
U.S.' DEPARTMENT OF COMMERCE
National Institute of Standards and Technology

NIST

PUBLICATIONS

I
mm Computer
" Systems

Laboratory

NISTIR 5139

Using Synthetic-Perturbation
Techniques for Tuning
Shared Memory Programs

Robert Snelick
Joseph Ja'Ja'

Raghu Kacker
Gordon Lyon

U. S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards and Technology

Gaithersburg, MD 20899

March 1993

COMPUTER MEASUREMENT
RESEARCH FACILITY

FOR HIGH PERFORMANCE
PARALLEL COMPUTATION

-QC

100

.056

//5139

1995

Partially sponsored by the

Defense Advanced Research Projects Agency

NISTIR 5139

Using Synthetic-Perturbation
Techniques for Tuning
Shared Memory Programs

Robert Snelick, Div. 875
Joseph Ja'Ja', Div 875*

Raghu Kacker, Div 882
Gordon Lyon, Div 875

* University of Maryland,

College Park, MD 20742

U. S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards and Technology

Gaithersburg, MD 20899

Partially sponsored by the Defense

Advanced Research Projects Agency

March 1993

U.S. DEPARTMENT OF COMMERCE
Ronald H. Brown, Secretary

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
Raymond G. Kammer, Acting Director

Contents

1 Introduction 2

1.1 Motivation 3

1.2 Related Work 3

1.3 Program Sensitivities without Conventional Profiles 5

2 Description of Technique 6

3 SPT Applied to Shared Memory Programs 12

4 Case Studies 16

4.1 Image Processing Benchmark 16

4.2 Parallel Quicksort 19

5 Conclusion 28

iii

'fW<

f"/"

..
:

* ,. . >. i/Ol ki " !:*'

.

'

'''’'v*'''^

'! lhiiii>iirn-/nh 'i 'Inotk^k/' 8.i <•

tM? v:‘*oir?rtoM T^i&r

-rrflij-aff-

. , ., ^

//0{Skub'i-iM>0 -a » '

MX'

M-
»?!

i

4

yf-
'»

..?
-

Using Synthetic-Perturbation Techniques
for Tuning Shared Memory Programs ^

Robert Snelick

Joseph JaJa^

Raghu Kacker

Gordon Lyon

National Institute of Standards and Technology^

Gaithersburg, Maryland 20899

Abstract

The Synthetic-Perturbation Tuning (SPT) methodology
is based on an empirical approach that introduces artificial

delays into the MIMD program and captures the effects of

such delays by using the modern branch of statistics called

design of experiments. SPT provides the basis of a pow^er-

ful tool for tuning MIMD programs that is portable across

machines and architectures. The purpose of this paper is to

explain the general approach and to extend it to address spe-

cific features that are the main source of poor performance
on the shared memory programming model. These include

performance degradation due to load imbalance and insuf-

ficient parallelism, overhead introduced by synchronizations

and by accessing shared data structures, and compute time

bottlenecks. We illustrate the practicality of SPT by demon-
strating its use on two very different case studies: a large

image processing benchmark and a parallel quicksort.

Key words: - design of experiments, parallel programs, performance, shared

memory programming model, synthetic-perturbation, tuning

Partially sponsored by the Defense Advanced Research Projects Agency.

^Also, University of Maryland, College Park, MD 20742.

^No recommendation or endorsement, express or otherwise, is given by the National

Institute of Standards and Technology or any sponsor for any illustrative commercial items

in the text.

1

1 Introduction

Today’s multiprocessors provide unprecedented performance potential, yet

all too often the actual performance obtained is far less impressive. Since

their inception, a deficiency of multiprocessor computers has been the lack of

adequate performance measurement and debugging tools. The inherent com-

plexity of parallel programs makes it far more difficult to capture true perfor-

mance measurements on multiple-instruction stream, multiple-data stream

(MIMD) architectures. In the absence of MIMD performance tools, obtain-

ing reasonable parallel program performance is no small undertaking. Our

objective here is to explain, extend, and apply a technique that gives the

programmer useful performance information and is portable across machines

as well as architectures. The technique works equally well in both shared

memory and message passing environments. This work emphasizes the SPT
techniques for shared memory programs.

Many existing tools [6, 8, 9, 10, 11, 12] focus on capturing performance

metrics via monitoring. Performance metrics for parallel programs can pro-

vide an overwhelming amount of internal detail that is difficult to relate to

performance bottlenecks. Our approach identifies sources of performance

degradation via a sensitivity analysis which links program bottlenecks di-

rectly to the source code. Synthetic-Perturbation Tuning (SPT)[1] introduces

the notion of inserting user-induced artificial delays into the source code and

capturing the effect of such delays by employing design of experiments tech-

niques.

In the rest of this section we describe the problems associated with con-

ventional profiling techniques when applied to MIMD architectures. We also

report on existing tools for tuning parallel program performance. Finally,

we give an argument for program sensitivity analysis without conventional

profiles. A step-by-step methodology of SPT is presented in Section 2. In Sec-

tion 3 we extend the technique to address specific features that are the source

of poor performance on the shared memory programming model. Sources

of performance degradation include load imbalance, insufficient parallelism,

synchronization, critical sections, and compute time bottlenecks. Section 4

illustrates the practicality of SPT by demonstrating its use on two case stud-

ies (an image processing benchmark and a parallel quicksort). The last section

(Section 5) draws conclusions and describes future plans.

2

1.1 Motivation

Performance statistics have long been used to improve program execution

efficiencies [18, 19, 7]. The most common statistics are frequency counts and

timings for segments of code. Segments can be procedures or smaller entities,

such as pieces of straight line code. Simple and intuitive to use, execution

profiles reveal program bottlenecks that impede execution.

The advent of the MIMD parallel system raises two challenges to con-

ventional profiling. The first problem is an exploding state space. Program

profiles on serial machines implicitly define a set of disjoint execution states

whose occupancies sum to a total response time. Each execution thread of

an MIMD program defines a similar set of (sub)states. Unfortunately, the

set of states for the whole MIMD program is enormous. To see this, imagine

first a serial program with a main procedure and four callable procedures;

there are five states at the procedural level of profiling. Now consider a par-

allel version of this program on a small, eight-processor system. Eight active

threads, each with five substates, lead to a state set whose size is 5® = 390, 625

states. Processor inactivity will further increase this number. Choosing not

to distinguish among functionally identical processors collapses some states

into what can be termed macrostates, but the fundamental problem remains;

The program state space becomes enormous as the scalable parallel system

grows larger.

A second MIMD profiling challenge is the coupling among profile states

caused by parallel execution. Conventional profile statistics require a much
deeper interpretation in MIMD. This problem is to be expected. With sepa-

rate threads of execution working on a joint computation, it is natural that

communication and constraints must exist among threads. Interdependen-

cies are manifest as latencies-a wait for a message, a pause prior to writing

some shared variable. Because latencies are generated by circumstances of

the system and program, they are not easily estimated. Latencies can range

from negligible to devastatingly large.

1.2 Related Work

Existing techniques collect performance statistics in a number of ways. In

the taxonomy shown in Table 1, the first row shows two common methods of

defining events to be recorded. The first method is periodic sampling (I),

3

which is tied to a clock and is based on collecting statistics. For example,

at regular time intervals, an interrupt may be generated and the program

counter at that point looked up in an allocation table. This gives the name
of the procedure that was active at the clock tick. Periodic sampling is

very popular for instrumenting systems that run an anonymous collection

of programs. No changes are necessary to any user program. By adjusting

the sampling frequency, the overhead can be adjusted to some convenient

level. One big disadvantage is in testing coverage; if a piece of code is not

recorded at having been run, it may in fact not have run, or the sampling

may have been unlucky. The system also has problems with interpretive

language systems, since locations within the interpreter mean little to a user.

I. Periodic Sampling II. Fixed Triggering

a. Traces b. Histograms

Table 1: Simple Taxonomy of Performance Techniques.

The second method of fixed triggering (II) uses identifiable locations

or patterns, which when reached or matched, define an event. For instance,

a special procedure call upon entry to a segment of executable statements

will record information about the program at that point. Fixed triggering is

bound to features of software or hardware. Hence, even if a few instructions of

an instrumented procedure execute, this will be indicated accurately. Testing

coverage for software is quite clear. A major drawback is setup. Each soft-

ware or hardware event of interest must have corresponding triggers defined

within the monitoring system. The technique is not generally satisfactory

for a constantly changing population.

The bottom row of the table gives common types of recorded information.

A trace (a) often comprises a record of a location in code or a configuration

of a subsystem plus a time-stamp. A constant stream of traces is generated as

system execution proceeds, and from this data much important behavior can

be reconstructed. Unfortunately, the stream is often hard to manage because

of its magnitude. Special collection hardware may be needed to handle the

volume of data[13, 14].

Histograms (b) are an accumulative approach that demands little ex-

tra bandwidth. The number of invocations of a procedure, the overall time

4

spent in a loop- these are of type (b), histogram or profile statistics. Because

histogram information accumulates, they demand far less storage or band-

width than do traces. The cost is a loss of detail, since time is not generally

recorded except as an accumulated amount. No detailed times are kept of

individual events.

Tools gprof and quartz are of type I-b. The VLSI instrumentation chip

MultiKron[14:] supports either Il-a or Il-b. MTOOL, triggered by basic pro-

gram blocks, builds histograms and is therefore of type Il-b. A type I-a is

uncommon, since periodic random sampling yields an erratic set of data. It

is not clear what detailed I-a traces could contribute when the actual infor-

mation lies more in the aggregate statistical distribution of samplings than

in any one sample.

1.3 Program Sensitivities without Conventional Pro-

files

A practical code improvement scheme depends upon identifying the most sen-

sitive sections within a program, so that worst bottlenecks can be corrected.

Fortunately, the conventional execution profile is not the only avenue. An
alternate approach treats program and system together as an entity of es-

sentially unfathomable complexity. Here, program segments {s^} suspected

of being bottlenecks are explored via systematic perturbations of their code.

This generates different versions of the program. Overall program responses

are measured and recorded for each variant. The responses are then used

to solve mathematically for sensitivities of the segments {^i}. The ques-

tion of state in this approach has been shifted from the executing program

to simpler, source code defined settings. This new state space is smaller,

clearer and static. Furthermore, there exists a whole body of mathemat-

ics that simplifies its handling and interpretation. This is the statistics of

design of experiments (DEX)[2]. Experimental designs especially address in-

teractions. Focusing upon perturbation settings and measured responses, the

DEX analysis is designed to catch likely interactions that might impede good

performance. Each segment in {sj} in and of itself might not impede parallel

execution, but together, some combinations may cause disastrous slowdowns

(see example in [1]). The DEX approach can indicate interactions easily and

clearly.

5

One major problem in the past with applying DEX to software has been in

finding suitable ways to perturb program code. Natural program parameters

work fine, but they are not commonly available for arbitrary segments. An
alternative is to recode a segment from in a new faster or slower version.

The problem is the recoding, which must be made and checked very carefully

for algorithmic correctness. The perturbed version must compute exactly the

same internal and external results. Recoding is slow and checking is tedious.

Furthermore, each segment must be treated in this ad hoc manner. The

efficient solution is to make all perturbations artificial. By doing this, each

synthetic perturbation is easily introduced or removed, and yet it does not

interfere with the computation of the original code. Since synthetic code

does simulate changes in coding to a segment, DEX analysis proceeds in its

normal fashion.

2 Description of Technique

Synthetic-Perturbation Tuning (SPT) is an empirical approach that treats

an MIMD program as a black box with input parameters and outputs. The
SPT approach introduces synthetic perturbations (i.e., artificial delays) into

source code segments and relies on (for design and analysis) a modern branch

of statistical theory called design of experiments (DEX) [2, 3, 5, 20, 21]. DEX
provides an efficient methodology for determining the relative sensitivity of

the MIMD program to synthetic perturbations. SPT focuses the program-

mer’s attention on the potential problem areas in the program. An important

step in this methodology is to identify which segments of code are candidates

for improvements. The identified code segments are termed bottlenecks. Each

bottleneck is ranked quantitatively according to its sensitivity to synthetic

perturbation. Such a list is called an SPT Rank. An SPT rank is a guide

that can be used to improve (tune) the corresponding code segments.

The SPT premise is that if the program is highly sensitive to source code

perturbations in a code segment (i.e., delay has a clearly detrimental effect

on performance), then source code improvements to that segment will have

an opposite (positive) effect. This premise is easy to justify for serial code

since the SPT ranking can be done so that it corresponds to a combination

of how often a section of code is executed and its execution time. In the

next section, a justification of this premise as it applies to shared memory

6

programs is provided.

In what follows, we describe the generic SPT methodology for tuning an

MIAID program. E.xtensions of SPT for capturing specific features for the

shared memory programming model are given in the next section.

1. Determine objective and define test conditions. The first step in

SPT is to determine the goal of the tuning effort. A common objective

of SPT is to make a rank-ordered list of the source code segments based

on the relative sensitivity of the MIMD program to synthetic delays

associated with the code segments. The segments that rank high on

this list are potential bottlenecks during the execution of the program.

To perform a set of SPT experiments, the user must define a set of test

conditions. Test conditions include the source code implementation,

data set, and machine. SPT’s analysis applies to the defined test con-

ditions. If these conditions change, a new set of SPT experiments and

analysis may need to be performed. Based on our experience, given

a source code and a machine, results for similar data sets are usually

consistent.

2. Choose candidate code segments. A candidate code segment can be

any section of code. Typically it is a function declaration, function call

(usually for synchronization, e.g., a send protocol or a locking mecha-

nism), critical section, or a loop construct. Selection of candidate code

segments can involve a number of techniques. Important factors that

help in narrowing the field of all possible code segments include the

users knowledge of the program and code inspection. A conventional

profiling tool can aid in this process as well. Automatic selection is also

possible. The user can perform preliminary experiments on the set of

all possible user defined code segments (e.g., the user may choose to

examine all loop constructs or all critical sections). Brief experiments

and analysis quickly screen out unlikely bottlenecks. This preparatory

process reduces the field to a manageable size for which more exhaustive

testing can be performed.

3. Insert Perturbations. Each candidate code segment is instrumented

with a delay option {delay or no delay). No delay leaves the code

unperturbed. Delay takes the form of a function call that performs a

7

specified number of instructions. The call does not alter the natural

path of the program or the values of its variables. It merely attaches

a specified number of instructions to that code segment. The delays

could be of different lengths [1]. However, for simplicity, we opted

to implement constant delays at the source code level. Thus in the

example described, delay has two possible values, zero or a fixed number

irrespective of the code segment. An example of how a delay might be

implemented is given in the following pseudo C source code block;

while(v-) {
/* factor 12 */ /* begin original code */

F12 /* begin spt code */

spt_delay (delay _value);

T^endif /* end spt code */

Code

}
/* end original code */

spt.delayO is a function that performs a specified number of synthetic

instructions corresponding to delay^value. The implementation of the

delay function must yield a consistent delay while not altering the nat-

ural path of the program. The looping block while(V-) { ...} is a des-

ignated code segment and referred to as, for example, factor 12 {F12).

The statistical term factor is used to represent a candidate code seg-

ment. Conditional compilation creates multiple versions of the program

corresponding to pattern of delays indicated by the experimental plan

(next step).

The duration of the artificial delay is an important aspect. Ideally, the

delay should be long enough so that it can easily be distinguished from

noise and short enough so as not to produce unnecessarily long pro-

gram execution times. The magnitude of the delay is often determined

through trial and error. A discussion of important aspects for choosing

the delay magnitude can be found in the extended version of [1]. In

the next three steps we describe how SPT experimental design plans

are developed and used.

8

Treatment Factors Response

Fl F2 F3

1 — — — 17.05

2 + — — 17.08

3 — + — 23.19

4 + + — 23.34

5 — — + 19.62

6 + — + 19.71

7 — + + 25.61

8 + + + 25.71

Table 2: 2^Complete Factorial Design for Xprog.

4. Design experimental plan. Once the candidate code segments are de-

termined, an experimental plan can be developed. There is no theo-

retical limit on how many distinct factors (source code segments) can

be investigated on a given SPT iteration. A variety of schemes can be

used for designing an experimental plan[2, 5]. A small 2^ factor com-

plete factorial example is given to illustrate the ideas of experimental

designs. A 2"^ plan indicates that the experiment has n factors each at

2 levels. Here we have n = 3 factors (called, for example FI, F2, and

F3) and 2 levels {no delay
(
—

)
and delay

(+)) for each factor.

Suppose we have a MIMD program (call it Xprog) with three suspected

bottleneck locations, FI, F2, and F3 that correspond to certain code

segments within Xprog. Fl represents a for loop in the function func^Y,

represents a critical section in the function func.Z, and F5 represents

a while loop in the function func^Z.

With a three factor complete factorial plan, there are 2^ = 8 possible

delay patterns each indicated by a row in Table 2. A plus sign
(+)

in

a given row denotes that the corresponding code segment is perturbed,

and a minus sign
(
—

)
indicates that the corresponding code segment

is unperturbed (i.e., it retains its original code). In DEX terminology

each delay pattern is a treatment. Table 2 lists the eight treatments

and corresponding response which is the total execution time of the

MIMD program. Note that the first treatment (all minuses) represents

the original unperturbed program code.

9

The basis of an SPT rank associated with a source code segment is a

quantitative measure called main effect associated with that code seg-

ment. In our 2^ example the ranking of the three factors is based on

their main effects (computation of the main effects will be illustrated).

A main effect of a factor (code segment) is a measure of the sensitiv-

ity of the MIMD program to the artificial delay in that code segment.

Depending on the experiment plan that is used, this measure can be

affected in unknown ways by the interactions amongst the code seg-

ments. In this paper we propose the use of experimental plans called

resolution IV plans that ensure that the main effects are not affected

by the 2nd-order interactions amongst the code segments [2]. The total

number of test runs required by a resolution IV plan with k factors is

approximately 2k.

5. Run experiments according to plan and record a response. Each

treatment or version of the program is run and the corresponding re-

sponse is recorded. The response can be any useful measurement; typi-

cally the response is the total program execution time. The treatments

are usually run in a random order.

In our example (Table 2), all eight versions of the program are compiled,

run in random order and measured for execution time . The response

time for each treatment of the program is given in the Response column.

6. Analyze Results. The object of data analysis is to evaluate the main

effects associated with each factor. The computed values of the main

effects are subsequently used to produce an SPT ranking of the factors.

In addition to the main effects, a resolution IV plan provides a measure

of the standard error (a measure of uncertainty) associated with the

computed values.

The main effect of a factor is the difference between two average

responses, one corresponding to the treatments which have the
(+)

level of the factor and the other corresponding to the treatments which

have the
(
—

)
level of the factor. For example, in the 2^ plan (Table 2),

the main effect of factor F3 is the average response for treatments 5,

6, 7, and 8 (i.e., [19.62 + 19.71 + 25.61 + 25.71]/4 = 22.66), minus the

average response for treatments 1, 2, 3, and 4 (i.e., [17.05 + 17.08 +
23.19 + 23.34]/4 = 20.17). Thus the main effect for F3 is 2.49. The

10

Rank Eactor Main Effect f Routine Construct

1 F2 6.10 func_Z() while loop

2 F3 2.49 func_Z() critical section

3 El 0.09 func_Y(

)

for loop

t Standard Error of Main Effects: ±0.06

Table 3: SPT Rank of Main Effects for Xprog.

main effects are organized into an ordered list to form an SPT ranking

of the code segments. An example of an ordered list (from Table 2)

that can be produced by SPT is shown in Table 3. This SPT rank is

the format we use throughout the rest of the paper.

The first column of the SPT rank gives the standing of the correspond-

ing code segment. A higher rank indicates a higher sensitivity to arti-

ficial delays (e.g., F2 is most sensitive to the delay). Column 2 gives

the factor number which provides a reference back to the source code

location represented by the factor. The main effects column gives the

sensitivity levels of the corresponding code segments as well as an esti-

mate of the standard error'*. The actual numbers are not as important

as their relative magnitudes. Column 4 describes which function the

section of code resides in. The last column indicates what type of con-

struct the code segment is. By surveying Table 3 we can conclude that

factor F2 is the most significant. This code segment should be given

first priority in the tuning effort.

7. Improve bottlenecks and determine performance. An SPT rank gives

a list of potential bottlenecks. The bottlenecks so identified may or may
not be improvable. Investigation begins with the higher ranked bottle-

necks since they possess the greatest potential for improvement. These

bottlenecks can be pursued further with SPT to gain more information

about the bottlenecks or an attempt can be made to improve them.

After improvements to the code are attempted the user must make a

determination of performance. If the desired performance is obtained

the process is complete. Otherwise the user can continue to investigate

^The standard error of the main effect is evaluated by treating high order interactions

as errors from noise (see[2], page-327).

11

the program by using SPT to probe the code further.

This methodology provides the basic SPT framework. Within this frame-

work, expanded issues relevant to a particular programming model and archi-

tecture can be handled. For example, on the shared memory programming

model, programming concerns such as degree of parallelism, load balancing,

critical sections, and synchronization can easily be investigated. The next

section addresses these issues.

3 SPT Applied to Shared Memory Programs

The emergence of shared memory multiprocessors in the past decade has

given rise to a substantial effort in designing and analyzing software for these

machines. According to Bell [17], “the mainline, general-purpose computer is

almost certain to be the shared memory, multiprocessor after 1995.” Hence

it is important to develop tuning tools for shared memory programs. The
SPMD (Single Program, Multiple Data) model using a single address space

is the natural programming model for shared memory multiprocessors. This

programming model can be viewed as an evolution of the traditional pro-

gramming model used for von Neumann architectures. The performance of

a shared memory program depends crucially on several interrelated factors

such as the amount of parallelism used, the degree to which the work load is

balanced among the processors, the contention over shared resources (inter-

connection network, bus, memory), and the overhead incurred by synchro-

nization. Unless a balance taking into consideration the relative importance

of these factors is maintained, the actual performance of shared memory pro-

grams will be disappointing. In fact, experimental work thus far bears this

out. In the rest of this section, we describe our approach for finding bot-

tlenecks related to each of these aspects as they arise in a shared memory
program (some strategies apply to message passing environments as well).

The SPT approach described in the previous section is expanded to deter-

mine the sources of potential bottlenecks. In the next section, we illustrate

the use of these techniques on two case studies, the Image Understanding

Benchmark^ and a parallel version of the quicksort algorithm.

Degree of Parallelism: A typical MIMD program contains a mix of scalar,

serial, vector, and parallel operations. A section of code with insufficient

12

parallelism is a bottleneck if its execution time is significant compared to the

overall execution time of the program. Such a bottleneck can be detected only

if the performance of the program is analyzed as a function of the number of

processors involved. In fact, by Amdhal’s law, for a given program, it is the

execution time of the serial portions that will ultimately determine the speed

of the program as the number of processors increases (and the input size is

held constant). Our method is based on an extension of this observation.

We insert artificial delays into the sections of code under investigation.

We then perform the design of experiments on successively scaled-up versions

of the system. As the number of processors increases, the effects of the

parallel code will become less important while the effects of the serial code

will become more significant.

Consider for example a section of code that multiphes an n x n matrix A
by a vector x to generate the vector y = Ax. Partition A as follows

Ai

^p

where each Ai is of size [nip] x n, n/p is assumed to be an integer, and

p is the number of processors available. The following section of the code

corresponds to the computation performed by the ith processor

for j = (i — 1)^ + 1 to do

y{j) = 0

for ^ 1 to n do
SPT-delay

yU) •= yU) +
end

end

The execution time of this section of code is proportional to ^{A + 2t /p),

where A is the SPT delay time, and t fp is the time it takes to execute a

floating-point add or multiply (assumed to be equal for simplicity). Hence

the effect of the SPT delay is a net increase of —A in the total execution

time; thus, it represents a factor whose effect is a decreasing function of

13

p. Therefore, the effect of the parallel code becomes less important as the

system is scaled-up.

Load Balancing: The speedup achieved by a parallel program is primarily

due to the development of threads of execution that can be run concurrently.

This can be done either by using functional or data decomposition present

(explicitly or implicitly) in an existing algorithm, or by developing a new

algorithm that has a higher degree of (functional or data) parallelism. With

functional decomposition, each processor is responsible for executing a differ-

ent function, and hence the distribution of the loads among the processors is

completely dependent on the computational requirements of these functions.

Similarly, data decomposition can result in some processors having to handle

much larger amounts of data than the rest of the processors.

A load balancing problem can be viewed as insufficient parallelism that,

in general, arises dynamically. The insertion of artificial delays followed by an

SPT analysis allows us to determine each section of the code that generates a

significant load imbalance. Notice that an SPT delay will cause the processor

with the heaviest load to run even slower and hence its SPT effect will be

significant. Consider for example the case when there are p processors that

have to be assigned to process (say, search for a specific item) n lists Lj of

different sizes, for 0 < j < n. We can use data decomposition by assigning

the ith processor to process the lists Li, Li^p, • • •, for 0 < i < p. The following

program segment illustrates such a decomposition.

for [i = id]i < n; i+ = p)do

{ for(j =head(z);j! =:NULL; j = j— >next)do

SPT-Delay

{ Process Node j }

}

The impact of the SPT delay A is proportional to A maxo<j<p{|Ti| + \Li+p\ +
• • •}. It follows that the larger the total size of the lists to be processed by

a single processor, the more significant the SPT contribution of the corre-

sponding factor.

In the Image Understanding benchmark that we study in the next sec-

tion, we use this technique to predict the load imbalance that is caused by

14

the procedure to determine the connected components of an image. In this

case, the processor assigned to handle the background pixels has much more

work to do than the remaining processors. Without analyzing the procedure,

our SPT analysis was able to determine the load imbalance resulting from

this procedure and to predict its importance as the number of processors

increases.

Critical Sections and Synchronization: Processors executing a shared

memory program may waste a substantial amount of time trying to enter a

critical section (“busy wait”) or trying to synchronize their activities. SPT
can be used to provide information concerning any significant overhead in-

curred in a critical section or at a synchronization point. We start by handling

critical sections.

The insertion of an artificial delay into a critical section allows us to

perform an SPT analysis similar to the previous two cases. We claim that,

for a critical section that represents a significant bottleneck in the program,

its SPT effect will become more important as we scale-up the system. In fact,

the overall contribution of the delays tends to be cumulative with respect to

the number of processors that are trying to access the critical section.

As for synchronization, we cannot use the technique in a straightforward

way. However we can extend it as follows. For each synchronization bar-

rier, we insert two types of perturbations, one immediately before the barrier

and the other immediately after the barrier. The perturbation FBI inserted

before the barrier consists of an artificial critical section, while the pertur-

bation FB2 inserted after the barrier consists of an artificial critical section

followed by an artificial barrier. The justification of the perturbation FB2 is

as follows. The critical section delay in FB2 is an obvious bottleneck since

all the released threads try to execute it at once whereas the artificial barrier

ensures that the new program is functionally identical to the original one.

We then run our experiments and compare the effects of FBI and FB2. If

their effects are about the same, we can conclude that the synchronization

cost is marginal. The argument is that in this case FBI is also being pressed

for execution by many threads, which is indicative of how threads arrive at

the barrier- all together - a good parallel execution. As the difference in the

two effects increases, the synchronization cost increases. Threads that arrive

one-by-one at FBI will not find it much of a bottleneck and hence its effect

will be lower than that of FB2. It follows that by comparing the effects of

15

FBI and FB2^ vve will be able to diagnose a barrier being used efficiently.

This method is applied in the next section to a quicksort program that con-

tains several synchronization points and is shown to identify properly the

costly synchronizations.

Summary: SPT can be used to detect bottlenecks due to lack of parallelism,

load imbalance, and critical sections, by simply inserting artificial delays into

appropriate sections of the code and conducting a design of experiments and

an SPT analysis as described in Section 2. As for synchronization, we can

insert two types of delays, one immediately before and the other immediately

after each synchronization barrier, and conduct the design of experiments and

an SPT analysis as before. Therefore SPT can be used to detect the main

sources of inefficiency in a shared memory program. In the next section, we

illustrate our techniques on two detailed case studies.

4 Case Studies

4.1 Image Processing Benchmark

In this section we present a practical shared memory tuning example based

upon a large image processing benchmark. The test code is the Image Un-

derstanding Benchmark for parallel computers developed at the University

of Massachusetts at Amherst [15]. The benchmark was described as a “com-

plex benchmark that would be almost impossible to tune” [15]. Using SPT,

we demonstrate how important bottlenecks were identified and subsequently

analyzed and improved.

The benchmark was designed to test common vision tasks on parallel

architectures. It consists of a model- based object recognition problem, given

two sources of sensory input, intensity and range data, and a collection of

candidate models. The intensity image is a 512 x 512 array of 8-bit pixels,

while the depth image consists of a 512 x 512 array of 32-bit floating point

numbers. The models contain rectangular surfaces, floating in space, viewed

under orthographic projection. .Added to the configuration is both noise

and spurious nonmodel surfaces. The benchmark’s task is to recognize an

approximately specified 2 1/2-dimensional “mobile” sculpture in a cluttered

environment. The sculpture is a collection of 2-dimensional rectangles of

various sizes, brightnesses, orientations, and depths.

16

The experiments are performed on both a ten processor and twenty-six

processor Sequent Symmetry. The Image Understanding Benchmark package

comes with a number of data sets and their corresponding outputs. The
example presented here uses test set number two. The benchmark consists

of more than 50 procedures and has approximately 3500 lines of C code.

Our objective for performing an SPT analysis on this example is to screen

the code for potential bottlenecks at different levels of parallelism. We se-

lected 31 factors (loops, function declarations, and critical sections) as po-

tential candidates for bottlenecks based on code inspection. An experimental

plan is selected to handle the large number of code segments that need to

be investigated. The image benchmark is instrumented with an SPT delay

for each factor. The treatments are run in a random order and the overall

execution time of the program is recorded as the response.

Table 4 lists the main effects of the 31 factors of the image processing

benchmark running on 8 processors. This initial set of experiments indicates

that the three top ranked procedures (Gradient Magnitude, Median Filter-

ing, and Connected Components) represent major bottlenecks. Hence tuning

the corresponding code segments should be given first priority. Notice that

none of the top ranked factors involves a critical section or a synchronization

barrier. Therefore the emphasis of the tuning effort should concentrate on

increasing the efficiency of the serial sections within the loops (corresponding

to factors FIT, F26 and F2), or better balancing the load among the pro-

cessors, or increasing the degree of parallelism. Since factor FIT was ranked

highest, we concentrated initially on the corresponding code segment.

The Gradient Magnitude procedure performs a standard 3 x 3 Sobel oper-

ation on the depth image. The section of code within the loop corresponding

to factor FIT is quite inefficient. After removing multiplications by zeros,

and reducing the total number of remaining multiplications, the execution

time of the procedure improved 300%. At this point, the relative ranking of

the procedure dropped to 8 with 8 processors (Table 9).

Our next task was to consider the Median Filtering procedure. While

we were attempting to tune this procedure, we discovered that the procedure

generated erroneous results. At this time we switched our efforts to tuning the

third procedure. Connected Components. This procedure assigns a unique

label to each contiguous collection of pixels having the same intensity level

value. To gain a better understanding, we ran our experiments using 2, 4, 8,

and 24 processors. Tables 5, 6, T, and 8 show the resulting rankings of the

IT

Rank Eactor Main Effect f Routine Construct

1 17 6.03 Gradient Magnitude for loop

2 26 5.46 Median Eiltering while loop

3 2 5.26 Connected Components for loop

4 1 3.94 Connected Components function

5 4 3.84 Connected Components while loop

6 25 2.01 Median Filtering for loop

7 20 1.67 Match function

8 29 1..36 Probe for loop

9 6 0.64 Extract Cues for loop

10 21 0.53 Match for loop

11 19 0.16 K-curvature for loop

12 18 0.10 K-curvature for loop

13 12 0.10 Complete Match critical section

14 11 0.08 Complete Match while loop

15 13 0.08 Complete Match while loop

16 8 0.05 Complete Match function

17 10 0.05 Complete Match critical section

18 24 0.05 Median Filtering while loop

19 5 0.05 Connected Components while loop

20 15 0.04 Extract Cues critical section

21 16 1.04 Complete Match critical section

22 3 0.04 Connected Components while loop

23 14 0.03 Complete Match critical section

24 28 0.03 Probe function

25 7 0.02 Complete Match while loop

26 27 0.02 Probe for loop

27 22 0.02 Median Filtering for loop

28 23 0.01 Median Filtering for loop

29 9 0.01 Complete Match function

30 31 0.00 Trace Boundary while loop

31 30 0.00 Graham Scan while loop

t Standard Error of Main Effects: ±0.04

Table 4: SPT Rank for Image Benchmark^ 8 Processors.

18

major factors (on the original code) as a function of the number of processors.

It is immediately clear that there is a serious load balancing problem; the

three factors {FI, F2, F^) corresponding to Connected Components have

gradually moved to the very top of the table as the number of processors

increased. A close examination of the procedure confirms our suspicion.

One processor is assigned to handle the background pixels and hence ends

up doing most of the work. A completely different scheduling policy or a

completely new algorithm is required before a significant improvement can

be made. Even by making slight modifications, we were able to improve the

performance of this procedure.

We now show the results of the SPT analysis when performed on our

improved version. We have modified the Gradient procedure as indicated

earlier and have made some simple modifications to the Connected Com-
ponents procedure. Tables 9 and 10 show a summary of the SPT analysis

when performed on our improved version. Notice that the Gradient proce-

dure (rank=8 with 8 processors, and rank=17 on 24 processors) is no longer

a significant bottleneck and that the Median, Connected Components, and

Probe contribute much more significantly to the overall running time when

the number of processors increases beyond eight. Using eight-processors, our

version runs 18.2% faster than the original version.

4.2 Parallel Quicksort

The image processing benchmark provided insights on how SPT can be used

to handle large applications. It successfully detected code inefficiencies and a

Rank Factor Main Effect f Routine Construct

1 17 24.04 Gradient Magnitude for loop

2 26 22.18 Median Filtering while loop

3 25 8.27 Median Filtering for loop

4 2 5.26 Connected Components for loop

5 1 4.50 Connected Components function

6 4 4.34 Connected Components while loop

t Standard Error of Main Effects: ±0.04

Table 5: SPT Rank for Image Benchmark^ 2 Processors.

19

Rank Eactor Main Effect f Routine Construct

1 17 12.06 Gradient Magnitude for loop

2 26 11.09 Median Eiltering while loop

3 2 5.27 Connected Components for loop

4 4 4.35 Connected Components while loop

5 1 4.33 Connected Components function

6 25 4.09 Median Filtering for loop

I Standard Error of Main Effects: ±0.04

Table 6: SPT Rank for Image Benchmark^ 4 Processors.

Rank Factor Main Effect | Routine Construct

1 17 6.03 Gradient Magnitude for loop

2 26 5.46 Median Filtering while loop

3 2 5.26 Connected Components for loop

4 1 3.94 Connected Components function

5 4 3.84 Connected Components while loop

6 25 2.01 Median Filtering for loop

f Standard Error of Main Effects: ±0.04

Table 7: SPT Rank for Image Benchmark, 8 Processors.

Rank Factor Main Effect f Routine Construct

1 2 5.43 Connected Components for loop

2 1 3.95 Connected Components function

3 4 3.93 Connected Components while loop

4 17 2.14 Gradient Magnitude for loop

5 26 2.03 Median Filtering while loop

6 20 1.55 Match function

t Standard Error of Main Effects: ±0.12

Table 8: SPT Rank for Image Benchmark, 24 Processors.

20

Rank Factor Main Effect f Routine Construct

1 26 5.57 Median Filtering while loop

2 2 5.30 Connected Components for loop

3 1 4.06 Connected Components function

4 4 3.93 Connected Components while loop

5 25 2.04 Median Filtering for loop

6 20 1.64 Match function

7 29 1.23 Probe for loop

8 17 0.59 Gradient Magnitude for loop

9 6 0.59 Extract Cues for loop

t Standard Error of Main Effects: ±0.04

Table 9: SPT Rank for Improved Image Benchmark, 8 Processors.

Rank Factor Main Effect f Routine Construct

2 2 5.85 Connected Components for loop

4 4 4.66 Connected Components while loop

3 1 3.80 Connected Components function

1 26 2.31 Median Filtering while loop

7 29 2.22 Probe for loop

9 6 1.82 Extract Cues for loop

17 17 0.60 Gradient Magnitude for loop

t Standard Error of Main Effects: ±0.76

Table 10: SPT Rank for Improved Image Benchmark, 24 Processors.

21

load imbalance. However, synchronization and critical sections did not play

a significant role. In this section, we discuss a parallel version of the quicksort

algorithm and illustrate how SPT can be used to address bottlenecks due to

synchronization and critical sections.

The test code is a parallel implementation of Hoare’s quicksort algorithm[16].

Quicksort is a scheme that is based on partitioning a given list into two sub-

lists relative to a selected member of the list, called the pivot. Elements of

the list are rearranged such that all elements smaller than the pivot are to the

left of the pivot and all elements greater than the pivot are to the right of the

pivot. There are several ways of choosing the pivot to induce approximately

equal partitions. We refer to a such partitioning step as a pass. Hence after a

pass, the pivot value is positioned in its sorted order. This procedure is then

applied recursively to each sublist. Once a sublist becomes small enough, it

can be sorted by using a simple sorting routine, say selection sort or bubble

sort.

A simple way to parallelize the quicksort procedure is to allocate newly-

created sublists to available processors (see[4] for a more involved paralleliza-

tion of quicksort). A sublist assigned to a processor is then partitioned into

two sublists by that processor. The allocation of sublists to processors is

controlled by a shared stack. An idle processor asks for a sublist from the

shared stack. To insure that no two processors take possession of the same

sublist, the stack access is controlled by a critical section.

The following is a skeleton of the program code for a simple implementa-

tion of quicksort.

22

Initializations;

Put list on stack;

barrier(); /* barrier ^^1 */

while(stack is not empty) {

barrierf); /* barrier ^2 */

/ocA’(stack Jock);

if(stack is not empty)

pop();

un/oc/i’(stackJock);

Select a pivot and partition current list into sublists Li and L2 ;

ifdiil > lid) {

/ocfc(stackJock);

push(L2);

push(Li);

un/oc^(stackJock); }

else {

/ocA:(stackJock);

push(Li);

push(L2);

unlock{steickJock); }

barrier(); /* barrier ^3 */

}

Our tuning effort of quicksort begins by investigating the cost of synchro-

nization. There are three synchronization points, denoted as barrier (). The
first barrier insures that all initializations are complete before the processes

begin executing the while loop. The two barriers within the main loop

synchronize the processes before and after each pass. This implementation

makes it easy to determine when the sort is completed. Our SPT objective

is to find out if processes are arriving at widely dispersed times, and hence

causing many processors to idle for a significantly long period of time. Our

investigation follows the treatment method presented in Section 3. For each

synchronization barrier, two types of perturbations are inserted, one imme-

diately before {FBI) and the other immediately after {FB2). The method is

illustrated by the following code segment;

23

Paired Factor Main Effect Difference |

barrier

pair 1

FBI: 0.16

0.06FB2: 0.22

barrier

pair 2

FBI: 14.22

1.00FB2: 15.22

barrier

pair 3

FBI: 6.78

8.56FB2: 15.34

I Standard Error of the Difference: ±0.21

Table 11: Paired Effects for Quicksort’s Barriers.

/ocA:(sptJock_l); /* */

spt .delay (sptjdelay); /* FBI */

'un/ocA:(spt Jock_l); /* treatment */

barrier(); /* original barrier */

/ocA:(sptJock.l); /* */

spt_delay(sptjdelay); /* FB2 */

«n/oc^(spt JockJ.); /* treatment */

harrier(); /* */

The three synchronization barriers are instrumented as shown above.

This implementation demands six factors, two for each barrier tested. The

experiments proceed as before; an experimental plan is created and tested.

The resultant is an effect measure for all six factors. The interpretation of

the results differ slightly in that we now want to compare the effects of the

factors before and after each barrier. Table 11 shows the results. The left-

most column of Table 11 identifies the barrier. The second column gives

the calculated main effect for each factor. The individual main effects are

meaningless in isolation and must be paired up and compared to obtain the

proper information. The last column, which contains the difference of each

of the paired factors, gives an indication of the cost associated with each syn-

chronization. Remember that the treatment FB2 shows the effect of an ideal

barrier application, and is very sensitive to delay. If the paired effects are

about the same, we conclude that the synchronization cost is marginal. As

the difference in the two effects increases, the synchronization cost increases.

24

(Recall that FBI has less effect on straggling threads.) It follows that by

comparing the effects of each pair of the delays introduced for each synchro-

nization barrier, we will be able to determine those incurring large overheads.

It should be noted that this type of experiment should be performed sepa-

rately from a screening experiment. The effects have no relationship to the

screening for important factors because the treatments are not comparable

in any easy fashion.

In spite of its simplicity, this example illustrates the effectiveness and the

generality of the SPT approach. The difference shown for the first synchro-

nization barrier indicates that almost all processors arrive there at the same

time. This is clearly the case since only one processor is responsible for the

initialization phase and the rest crowd around the barrier. Used only once,

the effects also show that this barrier is not very important to performance.

The second synchronization barrier is not needed since the processors are

already synchronized at the beginning of each pass. The test confirms what

algorithm inspection tells us. The third row of the table indicates that the

third synchronization barrier is costly compared to the other two synchro-

nization barriers. This is because processors are working on different-length

sublists (or no sublist at all) and hence arrive at the third synchronization

point at widely different times. The barrier deserves some attention.

To alleviate the problem of synchronization at the end of the while loop,

we rewrite the code following the skeleton shown next. The resulting im-

provement in performance is substantial (78%).

25

Initializations;

Put list on stack;

barrier ();

for() {

/ocA:(stackJock); /* CSl */

if(stack is not empty)

{

pop();

}

^in/ocA:(stackJock);

if(!qsort_done) {

Select a pivot and partition current list into sublists Li and L 2 ;

ifdiil > |L,|) {

lock{sta,ckJock); /* CS2 */

push(l2);

push(Li);

Mn/oc/;:(stackJock);

} else {

/ocA:(stackJock); /* CSS */

push(Li);

push(L2);

Mn/oc/:(stackJock);

}

}

}

In the next experiment, SPT's objective is to obtain the relative im-

portance (detrimental effect) of the three new critical sections (CSl, CS2,

CSS). A delay is inserted in each critical section. An experimental plan is

developed and run. Table 12 shows the SPT performance information for

each critical section. By looking at the program, it is not clear which crit-

ical section presents the main bottleneck among the three critical sections.

Our SPT analysis shows that the first critical section dominates. At this

point, we remove the other two factors from further consideration, and per-

form a complete SPT analysis that includes the factor (labelled Tl) of the

26

Rank Eactor Main Effect f Routine Construct

1 1 13.82 main(

)

critical section 1

2 3 2.86 main() critical section 3

3 2 2.62 main() critical section 2

I Standard Error of Main Effects: ±2.15

Table 12: SPT Rank for Quicksort’s Critical Sections.

Rank Eactor Main Effect f Routine Construct

1 E3 29.01 partitionJist(

)

while loop

2 F7 8.94 swapO function

3 E4 1.26 push() function

4 E6 0.69 bubble_sort() while loop

5 El 0.14 main() critical section 1

6 F2 0.11 select_pivot() function

7 F5 0.09 P0P() function

I Standard Error of Main Effects: ±0.39

Table 13: SPT Rank for Quicksort.

critical section C5l. Six additional code segments are selected to be tested

along with this critical section. These are the procedures: partition Jist(),

bubble^ort(), swap(), push(), pop(), and select_pivot(). Since the delay for

the critical section and regular code segments are equivalent, they can be

compared. Table 13 shows the results obtained. Clearly factors F3 and F7
dominate the overall performance. Based upon this data, we examine the

procedure partition- list() which calls the swap() procedure. Removing the

calls to swap() and inserting its code into partitionJist() resulted in an ad-

ditional 23% improvement of the execution time of quicksort. This improve-

ment has been reported earlier in [1] via SPT. As shown in the same paper,

using the UNIX profiling tool ^pro/ would have provided little information

for improving the parallel quicksort routine.

27

5 Conclusion

We have described the tuning methodology of SPT, Synthetic-Perturbation

Tuning, that is based on a branch of statistics called design of experiments.

The main purpose of this methodology is to identify performance bottlenecks

present in MIMD programs. SPT should provide the basis of a very powerful

tuning tool that is portable across machines and architectures. We also

considered in some detail the sources of poor performance on the shared

memory model and showed how these issues can be adequately captured using

SPT. Two detailed case studies were then discussed and their bottlenecks

analyzed using our methodology. Significant improvements were made based

on the results of the SPT analysis.

The work presented here should be viewed as a contribution towards de-

veloping a comprehensive methodology for tuning MIMD programs based

on the techniques of the design of experiments. We are currently refining

and extending our methodology in several directions. In particular, we are

analyzing approaches to measure the performance of memory hierarchy in

a shared memory environment, and the communication overhead present in

a message passing environment. Additional large case studies are currently

being examined using SPT. Our future plans include the development of au-

tomated tools for performing the SPT analysis and reporting the appropriate

information to the user.

A minor disadvantage of our methodology is the amount of experimen-

tation necessary to perform the analysis. However, we believe that tuning

MIMD programs is a highly nontrivial task requiring the capture of many
parameters and their interactions. Simpler schemes are likely to fail in one

aspect or another. The mathematical basis of our method provides a solid

foundation upon which we can build general tuning techniques that are ap-

plicable across machines and architectures.

References

[1] G. Lyon, R. Snelick, R. Kacker. ”TPT: Time-Perturbation Tuning of

MIMD Programs.” Proceeding of the 6th International Conference on

Modelling Techniques and Tools for Computer Performance Evalua-

tion, Edinburgh, Scotland, September 1992, 211-224. Edinburgh Uni-

28

versity Press Ltd. (an extended version of this paper exists as a Natl.

Inst, of Standards and Technology (NIST) internal report, NISTIR

5131)

[2] G. Box, \'V. Hunter, J. Hunter, Statistics for Experimenters (1978),

John Wiley and Sons Inc., New York.

[3] R. Jain. The Art of Computer Systems Performance Analysis. J. Wiley

Sz Sons (New York, 1991), 720 pp.

[4] J. JaJa. An Introduction to Parallel Algorithms. Addison- Wesley, 1992,

556 pp.

[5] R. Kacker, E. Lagergren, J. Eilliben. ’’Taguchi’s Orthogonal Arrays are

Classic Designs of Experiments.” J.Res. Natl. Inst. Stand. Technol. 96,

5(Sept.-Oct. 1991), 577-591.

[6] T. Anderson and E. Lazowska. ’’Quartz: A Tool for Tuning Parallel

Program Performance.” Processings, SIGMETRICS 1990 Conference.

May 1990, 115-125.

[7] S. Graham, P. Kessler, and M. McKusick. ’’Gprof: A Call Graph Ex-

ecution Profiler.” ’’Proceeding, ACM SIGPLAN Symposium on Com-
piler Construction, June, 1982.

[8] A. Goldberg and J. Hennessy. ’’Performance Debugging Shared Mem-
ory Multiprocessor Programs with MTOOL.” In Proceedings Super-

computing, pp. 481-490, Nov. 1991.

[9] M. Martonosi, A. Gupta, T. Anderson. ’’MemSpy: Analyzing Mem-
ory System Bottlenecks in Programs.” Performance Evaluation Review,

Vol. 20, No. 1, June 1992.

[10] P. Newton and J. Browne. "The Code 2.0 Graphical Parallel Program-

ming Language.” In Processings .ACM International Conference on

Supercomputing, pp. 167-177. July 1992.

[11] H. Burkhart and R. Millen. ” Performance-Measurement Tools in a

Multiprocessor Environment." IEEE Transactions on Computers, Vol.

38, No. 5, May 1989.

29

[12] B. Miller, M. Clark, J. Hollingworth, S. Kierstead, S. Lee, T. Torzewski.

”IPS-2: The Second Generation of a Parallel Program Measurement

System.” IEEE Transactions on Parallel and Distributed Systems, Vol.

1, No. 2, April 1990.

[13] A. Mink, R. Carpenter, G. Nacht, J. Roberts. ’’Multiprocessor

performance-measurement instrumentation.” IEEE Computer: 63-74;

September 1990.

[14] A. Mink and R. Carpenter. ’’Operating Principles of MULTIKRON
Performance Instrumentation for MIMD Computers.” Natl. Inst, of

Standards and Technology, Gaithersburg, MD., NISTIR-4737; March
1992. 23 p.

[15] C. Weems, E. Riseman, A. Hanson, A. Rosenfeld. ’’The DARPA Image

Understanding Benchmark for Parallel Computers.” Journal of Parallel

and Distributing Computing 11, 1-24, 1991.

[16] C. Hoare. ’’Quicksort.” Computer Journal 5, l(January 1962), 10-15.

[17] G. Bell. ’’Ultracomputers, A Teraflop before its Time.” Communica-
tions of the ACM, Vol. 35, No. 8, August 1992.

[18] J. von Neumann and H. Goldstine. ’’Planning and Coding of Problems

for an Electronic Computing Instrument”, Institute for Adv. Study,

Princeton, N.J. (3 vols.), 1947-1948. Reprinted in von Neumann’s Col-

lected Works (A. Taub, ed.), vol. 5, Pergamon Press, Oxford, 1963.

[19] D. Knuth. ”An Empirical Study of EORTRAN Programs.” Software-

Practice and Experience 1, (1971), pp. 105-133.

[20] D. Montgomery, Design and Analysis of Experiments (1976), John

Wiley and sons Inc., New York.

[21] C. Daniel, Applications of Statistics to Experiment Design (1976),

John Wiley and Sons Inc., New York.

30

t*

If

k’

5 ^

. i

J

I

}i

Jk

‘i

1

