into the above discussion is given in Fig. 2.12 (Marple and Lawrence, 1987).

Figure 2.12a shows the actual, complete autocorrelation for a single sinusoid on the left, and

the true power spectral density for a single sinusoid on the right. The assumptions of the

periodogram method, and the realities of data-limited discrete processing, yield the

truncated, windowed, autocorrelation shown on the left of Fig. 2.12b. The matching biased,

inconsistent, periodogram estimate is shown on the right. Finally, the left side of Fig. 2.12c

shows the effective extrapolation to the autocorrelation made by the very simple Yule-

Walker solution for the AR coefficients. This extrapolation results in the sharp, unbiased

estimate shown on the right side of Fig. 2.12c.

Unfortunately, there are an infinite number of valid extrapolations of the truncated

autocorrelation. The Yule-Walker approach (Marple and Lawrence, 1987) to estimating the

AR model parameters is based strictly on the truncated autocorrelation and does not extract

the maximum information out of the available data.
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Fig. 2.12 Burg's extrapolation of the autocorrelation series (ACS): (a) actual ACS and the true spectrum

(b) truncated and incomplete ACS due to limited discrete data and the classical estimation

(c) Burg's ACS extrapolation and improved AR spectral estimation (Marple, 1987).
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2.4.3 Maximum Entropy Method

The Burg algorithm (Burg, 1975) is the most popular method for estimating an AR
process. This is the so-called Maximum Entropy estimation. As for all AR methods, the

spectral estimation process is two-fold. The first step is the calculation of the model
parameters from the recorded data. This is done in the time domain, and is where the

effective extension of the autocorrelation manifests itself. The second step is to transform

the AR coefficients into the spectral estimate. However, the Burg approach estimates the

AR parameters without making any explicit estimates of the autocorrelation.

In the time domain, there are only a limited number of lags of the autocorrelation

known, and an infinite number of possible extrapolations. The problem is to choose the

'"best" representative of this infinite class. Burg chose the spectrum which corresponds to

the most random time series whose autocorrelation matches that of the actual data series.

Burg generates a new data set, based on the actual data, which is the most random possible

in an entropy sense. The reasoning is that this imposes the fewest possible constraints on

the solution, minimizing the bias. The extrapolation supplies additional information so that

the estimate has very high resolution compared to other methods, and is optimal for short

data sets (Hardin, 1986).

In this case, the concept of entropy has to do with measuring the information content

of a "message", or combination of symbols (Shannon, 1948). Maximizing information is the

same as maximizing choice when selecting a message; and the more freedom, the more
uncertainty as to the outcome (Radoski et al. 1975). The entropy of a distribution is

maximum when all probabilities are equal. Since Burg’s new data set has the most

randomness (maximum entropy), the associated spectral estimate has a high resolution since

it uses all the possible information contained in the estimated autocorrelation, when
extrapolating beyond the limited number of lags to the "true" autocorrelation.

Radoski states that the entropy function to be maximized is

E = f
Ln[S((j>)]do> (2-40)

where E = entropy function

S(o)) = spectral density

O)o = Nyquist frequency, 7r/NAt radians

At = digitization interval.

The problem to be solved is to calculate a spectrum that maximizes the entropy function E,

subject to the constraints of the actual, lag-limited, autocorrelation estimate. For an infinite

data series, the Burg estimation and the periodogram would be identical. Rather than use

the (incomplete) autocorrelation estimates to calculate the AR parameters, i.e. the Yule-
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Walker equations, Burg uses a least squares approach to minimize the forward and
backwards prediction error with respect to the last filter element a„, and solving for the

remainder of the parameters by Levinson recursion. A very important advantage of Burg’s

technique is that it is optimized for use of a very small number of data points to yield a

robust system estimate.

Since the introduction of the Burg method, many other estimation schemes have been

proposed to improve on limitations. Swingler (1979) points out that the bidirectionality

constraint limits the application of Burg’s method. Not all deterministic signals, such as

exponential decays, can be successfully modeled. This failing should not be too surprising

since Burg’s derivation was for stationary signals. Swingler also states that the insistence on
using Levinson recursion causes small frequency shifts for sinusoid under certain phase

conditions. Swingler presents a non-recursive least squares estimate that is functionally

identical to that proposed by Ulrych and Clayton (1976).

Spectra estimated by the AR models have a typical swept-peak shape. The peaks are

located at the correct places, but their shape is not a function of the signal itself. In fact,

the number of peaks calculated is a function of the AR order chosen by the user. There will

be approximately one peak for every two parameters chosen, which follows from Yule’s

derivation. The typical AR spectrum shown in Fig. 2.13a exhibits the "peaky" shape and

good estimation of sharp peaks typical of the AR estimate. In contrast. Fig. 2.13b shows the

sharp drops well modeled by the MA spectral estimate. As expected, the combined AR-MA
estimation is a combination of the two. Note that the shape of the peaks is a function of

the estimation procedure chosen and not merely a function of the data itself.

These points are illustrated in Fig. 2.14, which shows the least squares AR estimation

of the spectra presented in Fig. 2.7 (Marple and Lawrence, 1987). This estimate does a far

superior job modeling the actual spectrum than the classical approach, but excessive peaks

are evident.

2.4.4 Autoregressive-Moving Average (ARMA) Model

It has been mentioned above that the AR estimate is not suitable for cases with a low

signal-to-noise ratio (SNR), since the all-pole model is not valid for "sinusoid in white noise."

While most strong-motion records have a high SNR, an important insight can be gained by

examining this problem (Kay and Marple, 1981). The white noise corrupted AR process is

defined as :

n
(2.40)

where x^

Wn

= pure AR process

= observed white noise vdth mean = 0 and variance aj'.
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(b)

Fig. 2.13 Typical parametric spectra from the (a) AR(4) model, (2) MA(4) model,

and (3) ARMA(4,4) model (Marple, 1987).

Fig. 2.14 AR spectral estimate of test series to be compared with the true spectrum in Fig. 7b.

Note the typical "peaky" shape.
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Since the white noise is uncorrelated with the process Xj,, it can be shown that

PyiZ) =

o'^+oj' Aiz)A* At

lill (2.42)

where Py(z)

A(z)
*

At
ji

= spectral density of the corrupted AR process in the Z-domain
= filter parameters

= complex conjugation

= digitization rate.

= variance of the output.

The noteworthy property of Eq. 2.42 is the fact that the spectral density is

characterized by parameters in both the numerator and denominator. This model was

described by Eq. 2.31 and is an ARMA model characterized by both poles and zeroes. The
ARMA model is very powerful in that it can easily model sharp drops, sharp peaks, and

smooth spectral behavior. It is also the most parsimonious estimator. Since the ARMA
model is the most general, it’s use would eliminate the problem of deciding whether the

process is AR or MA.

The major problem of implementing an ARMA model is the difficulty in calculating

the parameters. The most straight-forward approach is to solve the Yule-Walker normal

equations for the ARMA process. However, in this case the equations are very nonlinear

and difficult to solve (Cadzow, 1982). Simply applying a least squares solution is not

sufficient since there is no guarantee of convergence, or if the given answer is the result of

convergence on a local extreme.

A common solution is to solve for the AR and MA parameters separately and then

rationally combine the two. This is done by generating the extended Yule-Walker equations,

an example of which is given in Cadzow (1982). Treitel derived a least squares technique

that solves the ARMA parameters in a unified manner, has a minimum-delay denominator,

and always converges (Gutowski et al., 1978; Treitel et al., 1977).

Another problem to be considered is the estimation of orders of both the AR and

MA parts of the ARMA model. In addition, for the more complete system identification

models, the orders of the noise system must be consistently estimated independently from

the system (van den Boom and van den Enden, 1974). For some physical systems, such as

the SDOF oscillator for which the AR model was derived, the estimation of AR order has

physical meaning. For other processes, the order must be guessed at, with various

theoretical and empirical methods of deciding the optimum AR order. Akaike (e.g. 1981,

1970) approaches the problem from a similar point of view as Burg, and uses a maximum
entropy criteria for deciding the proper model order. This criteria minimizes the
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"information distance" between the model and the actual process. Too few parameters and
the distance is great, too many and the distance slowly increases due to over-determination.

The criterion is the so-called Akaike Information Theoretic Criterion, or AIC.

There are many empirical methods proposed to determine the proper model orders

(e.g. Marple and Lawrence, 1987; Bohlin, 1984; Astrom, 1980; van den Boom and van den

Enden, 1974). The most straight-forward method is to increase the orders until the

"innovations" series

(2.43)

where yj

5
^

= actual output at time t

= prediction of output at time t made at time t-1

becomes white noise. A second check that all the information is being "used" by the

estimation is to check if the cross-correlation of the input series and the innovations is white

(Astrom, 1980). At this point, all the information available has been used.

Through a process called Wold decomposition it can be shown that AR, MA, and

ARMA processes are related, in that a ARMA or MA process of limited length is equivalent

to an AR model of infinite length. An infinite length of MA filter is also equivalent to a

given AR or ARMA series. Therefore, a AR model with order much greater than the true

model order is a possible solution to a low SNR condition. In order to avoid the problem

of spurious peaks in the spectral estimate, the model order should be kept to less than half

the number of data points.

Another method for dealing with noisy data is to compensate for the uncorrelated

noise. This is done by either weighting the zero lag of the autocorrelation, or a similar

process with the AR coefficients. The rationale behind the increased weighting of the zero

lag is that the noise is considered white, with an autocorrelation of one at the zero lag and

zero thereafter. Increasing the value of the actual autocorrelation at lag zero effectively

suppresses the effect of the noise on the solution.

2.5 Spectral Estimation

2.5.1 Introduction

The parametric and non-parametric methods discussed are just a few of the more
popular models for describing a process. While the thrust has been towards spectral

estimation, it must be remembered that all these methods are time domain solutions with

spectral analogs. The important question now becomes, in the words of John Tukey, "When
should which spectrum approach be used?" (Tukey, 1984). Unfortunately, there is no easy

answer to this question for any interesting real-life situations. For problems of interest, such

as analysis of an earthquake strong motion record, the theoretical caveats needed for the
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mathematical derivation are not applicable, in particular the assumption of stationarity.

An important argument is made by Brillinger and Tukey to approach the subject by

using "leading cases" (Brillinger and Tukey, 1984). An example of this concept is the use of

point mass assumptions in mechanics, which strictly is not "correct," but is commonly used

without complaint and with outstanding results. Rather than approach spectral analysis with

strict hypotheses, Brillinger and Tukey suggest looking at the practice of stochastic spectral

estimation as "...an umbra within a penumbra."

Three successively larger spheres of application can be described:

(1) An inner core of mathematically derived application. This region is generally too

narrow for application to real problems. An example is a process that actually is a

sum of a few pure sinusoids, or a process with these qualities unvarying, realization

after realization. No example from physical science can be given.

(2) A middle area where there is reasonable understanding of the process and the

performance of the method used to assess the process; the meaning of the spectrum

is clear. There usually is additional information about the process at hand, but all

detailed questions are not yet able to be addressed. This large area is dominated by

"stationary" processes with finite variance. "This is not because the region of use of

the concept of a spectrum is confined to stationary processes, but because stationary

processes are easier to think about."

(3) The third, largest, region is where the technique is actively being used by practitioners

and researchers. In this area the understanding of the model and process gained in

the inner two areas is applied and used. A prime example is the use of spectral

techniques with non-stationary data or "unique", one-of-a-kind data from a process

that "...having a process would require an ensemble of parallel worlds."

(earthquakes?). The famous work of Munk on ocean swells is a perfect example of

the important information that can be gained by applying spectral methods to very

non-stationary time series (Munk and Snodgrass, 1957).

A "non-stationary" process, such as an earthquake strong motion record, can be

interpreted in many different ways. On one end of the scale the signal can be seen to be

made up of short stationary segments, each of which has a story to tell. In fact, this is a

common and useful method for working with non-stationary signals. Both the Thomson and

Burg estimates of spectral density were derived for use on such short data series. Another

approach to the "microzonation" of a data record is the concept of evolutionary spectra put

forth by Priestly (1988). In this approach, the spectrum of an oscillatory process is estimated

in the "neighborhood of time instant t" rather than over all time.
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The other end of the scale is to view physical processes in a very macroscopic light

(Brillinger and Tukey, 1984):

All we know of the world is consistent with the idea that all events are periodic with period

10^® years. And a process made up of all displacements of a periodic phenomenon — with

uniform probability — is a stationary process. Thus anything we find in the world could, with

this definition, come from a stationary process.

2.5.2 The Concept of a "Spectrum"

Non-stationarity does not doom spectral analysis, but requires extra diligence and care

to insure that meaningful estimates are given. The implications of each step must be

examined so that effects such as leakage do not cover the desired information in the process.

The most important implication that must be addressed is, what is meant by the concept of

a "spectrum"?

As commonly used, the frequency spectrum represents a given signal in time as

sinusoids of various frequencies. The various frequency components present in the signal

are presented in their relative energy amplitudes. This usage implies an oscillatory signal

made up of "discrete" sinusoidal components. An example might be the several modes of

excitement of a simple oscillator, or the characteristic frequencies of a "good" rotating

bearing verses "bad". The calculation of the spectrum is merely a mathematical transform

which sometimes makes a desired facet of the data easier to find. In this sense, the

spectrum is no different than the use of semi-log or square-root plots.

This concept of frequency spectrum is in direct contrast to the representation of an

arbitrary waveform shape by its Fourier frequencies. A single square-wave pulse has a well-

known spectrum, the sine function, made up of theoretically infinite frequency components.

In the present context this square-wave does not have "frequency" since it is a single pulse

without multiple oscillations. Multiple occurrences are needed before one can speak about

the frequency of an occurrence and interpret the information yielded as the energy

contained in the various frequencies of oscillation.

For practical applications even this straight-forward "definition" of the spectrum has

conflicting implications. Priestly (1967) gives the example of an exponentially damped sine

wave, a very common physical realization :

y^
= e sm(2Tc^t) (2-44)

where f^ =

An example of this signal at ^ = 20 Hz and a=8 is given in Fig. 2.15a. The Fourier

spectrum pair is shown in Fig. 2.15b, where it is seen that the spectrum, while having a peak
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-8t
Fig. 2.15a Time history of damped sinusoid f(t)=e sin20(2Tct).

-81

Fig. 2.15b Fourier amplitude spectrum of damped sinusoid f(t)=e sin20(27rt).
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at 20Hz, contains components of all frequencies. This is a function of the damping, which

makes the signal non-stationary since the variance is continuously changing. However,

practical considerations gives the alternative interpretation that the frequency is a constant

20 Hz while the amplitude is changing as a function of time. No engineer with real-world

experience would dispute the pronouncement that the signal in Fig. 2.15a has a spectrum

indicating a single oscillatory frequency of 20 Hz. In this case the results are "theoretically"

incorrect, but for the engineer estimating the process parameters the "error" at 0 Hz has the

benefit of yielding the system damping.

2.5.3 Non-stationary Signals

It is interesting to note that if an "infinite" sinusoid at 20 hz is sampled over a finite

time, and windowed to minimize leakage, results are very similar to Fig. 2.15b. In essence

sampling turns a signal into a transient and windowing makes the transient non-stationaiy.

An earthquake strong motion record becomes slightly more "proper" when it is thought of

as a self-windowed signal (of infinite length if desired) with some white background noise.

In this case, the effect of the self-"windowing" is useful since it can provide an insight into

the system damping.

Inherent in the transformation of a time signal to the frequency domain is the

averaging of the signal components over the sampling period T. A piece of time is frozen

over this period and the assumption made that all time before and after is the same, i.e.

repeated forever. The energies present at each component frequency are integrated over

the entire time period T. The difficulty with non-stationary signals is that these energies are

changing during this period. If the frequencies present are changing over this time window,

the resulting estimation, regardless of method used, will be a smeared average as if all the

frequencies with energy were active throughout the entire period.

For weakly non-stationary processes, the effect over a small time period is

unimportant. If needed, the signal can be cut into relatively stationary sections and spectra

found using methods specially designed for short data segments, i.e. Thomson’s or Burg’s

method. This approach can be optimized using an Akaike AIC criterion (Akaike, 1974;

Gersch and Brotherton, 1982).

If newer, recursive/adaptive methods, such as Kalman filtering, are used to yield a

time-varying parameterization of the process, the idea of "frequency" must again be

examined. The concept of an "instantaneous" frequency in the traditional context is

meaningless. There must be some time period T over which to sum the energy expended

(work) at each frequency. The work done is averaged over T, hence power spectrum

(power = work done/time taken).

This problem is largely one of semantics arising from the imprecise manner of

everyday language. In its most common, and traditionally correct usage, the spectrum
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(amplitude, energy, or power) is the infinite sum of sinusoids with arbitrary amplitude and

phase, necessary to represent a given waveform. In this usage the waveform can be

stationary, or a non-stationary transient, oscillatory or simple. In this usage a particular

duration of signal is also not required, e.g. the Dirac delta function being represented by a

sum of sinusoid of all frequencies. As discussed earlier, this approach is strictly correct only

for the infinite analog case, and application to the discrete, digital domain has attendant

problems.

In the case at hand, the problem is to describe or parameterize a process. In

actuality, all the approaches discussed take place in the time domain (the classical Fourier

approach is actually a computationally simpler version of the autocorrelation approach),

yielding an impulse response function. This function is customarily transformed into the

frequency domain, now called the frequency response function or transfer function, since this

representation is visually less complicated and the desired system characteristics are more
obvious. In particular, the system fundamental frequency is exceptionally obvious whatever

method is used to estimate the process spectrum.

The Fourier-based methods attempt to characterize the process autocorrelation by

assuming a uniformly spaced sinusoidal basis function with no explicit parameters involved.

This method was seen to work fine if the process can accurately be modeled thusly. The
parametric methods attempt to explicitly model the process through equations involving a

limited number of parameters that must be experimentally discovered. These methods work
well if the process can be accurately modeled by the chosen method, with the added

difficulty of determining the model order. In both of these methods the process is

characterized by the autocorrelation or model parameters. The spectral presentation is only

an alternative method of presenting the data in a more palatable manner.

2.5.4 The "Instantaneous" Spectrum

Against this background it is sensible to speak of the "instantaneous spectrum," which

now means a frequency domain representation of the behavior of the system at a given

moment. At any given instant a filter (system) can be said to behave as, for example, an AR
process of order two, with the two parameters representing a given damping and resonant

frequency, free to change as the source motion changes or the structure undergoes damage.

As described in Fig. 2.1, what is estimated is a filter that converts the known input into the

measured output. The different methods discussed are merely different schemes for

estimating that filter, which can be presented in the time domain or the frequency domain.

With this clearer understanding in mind, methods allowing time varying system parameters

will be discussed.

An early method of directly analyzing time varying signals was the use of complex

demodulation (Brillinger, 1988; Bloomfield, 1976). For a signal with slowly changing
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amplitude and phase, complex demodulation will supply an estimate of these values. The
method can be thought of as harmonic analysis in a local time span t±At. The frequency

of interest, which must be identified beforehand, is isolated by narrow band-pass filtering.

The signal is modulated by a complex exponential and then locally smoothed to yield the

local amplitude at the frequency in question. This method, which is rather cumbersome and

involves ad hoc filtering and knowledge of spectral peaks, has not been used for

identification purposes and is included here for completeness.

Using traditional methods to estimate strongly non-stationary processes can yield very

unsatisfactory results, as was seen above in the damped cosine example. Priestly (1967)

describes early attempts to define an "instantaneous" spectral estimate, starting in 1952

(Page, 1952). Priestly puts forth an evolutionary (time dependant) power spectrum which

he describes as local energy distributions over frequency. Priestly computes an evolutionary

spectrum using spectral windows with various parameters, similar to the periodogram

approach, and therefor suffers the same difficulties. Recursive least squares methods are

now available which estimate AR or ARMA parameters describing the behavior of the

process at each time step (Marple and Lawrence, 1987).

2.6 Modeling Non-stationaiy Processes - Adaptive Ffltering

2.6.1 Introduction

For practical stationary problems the most straightforward method is in essence least

squares deconvolution, or calculation of the Wiener optimum filter (Kanasewitch, 1981;

Wiener, 1964). This method assumes knowledge of the autocorrelation of the input signal

and the cross-correlation of the input and output signal. The system parameters are solved

for directly in the time domain and the defining response function transformed into the

frequency response function. The problems involved are the estimation of the various

covariance functions without an infinite length of data, and these problems have been

discussed in previous sections. This method is valid if the signal or filter does not change

during the period of interest and could be applied to stationary-segmented data.

The field of adaptive filtering was formed to model non-stationary processes. As the

statistics of the signal change through time, the filter "adapts" to the changing variance with

new parameters that reflect the structure of the system at that point. The predicted value

for the next time step can be compared with the actual value, and the difference

(innovations, Eq. 2.43) will give a measure of how well the filter is doing its job. The term

"innovations" is used because this information is new information that can not be predicted

by the model at this particular step.

Autoregressive parameters can be sequentially estimated so that the parameters are

adaptive to the changing nature of the process (Marple and Lawrence, 1987). The AR
parameters are updated after each data point, tracking slowly non-stationary signals. A
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forgetting factor, commonly a damped negative exponential, is used so that older data carries

less and less weight. The spectral estimation can be made at any time step by evaluating the

AR parameters around the unit circle, giving the spectral description of the behavior of the

process at that time. The most effective variant of the recursive least squares algorithm was

developed by Ljung (Ljung and Soderstrom, 1983; Ljung et al., 1978; Falconer and Ljung,

1978).

2.6.2 Kalman Filters

The most popular direct adaptive filter, or process model, is the so-called Kalman
filter (Kalman, 1960; Kalman and Bucy, 1961). Sorenson (1970) points out that the Kalman
approach is a direct descendant of Gauss’s least squares, except now neither the signal nor

the noise model must be stationary — the state may change from sample point to sample

point. The solution is recursive and is presented in state-space (Soderstrom and Stoica,

1989) which uses differential equations rather than integral equations to represent the

model.

Nau and Oliver (1979) state that the Kalman filter is based on a dynamic AR model

defined by "two concurrent random equations of motion":

(2.45)

the AR(p) equations of motion, and the "motions" of the parameters.

(2.46)

where p

at

bt

= number of prior observations utilized,

= vector of p prior data observations Xt.i,Xj.2,...pCt-p?

= vector of p AR parameters,

= Gaussian white noise with 0 mean and variance

= Gaussian white noise with 0 mean and covariance matrix Q.

Equation 2.46 estimates a value of 0, comprised of p previous parameters, through

a random walk equation. The estimate uses the weighted p previous data points, and yields

a new observation when added to a new noise value.

The problem is to use Xj_j to filter and make good estimates of what values of occurred,

to estimate future values of <f>^ from Eq. 2.46 and then use Eq. 2.45 to forecast future Xj’s,

repeating, as needed, the cycle of filtering and forecasting. (Nau and Oliver, 1979).

The least squares solution solves the equations so that the innovations (Eq. 2.43) — new,

dynamic information that cannot be predicted — are minimized in a least squares sense each

time step
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Kalman noted that all relevant information about all the previous data is contained

in the posterior covariance matrix of the parameter distributions

(2.47)

where = entire history of the process up to and including time t.

The estimate is an explicit function of only the data history and the previous best estimate

of the state, so that there is no need to use linear regression to completely re-estimate the

AR parameters after each new time step.

Graupe (1989) discusses the extension of the Kalman filter to take into account

colored measurement noise, rather than strictly Gaussian white noise. This is possible if the

noise is still uncorrelated with the signal. This Augmented Kalman filter becomes a ARMA
representation, with the colored noise represented by the MA component in a manner
conceptually similar to Eq. 2.42. The theory behind the Kalman filter can be manipulated

to yield the system parameters for the case where there is no a priori information about the

noise, and even when there is no information about the input signal. However, these

techniques seem designed for communications problems where the engineer actually has at

least some additional conceptual information about the system being studied.

The so-called extended Kalman filter has been very successfully applied to non-linear

estimation problems (Ljung, 1979; Astrom and Eykhoff, 1971). The manner of application

is actually straight-forward. The Kalman model is constantly updating its estimation of the

dynamic process by examining the innovations. The dynamics can be due to a changing

input or noise process, or it can be due to the system itself changing. The effect is a

linearization between single time steps, but if the system is changing slowly compared to the

time step used, the linearization is "invisible" and the non-linear behavior is well modeled.
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CHAPTER 3 ESTIMATION OF SOIL PARAMETERS USING SYSTEM
IDENTIFICATION TECHNIQUES

3.1 A Framework of Understanding

3.1.1 Introduction

This chapter will present some interesting and fruitful approaches to applying the

system identification (SI) methods presented in the previous chapter. Given an excitation

input and the system output, the goal is to identify various physical parameters that control

the dynamic behavior of the soil mass. Typical parameters to be identified are soil layer

resonant frequency and damping ratio. These are the obvious choices since it has been

shown that the ARMA evaluation techniques were derived to model the dynamic process

as SDOF oscillators. Other parameters that has been studied are the "amplification" of

ground motion as the seismic energy moves from stiff bedrock to the much more compliant

soil, and identification and simulation of strong ground motions.

This report will be concerned with the application of SI to the problem of identifying

soil parameters. It will not attempt to cover the large field of work done in the application

of SI to the soil-structure interaction problem (e.g. many papers in the journal Earthquake

Engineering and Structural Dynamics; Ghanem et al., 1991). This report will present some
interesting examples of the use of dynamic models to characterize in situ soil behavior.

The work to date in seismic SI can be divided into two large groups — continuous

excitation and transient excitation. Examples of continuous excitation are shakers and

ambient excitation. Earthquakes and seismic testing methods are examples of transient

excitation. In relation to analysis methods available, these two group can each be divided

into stationary and non-stationary sources. Excitation of the soil through a servo-controlled

shaker is certainly a known, stationary force, so that the straight-forward methods of Bendat

and Piersol (e.g. 1986) can be used to calculate soil damping and resonant frequency. The
use of ambient vibrations, while often considered to be white processes, can very well be at

least weakly non-stationary.

Seismic methods, such as impulse loading and use of explosives, are non-stationary

but very repeatable. The repeatability of the input allows ensemble averaging, and the

averaged process can be well characterized by simple Fourier analysis. Finally, earthquake

excitation is obviously non-stationary and non-repeatable. It is for this situation, where the

amount of information is limited, that system identification techniques are of the most use.

When analyzing the in situ soil profile, the geotechnical engineer must work with very

large "structures." It is difficult to artificially excite a significant mass of the earth to levels

suitable to employ system identification techniques for strain levels even approaching

threshold strain. An obvious source for larger strain levels is an earthquake. In the past

several years there have been a few instrumented sites where strong-motion records have



been recorded within the soil as well as on the surface. For these cases the techniques

discussed in the previous chapter can be used to calculate soil parameters, as well as to study

how the parameters might change during the shaking.

3.2 Continuous Forced Excitation of the Soil

3.2.1 Introduction

The simplest method of determining the dynamic behavior of a structure is to use

forced vibration. In this case the excitation is under complete control of the experimenter,

and the input forcing function known. If the soil can be modeled as a one layer system for

the problem at hand, then solution presented in Sect. 3.2.2 can be utilized (Richart et al.,

1970). The driving function is stationary, and duplicate data can easily be collected. This

makes a proper DFT-based spectral estimate very accurate. The gain factor can be plotted,

the resonant frequency and soil stiffness found, and the soil damping calculated from the

half-power point (Bendat and Piersol, 1980). This method can be expanded to examine

higher modes of vibration.

3.2.2 Applications to Multiple Layered Profiles

In the more common situation the soil must be considered a layered system, with

each layer having its own distinct set of descriptive parameters. This case is modeled as a

series of SDOF linear oscillators. The system will be characterized as the compound filter

that converts the known force input into the measured surface displacement output. The
solution to this inverse problem is not necessarily unique, especially if the actual input

motion is not precisely known and near-by "bedrock" motion is used (Udwadia et al., 1978).

An N-layered soil system typically can be modeled as an N-degree-of-freedom

lumped mass system, as illustrated in Fig. 3.1. If the mass distribution is known, Udwadia

has derived a method whereby the damping and stiffness of all layers can be uniquely

determined for forced vibration with one surface transducer (1986). The method is valid for

linear response only. Since the force-time history of the exciting shaker and the system

output is known, this method is fundamentally similar to the simple case just described.

Udwadia notes that a good signal-to-noise ratio is an important parameter to insure low

variance in the system parameter estimates.

A similar but less-controlled variant of Udwadia’s method is to use background

ambient vibrations as the excitation, making the potentially incorrect assumption that this

excitation is gaussian white noise. An apparent application of this approach is presented by

Ohmachi for a suite of locations in the San Francisco Bay area (Ohmachi et al., 1991).

Three-component surface measurements were taken, three times each at the several
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locations. Small subsections (1024 points) of the data were taken, Fourier transformed, and

smoothed by multiple passes of a Hanning lag window (see Newland, 1984). Three such

spectra were then averaged for each component at each location.

This study was based on a method developed by the Japanese National Rail (JNR)

to study soil characteristics along rail lines using microtremors (frequency content 0.5 to 20

Hz) as excitation (Nakamura, 1989). Noting the virtual impossibility of taking an adequate

amount of data without colored interference from social activities, Nakamura derives a

method to rid the data of these effects. He claims that the social sources, the "noise",

produce mostly Rayleigh waves, dominated by vertical motion. The attempt is then to

eliminate the effects of the surface wave.

Based on a comparison of five rock sites and four soil sites, Nakamura claims that

for rock the magnitude of vertical acceleration is the same as the horizontal. For soils the

horizontal amplitude is greater than for the vertical. This is a broad assumption based on

the small amount of data presented. He goes on to claim that the amplification of motion

from a stiff layer to soft is through multiple reflections throughout the soil layer. This

assumption is patently false since it violates conservation of energy. In fact, net energy is

lost through reflection, otherwise an amplifier using no input energy could be built with a

pile of plates.

This background is used by Nakamura (1989) to state that the effect of the R-wave

can be measured by taking the ratio of the vertical displacement between the surface and

a subsurface acceleration record. Breaking the previously made assumptions, Nakamura
proceeds to derive a method that he claims will allow the estimation of the transfer function

of "surface layers from tremor on the surface only." This is done through a ratio of the

horizontal and vertical spectra, and called the "spectral amplification factor." The trick

seems to be that, for the frequencies of interest, the R-wave has the same spectral amplitude

in both the vertical and horizontal directions. He then adds, "Note, however, that the

estimation accuracy drops when there exists a noise tremor agreeing with the prevailing

frequency in the estimated transfer function."

While this technique would nullify common excitation factors, it would also nullify any

common response characteristics. Just because a white excitation itself is uncorrelated (non-

orthogonal) does not mean that the vertical and horizontal system response will be

uncorrelated. Until further explanation is published, this method seems to be biased and

not connected to system behavior in an unique manner. Finn (1991) states, "Nakamura’s

procedure for determining site periods and amplification factors is based on some tenuous

assumptions." In addition, the parameters reported — "predominant frequencies" and

"amplification factors"— are not the commonly understood process parameters and are index

properties.
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The results presented in Nakamura (1989) shows that the method gives acceptable

results for certain conditions. Indeed, JNR would not monitor the entire length of all

Shinkansen lines if the method gave no useful results. Since the given derivation is

contradictory, either the method works because of R-wave coincidentally canceling for the

sites of interest, or there is a more complete derivation that has not been presented in

English. In addition, there is a problem with using microtremors to characterize the strong

motion behavior of a site. Data from Japan show that the microtremor techniques

overestimate the transfer function by up to a factor of five compared to the strong motion

results (Seo, 1989). In addition, evidence shows that the fundamental period shifts for strong

motion accelerations.

3.2.3 Modal Analysis

The behavior of a well-defined structure under forced vibration can be used to

ascertain information about the supporting soil system. The results of these tests have been

used to measure soil stiffness beneath bridge piers (Crouse and Hushmand, 1987). Thirty

accelerometers were placed at various locations of the bridge, and a detailed modal analysis

of the bridge response to a large eccentric mass shaker was undertaken. It was found that

the second (primary torsional) mode was found to best characterize the soil-structure

interaction.

A variational form of Rayleigh’s principle was used to estimate the stiffness of the

Winkler springs used to model the stiffness of the soil beneath the bridge footings.

Lagrange’s equations were used to write the equations of motion relating to an assumed

deflection shape. The actual geometric, inertial and displacement responses of the bridge

were then substituted into these equations, and spring stiffnesses estimated when the

substitution led to convergence.

The calculated stiffness of the sounding soil mass matched very well with results from

finite element analysis and experimental estimates. The computed resonant frequencies

were almost identical to those observed for the first four modes. While yielding good results,

this method is quite complicated, both experimentally and computationally. In this case

thirty channels of acceleration data had to be recorded and analyzed. In addition, the

authors note that the technique will only work with very well characterized structures since

the effects of soil and structure must be separated. The values given are for an averaged

lumped soil mass and not for each soil layer independently, therefore this method would

probably not be of much help to identify layers of potentially liquefiable sand.

3.2.4 Estimation of Soil Properties from Impedance Functions

One powerful method of describing the dynamic interaction between a vibrating rigid

body and the soil is through dynamic impedance functions. The method was developed to
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analyze rigid machine foundations as a function of the excitation frequency. The dynamic

impedance function, K^, is decided for an "associated" massless foundation, and then the

steady-state behavior of the actual foundation and any mass resting on it can be easily

calculated. The impedance function can be determined analytically, numerically, or

experimentally. The following discussion of impedance functions is from a paper by Gazetas

(1983).

For each harmonic excitation frequency the impedance, K, is defined as the ratio of

the steady-state force and resulting displacement at the interface of the soil and foundation.

The vertical impedance can be written as

i(i>r

Ve tat

harmonic vertical force

uniform harmonic settlement

(3.1)

Since the dynamic force and displacement will generally be out of phase, the displacement

can be split into one component which is in phase with the force, and an orthogonal

component. The dynamic impedance can then be expressed in a complex form:

= (
3 .2)

where m = displacement mode, i.e. vertical, horizontal, rotational, torsional, or coupled.

In this format, the real part contains the effects of the stiffness and inertia of the supporting

soil mass, and the imaginary part describes the radiational and material damping of the soil

mass. Both the stiffness and material damping are believed to be frequency independent,

so Ky will vary due to the frequency dependant behavior of inertial mass and radiational

energy loss.

The SDOF oscillator can also be represented by the complex dynamic impedance

function in the form of Eq. 3.2:

K((ji)=(k-M(ji^) + iC(ji

where (k-Mo)^) =

Cg) = K2
M = mass

k = static soil stiffness

C = soil damping.

Therefore, if the dynamic impedance function for a specific footing and soil system can be

both experimentally measured and numerically calculated, the soil parameters can be

identified through an iterative process.
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The impedance function, Eq. 3.3, can be written in a more common form:

(3.4)

where k

13

= static soil stiffriess

= = C(Ojj/2k = damping ratio

= y(k/M) = natural frequencyG) n

or, in short-hand form.

A'=ife:|K+z(i)c^| (3.5)

where k = static soil stiffness

K = (l-o^/Wj,^) = stiffness coefficients

Cj = C/k. = damping coefficients.

Gazetas notes that, in the form of Eq. 3.5, the dynamic impedance of the SDOF oscillator

can be seen as the product of the static stifbiess of the soil and a complex number
incorporating the dynamic characteristics of the system. The stiffness coefficients decrease

with increasing frequency while the damping coefficients stay constant, as shown by the chart

in Fig. 3.2.

In reality, however, the relation between the stiffness and damping coefficients, and

frequency, is complex for sod-foundation systems. The behavior of the dynamic factor of the

impedance function will depend on the mode of vibration, geometry, rigidity, and

embedment of the foundation, and the profile and elastic properties of the soil system.

These complications are the reason that difficult numerical techniques, only available since

the mid-1970’s, must be used to estimate impedance functions. The experimental

determination of these functions has also been a difficult task (Crouse et al., 1990).

A small rigid footing can be excited by forced vibrations to determine actual

impedance functions in situ (Luco and Wong, 1990). The soil is modeled as several

horizontal layers overlying a half-space. The parameters of the theoretical function are

varied until there is a least squares match between it and the experimental function. This

allows the identification of the shear-wave velocities (stiffness), material damping ratios, and

Poisson’s ratios of the soil layers. Luco and Wong used the full set of impedance functions,

incorporating all five modes of vibration, in their theoretical calculations.
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Fig. 3.2 Dynamic stiffness and damping coefficients of a SDOF oscillator (from Gazetas,

1983)
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This technique was evaluated with a set of data from a foundation test in the Imperial

Valley, CA (Crouse et ah, 1990), which only contained the experimental functions for three

modes. The resultant velocities were different from the experimentally measured values, but

within the experimental variance of the SASW method used to measure the in situ velocities.

However, the damping ratio values were very erratic and unrealistic.

The impedance function method has been further refined to improve the damping

estimates (Luco and Wong, 1992). The primary concern of this paper was to ascertain the

effect of frequency on the identification accuracy. Since the applied force is proportional

to the square of the frequency, the force at low frequencies is small and approaches the

noise level. However, damping values are best defined at low frequencies. It was shown

that damping ratios for soil deeper than one-quarter of the wavelength associated with the

frequency of interest cannot be accurately identified. A similar relationship between

wavelength/frequency and depth of sampling was found in the derivation of the SASW
method.

Luco and Wong (1992) also found that data error degrades the estimates of the

properties of deeper layers, especially the damping ratio. As expected, the use of more
impedance functions (different modes) improves the identification. The authors improved

their results by the use of a weighting function (smoothing) on successive estimate iterations.

While the use of impedance functions to estimate in situ soil properties shows

promise and has good theoretical grounding, it is very limited as to the depth of soil it can

characterize. The maximum is only a few meters. The experimental and analytic overhead

is also quite daunting. The forced vibration techniques differ from the typical system

identification methods discussed in Chapter 2 in that the parameters were identified through

mechanistic/deterministic models of specific behavior rather than fitting the output time

series to a more general model such as the AR feedback model.

3.3 Non-stationary Excitation of the Soil System

3.3.1 Continuous Excitation

Forced vibration methods are often limited because there is no way to input enough

energy into the system to allow a large amount of soil to become involved. A solution to

this problem is to use natural excitation. A constant, repeatable source would be

appropriate, since it would allow large data sets and redundancy to minimize bias and

variance in the estimates. Ideally, simple DFT methods could be used with excellent results.

Of course, this assumes that the natural signal is stationaiy, as was assumed by Ohmachi et

al. (1991). For example, Gersch et al. (1973) used a maximum likelihood ARMA estimation

of the system parameters from two different length time series from a wind-loaded building.

The estimated damping ratio and resonant frequency, and their coefficients of variation,

were consistent for the first two modes of the 625 point and 2500 point series. This led the

authors to conclude that, in this case, the wind loading is a white noise excitation.
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Ambient vibration, however, is non-stationary in the long-term. A straight-forward

solution is to break up the non-stationary record into stationary pieces. The simplest

method is to assume that the variance is changing slowly, and break the record into relatively

short, equal-length segments. These segments can then be independently analyzed and
modeled (Popescu and Demetriu, 1990; Gersch and Martinelli, 1979).

A much more efficient approach is to use the Akaike Information-theoretic Criterion

(AIC) to divide the record into locally stationary, contiguous but not necessarily equal length

segments (Gersch and Brotherton, 1982). Each locally stationary segment is then assumed

to be made up of two components. The first is a stationary time series that is the same for

all the segments and represents the time invariant parameters of the structure being

investigated. The second is a non-specific auxiliary signal and varies from segment to

segment, and can be due to various noise sources.

While it was shown that a regularly sampled vibration record is exactly characterized

by a 2n-2n order ARMA model (Gersch et al., 1973), Gersch simplifies the problem by

noting that the MA parameters contribute very little to the estimates of the structural

parameters. As explained in Chapter 2, the problem is greatly simplified by modeling the

process as strictly AR, since the calculation procedure is well characterized. It was stated

earlier that MA parameters provide information on the phase relation of the time series,

while the values of the natural frequency and damping ratio depend only on the AR
parameters (Chang et al., 1982).

The model used, with an auxiliary process, is the ARX model. The AR spectral

estimate is calculated from the AR parameters, and a corresponding pole plot made for

each optimal time segment. Since the structural part is common to all segments and the

auxiliary (noise) part different in each, the complex poles of the structural part will be in the

same location while those of the noise process will vary in each pole plot. This is how the

parameters of interest are pulled out of the general model.

This ingenious method allows more certain estimates of the damping parameter.

Since the variance of the damping estimate is a function of the inverse of the length of data

used to make the estimate, long stretches of stationary data are usually required for robust

estimates. The present method allows the estimates from each segment to be combined with

a final variance inversely proportional to the length of the sum of segments.

Gersch and Brotherton (1982) present an example based on ambient vibration taken

from the top story of the Jet Propulsion Laboratory at the California Institute of Technology.

The values for natural frequency and damping ratio for the first two modes are given in

Table 3.1. These values are very realistic, and the variance of the damping is two to four

times smaller than an earlier analysis made with arbitrary, constant length segmentation.
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Table 3.1 Estimates of Natural Frequency and damping Ratio for the JPL.

Natural Frequency (std. dev.) Damping Ratio (std. dev.)

First Mode 1.02 Hz (0.007 Hz) 2.8% (0.57%)

Second Mode 3.14 Hz (0.02 Hz) 3.4 % (0.35%)

3.3.2 Modeling of Earthquake Strong Motion

Earthquakes can be seen as high-energy forcing functions that can be used to excite

a system of interest. Since the earthquake is a one-time transient event, it is by definition

non-stationary. It also is an unique event, so averaging techniques available to continuous

excitations are not applicable. Use of parametric models have the advantage of being

stochastic in nature, parsimonious, and directly related to structural properties. If parametric

models can accurately simulate a process, then the necessary filter has been discovered and

the parameters can be used to identify structural properties. The same reasoning is true if

the one-step predictor can be estimated with a parametric model. Up to this point, the

assumption has been made that earthquake strong motion can be accurately modeled by AR
or ARMA techniques without thoroughly investigating whether this is so. This important

assumption will now be examined.

In the 1960’s and 1970’s there was great interest in modeling seismic events for the

purpose of identifying the source. The driving need was the ability to differentiate nuclear

explosions from seismic events. It was assumed that there is a difference between the

ground motions due to earthquakes and explosions. If earthquakes and explosions could

each be well represented by an AR or ARMA model, the essence of each process would be

condensed into a few parameters, greatly simplifying the discrimination task. In addition,

for certain model structures, the parameters are related to important physical properties

such as earthquake intensity, duration, and distance (Cakmak and Sheriff, 1984).

A detailed attempt to discriminate between blasts and earthquakes derives an AR
model from the initial displacement potential of the two source mechanisms (Dargahi-

Noubary et al, 1978). The P-wave history was found to be modeled as a third-order AR
process. The parameters identified by this analysis are useful for estimating source

properties, such as event duration, and reflections of the direct P-wave. While these

parameters are not of much use to ascertaining the near-surface soil properties, they are of

use to the reflection seismologist.

Closer to the problem at hand, a very understandable exposition of the segment

approach and the application of the Burg estimator of AR parameters to earthquake

characterization is given in a paper by Jurkevics and Ulrych (1978). In this paper the

authors were interested in studying how the process changed through time, rather than

assuming that the system parameters were time-invariant. The Orion Boulevard recording
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of the 1971 San Fernando earthquake was used as the data series, and the surface

accelerogram modeled as a second-order AR process by the Burg method.

Three pieces of information are gleaned from the estimation — the two AR
parameters and the innovations variance. For the frequencies of interest, the system only

exhibited first mode response. The authors point out that while a larger AR order could

have been used to model the event, using the lowest order that adequately represents the

process allows "the motion to be less deterministic in nature, since the filter length is

shorter." The strong motion record is cut into very short segments (one second, fifty data

points) since a short segment best preserves the assumption that the process is stationary

within that segment. The use of the Burg algorithm allows a good estimation to be made
from fifty points (see Chapter 2).

The Z-polynomial representing the second-order system (Eq. 2.38)

(3-6)

is solved by Jurkevics and Ulrych for the complex roots Zj and z^, which are complex

conjugates located just outside the unit circle. This conjugate pair is illustrated in Fig. 3.3,

in rectangular coordinates. Also shown are the values given as polar coordinates R and 0

(O<0<l/(2At) Hz). 0 gives the frequency location of the pole, or modal peak, while R gives

the peakedness or half-width of the curve. The variance of the innovations is the amplitude

scaling factor.

In order to smooth the data, deterministic curves were fitted to the plotted discrete

values of the three parameters. The sharpness of the peak, R, changed somewhat through

the earthquake process, while the frequency shift was never more than about eight percent.

The innovation variance traced the envelope shape of the accelerogram through time. The
study is quite successful in characterizing the time varying nature of earthquake strong

motion. This helps show the validity of modeling strong motion with parametric models.

An approach more useful for identifying soil parameters is a derivation of an ARMA
model for a SDOF oscillator based on an analog to the continuous-time differential

equations of motion (Chang et al., 1982). The intermediaiy between the continuous domain

and the discrete domain is the assumption of a match between actual and calculated

autocorrelations. Equations are provided to calculate the damping ratio and resonant

frequency of n-degree-of-freedom oscillators from the 2n AR parameters. Phase relations

are preserved in the MA parameters.

Chang et al. used the Box-Jenkdns estimation procedure to calculate the ARMA
parameters (Box and Jenkins, 1976). The quality of the estimation is decided by how well

the residuals approach white noise, and is given by the "Q" statistic (Chang et al., 1982).

The Box-Jenkins method is only applicable to stationary time series, so a problem exists in

applying it to earthquake records. The adopted solution was to divide the complete record
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Fig. 3.3 Locations of filter poles Zj and in the Z plane, relative to the unit circle (from

Chang et al., 1982).
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into constant-length quasi-stationary segments, with five second segments (250 data points

each) giving the most satisfactory results.

Strong motion records from 1942 El Centro, and the 1971 San Fernando earthquakes

were analyzed. Almost all the data segments were best modeled as ARMA(4,1) processes.

The remaining segments were best fit by an ARMA(2,1) model. For the SW component of

the 1940 Imperial Valley earthquake, recorded at El Centro, and modeled as ARMA(2,1),
the parameters corresponded to the resonant frequency ranging from 2.4 to 3.2 Hz. The
corresponding damping ratio ranged from 27% to 60%. However, it is not clear to what

physical entity these parameters correspond to since there is not a well-defined system — a

known input into a column of soil (filter) and a measured output. The confusion as to what

physical quantity is being modeled is the inverse of that discussed in Chapter 2. For the case

under discussion, it appears that the AR coefficients model the shape of the ground motion

history, and the corresponding spectral estimate is descriptive of the waveform shape rather

than the mechanical behavior of the earth system.

The Box-Jenkins method used by Chang et al. selects the model order based on the

data itself, rather than by a priori decision. The authors therefore expect that other

earthquakes might yield ARMA orders different from (4,1) and (2,1). The authors also

believe that the source of non-stationarity in the surface strong motions is a result of changes

in the input driving function rather than in the soil (filter), a conclusion with which a

seismologist would heartily agree.

Segmentation of non-stationary strong motion records is still in use today. This

approach offers a straight-forward way to apply familiar, tractable methods to a strictly

inapplicable problem. A recent application applied the AlC-based segmentation scheme

used by Gersch and Brotherton (1982) to earthquake records from Romania (Popescu and

Demetriu, 1990). This choice was made after a thorough review of the various methods

available, including Kalman filter methods that are designed for non-stationary data. An
ARMA model is fitted using the Maximum Likelihood method with the goal of

characterization and simulation of earthquakes with few parameters.

A preliminary canonical correlation analysis provides an "good" initial guess as to the

ARMA orders, and the final choice is made from statistics developed during the Maximum
Likelihood determination and application of the AIC. For simulation, each segment can be

calculated by passing white noise with variance equal to that of the associated ARMA model

through the calculated process filter, and then multiplying the section with an "envelope"

function taken from the actual intensity of the associated earthquake segment.

In general, the simulations of Popescu and Demetriu matched the actual motions very

well, with statistics such as cumulative energy and root mean square acceleration tracking

throughout the record. However, there were some problems with the match for short term

energy for two directional components. Short-term spectra were also calculated for each

quasi-stationary segment, giving a graphical image of the change in the shaking process
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through time. This paper illustrates the utility of the segmentation method of approaching

non-stationary signals, and shows that earthquake strong motion can be well modeled by the

ARMA scheme.

3.3.3 Transforming Non-stationary Signals into Stationary Signals

Another approach to analyzing non-stationary data using methods strictly stationary

in derivation, is to transform the non-stationary data series into a stationary record. The
oldest and simplest technique is to apply the difference operator to the data. Often times

the new data series will be stationary and the parameters solved for with customary

techniques. The parameters can be adjusted to take into account the effect of the

differencing transformation (Bendat and Piersol, 1986).

A more advanced approach is based on the same assumption made by Gersch and

Brotherton (1982), that the non-stationary signal is a linear combination of two components;

(1)

a stationary component that is a result of the response of the structure in question, since

the physical properties are generally thought to be time invariant (a problem in soils for

strains greater than the threshold strain), and (2) the second component is a non-stationary

auxiliary input to time varying noise processes.

Based on the loose definition of stationarity used in this report (data variance is

constant through time), this approach sees the earthquake strong motion as a constant-mean

process acted on by an "envelope" function having time-varying amplitude. Polhemus and

Cakmak (1981) construct a polynomial to describe the change in variance over time and

employ it to "correct" the variance to a constant. They use this method to simulate

earthquake strong-motion using an ARMA model (1981). A particular earthquake is seen

as an instance of a stochastic process. Therefore, a "similar" earthquake would not have to

be identical, but only need to have the same stochastic descriptors. Indeed, this is the

stochastic foundation that makes the AR and ARMA methods possible.

Polhemus and Cakmak (1981) devised a three-stage procedure to estimate constant

parameters from a time series with a time-varying variance:

(1) An estimate of the variance function a/(t) is made in a non-biased manner. A "power

transformation" is used and fitted to a polynomial using least squares.

(2) The acceleration series is converted to a stationary series. The standard deviation at

each time step is derived from step (1) and is used to normalize the non-stationary

accelerations history into a constant-variance data series.

(3) An ARMA model is fit to the transformed data and the constant process parameters

estimated.

59



A new, statistically equivalent, earthquake record can be simulated by passing white

noise through the derived ARMA model and then "denormalizing" the signal with the step-

by-step standard deviations calculated in step (2). The model is validated by examination

of the residuals of the actual and simulated data. If the residuals from the two are

uncorrelated (white), then the model has accurately represented the process.

This method has been applied to a suite of earthquake records in an attempt to

estimate seismological variables (Cakmak and Sherif, 1984). The model parameters are used

to estimate values for temblor intensity, duration, distance from the site to the fault, and

local geology. Statistical methods are employed to fit these variables to model parameters,

which now include parameters describing the variance function a^(i) as well as the familiar

ARMA parameters. The brief results for the 1971 San Fernando earthquake are positive,

but the authors note that much more work needs to be done before the assumptions can be

accepted.

3.3.4 Modeling of Non-stationary Processes — Time Adaptive filtering

A non-stationary process can be modeled directly using time adaptive filtering, where

the estimates of the AR parameters are updated for each time step. An early

implementation of this approach to earthquake strong motion data was in the paper by

Jurkevics and Ulrych (1978) discussed above. The authors modified the Least Mean Squares

algorithm (Alexander, 1986) to operate on the data forward and backward, after Burg

(1975). This modification results in instantaneous spectral estimates with shapes similar to

that calculated by applying the Burg method to segmented data (see Sect. 3.3.2). In

addition, the step size of the adaptive algorithm changed as a function of the local input

amplitude.

The modified algorithm of Jurkevics and Ulrych allows the filter to be applied to the

data in reverse, in order to eliminate startup error. Startup error due to poor initial

estimates and a small past history is especially difficult with seismic signals which are

minimum phase, i.e. energy density is concentrated at the beginning of the signal. The
instantaneous estimates of the two AR parameters and the innovations variance were

averaged in fifty data point segments to smooth the noise, and deterministic curves fitted to

the data. The proper time step to use in the adaptive algorithm was somewhat troublesome

to determine, an improper value either critically underdamps or overdamps the response.

The adaptive estimations reported by Jurkevics and Ulrych were virtually identical

to those calculated by the segmentation method. This result shows that carefully segmenting

non-stationary data does a very good job of characterizing the local, quasi-stationary process.

The frequency and amplitude content of the accelerograms simulated by the resulting filters

were the same as the actual recorded signal.
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A much more direct approach is to utilize the Kalman filter estimation of the AR
parameters. Kitagawa extended the work of Akaike through a state-space AR model with

constrained time-varying coefficients (1983). The model assumes a zero mean, non-

stationary data series, such as an accelerogram. In contrast to the method of Jurkevics and

Ulrych discussed above, where the AR coefficients could change abruptly through time and

then had to be smoothed and filtered by an ad hoc technique, Kitagawa employs a linear

constraint to insure that the AR coefficients can only change gradually through time.

The time varying AR model is defined as

m

+ (3-7)

j=i

where m = counter for AR order l..k

n = time step 1..N number of data points.

where the AR coefficient is a gradual function of the time step counter n. A simple least

squares fit would entail the calculation of mN parameters from N data points. This large

overparameterization leads to poor estimates. A parsimonious approach is to treat the AR
coefficients as random variables and apply a stochastic rule as to their behavior through

time. The change in the AR parameters is constrained by a "stochastically perturbed

difference equation", which must reflect the actual behavior of the process being modeled.

The estimation is now a constrained least squares problem.

For the simplest case, the parameters are modeled as randomly changing, modeled

by a random walk prior distribution, and neighboring coefficients are almost equal. The
equation governing the change is a first order difference model

a(i,n)=a(i^n-l)+6(i,n)

where 6 = Gaussian white noise with 0 mean, variance

n = data point number (time step).

If the process, hence AR parameters, changes more slowly, the constraint is better defined

by a second order difference model

a(i, n) = 2a(i,n-l)-a (z, n -2) +6 (z, n).

The order, k, of the difference equation that best models how rapidly the system is changing

through time, must be estimated, and are parameters of the model along with the AR order

m and innovations variance. The variance of the constraint innovations, controls the

"intensity" of the stochastic change, and must also be estimated.
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There are now (m+k+2) parameters to be estimated — k AR parameters, m
constraints, and the two variances, and r^, which can be combined into the ratio /i =

The ratio ii represents the trade-off between the (in)fidelity to the actual data and

the (in)fidelity to the change constraint. The trade-off ratio has been likened to a signal-to-

noise ratio, or in Bayesian terms a measure of belief in the a priori assumptions. Non-linear

maximization of the likelihood parameter is used to estimate /i, and the AIC is used to

define the system parameters m, and k. At this point Kalman filtering is used to estimate

the values of the model parameters.

An instantaneous power spectral density can be generated from the "instantaneous"

AR estimates. Given the local AR parameters just estimated, a(j,n) and the spectral

estimate can be defined by

5(o),«) =
o^(n)

;=i

(3.10)

where i

m
n

G)

j

= y-i

= AR order

= time step of interest

= radial frequency

= counter for l..m AR order

This spectrum is simply a helpful visual aid as to the behavior of the process at that point

in time.

This entire scheme was tested by comparing the theoretical and estimated

instantaneous spectra for synthesized non-stationary AR processes. An example slowly-

changing time series is shown in Fig. 3.4. The actual gradually changing spectrum for this

data is shown in Fig. 3.5, and should be compared to the estimated spectrum shown in Fig.

3.6. The estimated spectra, for AR order 5, second order difference constraint, and trade-

off ratio 9.6x10'^, is virtually the same as the theoretical solution. The match for rapidly and

instantaneously changing processes match almost as well.

An earlier paper by Kozin (1977) presented a very similar approach. However, Kozin

used an orthogonal family of Legendre polynomials to "constrain" the changing AR
coefficients. He also used a consistency method to apply maximum likelihood to non-

stationary signals and AIC to determine the best choice for model order.

The use of Kalman filtering is presented in more detail in later papers, where the

method is directly applied to characterizing earthquake strong motion records (Kitagawa and

Gersch, 1985; Gersch and Kitagawa, 1985). The authors point out that earthquake
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acceleration history is modulated by a slowly changing envelope function, as described by

Polhemus and Cakmak above. This envelope is the change in scaling of the AR parameters

through time, or the "smoothed value of the instantaneous variance." The Kalman-Akaike
based technique just discussed (Kitagawa, 1983) can be used to estimate the smoothed trend

of the innovations variance, or changing power.

The "smoothness priors time-varying AR coefficient" model was applied to the 1971

San Fernando earthquake (Gersch and Kitagawa, 1985) and the 1949 Olympia, Washington

earthquake (Kitagawa and Gersch, 1985). The results for the Olympia temblor will be used

as an example. The authors recalculated and optimized model and constraint order every

one-hundred data points, out of a total twelve-hundred. The actual accelerogram is shown

in Fig. 3.7, with a simulated history shown in Fig. 3.8 for comparison.

The change of the system through time is given by the change in AR coefficients

through time, shown in Fig. 3,9, and the innovations variance history shown in Fig. 3.10.

Notice that the system descriptors change quite infrequently, and with "quantum" jumps.

The variance envelope, or power, shows several "bumps" which the authors believe are

indicative of the arrival of the various wave modes. The local impulse response function of

the process can be computed from the instantaneous AR coefficients and innovations

variance. This information is combined in Fig. 3.11a, which shows the instantaneous spectral

description of the system through time. The spectra actually reveal no more information

than the other plots, but presents the physical relationships in a more familiar manner. For

comparison. Fig. 3,11b shows the instantaneous spectrum for the simulated time history,

shown in Fig. 3.8,

At this writing, these methods have only been applied to model the strong motion

response. It is hoped that Gersch and Kitagawa will adapt this method to estimating the

parameters of a single input-single output system. Attempts are currently being made to

apply extended Kalman filters to directly identifying nonlinear soil properties (Lin, 1990).

This preliminary study was made for a simulated soil system for which the nonlinearity was

assumed to be purely hysteretic. The input and output signals for the soil system are

required for parameter identification, and estimates of the statistical nature of the noise.

The results were varied, with fair success when the model-generated backbone curves

were the desired output. If the soil system is well characterized by the chosen model, then

only one input-output data series is needed to completely describe the soil’s nonlinear

behavior. If not, strong motion records for several different strain levels are needed. At this

point many assumptions were made and the system limited, but the results were heartening

and further work on these lines is warranted.
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Fig. 3.7 Actual accelerogram from the 1949 Olympia, Washington earthquake (from

Kitagawa and Gersch, 1985).

Fig. 3.8 Simulated time history for the 1949 Olympia, Washington earthquake (from

Kitagawa and Gersch, 1985).
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Fig. 3.9 Time varying AR model coefficients (A) a(l,l), (B) a(2,l), (C) a(3,l) for the 1949

Olympia temblor (from Kitagawa and Gersch, 1985).

Fig. 3.10 Smoothed instantaneous innovations variance for the 1949 Olympia temblor (from

Kitagawa and Gersch, 1985).

Fig. 3.11a Actual instantaneous spectrum

for 1949 Olympia earthquake (from

Kitagawa and Gersch, 1985).

Fig. 3.11b Instantaneous spectrum for the

simulated 1949 Olympia
earthquake (from Kitagawa and

Gersch, 1985).
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3.3.5 Summary

Several different methods have been presented to directly assess non-stationary data.

These methods cover a wide range, from transforming the data into a stationary signal to

full-fledged non-linear, non-stationary analysis. The method used will depend on the nature

of the data available and the nature of the information needed to be gleaned. Transforming

the data (Polhemus and Cakmak, 1981) is an acceptable method if the non-stationarity is

mild and mostly in the amplitude. This method does not give much information as to the

time-varying change in frequency and damping.

Segmentation of the data into stationary pieces gives very good results and is widely

used. The approach by Gersch and Brotherton (1982) is the most rational. It makes the

best use of the limited data available and allows the noise model to change through time.

However, if the process of interest has time varying parameters, then a recursive technique,

such as presented by Kitagawa (1983), must be used. In fact, the extended Kalman filter is

often used in other fields to estimate smoothly varying non-linear parameters.

3.4 Estimation of Soil Parameters From Earthquake Strong Motion Data
3.4.1 Introduction

Up to this point, the work presented has been of a theoretical bent, to show the

methods available for estimating system parameters. Understanding these discussions will

allow the reader to understand actual field applications. In this section, actual field

experiments made using earthquake strong motion data are presented.

3.4.2 Use of Shear Beam Theory

An early success using measured response of an earth dam to earthquake excitation

to estimate soil properties was made for the Santa Felicia dam in California (Abdel-Ghaffar

and Scott, 1979). The input (base displacement) and output (crest motion) of the structure

was recorded for the 1971 San Fernando earthquake, and another temblor in 1976 (Ml =
3.7). A shear-beam theory model was used to estimate shear moduli and damping ratio for

the rolled-fill earth dam, constructed from gravelly sands.

The soil was modeled as a hysteretic SDOF system with a non-linear restoring force.

An estimate of the hysteretic response can be made by plotting the crest displacement

relative to the base, against absolute acceleration of the dam. Using the shear-beam model,

the slope and area of the hysteresis loop can correspond to shear modulus and damping

ratio (see Richart et al, 1970). Correlations can also be made to a finite element model

using estimated parameters. The fundamental frequency behavior of the dam was isolated

by narrow band-pass filtering the data. Without this filtering, the plotted hysteresis loops
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were erratic and useless for analysis. The precariousness of this modeling can be
appreciated from the very small displacement of the top of the dam relative to the base —
2.0 mm.

The non-stationary response of the dam was analyzed by breaking the record into

approximately one-second segments. Using both two-dimensional shear-beam theory (with

constant shear modulus) and one-dimensional theory (shear modulus varying with depth),

a relationship for dynamic stiffness, G, was derived. For the two-dimensional case the

relationship for G is given by :

.
(3.11)

where = fundamental mode shear stress

Yn = fundamental mode shear strain

P = mass density of dam soil

Vs = shear velocity of dam soil

(Oil = fundamental mode natural frequency
Y
-^max

= maximum relative displacement of hysteresis loop.

= maximum absolute acceleration of hysteresis loop

A similar relationship exists for the one-dimensional case. In addition, expressions for stress

and strain at any time were derived.

With these equations the relationship between shear modulus and shear strain can

be calculated. Additional information is given by the data from the second, smaller

earthquake. An example of the results is shown in Fig. 3.12, where the stiffness reduction

values calculated are well within the range of those expected. However, a similar analysis

for the damping ratio yielded a curve of different shape than expected — S-shaped rather

than hyperbolic, as shown in Fig. 3.13. The discrepancy might be due to the fact that the

soils tested were predominantly gravels, and there have been virtually no laboratory tests run

on gravel, and the results were accurate. However, it has been seen throughout Chapt. 2

and 3 that the estimations for damping are often inaccurate and inexact.
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Fig. 3.12 Experimentally measured modulus degradation compared to previous values (from

Abdel-Ghaffar and Scott, 1979).

Fig. 3.13 Experimentally measured damping ratios (from Abdel-Ghaffar and Scott, 1979).
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3.4.3 Fourier Analysis of Non-stationary Ground Motion

A study has been made of data recorded at the Wildlife site in the Imperial Valley

during the 1987 Superstition Hills earthquake (Vucetic and Zorapapel, 1990). For this

event, three-dimensional accelerograms were recorded at a depth of 7.5 meters at the

surface. In addition, pore water pressure was monitored throughout the shaking. The paper

attempts to correlate a decrease in natural frequency of the soil layer, associated with

degradation of the shear modulus, with the increase of pore water pressure as the condition

of liquefaction is approached. However, it has been postulated that the piezometers were

not functioning properly (Hushmand et al., 1992, 1991). The methods used in the analysis

are instructive, in addition to giving a view of the state-of-the-practice in the use of system

identification in the geotechnical field.

The system is well-defined for this problem, since both the input and output are

known. Rather than use the more certain AR methods discussed in Chapt. 2, the authors

choose to characterize the motions by simple Fourier spectra, with all the attendant

uncertainty and problems discussed in the previous chapter. The system response function

is not calculated directly through a least squares deconvolution or system identification

procedure, rather is characterized by the spectral ratio. Because it is a simple ratio, a small

error in one of the spectral estimates can have a very large effect on the calculated value.

The non-stationarity of the data is taken into account by segmenting the data,

although the segmenting is not based on preserving sections with a common variance.

Instead, the segmentation is based on physical concerns such as arrivals of various wave

modes, or changes in pore water pressure. The analysis showed that the fundamental period

of the soil layer lengthened as the pore pressure built up and the soil stiffness degraded.

The entire process was also modeled using the DESRAMOD computer program (Vucetic,

1986) which calculates soil and pore water behavior based on a one-dimensional lumped

parameter model. The resonant frequencies calculated by DESRAMOD and those from the

Fourier analysis agreed well, especially for the vertical component.

3.4.4 Parameter Estimation Using Impedance Functions

Actual earthquake excitation has been used to measure experimental impedance

functions of structures for comparison to theoretical functions, with acceptable results (Mau
and Wang, 1990; Loh and Mau, 1989). Loh and Mau studied the modal behavior of the

one-quarter scale model nuclear power plant containment vessel in Lotung, Taiwan. The
rigid structure is very well instrumented so that the rigid body motion could be very well

characterized with simple computation. The paper reports preliminary work, for which the

free-field motion is not taken into account. The best fit between the theoretical impedance

functions and the experimental impedance functions was for the assumed material values

given in Table 3.2.
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Table 3.2 Estimated Material Parameters for Lotung Site (after Loh and Man, 1989),

Natural Frequency 2.72 Hz

Damping Ratio 10.9 %

Shear-wave Velocity 310 m/s

Man and Wang (1990) continue the work on the Lotung containment structure with

a more complete analysis where the form of the impedance function was not assumed.

Again, only the rocking impedance was studied to simplify the embedded foundation

problem. The coupling terms are ignored, allowing the system to be modeled as a single-

input-single-output system, with impedance function acting as the transfer function (filter).

The kinematic input motions must then be calculated from the measured motions.

The dynamic impedance is calculated using the method of Bendat and Piersol (1986),

discussed in Chapt. 2, Sect, 2.2.1. The transfer function is calculated from the ratio of the

cross-spectrum to the autospectrum (Eq. 2.3). The coherence function was also calculated,

and only relationships for frequencies with high coherence (1.5 - 4.5 Hz) were used to define

the impedance function. The results were very poor, possibly because the assumptions made
about lack of coupling were incorrect, or more than one mode must be included in the

analysis to obtain useful results.

3.4.5 Non-linear Ground Response Analyses

Possibly the best set of data for earthquake excitation of soils exists for the test site

operated by the Electric Power Research Institute (EPRI) and the Taiwan Power Co. at

Lotung Taiwan (Tang, 1987). At this site, two locations are instrumented with three-

component accelerometers at depths of 47, 17, 11, 6 meters, and at the surface. One array

is in the free-field while the other is adjacent to the one-quarter scale nuclear containment

vessel mentioned in Section 3.4.4. The site is also well instrumented with piezometers at

various depths and locations. The simplified soil profile consists of 30-35 m of silty sand and

sandy silt with some gravel, above clayey silt and silty clay. The water table is within half

a meter of the ground surface. This area is seismically active, and many earthquakes of

exhibiting a wide range of magnitudes have occurred since 1986.

A series of studies have been undertaken at Lotung using parameter identification

to evaluate the non-linear response of soils due to strong motion (Chang et al., 1991, 1990,

1989). The authors note that outside of actual liquefaction sites, there has been no

documented field evidence of the degradation of soil properties with increasing strain (Chang

et al,, 1989). One notable exception is the work done for the U.S, Nuclear Regulatory

Commission (Shannon-Wilson and Agbabian, 1975).
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The first phase of the work concentrated on calculating a transfer function for the soil

at several different points of the excitation history. The parameter of interest from the

transfer function was resonant frequency. A simphfied analysis for a two-layer system was

used to calculate the effective S-wave velocity since the soil profile was known (Dobry at al.,

1976). Shear moduli were calculated from the estimates of wave velocity. The strong

motion record was divided in three sections: (1) initial motion before strain levels high

enough to degrade the soil was reached, (2) peak motion, and (3) the coda or ring-down.

The transfer functions were estimated from the ratios of output Fourier spectra and

input spectra fi-om various depths. The Fourier spectra were smoothed by a triangular lag

window. Unfortunately, the data lengths were very short since two of the time windows were
only four seconds long. A Burg estimator would be much more appropriate for this

application. In addition, use of an optimal segmentation scheme (Gersch and Brotherton,

1982) might be very helpful in identi^ng exactly when the parameters of the system actually

changed.

The shear modulus showed a marked decrease from the initial low-level excitation

to peak deformation. Depending on the depth used as input, the modulus reduction factor

ranged from 0.60 to 0.14. These values are for a magnitude 6.5 earthquake exhibiting a

peak horizontal acceleration of 0.21 g. As a check on reality, the S-wave amplitudes for the

initial segment were in very good agreement with the actual measured values. A
troublesome point is the large discrepancy in modulus reduction factor for the two horizontal

components. The expectation would be that they would be virtually identical, since soil

degradation is usually thought of as a scalar quantity.

This body of data is ideal for checking the results of ground response programs such

as SHAKE (Schnabel et al, 1972) and DESRA-2 (Lee and Finn, 1985). SHAKE was tested

in both the forward prediction mode and the inverse surface-to-depth mode, and DESRA-2
in the forward mode (Chang et al., 1990). The modulus degradation curve was calculated

from actual field data in the manner discussed immediately above. The equivalent damping

ratio was estimated from resonant column tests and the Seed-Idriss curve. For the SHAKE
analyses, the additional input parameter was the field gathered S-wave velocity profile.

The results from SHAKE show that the calculated motions are higher than actual for

frequencies greater than 0.6 — 1.5 Hz, with the lower frequency associated with the analysis

of a thicker layer of soil. There was no correlation for phase information. The backward

analysis yielded better results than the forward propagation analyses. The disagreements

might be due to the equivalent linear use of a single value of shear modulus per layer. The

modulus used might only be valid for part of the load history, most specifically the peak

strains for which the modulus is corrected for (Chang et al., 1990).

The results from the forward propagation non-linear DESRA-2 analysis show good

agreement between actual and calculated displacement for frequencies up to about 6 Hz.

There was also good correlation for phase angle for frequencies up to about 3 Hz. The
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shape of the equivalent damping ratio curve back-calculated from the non-linear analysis is

different from that normally expected. Rather than the expected hyperbolic curve, the field

curve is S-shaped. This uncommon S-shaped curve is the same shape as that calculated by

Abdel-Ghaffar and Scott (1979) from actual field data (see Section 3.4.2).

Further work on the shear modulus reduction curve based on actual large strain

measurement is reported by Chang et al. (1991). This study utilized seven different

earthquakes with magnitudes ranging from 4.5 to 7.0, and peak horizontal accelerations

ranging from 0.03 g to 0.21 g. As for the earlier report discussed above (Chang et al., 1989),

shear modulus is estimated from S-wave velocities derived from resonant frequencies and

soil layer thickness. Shearing strains are calculated from wave propagation theory using

SHAKE.

In this study, the non-stationarity of the accelerograms are not taken into account,

with the transfer functions being estimated for the entire time history at once. This means
that the resultant resonant frequency estimated is an average value for the entire strain

history of the earthquake. The earlier work showed that there can be a very substantial

change in soil stiffness through time, so this approach seems incomplete. Of course, for

small events with little or no degradation, the seismic velocities and the back calculated

values match very well.

The equivalent stiffnesses or S-wave velocities calculated from the transfer functions,

are input into the computer program SHAKE, along with damping curves from laboratory

tests. Shearing strains are calculated when recorded surface motions are run through

SHAKE. The calculated strains are open to doubt since the program makes its estimation

from the peak stress value, and calculated strain and stress at different points in the soil

layer. All the problems with the equivalent-linear approach brought up by Chang et al.

(1990) are appropriate here too.

If the described method is accepted as valid, the resulting modulus reduction curves

are as shown in Fig. 3.14, along with a comparison to laboratory test results. The results

show that for small strains (surface acceleration < 0.03 g), the results from geophysical

methods, resonant column, and system identification are in good agreement. For

intermediate strains (5x10'^ to 2x10'^) the back calculated values for modulus reduction are

up to twenty percent lower than the resonant column measurements. For higher strains of

3x10'^ to 2xl0'\ the results from cyclic triaxial tests are in fair agreement with the field

values for shear modulus, with moderated scatter for the laboratory data.

This field test is the most complete to date. However, some compromising

assumptions should be mentioned. The values of S-wave velocity and strain are average

values for the entire event, from low stress to peak and back, and not actual values for any

particular part of the excitation history. The method of calculating the transfer function is

can amplify inaccuracies, since the high variance in Fourier estimates can cause even larger

errors when the ratio is taken. The
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Fig. 3.14 Back-calculated normalized shear modulus compared with laboratory test data

(from Chang et al., 1991).

74



use of SHAKE to calculate strain raises questions, especially given the problems discussed

by the authors one year earlier (Chang et al., 1990). It would be very informative to use this

fine set of data with a more thorough and challenging set of analyses.

Due to the general lack of data sets for which the ground motion input into a soil

profile is known from downhole instruments, an attempt has been made to simplify the

inverse problem so that only the output (surface) strong motion needs to be known
(Tokimatsu et al., 1989). As in the attempt by Nakamura (1989), an assumption has to be

made as to the character of the input motion, since the system can not be solved for with

only the output known.

Tokimatsu assumes one effective soil layer over bedrock. Working from the basic

equation linking S-wave velocity and fundamental period (Dobry et al., 1976),

where H
P

T

1II (4.13)
3 T

for the shear modulus is derived as

G=16p

= thickness of the soil layer

= mass density of the soil layer

[t]
(4.14)

= fundamental period of the soil layer

The assumption is now made that any increase in the fundamental period is directly related

to a decrease in soil layer stiffness:

\2

(4.15)

tnflT

where G/G^ modulus reduction factor

fundamental period of the soil layer at lO"^ shear strain.

Assuming linear behavior of the soil mass, a relation for the shear displacement at

any depth z from peak particle velocity and S-wave velocity is given. This derivation

assumes that the shear strain at any depth is just a time-offset displacement of the surface

strain. Although Tokimatsu claims now to be able to accurately calculate shear strain at any

point in the soil mass at any time, he defines an effective shear strain to be 85 percent of

the maximum shear strain. This value is picked since for the first ten seconds of the

excitation, the effective strain is considered to be 85 percent of the maximum shear strain.

For the estimation of damping ratio, Tokimatsu assumes that the input motions from

the bedrock layer are white noise, a poor assumption based on what has been presented in

this report. This assumption, however allows the authors to say that the Fourier spectrum

of the surface motions has much the same shape as the spectral ratio (i.e. amplification spectrum).
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The authors claim good correspondence between laboratory results and their

technique. However, until a more rational and complete derivation is given, this approach

is not considered useful. There are too many theoretical problems and shaky assumptions

involve to accept it as presented.

A good example of the apphcation of time-adaptive modeling of soil parameters from

earthquake strong motion data is a paper by Safak (1989). While the paper is difficult to

understand, the application of advanced system identification techniques is well illustrated.

In this paper the adaptive scheme uses an exponentially decaying "forgetting-factor" to take

the non-stationarity into account, rather than a full Kalman filter that actually models the

changing parameters directly.

The process is modeled as a single input-single output system where the input and

output are loiown, but the auxiliary noise input is not known but assumed to be white. The
general model is autoregressive-moving average with a moving average auxiliary input

(ARMAX). The ARMA parameters are estimated by a recursive least squares scheme

known as the Recursive Prediction Error Method. Safak shows that for earthquake ground

motions, a subset of the ARMAX, the ARX (autoregressive with noise) is most appropriate.

If the prediction error series is a stationary Gaussian variable with zero mean, this method

is identical to the Maximum Likelihood estimation.

Proper application of a parametric model to a process requires determining the

proper model order. The simplest criterion is to use the order that minimizes the prediction

error

where e(t) = prediction error at time t (innovation)

y(t) = actual output at time t

^(t) = prediction of output at time t made at time t-1.

As discussed in Chapter 2, this estimate can be checked by observing whether the prediction

error time series is white. It was shown that if all available information is retrieved from the

data, the residuals will become a white noise series. However, it is possible for the system

to be correctly modeled while the noise is not. This case still will give the correct transfer

function but not have a white residuals series. The validity of the model can still be checked

by observing the cross-correlation of the input and residuals series. For a valid model
,
there

will be no correlation between the two since the model "pulls" all the information out,

leaving only the noise. The final choice is to use the AIC, which maximizes the entropy

between the model and actual process.

Safak gives an example of the ARX approach to spectral estimation by analyzing the

surface strong motion from the 1971 San Fernando earthquake. If the input white noise

signal is combined with the auxiliary white noise signal, the ARX model becomes the more

familiar ARMA model. This method is identical to the Burg estimation if the MA
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parameters (which model sharp dips) are not included. As was shown in Chapter 2, this

method avoids making the assumption that the signal is stationary and the noise process is

discrete from the process of interest. Figure 3.15 shows the resulting instantaneous spectral

estimates for one, five, and eighteen seconds into the earthquake (note the log-log scale).

It is seen that the fundamental frequency becomes smaller though the shaking.

The ARMAX model was also applied to estimating the parameters of a soil column

(Safak, 1989). In this case nearby bedrock motion and the surface motion were both known
for a site subjected to the 1985 Chilean earthquake. The estimated parameters are

associated with system fundamental frequency and damping ratio. In the frequency domain

the spectrum shows frequency-dependant amplification. The method used allows the process

parameters to be estimated throughout time so that the change in the system can be

monitored. In this paper only the results for eighteen seconds into the temblor, the coda,

is reported. The results for the first mode are a natural frequency of 1.35 Hz and a damping

ratio of 11.9 percent.

The results in this paper are arrived at through a deliberate, rational approach rather

than trial-and-error, ad hoc methods. Obvious areas of improvement would be to

incorporate some of the techniques developed by Gersch and his cohorts. The author

himself points out that the ARMAX model did not model the noise very well, and suggests

the use of the Box-Jenkins model where the noise is modeled with it’s own ARMA
polynomial. Safak also points out that the application of a Kalman filter would take the

non-stationarity more rationally into account.
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(cm/s)

Fig. 3.15 Amplitude of the transfer functions of the 1971 San Fernando temblor modeled

as an ARMA (8,7) process at times t = 1, 5, and 18 seconds (from Safak, 1989).

Note log-log scale.
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CHAPTER 4 CONCLUSIONS AND SUMMARY

4.1 A Framework of Knowledge

4.1.1 Estimation Techniques

For the system identification problems of interest to this report, the parameters to

be found are system damping and resonant frequency. The resonant frequency is associated

with the peak of the amplitude spectrum. It has been seen that a single peak is relatively

easy to identify, especially if the proper model has been used for the process. For the very

large resonance peak of the principle harmonic, virtually any method will give a close result,

even for a relatively non-stationary case. However, every method distorts the shape of the

peaks, the usual source of the damping estimate. It is therefore to be expected that system

identification will give good estimates of modal frequencies, but poor estimates of damping.

A study was done by Gersch (1974) in order to determine the greatest degree of

accuracy with which a proper order ARMA model can estimate the damping ratio and

natural frequency of a structure, using the Maximum Likelihood method. He notes that as

the number of data points (N) becomes large, the estimate approaches the actual model and

approaches the Cramer-Rao lower bound of variance. The accuracy is given as the

coefficient of variation — standard deviation divided by the mean. For both parameters, the

coefficient of variation is inversely proportional to JN and length of the period sampled, and

relatively insensitive to noise. For one thousand data points, the coefficient of variation was

less than 0.01 for natural frequency, but greater than 0.2 for damping ratio; this is an order

of magnitude difference.

As a note of caution, while the more complicated models encompass more of a

process in a rational manner, the values needed as input must often be assumed, making the

results less meaningful. The results of the more complicated models should be compared to

those of simpler, more intuitive calculations that allow the engineer to maintain a "feel" for

the validity of the results throughout the evaluation process. In the words of G. E. P. Box,

"All models are incorrect, but some are more useful than others."

4.1.2

Conclusions and Recommendations

Theoretical and practical considerations have shown that transforming a data series

into the frequency domain is not a straight-forward process. The results of a simple DFT
has variance equal to the mean, and is very severely corrupted by leakage. This has resulted

in the tremendous amount of ad hoc attempts to improve on the bias and uncertainty

problems, lumped in this paper as the "classical approach". This presentation has not gone

into detail about these methods, except to become aware of the inherent problems. A
thorough summary and comparison of almost all these non-parametric methods, and

parametric methods, can be found in Kay and Marple (1981). Included Kay and Marple’s



paper is a shocking comparison of the results of all the methods, each giving results

unrelated to the others, and all different from the theoretical frequency spectrum.

These problems were directly addressed by Thomson (1982) in deriving the multi-

taper method. It is believed that this approach is the ’'best" non-parametric spectral

approach if proper pre-treatment of the signal is done. These same considerations are

addressed from a philosophical point of view by many papers of John Tukey (e.g. Tukey,

1984; Brillinger and Tukey, 1984). Blindly applying the FFT to one’s data is a very

dangerous thing to do, and the cautions and insights of Tukey should be taken to heart

before starting.

If the process being studied can be modeled as an AR or ARMA process, then the

parametric approach is the best method to characterize the system. The Burg method is

ideal for short, relatively stationary data. The growing family of adaptive and Kalman filters

are proving themselves with non-stationary processes. The AR model was shown to be

initially derived for a SDOF oscillator, and the ARMA model can be derived directly from

the differential equation of motion for an N-degree-of-freedom system, with the damping
ratio and resonant frequency the model parameters (e.g. Gersch and Luo, 1970). A 2n-2n

ARMA model is therefore a valid model for a layered soil system, or soil-structure

interaction problem.

The examination of the various attempts to characterize soil properties through

analysis of the response to earthquake excitation has illustrated some of the main pitfalls and

advantages of using the system identification approach. One important problem in

evaluating the various methods is that there is no "correct" value against which to compare

the results. The mechanical engineer has the advantage of being able to construct a system

similar to that being tested, with known parameters against which to test the method. The
geotechnical engineer never has this luxury. This limitation highlights one of the strengths

of the SI approach, since there is no other way to actually measure the in situ fundamental

frequency and damping ratio for strains even remotely approaching those encountered

during earthquake loading.

The geotechnical community has not utilized the methods, approaches, or warnings

discussed by the system identification community and presented in Chapter 2. The methods

used to date make no acknowledgement to the non-stationarity of the signals, or that the

Fourier spectral estimate may have any limitations or uncertainties. The exceptions to this

are the researchers using forced vibration and fitting impedance functions.

The forced vibration-impedance function method is very attractive since the

investigators have control over the input signal. Besides simplifying the calculations, this

avoids having to wait many years for an earthquake to occur at a given site. The approach

is also straight-forward in concept. The major problem seems to be an inability of

generating enough energy to involve a deep column of soil. The strains induced in the soil

will be in the low range for the same reason.
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It is recommended that the complete input-output data sets from the Wildlife site and

Lotung be analyzed using the tools provided by the researchers in control. The improved

segmentation scheme of Gersch and Brotherton (1982) is very appealing if the process

parameters are not believed to change during excitation. For situations where the soil is

believed to have undergone degradation, methods taken after ICitagawa and Gersch (1985)

seems to offer the most promise. In any event, application of AR and ARMA spectral

estimators will yield spectral estimates with higher certainty than Fourier analysis.
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