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An intelligent control system for a cutting

operation of a continuous mining machine

John Albert Horst, National Institute of Standards and Technology (NIST). Gaithersburg, MD

Anthony J. Barbera, Advanced Technology and Research Corp. (ATR). Laurel, MD

Abstract: An implementation using the Real-time Control System (RCS) reference model is descrit>ed.

RCS is characterized by explicit software modules that perform behavior generation, sensory processing,

and world modelling functions at different hierarchical levels. A detailed and sharply defined approach to

RCS design is described in this paper. It is characterized by task-based problem decomposition, cyclic

execution, generic software modules, standardized communications interfaces, and state machines. The

particular implementation described demonstrates the utility of this methodology for the control of a cut-

ting operation of a continuous mining machine used in the underground coal mining industry.

Key words: Animation, box cut, coal mining, continuous mining machine, control system design, control-

ler, design methodologies, intelligent control, mining, Real-Time Control System (RCS), robotics, simu-

lation.

1 Introduction

Methodologies for design of large-scale intelligent control systems proliferate [Albus 89, Brooks 86,

Lyons 89, Nilsson 89, Quintero 92, Simmons 90, Skillman 89, Aberdeen 91]. These methodologies and,

particularly, precise performance metrics for them are still being developed. The plethora of methodolo-

gies and the paucity of precise metrics suggest the use of methodologies that have successfully solved a

wide range of ‘real-world
’
problems. A methodology for design, testing, and implementation is being

developed and advanced at the Advanced Research and Technology Corporation (ATR) and at the

National Institute of Standards and Technology (NIST) [Quintero 92] and is called the Real-time Control

System (RCS) reference model [Albus 89, Albus 92]. RCS is a large-scale control system design method-

ology that has been successfully tested against a variety of robotics and automation problems [Huang 92].

The RCS reference model specifies hierarchical, heterogeneous levels of control where each level has

a characteristic spatial and temporal bandwidth for each of the critical components of the system at that

level. The critical components of the system are sensing, control, and world modelling. In RCS, each

level can have multiple modules and each module contains sensing, world modelling, and control func-

tions. RCS is relatively conceptual and abstract in its construction and, therefore, allows many possible

implementations. The approach described and used in this paper is a more detailed and sharply defined

version of RCS than that described in Albus 89. This approach can to some extent be considered an

implementation of RCS, and for the sake of clarity we will refer to this approach as RCS throughout the

paper. In no way does this paper signal a commitment of NIST to the particular approach to RCS
described herein as a formal design standard.

The implementation of RCS described in this document focuses on the TASK and E-MOVE levels.
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based on definitions in the NASA/NBS Standard Reference Model Telerobot Control System Architec-

ture (NASREM) [Albus 89]. RCS modules at these levels address the solution of problems that suit a

rule-based as opposed to continuous control based approach. The type of rule-based problems well served

by this implementation are characterized by tasks that span time intervals between 0.5 seconds and 5

minutes and spatial distances between 5 centimeters and 50 meters. Such rule-based problems are charac-

terized by an abundance of ‘conditional’ code, i.e., code that contains large amounts of if then else
type decision making. For example, delivering a missile to a target is largely a continuous control based

problem whereas following a recipe to bake a cake is more of a rule-based problem. RCS has often been

used to solve large-scale conditional^ sequencing and coordination problems where the continuous con-

trol part of the problem is very simple. A good example of a conditional sequencing and coordination

problem is the mining machine control problem at hand. This is even more true due to the fact that contin-

uous mining machines have on-off or ‘bang-bang’ style control of appendages. Nonetheless, traditional

control algorithms can still operate within this implementation of RCS. Other implementations of RCS
have been specifically designed for dynamic and kinematic generation of trajectories and servo control of

position, velocity, force, and mechanical impedance. These levels of control are particularly addressed at

the PRIMITIVE and SERVO levels of NASREM [Fiala 87, Wavering 88].

The key focus of this paper is the current status of an implementation of the RCS methodology for the

control of a continuous mining machine used in underground coal mining. Some RCS design and imple-

mentation tools, those in use and proposed, are also identified and discussed and their exploitation for

mining machine control system design is detailed.

Two recent trends are critical to large scale control system design:

1) hardware is cheap

2) software development is expensive.

How can these trends be exploited for better, cheaper systems? Under the RCS paradigm, involving more

memory and processors (at little extra cost) than required can bring significant improvements in main-

tainability and extensibility leading to significant overall cost savings.

Control under the RCS paradigm provides robust real-time control that is maintainable and extensible

and requires a short design and test cycle time. Established and emerging software design methods for

handling complexity, e.g., managing complexity through abstraction, encapsulation, and inheritance

[Coad 91] are utilized. Tasks are encapsulated within controller modules based on common functionality

and level of abstraction. RCS can be thought of as a real-time operating system specifically tailored to

large-scale decision oriented real-time intelligent control applications.

Parallel processing is inherent in the approach and therefore, distributed control, simulation, and ani-

mation across a hybrid of hardware and software is allowed. The current implementation for mining

machine control demonstrates just such distributed computing. Distributed parallel processing is allowed

largely because of a simply defined multiple buffering scheme, coupled with carefully timed cyclic exe-

cution of all software modules on each central processing unit (CPU). For this paper, a software module

is defined as a process that has clearly defined inputs and outputs. The types of software modules we will

consider are controllers, simulators, and animators.

This work has been performed by NIST and ATR in support of the US Bureau of Mines (BOM).

1. “Conditional” meaning code that contains large amounts of if then else type decision making.
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BOM is involved in a long term effort to bring aspects of underground coal mining under com-

puter control in order to enhance the health and safety of coal mine workers . A first demonstra-

tion was performed for BOM of a cutting operation of a continuous mining machine using control

and simulation software under SMACRO^ on a PC and animation software on a Silicon Graphics

IRIS™^. A second demonstration, described here, is an advance in which the code has been trans-

lated into the ‘C’ language.

In our current CM control implementation at NIST not all systems pertinent to CM operation

are included. For example, sensors collecting various types of data (e.g., coal interface detection,

methane gas, and coal dust) and the control logic using this data are not addressed. In addition,

water sprayers, dust removal systems, and extensive error condition handling are not included.

Our goal at NIST, in support of BOM, is to provide consultation on RCS theory and implementa-

tion and to develop and provide appropriate tools for that implementation.

2. This work is being funded under US BOM contract #10389338

3. A FORTH™ based operating system and RCS design environment developed at NIST and ATR and maintained at ATR.

4. Referaice to product or company names is for identification only and does not imply government endorsement.



2 Continuous mining machine control design using RCS
The US Bureau of Mines (BOM) is developing prototype systems that perform all the typical tasks of

a continuous mining machine (CM) under computer control ^ These tasks can be grouped into two gen-

eral areas, namely, free space tramming^ and cutting. At some future date, BOM is planning research into

efficient computer controlled operation of the CM in concert with roof bolters, haulage, and other mining

equipment.

Control of the CM has turned out to be a good test case for RCS control, simulation, and animation.

Continuous mining machines have appendage controls that are of the ‘bang-bang’ type and, as a result,

complex dynamic simulations have not been necessary. This allows a largely rule-based design.

2.1 Scenario

This section describes a realistic scenario of operation of a CM performing a box cut. However, cer-

tain common CM subsystems, such as water sprays and fault diagnostic systems, are neglected in this

particular implementation.

2.1.1 Introduction

The two typical operations of a continuous mining machine (CM) are free space tramming and coal

cutting. The US Bureau of Mines and NIST have been focussing initially on cutting tasks. The CM per-

forms at least two different types of cuts, a ‘cross cut’ and an ‘advance.’ An advance cut is a cut straight

ahead into the coal seam. A cross cut is a lateral cut that connects adjacent advance cuts^. This method of

cutting gives the ‘room and pillar’ effect in room and pillar mining (see figure 1 on page 5). An advance

cut can be subdivided into two types of cuts, namely, a ‘box cut’ and a ‘slab cut.’ Continuous mining

machines typically make advance cuts into the coal seam with widths of about 6 meters. However, the

cutting drum is typically less than 6 meters wide. This necessitates a two (or more) pass cutting operation

in order to complete an advance (see figure 2 on page 6). The first pass has been called a ‘box cut.’ This is

followed by a backing out of the freshly cut entry by the CM and a repositioning of the cutting drum in

preparation for the second pass, or ‘slab cut.’ It is this first pass or box cut that is the highest level task

used for the current demonstration of RCS control, simulation, and animation.

2.1.2 A box cut described

Now we develop a scenario of a box cut as it might be performed in a coal mine. The highest level

task this control system has implemented is a box cut of user specified length. A drawing of a CM execut-

ing a box cut is in figure 2 on page 6. In a computer assisted scenario, an operator might specify the

length of the cut in some manner through graphical entry.

1 . For those readers desiring an acquaintance with underground coal mining terminology, see appendix A on page 34 and appendix B on
page 35

2. Tramming is a mining term for general motion of the CM along the mine floor.

3. The continuous mining machine is executing a crosscut in figure 1 on page 5.
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Figure 1: A ‘room and pillar’ coal mining operation

A box cut is ready to be performed when the CM is within a few feet of the coal face. When in this

position (assuming no other errors), the cutting drum is raised to the proper height and turned on. The CM
trams forward toward the coal face. During this initial tram forward, the current load on the cutting drum

motor is monitored. If this load exceeds threshold, the CM is declared to be at the face^. In addition, the

orientation of the CM is closely monitored for deviation from the proper orientation^. This is called the

initial_approach_face task.

4. The face is defined as the front of the coal seam where cutting operations occur.

5. Since it is difficult to recover from a cut that is skewed at the start, the initial orientation of the CM for a box cut is important.
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Figure 2: A continuous mining machine executing a box cut

Within a box cut operation, the initial_approach_face task precedes the first execution of a sump_s-

hear_cusp task. After completion of the initial_approach_face task, the sump begins with the drum at the

ceiling and rotating. The gathering pan is put in the float position. A command is sent to an operator to put

the tail of the conveyor belt into the correct position for deposit of coal into a shuttle car or continuous

haulage conveyance. The CM trams forward for about half the diameter of the cutting drum. The comple-

tion of this tram forward event is detected by a position and orientation sensor^ and triggers the start of

the shear operation.

During a shear, the following occurs:

6. The US BOM Pittsburgh Research Center (PRC) and NIST have exerted significant effort on position and orientation sensing and have

developed several such systems including length and angle measurement systems and the MAPS inertial guidance sensing system [Sammar-

co92].
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1) the stabilization jack is lowered,

2) the cutting drum remains on and is lowered, and

3) the gathering head and conveyor are turned on.

The latter is done only if enough coal has piled up to warrant turning on the conveyance systems and

a status message is received from the operator interface module stating that the positioning of the con-

veyor tail has been accomplished. There are a couple of reasons for a shear to be halted:

1) A shear has progressed to such a point that the loose coal needs to be removed and a signal

has not been received from the operator that the tail of the conveyor system on the CM is in po-

sition over the haulage system.

2) During a shear, the cutting drum occasionally pops out of the cut . The control code watches

the pose sensor for a significant deviation and appropriate corrections are made and actions tak-

en^.

When the cutting drum boom reaches the appropriate angle down near the floor of the mine, the shear

task is complete. The choice of an appropriate angle is dependent on whether the coal seam is level or

sloped at that point.

Due to the cylindrical shape of the cutting drum, the sump and shear operations leave a residue of

coal, called the cusp, on the mine floor between the cutting drum and the gathering pan. The cusp is

removed by raising the stabilization jack and tramming in reverse with the cutting drum remaining on.

This completes the first sump_shear_cusp cycle. The next task is the approach_face command which in

most respects is the same as the initial_approach_face command described above. Most importantly, dur-

ing approach_face, the exact location of the face relative to the CM is known which was not true during

the initial_approach_face. Therefore, after raising the boom as before, the CM need only tram forward a

specified distance after which contact with the face is guaranteed; no cutter current load monitoring is

required, however, in a final system it would be useful to monitor cutter motor current load as well as CM
position during the approach_face command. This would assure robust performance of each

approach_face command. Then another sump_shear_cusp cycle is executed exactly as before. At this

point in the box cut task, a sequence of approach_face and sump_shear_cusp commands are executed

until the total cut distance (specified by an operator) is reached. The box cut task is now complete.

2.2 Task tree

It is useful after developing the scenario to generate the explicit decomposition of tasks, based on

that scenario. Graphically, this task decomposition can take the form of a tree as in figure 3 on page 8.

This is a useful exercise in clarifying the scenario. In addition, with the help of the task tree, tasks of sim-

ilar type and at the same level of task abstraction are grouped into controllers. For example, in figure 3 on

page 8, each task is prefixed by a two letter mnemonic where each mnemonic corresponds to a particular

controller module.

7. Such a deviation can occur for various reasons, for example, due to an anomaly in the coal seam, to slippery floor conditions, and/or fail-

ure of the stabilization jack.

8. The logic for handling such an error is in the control code but has not been tested.
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Figure 3: Task tree for a box cut of a continuous mining machine

2.3 State machine example: a sump shear cusp command

In section 3.5 on page 18 we explain that RCS adopts a finite state machine model. Here we
give an example of such a finite state machine as used in our code.

While performing a box cut, a fundamental operation of the CM is the sump_shear_cusp com-

mand for removing coal (as described in section 2.1.2 above). This simple command is decom-

posed to lower level commands and delivered to its three subordinate control modules within a
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decision state table. This decomposition can be seen in the task decomposition tree of figure 3 on

page 8. However, the task tree is limited in that it only reveals the set of tasks that are derived

from each higher level task. The task tree neither reveals the conditions that trigger the execution

of each subordinate task, nor does it specify the precise order in which each subordinate task is

executed. Therefore, a decision structure of some sort is required beyond a simple task decompo-

sition. We have chosen to use finite state machines, though this is not the only option. The state

graph and state table for this specific command is given in figure 4. ‘C’ code for this state logic is

listed in appendix C on page 36.

Conditions Actions

Current
Event State

Next
State

Commands to subordinates

Coal removal Vehicle Coal cutting

Jobs (cr) guidance (vg) (cc)

New Command #0 SI set pose for sump cr_sump vg_move to pose cc_sump

El:sump distance reached SI S2 none cr_shear vg_halt cc_shear

E2:popped out of shear S2 S3 none cr_halt vg_halt cc..shear correct

E3: shear correct done S3 SI set pose for sump cr_sump vg_move to pose cc_sump

E4:too much loose coal S2 S4 none cr_halt vg_halt cc_halt

E5:tail in position S4 S2 coal removal cr_shear vg_halt cc_shear

E6:shear complete S2 S5 set pose for cusp cr_cusp vg_move to pose cc.cusp

E7:cusp complete S5 Done none cr halt vg_halt cc halt

Otherwise «1 Same NOP NOP NOP NOP

l^i => don't care condition Sn => n* state En => n^ event

Figure 4: A state graph and associated state table for a sump_shear_cusp command (task)

We note that if the cutting drum pops out of the coal during a shear, it is assumed that no cor-

rection in orientation or position is needed. The shear correction done by the coal cutting control-

ler might simply involve raising the cutting boom followed by a repeat of the sump task.
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During the sump and shear, the coal removal controller specifies that commands can be

received from the operator interface module responsible for getting the conveyor tail position

from a human operator.

2.4 Design of the controller hierarchy

We choose to have the continuous mining machine (CM) perform all aspects of a box cut. A
detailed scenario for a box cut task has been defined (section 2.1.2 on page 4). A task tree show-

ing the decomposition of tasks into subtasks is complete (figure 3 on page 8). However, through-

out this process of scenario development and task decomposition, tasks of the same level of

abstraction are grouped into what are called controller modules^ or simply, controllers. At the

lowest level, the controllers are matched with the appropriate actuators. At all levels, sensors,

world model values and functions, and operator interfaces are matched to the appropriate control-

ler modules.The relationship between the task tree and controller hierarchy can be seen by com-

paring the task tree of figure 3 on page 8 and the controller hierarchy of figure 5 on page 1 1.

Controllers (and, similarly, simulators and animators) are the key ‘objects’ in the RCS meth-

odology. Tasks are encapsulated within each controller and the communications interface to its

supervisor and subordinate(s) is of the same form for all controller ‘objects.’ The internal struc-

ture of these controllers is discussed in section 3.6 and section 3.15 and the nature of the commu-
nications interface in section 3.8 and section 3.9. Each controller is responsible to synchronize

and coordinate the tasks of all its subordinates.

Tasks at similar levels of abstraction are grouped into controllers. These are the principles

guiding this grouping:

1) the relatedness or common functionality of the tasks in each controller

2) keeping the number of tasks in each group small enough for human perspicuity.

For example, we grouped all cutting related tasks at a certain level into the coal cutting controller

and similarly grouped tasks relating to coal removal into the coal removal controller. The sum of

this design effort up until now produces the controller hierarchy shown in figure 5 on page 11. Of
course, this design is mutable which is just as we would want it to be. In addition, as the number

of tasks grows in a particular controller, the controller can be split up into two or more separate

controllers.

Before coding can begin, state logic (state graphs) must be developed for all the tasks, both

high level (e.g., box cut) and low level (e.g, left tread motor on)^®. From these state graphs, any

functions required by each state machine are identified and coded. Now we are ready to begin to

use generic ‘C’ code (called ‘C’ templates, as described in section 4.1 on page 27) allowing the

designer to fill out these templates and thereby specify the controller’s activities.

Simulation and animation are required for our implementation at NIST, since we had no CM
available for use. However, even if equipment is available for testing, the development of simula-

tion and animation is well advised, since it is a safe way to perform debug and refinement of task

knowledge and since CM operation is costly. Coding the software modules and mapping these

modules onto specific hardware is complete for the mining implementation. The current mapping

done for CM control, simulation, and animation is shown in figure 8 on page 14. All simulation

9. We define module as a generic term including grouping of like tasks into controUers, sensor and actuator simulators, animators,

operator interfaces, and communication handlers (see figure 8 on page 14).

10. An example of a state graph for the sump, shear, and cusp task is given in figure 4 on page 9.
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(control, sensor, actuator, and environment) is chosen to run on PC#1 (see figure 8). This choice

simplifies the simulation of CM appendages since the simulation code on the PC can be made to

run without interruption. On the other hand, animation is chosen to reside on a Silicon Graphics

IRIS™ under a non-deterministic operating system (namely, UNIX™). For animation to be effec-

tive, all that is required is that the CM and its appendages move in a manner realistic to the human

observer.

mam.c ::

ex
done

eb imt
sblhalt
sb mine coal

Legend
Status Commands

:ioo^ Hi

cb imt

ex
dyne

cbihalt
cb_advance_cut
cb move-to-liew-face

% mm

ex
done

ep init

fplialt
gp_8elect_pt

goal pt

ex
done

ts imt
tB~halt
t8lbox_cut
t8_8la&.cut
t8 tram to xvpsi

tsrCM:

Controller

Sensor

Actuator

World Model

write/read

goal pt
Status Commands

Operator interface

cojnit
co_halt
co_freeBpace_tram_to_xyp8i };

co_8ump 8hear_cuip i.

colinitiallapproach.face i-

co~D08itioh aoD free space

(xj’jraw)

boom angje

Controller simulator

done

crinit
cr3ialt
cr_accept-io
cr_8ump
cr_8hear
cr_cuBp
cr_app-face
cr_fiw8pace-default8

vginit
v^balt
vg_move_to xypsi
vg_apprdacR_face

tail qp^tbt

vEiiyehicle
idancei! ((xjrjraw)

me init

mclhalt
mc_forward_to_xy
mc_reverBe_to_xy
jmcjjvot_toj)S

done

CC_CU8p
cc_Bhear_correct
cc_approach_face
cc_fi^8pace~defau]t8

St]

be init

bc"haJt ex
bc"boom-to-theta done

boom angle

q init

qlhalt
qjack-to-phi

Figure 5: Example of RCS control system hierarchy (without sensor or actuator simulators)
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Animation is a useful debugging tool. However, our software tools offer additional debugging

capabilities available in the ‘C’ code on the PC. For instance, values relating to system status can

be displayed. Each software module within the hierarchy has its own list of values that the debug-

ger monitors. For example, the maximum execution time of the module is computed and can be

displayed. In addition, single stepping and slower execution are available.

Execution on a single processor Asychronous execution

optimized for command response on four proC^SOrs of equivalent

loop time
processor4

loop time

Figure 6: Serial and parallel execution of controllers

With the relatively small amount of processing done by all modules, we were easily able to

map all controllers and simulators to a single CPU. Because of the cyclic execution pattern in

RCS, these particular modules are executed serially. We have chosen an ordering for CM control

such that the command execution goes from top to bottom in one system cycle. An illustration of

how execution ordering was done for CM control, simulation, and animation is shown in figure 7

on page 13. Our ordering is optimized for command response, since, for example, ‘halt’ com-

mands need to be executed immediately. Other applications may not have this requirement and a

designer could optimize the execution ordering of software modules for command or status^ ^ or

anything in between. However, when optimizing for maximum command response, a status mes-

sage will take n system cycles to travel from the bottom level to the top level if there are n super-

12



visory levels in that particular thread in the control system hierarchy. Figure 6 illustrates the

comparison between serial execution of modules on one CPU versus asynchronous parallel exe-

cution on multiple CPUs. In summary, serial execution performs at least as well as asynchronous

parallel execution and can be optimized for very fast command or status response.

Figure 7 : Module execution order for the CM implementation where the execution sequence for

the processor is; A„ B„ ..., AA„ BB„ ..., A„ B„ ...

The technique of module execution ordering just described can be thought in terms of process

scheduling, such as performed by an operating system. A typical multiprocessing operating sys-

tem such as UNIX™ performs dynamic process scheduling. Such operating systems schedule

the execution of processes by allotting certain fixed quanta of time to each process. When the pro-

cess releases the processor (by exiting or blocking) or the time limit has passed, another process

11. Status is the explicit response of a subordinate controller to commands from its supervisory controller. Status is typically ‘ex-

ecuting’, ‘done’, or ‘error’. See figure 5 on page 11.

12. Reference to product or company names is for identification only and does not imply government endorsement
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that is ready to run is selected to execute. Process priority is a commonly used technique for

ordering the runnable processes. In addition, there is no fixed system cycle time. This indetermi-

nate characteristic of UNIX™ is why it is not often used in RCS implementations of the type

described in this paper. In contrast, we use a method of scheduling that could be described as

static process scheduling, since the processes are executed according to a fixed schedule. Each

process is designed to execute repeatedly, and on each invocation, it will execute to its conclu-

sion. Each process must be executed at a specified frequency. If the resources of the system are

insufficient to meet the required schedule, it can be discovered by the scheduler using the debug-

ging tools provided.

Figure 8: Continuous mining machine control, simulation, and animation hierarchy

2.5 Simulation

We implement four types of simulation: sensor, actuator, environment, and controller simula-

tion. Sensor, actuator, and controller simulators used in the CM control implementation are illus-

trated in figure 8. Note that not all actuators have sensors directly associated with them. For

14



example, as we currently have specified the system, both left and right treads operate open loop. A
single sensor, the pose sensor, discovers the composite effect of the activity of both actuators.

Note, as well, that the pose value enters the hierarchy at a higher level than, for example, the

sensed value of boom angle.

The dynamics of the real actuator are specified in the actuator simulator. The sensor simulator

filters the output of the actuator simulator to model the performance of the real sensor system. For

example, the boom actuator simulator receives a command from the boom controller to move to a

particular angle. The simulator contains the parameters, such as angular velocity of the boom,

relating to the mechanical response of the boom and its motor. These output values are then fil-

tered by the boom angle sensor simulator based on the particular dynamic characteristics of the

real sensor system.

The environment simulator in our current implementation is a simple coal/no-coal two dimen-

sional map of the mine. We might later add things like slope and slipperyness (as parameters of

the mine floor), moving obstacles, failure of ventilation and/or high methane gas levels, etc. As a

tool for general robotic applications, a map with obstacles can easily be simulated.

2.6 Animation and operator interface

Much of the animation code used in the CM control implementation is portable. Similar code

has been written for other RCS applications following the RCS design philosophy. The animation

hierarchy is illustrated within figure 8 on page 14. The existing animation code is in ‘C’ on the

Silicon Graphics IRIS™ (SGI) using ‘GL,’ a SGI specific ‘C’ library of predefined graphics

functions. As is illustrated in figure 8, the animation code resides on a separate hardware platform

from the simulation and control code.

The display screen is considered an actuator to be controlled. The user interface is similarly

structured. The user interface allows the user to change the viewpoint and scene through a mouse.

Also available on the SGI are the two operator interface capabilities for:

1) control of the position of the conveyor tail and for

2) entry of a goal point for the movement of the machine in the mine (either for cutting

or tramming in free space).

The following are required to convert the ‘generic’ animation code (currently in use for sev-

eral other applications) into the CM control implementation.

1) Draw the continuous mining machine, i.e., specify the coordinates of its body and all

its appendages in three dimensional space.

2) Get the SGI to read appendage position values from the PC via the common memory
(as in figure 9 on page 16) and write operator interface values to the same common
memory.

3) Adjust existing animation code to draw the mining machine on the screen cyclically

based on both the raw values and the user specified viewpoint.

4) Integrate operator interface as required. For the CM control implementation, we have

control of the conveyor tail and the goal position for CM free space navigation and cut-

ting.

13. Reference to product or company names is for identification only and does not imply government endorsement.

15



5) Allow user interface to give user ability to change scene and viewpoint with mouse or

keyboard.

6) Incorporate the display of all common memory values.

PC2

Path planning

serial communications
caDie

PCI

Control &r

Simulation

Point-to point

comm card

PC bus

paralle^ommunications

Silicon Graphics

Animation &
Operator Interface

Shared memory Point-to point
card comm card

VMEbus

Figure 9: Hardware tools
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3 Principles of the RCS methodology

This section presents more detail on the RCS methodology in the form of imponant characteristics

that clearly define the method. Each subsection will present and examine some key aspect. Most of these

key design concepts will be related to the mining machine control problem at hand.
3.1

Problem analysis through task decomposition

Fundamental to the control of electro-mechanical devices is understanding the task it is to perform.

For tasks that involve complicated sequences of steps and the complex coordination of many operations,

the exact nature of that task becomes critical to solving the control problem. The task drives the use and

sychronization of sensors and actuators, the choice of computing hardware, and the nature of the world

model. Effective design of control systems for complex decision oriented problems is well accomplished

through careful task analysis and decomposition. For example, the task, mine_coal (as in figure 5 on

page 11), is quite complicated due to the many subordinate commands which come from it, e.g., box_cut

and slab_cut.

3.2 Controllers encapsulate tasks

Tasks of similar type and similar level of temporal and spatial abstraction are grouped into software

controllers (illustrated in figure 5 on page 11). Controllers can be thought of as objects encapsulating

tasks that support a particular system function. For example, all tasks specifically and exclusively relating

to cutting operations are grouped into the coal cutting controller as can be seen in figure 5 on page 11.

Controller ‘objects’ encapsulating functionally related tasks allow generic and orderly communica-

tions between those controllers. In other words, the interfaces between controller ‘objects’ are standard-

ized. In addition, a common structure is defined for all controllers (described in section 3.15 on page 24)

which helps simplify the design of these interfaces.

3.3 Hierarchical with strict chain of command
RCS is perhaps best known for offering a system design architecture that is hierarchical [Albus 89].

This hierarchical breakdown of complexity is specified based on space and time horizons that are natural

to the tasks that need to be performed. For example, the task, “drive to the mall,” has longer time and

space horizons than the task, ‘turn the key in the ignition’ and is logically placed at a more abstract level

in the hierarchy. Tasks of similar type and of similar time and space horizons (e.g., ‘depress the brake

pedal,’ ‘release the brake pedal,’ ‘tap the brake pedal,’ etc.) might form part of the same controller.

Why have a hierarchical structure? Common automation tasks are logically organized in a manner

such that large control tasks decompose (e.g., ‘drive to the mall’) into the more detailed tasks at lower

levels of abstraction (e.g., ‘turn the key in the ignition’). In addition, hierarchical structures for computer

controlled systems closely model ‘real-time’ human organizational structures (e.g., military). In contrast,

systems designed with, for example, mutually cooperating agents involving complex, uncertain decision

making and planning are arguably not the most effective model for real-time control.

RCS specifies that at any instant of time, a controller lower in the hierarchy (a ‘subordinate’) will

have only one immediate supervisory controller.
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3.4 Rule-based

The decision-making strucmre at the heart of RCS is similar to the if condition^ then
action else if condition 2 . . . structure associated with rule-based architectures. Therefore,

RCS consists of a set of expert rules since the designer, in concert with a domain expert, generates these

rules (in the form of state machines) prior to execution of the code.

Being rule-based, RCS is especially suited to handle control problems that involve a complex

sequencing and coordination of many operations and where the continuous control part of the problem is

very simple. The continuous mining machine problem easily fits into this class of problems. Problems

where the continuous control part is complicated and there are very few operations that need to be

sequenced and coordinated are better served by traditional single level control, for example, PID control.

Nonetheless, RCS can accommodate the smooth integration of both rule-based and traditional control.

3.5 Finite state machine model

A finite state machine has finitely many states and responds to input conditions by transitioning to a

new state. An example of a state machine is the state graph and state table of figure 4 on page 9. The deci-

sion structure of RCS adopts the finite state machine model. Why? A well constructed decision table or

state graph of manageable size is easy to comprehend. It also works easily with well established discrete

time control for low level control. The concept of generic controllers containing manageably sized state

machines means that controllers at high levels of abstraction are structurally identical to lower level servo

controllers. Adopting a finite state machine model means that the task and all its subtasks are each exe-

cuted using repeatable read, compute, and write operations. It has been our experience that RCS, with the

finite state machine model, can exhibit complex and intelligent dynamic responses to uncertain stimuli

even though all aspects of the system are completely deterministic and verifiable.

3.6 Generic controllers

Under RCS, controllers at every level in the hierarchy are formed from the same underlying structure

(see figure 13 on page 25). Each controller contains sensory processing, world modelling, and behavior

generation functions. RCS controllers are organized around a triptych of processing: pre-processing,

decision processing, and post-processing. This generic stmcture can greatly simplify system design for

control, simulation, and animation modules as we argue in section 4 on page 27. Use of these templates

also enhances perspicuity and maintainability.

3.7 Determinism

Using RCS for control system design assures determinism by requiring, at least, the following:

1) avoid controller process inteirupts, 2) enter task knowledge (rule plans) explicitly into the system, 3)

that the designer know the maximum execution time of controllers, and 4) that the order of execution of

controllers on each CPU be explicit at any system cycle.
^

1. Determinism in RCS does not mean that random search or Monte Carlo style algorithms are jjrohibited. Nor does it imply that every per-

mutation of possible states of the world need be tested and investigated.
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It is common to see real-time systems designed around interrupt driven prioritizable processes. How-
ever, for such systems of reasonably large scale, the designer is burdened with a forbidding task of deter-

mining beforehand whether each process can recover successfully from an interrupt at any point during

its execution. In practice, many designers simply code the processes and adjust the priorities of processes

in a somewhat random manner until system performance appears to be acceptable. We argue that this

leaves too much to chance. Avoiding controller interrupts keeps the system in known states. Since extra

processing power is abundantly and cheaply available, RCS requires that all processes execute in a cyclic

manner (effectively in parallel with multiple processors). No one process interrupts another.

In RCS, the decomposition of high level commands into lower level commands is made explicit in

the system design phase. In contrast, we argue that design methodologies such as mutually cooperating

agent models and systems with complex planners (planners that are expected to create new rule plans^

during system execution) may be less effective at solving real-time control problems partly because of

the complex and virtually indeterminate interaction between such processes. RCS maintains that ‘intelli-

gent’ tasks can be performed in uncertain environments when virtually all the task knowledge is entered a

priori by the designer in the form of decision logic state graphs or tables. The latter is not intuitive and is

the focus of continuing research.

controller module:
continuous miner

coordinator

read coal cutting

status

write CM coord
commands

controller module:
coal cutting

subsystem
read CM coord^

commands-<C

write coal cutting

global memory

global copy
commana of
coord module

global copy
status of coal

cutting module

Figure 10: Example of command/status copying

3.8 Data integrity through multiple buffering

RCS specifies that communication between controllers be done in the following manner. Within each

control cycle, each controller reads commands from its supervisory controller and status from its subordi-

nates. After all processing is completed in the current cycle, the controller writes commands to its subor-

dinates and status to its supervisor. This scheme can be seen in figure 10. In order to maintain data

2. Though, typically, one finds path plans being generated during execution than rule plans.
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integrity, each controller works with local copies of all this data while doing its initial read from and final

write to a global copy. This assures data integrity. In recent years, semaphores have become a common
method to assure the integrity of shared data during communication between processes. However, since

memory is abundant and cheaply available, we argue that maintaining multiple copies is reasonable and

may be more perspicuous.

For sensor values we have a multiple buffering scheme as in figure 1 1 on page 20. The sensed value is

written only by one controller. Any other module that seeks to use this value has read-only privileges.

controller module:
vehicle guidance

Figure 1 1 : Example of multiple buffering

3.9 Handshaking between controllers by command numbers

RCS requires that a serial number accompany each command from supervisor to subordinate. The

handshake is completed when the same number is returned along with status by the subordinate control-

ler. This indicates that a particular command from the supervisor was received. Each serial number is

unique to a particular controller and increments only at each new command from that controller. This also

serves as a useful debugging tool, since it can be used to detect if a controller is not responding to com-

mands. See figure 13 on page 25 to see how this handshaking fits into the execution of a generic control-

ler.

This form of handshaking is not in conflict with parallel processing of controllers. Even if controllers
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are distributed across several processors and running at different system cycle rates, a controller needing

command data from a supervisory controller on the ‘slower’ processor, simply executes its cycle, per-

forming its normal execution until the command data are received. The supervisory controller can be

made aware that the subordinate has received the command by examining the command number and sta-

tus whenever it becomes available.

3.10 Real-time execution through cyclic processing

We have mentioned that the method of handshaking described in the previous section allows for dis-

tributed parallel processing. Nonetheless, within a single processor, the controllers mapped to that pro-

cessor are sequentially executed in an infinite loop. Real-time execution is gained when the RCS designer

ensures that ^1 controllers can respond to changes in the environment within the time required by stabil-

ity considerations. On a given processor this translates into a constraint in which the designer is required

to ensure that all controllers will execute within a certain time frame called the system cycle time. The

latter is defined as the time it takes^ for all the controllers in the control hierarchy to execute on a single

processor.^ This type of cyclic execution helps to bring to a manageable limit the number of possible

states of the system. This cyclic pattern of execution is illustrated in figure 12 on page 23. On-line con-

flict resolvers and complex schedulers are avoided, since they are done off-line by the system designer.

This method contrasts sharply with the currently popular use of prioritized interrupts and time slicing.

Both interrupt driven methods and RCS can achieve real-time execution. However, the use of interrupts

tends to complicate the code beyond ease of human understanding, particularly, as the number of real-

time processes increases. If one allows a real-time task to be interrupted, the state of the system or world

may have changed in an unknown way after servicing the interrupt. One needs to handle a prohibitive

amount of exceptions in order to determine what an interrupt would mean at any point in the control

code. Typically, this type of code is difficult to maintain and, when it changes hands, a long time is spent

understanding it. Often, in the end, the code is rewritten.

Since processor costs are comparatively low, we see little reason to employ complex software con-

structs, like time slicing and process interrupts, which were created to optimize processor usage. Cyclic

execution of all controllers helps achieve determinism, allowing for an assured real-time response as long

as the maximum execution times of controllers are known and there is never any looping within pro-

cesses causing the rest of the system to wait. Additionally, through multiple buffering and handshaking

by command numbers, RCS is a parallel processing architecture, even though there is serial execution on

each CPU.
The controllers on a given processor are executed sequentially. What is the rule guiding the order in

which they are executed within each cycle? It should be noted that the order one chooses to execute these

controllers will not adversely effect the communication between supervisor and subordinate controllers

because the method of handshaking used prevents such problems. However, the order of sequential exe-

cution of controllers will effect how quickly commands (down) and status (up) will ripple through the

hierarchy. This could hamper or eliminate real-time response of the system. We typically choose an

3. The system cycle time is typically on the order of tens or hundreds of milliseconds for electro-mechanical systems.

4. Multiple processors, each executing controllers cyclicaUy and serially, are often required to assure execution of all controllers within a

specified time frame.

21



ordering such that command execution goes from top to bottom in one cycle. The disadvantage of this

ordering is that status will take n cycles to ripple to the top level if there are n supervisory levels in the

control hierarchy (see figure 6 on page 12). However, in general, one can trade off status and command
response times, and the needs of the particular application will dictate the optimum order of execution.

3.11 Straight-through execution of controllers; no conditional looping

Another feature of RCS is to require that there be no indeterminate looping on condition or polling

loops within a controller responsible for control. This is required because an executing controller is never

interrupted. The execution of that controller would have to be interrupted, if conditional looping were

allowed within a controller, in order to ensure real-time operation. Forbidding conditional looping and

controller interrupts means that all controllers are guaranteed to execute within a known period of time,

ensuring deterministic execution of the entire system.

For example, certain controllers are responsible for reading the sensed value of pose (position and ori-

entation) of the continuous mining machine (CM). A common way of handling this is for certain pro-

cesses (controllers) to poll sensors until new values become available. Other processes (controllers) are

allowed to interrupt the polling based on carefully determined priorities. RCS is distinctly different in that

the controller checks the sensor at regular intervals and, if a new value is not available, processing contin-

ues with no interrupts or polling. In this sense, a RCS control system samples sensors, commands, and

status at deterministic (not necessarily uniform) intervals.

3.12 Multiprocessing inherent

Large-scale designs quickly consume processor time, particularly since the method requires execu-

tion of controllers until completion on each cycle. Therefore, in a typical design it is not long before the

entire set of controllers in many large scale designs cannot execute serially within the system cycle time

that is required for stable control. This requires that some subset of controllers be executed in parallel on

another processor. RCS specifies a uniform method of communication between controllers (through the

use of multiple buffering and command numbers). As a result, the processing of each controller can pro-

ceed simultaneously, independently, and asynchronously from all other controllers as long as real-time

response can be assured. Assured real-time response is possible only when worst case response times are

known for each process. The careful mapping of controllers to various processors can greatly influence

the time it takes commands to travel down the hierarchy or sensed values and status to go up.

3.13 Execution order of controllers

RCS allows distributed multiprocessing of the controllers through the use of multiple buffering and

handshaking by command numbers. However, when should one use additional processors and in what

order should the controllers on a single processor be executed?
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Figure 12: Main loop for cyclic execution of all controllers mapped to a single processor

Consider a control system simple enough so that all controllers and simulators can be exe-

cuted on a single processor^. In figure 6 on page 12 it is shown that one can allow command
response from the top of the control hierarchy to the bottom within one system cycle, in which

case, the status response from bottom to top takes n system cycles, if there are n levels in that

thread of the hierarchy. Alternately, one can allow status response from the bottom to the top

5. This is true in the current mining machine control implementation. However, we are now at the limit of processor performance

and have added a second jx^ocessor.
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within one system cycle, in which case, the command response from top to bottom takes n system cycles.

Trade-offs between command and status response can be accomplished based on the ordering of control-

ler execution. Therefore, for a single processor, one can choose an order of controller execution that suits

that system’s needs for command and status response.

Multiple processors are required when the worst case execution time of all controllers exceeds maxi-

mum system cycle time. In this case, the several processors execute independently and asychronously.

In figure 7 on page 13 we show the current execution order for controllers in the CM control example.

Two processors (PC#1 and PC#2) are used because the path planning controller was best executed in par-

allel while all the other controllers and simulators executed serially on another processor (PC#1). Note

that the order of execution on PC#1 is optimized for command response.

3.14 Problem domain understanding critical

Most control system design methodologies stress the importance of problem domain understanding

for effective control system design. RCS is no exception. However, because RCS stresses determinism

(i.e., all knowledge is explicitly entered into the system in the form of the finite state machines), domain

knowledge is of paramount importance. The system designer creates a more effective control system to

the degree the task and what is to be controlled are understood. For control of the continuous mining

machine, we found that the process of RCS control system design forced a comprehensive understanding

of the operation of the mining machine.

3.15 Generic processing pattern in all controllers

Within each controller, whether for control, simulation, or animation, a consistent pattern of process-

ing is maintained. This processing currently involves the following sequential steps: pre-processing

(including debug-related processing, sensory and world model processing, and planning), decision pro-

cessing (including plan specific sensory processing, world model processing, planning, and decision

making), and post-processing (including more debug-related processing, sensory and world model pro-

cessing). This is illustrated in figure 13 on page 25.

In pre-processing, appropriate command and status values from supervisors and subordinates are cop-

ied into internal buffers in order to maintain data integrity. All inputs are collected and distilled into an

appropriate format for use by the decision process. Sensor values are filtered and fused. World modelling

functions like system state prediction based on past measurements is performed. Pre-processing is fol-

lowed by decision processing which uses these distilled versions of the state of the system and the envi-

ronment to decide on the action to perform in the current system cycle time. Any plan specific algorithms

are executed. Appropriate commands are given to subordinate controllers. Finally, the post-processor

writes appropriate command and status values from internal to external buffers in order to maintain data

integrity. It is manifest that the use of generic controllers expedites the process of controller design. This

total pattern makes the decision processing (the state tables) as english-like {i.e., perspicuous) as possible.
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Figure 13: Generic processing pattern for all RCS controllers
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3.16 Controllers small enough for human understandability

For the sake of understandability, the amount of decision logic in each controller is kept within certain

limits. These limits can be defined by the user. If the design logic for a controller becomes too complex,

under RCS, the controller can be broken up into two or more controllers.

3.17 Long and short range planning

How do long range processes like planners and computationally costly algorithms (e.g., vision algo-

rithms) fit into the system under the RCS design philosophy - a philosophy which encourages cyclic,

deterministic execution of controllers? RCS is an attempt to try to make motion planning a hybrid of

“keep moving toward the goal in the next system cycle” and “plan the entire trajectory prior to execu-

tion.” This is because the type of planning needed is highly application dependant. For example, navigat-

ing a mining machine, through a mine which contains independently moving objects like miners and

other mining machines might require a “keep moving toward the goal in the next system cycle” approach,

whereas, navigating a mining machine when the only obstacles are the pillars of coal might suggest a

“plan the whole path first” type approach. Under RCS, it is suggested that the long range process be

1) divided into hierarchical pieces at various levels of abstraction and 2) build the software control of the

long range processes so that these processes can be redirected at any given system cycle. Therefore, RCS
allows a union of both long range and short range planning.

3.18 Tools

Effective software tools that are easy to understand are essential to any design methodology. A
FORTH™ based programming tool called SMACRO and a set of generic software templates in the ‘C’

programming language^ have been developed for RCS. In addition, we are currently developing CASE
tools that will even more efficiendy allow RCS style control system design. In this paper, we will prima-

rily focus on the ‘C’ language templates, what they are and how are they used. In figure 14 we illustrate

the history and proposed future for RCS tools development.

past present future

Figure 14: History of RCS tools development

6. These both are currently available only for PC compatible computers.

26



4 The hardware and software tools for RCS
We believe that the RCS methodology would be valuable to many industries, (e.g., mining, construc-

tion, chemical process control, automotive assembly) and the development of software design tools for

doing RCS designs will help disseminate the methodology. Therefore, we are currently developing such

tools to better facilitate RCS design and implementation . In addition, this implementation of RCS for

coal mining machine control is in concert with our belief that control system design methodologies are

b>est advanced by testing the method against real control problems. In this section, the current progress on

such tool development is described.

Though we list hardware as a tool for RCS design and implementation, we stress that the software

tools are the centerpiece and are designed to work on virtually any hardware platform. However, certain

hardware configurations and constraints better suit the RCS design philosophy as it was outlined in

section 3 on page 17. Just what these configurations and constraints are will be the topic of section 4.2 on

page 31.

Software tools for RCS control system design are currently being written in the ‘C’ language in order

to reach a wider audience of programmers. Software templates of various types have been and are being

developed that allow the system designer to more easily design according to the method. These templates

will be discussed in the software tools section.

4.1 Software tools

Essentially two approaches to tool development are being used: 1) a FORTH based environment

called SMACRO and 2) a ‘C’ language based set of software ‘templates.’ The templates allow the user to

write ‘C’ code easily for the particular application by making simple alterations to the existing template.

Both approaches have been successfully used to accomplish design and implementation of control, simu-

lation, and animation in the RCS style. One of the tasks of the current effort has been to convert existing

control and simulation code from SMACRO into ‘C.’ Therefore, we will focus on describing the work

done in ‘C.’

We are in the process of developing CASE tools which support the user in much the same way as the

aforementioned tools, but with a simpler graphical user interface. We intend to have the tool perform data

management and code generation tasks while still allowing the designer to change source code as may be

required.

4.1.1 Software tools for control

The ‘C’ language allows the programmer to break up large computing projects into distinct modular

components called files. This is a natural modularization inherent in the language with the only restriction

that a function named main be called in one and only one of the files that constitute the total computing

project. Furthermore, in ‘C,’ the function called main calls all other functions defined and/or called in

this and all other files.

RCS specifies that all control modules mapped to a single processor will be executed sequentially and

1. We also have made and are making efforts to examine existing CASE and other types of software design tools to see if they will fit well

with RCS style system design. However, no satisfactory tools have been found.
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cyclically. Therefore, main is the logical place where these modules will be called in sequence. As we’ve

defined it, the file containing the function, main, is called main . c.

In order to be a transferrable tool set, it is important to separate functions and variables unique to a

particular hardware/software platform from those functions and variables that are portable across various

platforms. This is particularly important as we attempt RCS design on a greater variety of platforms.

4.1.1. 1 Operation of main . c

Main.c essentially runs some setup and initializing routines and proceeds to execute sequentially each

of the modules that are mapped to that particular CPU. In figure 12 on page 23 the operation of main . c

is described.

During initialization, main.c allocates global and world model memory based on the structures

defined in the header file, global . h (described in section 4. 1. 1.2). After that, main.c calls the follow-

ing functions:

main_init_global: initializes global variables

kbd init_arrays : loads in the information into arrays relating to the files command.dat
and Ievel.dat which associate mnemonics with numbers,

t imer_initialize_interrupt: Setup up pc clock for 0.211ms

draw_screen: draws bkgnd for debug screen

main_transmit_init: causes INIT command to ripple through.

read_wr ite_BlT3: control/simulation code on the PC that writes values (needed by the an-

imation code) each cycle to memory common to the PC and the SGI.

main_simulat ion_query: allows designer to specify simulation at any part of the hierar-

chy; generally to speed up execution for debugging efficiency.

read_write_comport: allows simple serial communication with another PC (see figure 8

on page 14).

After initialization, main.c enters an infinite while loop^. The most important operation performed

within this loop is to run each controller assigned to its CPU. However, if some modules were specified at

any time to be simulated by the designer, these are also executed and control modules subordinate to

these are skipped (since the simulator module simulates all its subordinates). In addition, the global and

world model data structures have memory allocated to them during initialization. A few other functions

are called within the loop, namely,

kbd_evaluate_board_input: if a key is stroked the input is processed by this function.

timer_check_for_timer_pulse: the infinite while loop concludes with this while loop

that waits until this function returns TRUE.

The control system designer can specify the presence of simulation. All types of simulation used will

be dealt with in section 4.1.2 on page 30.

2. Note that in RCS, infinite loops are allowed for processor cycling. However, they are not allowed within software modules (neither con-

trollers, simulators, nor animators).
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4. 1.1.2 The templates for the generic software module: QQl . c and QQl . h

A goal for these software tools is to allow the designer simply to copy a generic file in the ‘C’ pro-

gramming language and then “fill in the blanks” as required for that particular controller. QQl . c is the

generic file in ‘C’ that executes the following functions.

qql_pre_process: all inputs are collected into an appropriate format for use by the deci-

sion process; reads appropriate command and status values from external to internal buffers

qql_check_if_new_command: checks to see if the command serial number has incre-

mented since the last cycle and if so the command the number accompanies is a new command.

qql_decision_process: uses the distilled versions of the state of the system and the

world to decide on the action to perform in the current system cycle time.

qql_post_process: writes appropriate command and status values from internal to exter-

nal buffers in order to continue to maintain data integrity.

The file QQl.h is the header file that contains the generic data structures definitions (called

QQ1_BUFFER) that contain the commands, status, and debugging information for each module. The

debugging information consists of the execution mode {e.g., single stepping, etc.) and some performance

parameters like module execution times. QQl ,h for each module is included in the global .h header

file which in turn is included in QQl . c for each module. Global . h further defines a structure that is a

collection of the structures QQ1_BUFFER for each module. Global .h also defines the structure that is

a collection of the relevant data about the state of the world (called WORLD_DATA).
The characters ‘QQl’ in QQl . c and QQl .h refer to the mnemonic describing that particular module

(e.g., in the coal mining implementation, the shift boss module was contained in the files sb . c and

sb .h). One then can do a simple find and replace while converting the generic template to a particular

software module.

4. 1.1.3 Other important generic files

Timer . c contains functions needed in order to set up the computer clock in fine enough increments

for the application. It contains the following functions:

t imer_initialize_interrupt: called in main . c and sets to zero the timer_-
counter variable in the world model data structure.

t imer_check_for_timer_pulse: called in main , c which checks if the cycle time is

reached.

t imer_restore_interrupt: restores the timer interrupt before terminating the interrupt

t imer_interrupt : function called in response to interrupt from the processor and incre-

ments the variable, timer_counter, contained in the world model data structure.

Draw. c and dprintf . c contain functions needed in order to draw debugging information on the

control and simulation computer monitor. These functions are highly hardware/software platform spe-

cific. Some implementation details will be discussed subsequently.

Nonportable .h contains definitions for hardware/software specific functions. It also makes simi-

lar variable definitions making explicit the lengths of type int, etc.
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4.1.2 Software tools for simulation

Computing hardware continues to plummet in cost. Software development, though costly, is often

less costly than system development using real equipment. Therefore, the use of simulation and anima-

tion can often reduce system development costs and time. We have identified several areas that might

require simulation: 1) controller, 2) actuator, 3) sensor, and 4) environment. We will look at each of these

types of simulation in this section.

It is expected that throughout and beyond the design cycle, the designer will want to switch back and

forth between simulation and the actual system. Using environment simulation in the mining example,

we might want to operate the actual mining machine above ground without obstacles expected in a mine,

e.g., pillars and roof. Given this requirement, one would want an environment simulator, which might be

a simple two dimensional static mine map. As an example of another type of simulation, one might want

to test some new decision-making logic quickly without having to wait for the entire control system to

execute. This can be accomplished by simulating controllers. Another example is that a sensor may not be

working on a given day and one could design and use a sensor simulator which could allow experiments

to continue. Similar things can be said about an actuator simulator.

We have specified in the generic main . c file that a user will be able to choose easily which entities

will be simulated. We accomplished this by writing the code such that if a particular controller was cho-

sen to be simulated, all its subordinate controllers would not be executed at run time.

4. 1 .2. 1 Controller simulation

Each controller in the RCS hierarchy is a collection of specific tasks. When a large control system is

running, tasks within control modules at the higher levels of the hierarchy can take minutes or hours to

complete. For example, in figure 5 on page 11, the controller, shift boss, execution of a Cut-two-passes

task can take hours. During the design and maintenance phases, one will want to change state tables and

then test those changes at a faster than normal execution rates. Therefore, software modules that simulate

controllers subordinate to the controller of interest are useful if they realistically accelerate the execution

of each task. Another reason for having a controller simulator is that one may want to postpone the design

of a certain thread of the hierarchy until later. For example, in figure 5 on page 11, we show the coal

removal section simulated by a single controller simulator, although we have developed controllers for

the entire coal removal section.

4. 1 .2.2 Actuator simulation

For actuator simulation we have provided a very simple template file which specifies the following:

1) instructs the designer to enter the necessary header files (global . h is assumed to be need-

ed),

2) provides placeholder for entering external variables, for example, commands from controller

supervisor and variables for feedback to the same controller and any dynamic parameters like

speed,

3) contains directions to define, in global . h, any new world model variables defined in this

simulator file.
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4) directions instructing the designer to enter dynamic equations of motion with appropriate un-

certainty (random error) of the actuator being simulated.

4. 1.2.3 Sensor simulation

We have provided a very simple template file for sensor simulation which specifies the following:

1) instructs the designer to enter the necessary header files (global . h is assumed to be need-

ed),

2) provides placeholder for entering external variables, for example, parameters from the appro-

priate actuator or actuator simulator module,

3) contains directions to define, in global . h, any new world model variables defined in this

simulator file,

4) directions to enter code to read parameters from relevant actuator simulators and processes

and couple these with appropriate sensor dynamics (e.g., lags) and noise.

4. 1 .2.4 Environment simulation

Currently, we provide no generic software template for environment simulation.

4.13 Software tools for animation

Strictly speaking, we provide no generic software templates for robot animation. However, the ani-

mation code that is used in the mining machine implementation can easily be converted to any other

application, since much of the existing code is portable. Our graphics code is written using basic drawing

routines that draw fundamental shapes such as cylinders, circles, and the like. This greatly simplifies and

streamlines the graphics code. These basic drawing routines are useful for a variety of applications. The

code specific to the mining machine implementation is described in section 2.6 on page 15.

4.2 Hardware tools

We have mentioned that the RCS philosophy discourages interrupts of modules (either controllers,

simulators, or animators) in section 3.10 on page 21. Internal looping within modules is also avoided as

described in section 3.11 on page 22. In addition, RCS specifies that all modules execute^ within the

response time required by the application (see section 3.10 on page 21). In a typical large scale control

system design, it isn’t long before one has created so many software modules that they cannot execute

within a single system cycle on a single CPU. As discussed in section 3.13 on page 22, one must map
some modules to one processor and some to another to allow parallel execution. However, we do not

want to choose a communication setup between the two (or more) processors such that one processor

waits an indeterminate amount of time to receive communication from the other processor. Therefore, as

a standard testbed, a point-to-point communications link was chosen that allows asynchronous reading

and writing of a specific block of shared memory.

3. Each module perfonning the following: read, decide, write
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As seen in figure 9 on page 16, we have as a simple testbed for RCS development a PC, a Silicon

Graphics IRIS™ (SGI), two point-to-point communication cards, and a common memory card.

The current usage of the point-to-point communications link is to allow orderly asynchronous writing

of dual-port memory locations by the control and simulation modules on the PC, and reading of the same

memory locations by the animation and operator interface code on the SGI. The control and simulation

code on the PC write to the dual-port shared memory every system clock cycle and the animation and

operator interface code on the SGI reads whenever it can. This latter case is because all the code on the

SGI runs under the UNIX™ operating system and therefore can be interrupted by other software pro-

cesses. We maintain that animation is primarily a diagnostic and demonstration tool and hasn’t the real

time requirements that the control and simulation code have. Therefore, a strict separation between con-

trol/simulation and animation/operator interface has been utilized in order to assure deterministic control

and simulation.
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6 Appendices

A Overview of the underground coal mining environment

A typical underground coal mining environment is described for those readers less familiar with the

common terminology.

Advance cut: The action that the mining machine takes to excavate a block of coal in a direction

perpendicular to the coal face.

Brattice: A moveable system of curtains that provide temporary ventilation to the area immedi-

ately surrounding the coal face.

Coal face: The front of the coal seam where cutting operations occur

Crosscut: The action that the mining machine takes to excavate a block of coal in a direction

parallel (or nearly parallel) to the coal face.

Cut: The action that the mining machine takes to excavate a block of coal. Usually the mining

machine cuts in two passes to achieve a desired width of a cut (typically the width of an entry).

Entry: Region remaining following a series of advance cuts allowing ‘entry’ into the mine. See

‘Room and Pillar mining’.

Haulage: As the CM is cutting the coal, some method must be employed to move the coal

(which spills off the tail of the conveyor on the CM) from the CM to the main haulage system

outby (see figure 1 on page 5).

Inby: In the direction of the coal face of the underground mine.

Outby: In the direction of the entrance to the underground mine.

Man Door: A door allowing human passage through permanent ventilation control wall.

Panel: A large block of coal (usually rectangular) to be extracted which is separated from the

next panel by leaving a long rectangular pillar of unextracted coal between panels. The long un-

extracted pillar is a safety precaution to prevent the collapse of the coal roof over any more than

one panel in the event of a cave in.

Pillar: Generally means a small (compared to panel) block of unextracted coal, 36 meters or less

in length and 4.5 to 1 8 meters in width. As long as they are of sufficient size and separation from

one another, pillars (along with roof bolts) help keep the roof of the mine from caving in (see

figure 2 on page 6).

Roof: Seams of rock are typically located immediately above a coal seam. Once the coal is re-

moved this rock becomes the roof of the mine. Certain methods are used to keep the roof from

caving in. One is to control the size of remaining pillars in relation to widths of entries. Another

is to use roof bolts.

Roof Bolter: This is a piece of equipment that uses various methods with the same goal; namely,

to keep the roof from falling down on miners and equipment. It places roof bolts of various
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kinds into the rock strata after the coal is removed from an entry. It’s operation is closely coordi-

nated in space and time with the continuous mining machine.

Room-and-Pillar Mining: A mining method that also features the development of main entries

at both sides of a panel in preparation for long wall mining. Coal is extracted forming rooms

with pillars left. Pillars may be extracted at a later stage in a retracting operation. Sizes of pillars

and width of entries may vary depending on the roof support and the transportation support re-

quirements. See figure 1 on page 5.

Shuttle Car: A vehicle specifically designed for transporting the coal mined by the CM from the

CM to the main haulage.

Tramming: Motion of the CM as a whole along the floor of the mine.

Ventilation Regulator: A structure placed in an entry that controls airflow for ventilation.

B A continuous mining machine

Continuous mining machines (CM), as in figure 15 on page 36, are used in room-and-pillar mining

We now describe key components of a particular CM, illustrated in figure 15, called the JOY14CM^:

A tramming subsystem: Tram motors driving each tread exist allowing forward and reverse mo-

tion as well as turns and pivots.

A cutter drum: A hydraulic actuated cutter boom extends out at the front of the machine. At-

tached to the front of the boom is an electrically operated cutter drum. Replaceable cutting bits

are installed at the surface of the cutter drum which fracture the coal as the drum is pushed into

the coal face while turning.

A gathering head subsystem: This subsystem is located at the bottom of the front end of the ma-

chine. The gathering pan can be set to float on the floor. The gathering head, using a rotary mo-
tion, scoops the coal inward onto the conveyor. The conveyor moves the coal to the rear of the

machine.

A conveyor subsystem: The conveyor extends from the gathering head to the rear of the ma-

chine. An adjustable position conveyor boom forms the end of the conveyor system. It can

move from right to left as well as up or down. Coal is dumped from the conveyor boom onto a

haulage unit behind the CM.

A stabilization jack: This hydraulic jack provides a stabilizing force to counter-balance the cut-

ting force.

The continuous mining machine has ten tram control commands: slow/fast speed forward, slow/fast

speed reverse, pivot left/right, turn leftAight forward, and turn left/right reverse. These are open-loop

commands. Execution of any of these command can be terminated by either a stop command (implying

the tram control loop is closed at a higher level where the sensory information is processed), or by a con-

1. Reference to product or company names is for identification only and does not imply government endorsement
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dition that some maximum time has expired (a safety time-out condition).

Figure 15: A continuous mining machine

The U. S. Bureau of Mines has been implementing a computer control system testbed

[Schiffbauer 92]. This testbed is a distributed network linking the continuous mining machine, various

sensor systems (length and angle measuring systems and a laser ring gyro [Horst 92] [Sammarco 92]),

and an operator console which are all nodes on the network.

C State table in ‘C’ for sump-shear-cusp command
In this section we give the ‘C’ code for the state table logic as specified in figure 4 on page 9. This

code uses an if then else code structure for the decision logic. Using a ‘case’ statement in ‘C’ is an

alternate method for performing the state machine logic.

/* The following code is a function in ‘C’ contained in the controller named ‘continuous miner operation

coordinator’ (see figure 5 on page 11). It is an example of a command (co_sump_shear_cusp) from a su-

pervisory controller that is decomposed both spatially (to three subordinate controllers) and temporally

(sump, shear, and cusp commands, in order, to the subordinate controllers) */

static void co_sump_shear_cusp(void)

{
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if (co_cur_state == SO) /* If this is a new command */

{
/* do a sump operation */

co_cur_state = S 1

;

co_position_for_sump();

cr_co.command = CR_SUMP;
cr_co.command_num++;

vg_co.command = VG_TRAM_TO_XY;
vg_co.command_num++;

cc_co.command = CC_SUMP;
cc_co.command_num++;

dprintf(CO_DEBUG_LINE,19,"busy ");

else if (

(co_cur_state == S 1)&&
(vg_si.status == VG_DONE)&&
(cc_si.status == CC_DONE))

{
/* do a shear operation */

co_cur_state = S2;

cr_co.command = CR_SHEAR;
cr_co.command_num++;

vg_co.command = VG_HALT;
vg_co.command_num4-+;

cc_co.command = CC_SHEAR;
cc_co.command_num-H-;

}
/* check for the error that the CM popped out of the shear*/

else if (

(co_cur_state == S2)&&
(W->popped_out_of_shear))

{

co_cur_state = SI;

co_position_for_sump();

cc_co.command = CC_SHEAR_CORRECT;
cc_co.command_num++;

}
/* check for the error that the operator hasn’t positioned the conveyor tail over the haulage, in which

case too much coal is built up and one must pause the shear operation */

else if (

(co_cur_state= S2) &&
too_much_loose_coal())

{

cc_co.command = CC_HALT;
cc_co.command_num-H-;

}
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else if (

(co_cur_state == S2) &&
!too_much_loose_coal() &&
(cc_co.command == CC_HALT))

{
/* continue with shear*/

cc_co.conimand = CC_SHEAR;
cc_co,command_num++;

}

else if (

(co_cur_state == S2) &&
(cr_si.status == CR_DONE) &&
(vg_si.status == VG_DONE)&&
(cc_si.status == CC_DONE)&&
(!W->popped_out_of_shear))

{
/* do a cusp operation */

co_cur_state = S3;

cr_co.command = CR_CUSP;
cr_co.command_num++;

cc_co.conimand = CC_CUSP;
cc_co.conimand_num++;

}

else if (

(co_cur_state == S3) &&
(cr_si.status == CR_DONE) &&
(vg_si.status == VG_DONE)&&
(cc_si. status == CC_DONE))

{

co_cur_state = S4;

co_position_for_cusp();

vg_co.command = VG_TRAM_TO_XY;
vg;_co.command_num++;

}

else if (

(co_cur_state == S4) &&
(cr_si.status == CR_DONE) &&
(vg_si.status == VG_DONE)&&
(cc_si.status == CC_DONE))

{

co_cur_state = NOP;
co.so.status = CO_DONE;
dprintf(CO_DEBUG_LINE,19," ");
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D Generic controller template in ‘C’

In this section we give the ‘C’ code for generic controller template, QQl.c, and associated header file,

QQl.h. The general ordering of the generic controller template is illustrated in figure 13 on page 25.

D.l Generic controller template in ‘C’

/
* New File - QQl.c

FILE-DESCRIPTION: QQl.C is a generic version of a controller module and is intended to be used as a

template. The function qql_controller is called from the main routine within the main event loop. Each

time it is called it calls a pre_process routine, a check_if_new_command routine, a decision process rou-

tine, and a post-processing routine. All control modules should have at least these. The state tables are the

primary means of making the module unique. The appropriate state table function is called from the deci-

sion process.

INSTRUCriONS-FOR-PROJECT-CREATORS : The first step in creating the control units is copying this

file to the name of that control unit. Then a pair of initials should be chosen for the module and all qql's

should be replaced with those initials and all QQl's should be replaced with the initials in capitals. If the

module is to have only one subordinate the qq2's and QQ2's can simply be replaced with the subordinate's

initials. If there will be more than one subordinate the lines that deal with subordinates need to be replicat-

ed in each position and the initials for each subordinate replacing the qq2's in one line of each set. These

lines include:

1 . declaring the command out and status in for the subordinate

2. copying buffers in the pre and post processing routines

3. sending the init and halt commands down in the state tables.

Furthermore, one will have to add state_tables to a controller. This can be done by adding the function pro-

totype, adding a case statement and copying one of the supplied state tables (init or halt) and renaming it.

Then it can be altered to perform the needed task.

*/

/*

* Include Files

*/

#include “global.h” /* global definitions */

/*

* Definitions and Macros
*/

#define QQ1_DEBUG_LINE 1 /* line used for debug screen */

/*

* Variables internal to this file, but

* remaining in tact between calls to
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* functions within this file using these variables.

*/

static unsigned qql_cycle_start_time;

static STATE qql_cur_state = SO;

static QQ1_BUFFER qql; /* command from above */

static QQ2_COMMAND qq2_co; /* command to subordinate */

static QQ2_STATUS qq2_si; /* reply from subordinate */

/* End private global variables (this comment needed for create level) */

/*

* Function Prototypes

*/

void qql_controller();

static void qql_decision_process (void);

static void qql_init (void);

static void qql_halt (void);

static void qql_go (void);

static void qq 1_pre_process (void)

;

static void qql_post_process (void);

static void qql_check_if_new_command (void);

static void qql_print_in_data (void);

static void qql_print_out_data (void);

/*

* Functions not defined but used within this source file

*1

extern int dprintf(int x, int y,char *fmt, ...);

RTNS: None.

PRPSE: External Routine used by main to execute this task.

This is the only entrance to this task.

ATHR: David G. Quigley, John Horst, Will Shackleford

CRTD; 10/09/91

MDFD: None
NOTES: None.

PRBLM: None.

OTHER: None.

void qql_controller()

{
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qq 1 _pre_process()

;

qq l_check;_if_new_command();

qq l_decision_process();

qql_post_process();

}

/*QQ*********************************************************************

RTNS: None.

PRPSE: This routine’s function is to route the control to a specific

state table based on the command in as well as other inputs and

sensor data.

ATHR: David G. Quigley, John Horst, Will Shackleford

CRTD: 10/09/91

MDFD: None

NOTES: None.

PRBLM: None.

OTHER: None.

static void qql_decision_process(void)

{

/*

* If run flag in not set return

*/

if (qql.mode.dont_run == TRUE) return;

/*

* If single step flag in set but single step number has not changed
* return

*/

if(

(qql.mode.single_step == TRUE) &&
(qql.mode.single_step_num == qql.perfo.single_step_num))

return;

/*

* If single step flag in set and single step number has changed
* cycle once.

*/

if (

(qql.mode.single_step == TRUE) &&
(qql.mode.single_step_num != qql.perfo.single_step_num))

qql.perfo.single_step_num = qql.mode.single_step_num;
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switch (qql.ci.command)

{

case QQ1_INIT:

dprintf(QQl_DEBUG_LINE,8,"init ");

qqlJnitO;

break;

case QQ1_HALT:
dprintf(QQl_DEBUG_LINE,8,"halt ");

qql_halt();

break;

default:

dprintf(QQl_DEBUG_LINE, 8,"INVALID ");

break;

}

}

QQ 9i( % a|c 4c >)( 9ic>|c :|c 4c >|c 9|e >ic :|e 9|c 9|c :ic ifc 9|c jK 4c >|t >|c 4c 4c 9ic>|c iic sic 4= 3k >|c ak >|c >|( 9k ’fok^ 4c :)c a|c :|c :|c % :tc

RTNS: None.

PRPSE: This is the state table for the init command of this level.

ATHR: David G. Quigley

CRTD: 10/14/91

MDFD: None
NOTES: None.

PRBLM: None.

OTHER: None.
4c4c4c4c4c4c4c4c4c4c4c4c4c4c4c4c4c4c4c4c4c4c4c4c4c4c4c4c4c4c4c4c4c4c4c4c4c4c4c4c4c4;4c4c4c4c4c4c4c4c4c4:4c4c4:4c4c4c4c4c4c4c4c4c4c4c4c4:4c4c4c4cy

Static void qql_init(void)

(

if

(qql_cur_state == SO)

{

qql_cur_state = SI;

qq2_co.command = QQ2_INIT;

qq2_co.command_num++;

dprintf(QQl_DEBUG_LINE,19,"busy ");

}

else if (

(qql_cur_state ==S1) &«fe

(qq2_si.status= QQ2_DONE))

{

qql_cur_state = NOP;
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qql.so.status = QQl_DONE;
dprintf(QQl_DEBUG_LINE,19," ");

}

}

/*QQ

*

3ic;|c:{c^4c>|c4:;io^9f;4:9^:f;:^%;ic>|c:ic3|c

RTNS: None.

PRPSE: This is the state table to halt all actions or movement controlled

by this level. It also passes the halt command down to all of

its children.

ATHR: David G. Quigley, John Horst, Will Shackleford

CRTD: 10/09/91

MDFD: None
NOTES: None.

PRBLM: None.

OTHER: None.

static void qql_halt(void)

if

(qql_cur_state == SO)

{

qql_cur_state = SI;

qq2_co.command = QQ2_HALT;
qq2_co.command_num++;

dprintf(QQl_DEBUG_LINE,19,"busy ");

}

else if (

(qql_cur_state ==S1) &&
(qq2_si.status == QQ2_DONE))

{

qql_cur_state = NOP;
qql.so.status = QQl_DONE;
dprintf(QQl_DEBUG_LINE,19," ");

}

}

/*QQ*********************************************************************

RTNS: None.

PRPSE: This routine handles all of the preprocessing this level. It

includes: Reading the global buffers.
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Checking executing status of children;

ATHR: David G. Quigley, John Horst, Will Shackleford

CRTD: 10/09/91

MDFD; None
NOTES: None.

PRBLM: None.

OTHER: None.

Static void qql_pre_process(void)

{

dprintf(QQ1_DEBUG_LINE, 1,"QQ 1
");

/*

* Start cycle timing

*/

qql_cycle_start_time = W->timer_counter;

/*

* Get incoming commands from superior module.

*/

COPY_BUFFER(&qq 1 ,&(G->qq 1 _buf),sizeof(QQ 1.BUFFER));

/*

* Get status back from subordinates.

*/

COPY_BUFFER(&qq2_si,&(G->qq2_buf.so),sizeof(QQ2_STATUS));

COPY_BUFFER(&qq2_co,&(G->qq2_buf.ci),sizeof(QQ2_COMMAND));
/* End get subordinate status (this comment need for create level) */

/*

* If the subordinate status back echo number does not

* match its command number, assume it is still executing.

*/

if (qq2_si.status_num != qq2_co.command_num)

qq2_si.status = QQ2_EXECUTING;

/* End check subordinate status (this comment needed for create level) */

/*

* Run print in data

*/

qq l_print_in_data();

}
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/*QQ* ***************************************************************!)<

RTNS: None.

PRPSE; This routine handles the writing of all global data as well as

any other required post processing,

ATHR: David G. Quigley, John Horst, Will Shackleford

CRTD: 10/09/91

MDFD: None
NOTES: None.

PRBLM: None.

OTHER: None.
**********3(c****j|e***j(e****************************************************^

Static void qql_post_process(void)

{

/*

* Calculate performance information

*/

qql.perfo.last_cycle_time = (W->timer_counter - qql_cycle_start_time) * 21;

if (qql.perfo.min_cycle_time == 0) qql.perfo.min_cycle_time = OxFFFF;

if (qql.perfo.last_cycle_time > qql.perfo.max_cycle_time)

qql.perfo.max_cycle_time = qql.perfo.last_cycle_time;

if (qql.perfo.last_cycle_time < qql.perfo.min_cycle_time)

qql.perfo.min_cycle_time = qql.perfo.last_cycle_time;

/*

* Write status back to superior module.

*/

COPY_BUFFER(&(G->qql_buf.so),&qql.so,sizeof(QQl_STATUS));

COPY_BUFFER(&(G->qql_buf.perfo),&qql.perfo,sizeof(QQl_PERFORMANCE));

/*

* Write commands to subordinates.

*/

COPY_BUFFER(&(G->qq2_buf.ci),&qq2_co,sizeof(QQ2_COMMAND));
/* End write subordinate commands (this comment needed for create level) */

/*

* Run print out data

*/

qq 1_print_out_data();

}
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RTNS: None.

PRPSE: This routine checks to see if the command receieved from above is

a new command. It checks this by comparing the current command
in number with the last command in number it received (stored

in status out number).

ATHR: David G. Quigley, John Horst, Will Shackleford

CRTD: 10/09/91

MDFD: None
NOTES: None.

PRBLM: None.

OTHER: None.

Static void qql_check_if_new_command(void)

{

if (qql.ci.command_num != qql.so.status_num)

{

dprintf(QQl_DEBUG_LINE,5,"NC");

qql.so.status_num = qql.ci.command_num;

qql_cur_state = SO;

qql.so.status = QQ1_EXECUTING;
}

else dprintf(QQl_DEBUG_LINE,5," ");

}

RTNS: None.

PRPSE: This routine prints the command and command number received this

cycle to the screen if the debug for this level is active.

ATHR: David G. Quigley, John Horst, Will Shackleford

CRTD: 10/09/91

MDFD: None
NOTES: None.

PRBLM: None.

OTHER: None.

static void qql_print_in_data(void)

{

dprintf(QQl_DEBUG_LINE,35,"%5.5u",qql.ci.command_num);

dprintf(QQl_DEBUG_LINE,30,"%4.4d",qql.ci.command);

dprintf(QQl_DEBUG_LINE+20, 1 ,"QQ1 ");

if (qql.mode.dont_run == TRUE) dprintf(QQl_DEBUG_LINE+20,10,"STOP");

else dprintf(QQl_DEBUG_LINE+20,10,"RUN");
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if (qql.mode.single_step == TRUE) dprintf(QQl_DEBUG_LINE+20, 16,"SINGLE");

else dprintf(QQl_DEBUG_LINE+20,16,"AUTO ");

if (qql.mode.simulate ==TRUE) dprintf(QQl_DEBUG_LINE+20,23,"SIMU");

else dprintf(QQl_DEBUG_LINE+20,23,"REAL");

}

/ QQ ^ ^ ^

*

**

RTNS: None.

PRPSE:This routine prints the status, status number, and state matched

for this cycle to the screen if the debug for this level is active.

ATHR: David G. Quigley

CRTD: 10/09/91

MDFD; None
NOTES: None.

PRBLM: None.

OTHER: None.

*/

static void qql_print_out_data(void)

{

dprintf(QQl_DEBUG_LINE,48,"%5.5u",qql.so.status_num);

dprintf(QQl_DEBUG_LINE,43,"%4.4d",qql.so.status);

if (qql_cur_state == NOP)

{

dprintf(QQl_DEBUG_LINE,55,"NOP ",qql_cur_state);

}

else

{

dprintf(QQl_DEBUG_LINE,55,"S%d ",qql_cur_state);

}

if ((qql.mode.dont_run == TRUE) II

(qql.mode.single_step == TRUE))

{

dprintf(QQl_DEBUG_LINE+20,35," ");

}

else

{

dprintf(QQl_DEBUG_LINE+20,35,"%5.5u %5.5u %5.5u",

qq 1 .perfo.last_cycle_time,

qql .perfo.min_cycle_time,

qq 1 .perfo.max_cycle_time);

}
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)

/* Extra Support Functions */



D.2 Generic controller header file template in ‘C’

/*

* New File: QQl.h
*/

/*

* QQl buffer definitions:

*1

enum qql_commands {
/* qql commands */

QQ1_INIT =100, /* initialize */

QQ1_HALT /* pause */

};

enum qql_responses {

QQl_NOT_READY = 0,

QQ1_EXECUTING,
QQl_DONE,
QQl.ERROR
};

/*

* Module buffer interface structures:

*/

typedef struct

{ /* qql command structure */

unsigned command_num;
enum qql_commands command;

} QQl.COMMAND;

typedef struct

{ /* qql response structure */

unsigned status_num;

enum qql_responses status;

unsigned error_num;

) QQl.STATUS;

/* qql responses */

/* not initialized */

/* command executing */

/* command done */

/* error occured */

typedef struct

{

boolean

boolean

boolean

unsigned

/* qql mode structure */

dont_run;

single_step;

simulate;

single_step_num;
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} QQ1_M0DE;

typedef struct

{

unsigned

unsigned

unsigned

unsigned

} QQl_PERFORMANCE;

/* qql performance */

last_cycle_time;

min_cycle_time;

max_cycle_time;

single_step_num;

typedef struct

{ /* qql command-response buffer */

QQl_COMMAND ci;

QQ1_STATUS so;

QQ1_M0DE mode;

QQl_PERFORMANCE perfo;

} QQ1_BUFFER;

50






