
NA'l INST OF STAND S. TECH K l.C

reference

1 1 1

1

3 ISlIll

NIST

PUBLICATIONS

.S. DEPARTMENT OF COMMERCE
National Institute of Standards and Technology

Computer
Systems

Laboratory

NISTIR 5131

Synthetic-Perturbation
Tuning of MIMD Programs

Gordon Lyon
Robert Snelick
Raghu Kacker

U. S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards and Technology

Gaithersburg, MD 20899

February 1993

COMPUTER MEASUREMENT
RESEARCH FACILITY

FOR HIGH PERFORMANCE
PARALLEL COMPUTATION

Partially sponsored by the

Defense Advanced Research Projects Agency

QC

100

.U56

5131

1993

NISTIR 5131

Synthetic-Perturbation
Tuning of MIMD Programs

Gordon Lyon, Div. 875
Robert Snelick, Div. 875
Raghu Kacker, Div. 882

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Gaithersburg, MD 20899

Partially sponsored by the Defense

Advanced Research Projects Agency.

This expanded version supersedes

NISTIR 4859 of June, 1992.

February 1993

U.S. DEPARTMENT OF COMMERCE
Ronald H. Brown, Secretary

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
Raymond G. Hammer, Acting Director

TABLE OF CONTENTS

Page

1 . A Problem with MIMD . 2

2. Synthetic-Perturbation Timing 2

2.1 Description of Technique 3

2.1.1 Treatment Opportunities 4

2.1.2 In Practice 6

2.1.3 The Screening Model 6

3. SPT on Shared and Distributed-Memory Systems 8

3.1 Example 1-SM: Tuning a Parallel Quicksort 8

3.1.1 An Approach via the Tool gprof 8

3.1.2 New Approach 10

3.1.3 Shared-Memory Results 13

3.2 Example 2-DM: Ring-Connected Nodes 14

3.2.1 Optimization Rather than Screening 16

3.2.2 Distributed-Memory Results 18

4. Different Delays, Distinct Systems 18

4.1 When Delay Choice Matters Less: Example 3-SM 19

4.2 Higher Unpredictability: Example 3-DM 21

5. Conclusions 22

5.1 Further Directions 23

5.2 Summary 24

-iii-

6.

References 25

.

Synthetic-Perturbation Tuning ofMIMD Programs

Gordon Lyon, Div. 875

Robert Snelick, Div. 875

Raghu Kacker, Div. 882

Synthetic-perturbation tuning--SPT--is a novel technique for assaying and

improving the performance of programs on MIMD systems. Conceptually, SPT

brings the powerful, mathematical perspective of statistically designed experiments

(DEX) to the interdependent, sometimes refractory aspects of MIMD program

tuning. Practically, SPT provides a needed reconfiguration mechanism via

synthetic delays for what otherwise would be ad hoc ,
hand-tailored program setups

for DEX. Overall, the technique identifies bottlenecks in programs directly as

quantitative effects upon response time. SPT works on programs for both shared

and distributed-memory and it scales well with increasing system size.

Key words: code perturbation; designed experiments; factorial designs;

MIMD; parallel programming; performance improvement; synthetic

delays.

No recommendation or endorsement, express or otherwise, is given by the National Institute of Standards

and Technology or any sponsor for any illustrative commercial items in the text. Partially sponsored by

the Defense Advanced Research Projects Agency, ARPA Task No. 7066. Part of the text appears in the

Proceedings of the Sixth International Conference on Modelling Techniques and Tools for Computer Per-

formance Evaluation, 16-18 September, 1992, Edinburgh. These are published as Performance Tools ’92,

R. Pooley and J. Hillston (eds.), Edinburgh University Press Ltd.

- 1 -

1. A Problem with MIMD

MIMD programs are difficult to code well and to improve. The asynchronous, inter-

dependent nature of concurrent events makes this so. For unlike serially-executed com-

puter programs, MIMD parallel code has performance interactions that are not readily

predictable. Much depends upon communication, including synchronization, among the

parallel components. For example, communication-induced idle time exerts an important

but elusive influence (illustrations follow). The conventional approach to MIMD tuning

offers users an instrumentation that captures important performance details. Unfortunate-

ly, it is clear that scalable parallel systems, once instrumented, can generate an avalanche

of internal detail. Most of this information should be kept hidden from users. Yet, to im-

prove their codes, MIMD programmers must identify program bottlenecks. Conversely,

programmers should know which sections of code can be expanded with only minor per-

formance penalties. Although isolated changes in MIMD code can be monitored for

overall performance effects, a typical parallel program will have a large number of po-

tential improvements. This number will defeat any naive attempt at a comprehensive

evaluation.

2. Synthetic-Perturbation Tuning

An alternate approach suggests treating the MIMD program as a "black box" that has

input parameters and an output. This empirical paradigm is common in the control of

highly complex industrial processes such as chemical manufacture. MIMD programs

display a similarly complex character. Delay routines inserted into a program provide a

convenient set of input test parameters that may otherwise be lacking. The delays fit

easily into code, since they are synthetic quantities divorced from normal computational

states. This is synthetic-perturbation tuning, SPT [1].

Response times are measured for runs performed with systematic patterns of the de-

lays. A macro-level response model then predicts the program’s sensitivity to each of the

delays. Internal details of the program are largely ignored, a philosophy that contrasts

sharply with conventional tuning approaches. SPT rests heavily upon the design of ex-

periments (DEX), a modern branch of statistical theory well-suited for studying complex

systems [2]. DEX provides quantitative estimates of the effects of SPT’s synthetic

-2-

bottlenecks. This establishes quickly and accurately which locations matter most for im-

provement.

2.1 Description of Technique

Synthetic-perturbation tuning involves (i) a specimen program, P, (ii) a response to

be improved, e.g., runtime of P, (iii) mathematical methods from the statistical design of

experiments, and (iv) standard, synthetic methods of delay (or similar perturbations) that

are inserted into program P. A starting set of test locations is refined iteratively as sensi-

tivities become known. SPT has the following steps:

1. Select code locations in program P to be tested, via synthetic delays, for their effect

upon performance. These p locations are called factors. Each delay is a

factor treatment.

2. Insert standard perturbations in treatment patterns over the factors. This will generate

numerous treated versions of the program. Order these randomly.

3. Run each treated version of the program and record its response. This is a trial. Trial

replications should use a fresh randomization order.

4. Analyze the measured responses with a linear response model. This typically em-

ploys ANOVA , the analysis of variance. In some circumstances, the linear

response surface result is inappropriate, and more informal methods are used (an

example follows in the text).

5. Assess step 4 and select those effects that appear significant. These effects correspond

to single factors and multiple -factor interactions that are sensitive to delay treat-

ment. (Figure 1 has an example.) Unimportant factors are dropped and new fac-

tors added.

6. Repeat steps 1-5 as needed. Analysis proceeds in cycles of refinement.

7. Improve sensitive factors of program P. (The nature of this improvement is beyond

the purview of SPT.) If desired, return to step 1.

-3 -

2.1.1 Treatment Opportunities. There are numerous ways to treat program P. In

perhaps the easiest and most useful case, delays are inserted into source-level control

paths prior to compilation. All examples discussed here use this form of perturbation.

However, the chosen treatment does not have to be a time delay. Other treatments

include perturbations that (i) lock and unlock some important variable while doing

nothing substantive to it, (ii) send dummy messages, or (iii) acquire temporary buffer

space. Another possibility for source code treatment is to insert delays along data paths.

An illustration for such a delay treatment may be useful. Let integer variable A be a

factor. Replace references to A by invocations of an integer function ifu, so that ifu (A,*)

returns the value of A after a delay of x units. All invocations of ifu (A,x) constitute

treatment for one factor, the reference of A. Aliasing must be examined carefully in this

context, since pointers to A may elude a static source-level treatment.

Below source-level treatments lie system-level approaches. Here, the available

resources will determine what can be done. Processors that can trap specific location

references (e.g., with watchpoint registers) can always delay anonymous pointer

references. On other systems, trap-on-address may be difficult. The case for control

delays is easier. Perturbations can be patched into loadable code (after compilation and

linkage) by the familiar technique of jumping out of the original code to a perturbation

table and then jumping back.

While other possibilities exist, the principle remains: The extra perturbation code

neither omits nor reorders any code of an original thread. Nor does the perturbation

depend upon the computational nature of the original code; such would be the case if

treatment meant code had to be tediously rewritten to be slower or faster while giving the

same results. Fortunately, such rewriting is unnecessary. For example, a synthetic delay

function does not use global names or values from the original code. Because

computational soundness of a treated program always remains intact, perturbations can

be inserted, tested and removed swiftly. The perturbation used at all points is standard; it

is not tailored ad hoc for each code context. This fact is pivotal to practical applications

of SPT, including the automatic generation of trials.

-4-

Possible
Program Bottlenecks Variant-000

Figure 1 : Example Row of SPT (Full Factorial) Analysis

2.1.2 In Practice. Each inserted delay treatment simulates added instructions. This

delay function is not complicated. In the distributed-memory experiment that

follows (Example 2-DM), delays are generated by a recursive function, delay (X),

embedded in a compilation directive. X =0 generates no executable code. For X >0,

delay (X) performs X invocations, X floating-point multiplies, and X returns. The value of

X is determined by the nature of the program P, the system, and the fineness of detail

being investigated. X = 10 is typical. Values of X can vary from factor to factor if this is

appropriate, but except for example 2-DM (follows), a uniform treatment setting is used

throughout a program.

Patterns of delays are determined once p program test factors (locations) have been

chosen. SPT starts by treating each factor at two delay settings, one of which is zero

delay. Given the p factors, an exhaustive experiment will involve 2P patterns. This is a

full factorial design [2], Partial factorial experiments, designated 2p
~k

, generate far

fewer patterns but have less experimental resolution of interaction effects. Partial

factorial experiments are generally quite adequate. SPT provides knowledge about

factors indirectly by examining their combined effects over numerous trials. DEX
analysis works backwards from response times and the pattern of treatment associated

with each time. While all examples here use runtime as a response, maximum consumed

space is another possibility and transactions per minute, a third. More than one response

can be measured for each trial; each distinct response corresponds to a separate

experiment. Thus, each experiment requires multiple trials but these trials can serve

other experiments.

2.1.3 The Screening Model. SPT incorporates a screening method. More so than

methods of regression, optimization or comparison, a statistical screening focuses upon

identifying which among tested factors matter most. The analysis rests upon a simple

DEX response surface model that assumes linearity in all variables. Factor

treatment levels therefore need assume only two values, here represented after rescaling

as (— 1 ,
+ 1). Abbreviations minus (-) and plus (+) are used in sequel for -1 and +1

settings of treatment. Interaction settings are determined from factor treatment settings,

so that XA = - and X# = + imply the interaction XA^ = (-) x (+) = -. These binary

settings are generally adequate, although exceptions are explored later. Still,

circumstances suggest first investing only a minimum of effort in each screening, since

program tuning will change the very code under study (step 7). The utility of a particular

response surface model is quite short-lived.

-6-

Suppose there are program factors A, B and C with corresponding treatment

variables ofXA XB and Xq. The response surface model is:

R =\i + ‘

A

[pA XA + pB XB + $AB XAB + Pc xc + (W XAC + Pbc XBc + Pabc XABc] (1)

Multiplier Vi arises because the domains of treatment variables {X, } span [-1, +1], a

distance of two. The 2 unknowns to be solved are the mean (|i) and seven effect

coefficients {P,-,P,y
',

• •
• }. While these eight unknowns do require eight observations of

R (trials) for the solution of equation (1), a full 2P set of trials is usually not needed when

the number of factors, p, becomes larger. Many terms are then assumed to be of no

consequence and not solved for. Such trade-offs within common DEX designs have been

tabulated (see Table 12.15, [2], p. 410). Weak terms of little influence in equation (1)

will have effect coefficients relatively close to zero. In practice, some effects are

insignificant, but not all. Interactions are less common and higher-order interactions,

rarest. This is especially likely for a large number of factors. Thus, XABq is usually less

influential than XAB or XA q. DEX practice often assumes few interactions but sets

safeguards should the assumption fail.

Effects are commonly expressed as column entries in a table (see lower left of Figure

1), a more convenient format for screening comparisons than is equation (1). (In

screening, a predicted response R is not the first concern.) The row corresponding to an

effect identifies its source(s). Effects are evaluated against noise, the latter often

expressed as standard uncertainty, S. The handling of trials, such as whether to

replicate, is dictated by the degree of confidence required in the tuning process. The two

examples in the text use replicated trials for estimates of 5. Coefficient noise in the

model, (1), has a normal distribution centered about zero with an estimated standard

deviation of 5, the standard uncertainty. Consequently, 68.3% of all coefficient noise will

fall within ±15, 95.4% within ±25 and 99.7% within ±35. A significant effect will

probably exceed 3 or 45. Comparisons among significant effects establish which factors

most influence response R. (Figure 1 shows a 35 threshold.) Response R varies about an

overall mean \i shown in (1). ji is an estimate of R with all treatment settings at halfway,

i.e., XA = XB = ...= 0. (Remember that X = -1 or +1 for the settings.)

-7 -

3. SPT on Shared and Distributed-Memory Systems

Two small but quite representative programs illustrate the essential SPT with a

minimum of detail and complication. These 300-400 line examples run on shared-

memory (Example 1-SM) and on distributed-memory (Example 2-DM). In practice, SPT

has been applied to codes 20 to 30 times larger.

3.1 Example 1-SM: Tuning a Parallel Quicksort

Shared-memory architectures are generally more common and better balanced than

distributed-memory systems. In this first example, SPT is applied to a parallel sort

algorithm on a conventional, well-balanced shared-memory multiprocessor (16 processor

Sequent Balance system). The investigation begins with application of the UNIX
profiling tool, gprof[3]. Once a determination of base performance has been made, SPT

tunes the application in one experimental step of 16 trials (replicated). Performance

improves by 23%. The investigation reveals differences between gprof and SPT

techniques and contrasts results from each. A second SPT iteration exemplifies possible

stopping circumstances. The program is a parallel implementation of C.A.R. Hoare’s

quicksort [4]. Parallelism is obtained simply by allocating newly-created sublists to

available processors. Allocation of these sublists is controlled by a shared stack.

Whether this is the best algorithmic recoding is not a direct SPT issue.

3.1.1 An Approach via the Tool gprof. Investigation begins by seeking information

with the tool gprof Most UNIX-based systems provide gprof to generate profiles of

programs. Profiling tools help in debugging and in improving efficiency. Some

functions consume significant execution time. Others are called frequently. Once

important functions are identified, their code can be improved. This paradigm has been

successful for tuning sequential programs running on uniprocessors. However, emphasis

changes on a parallel architecture. Process interaction and processor idle time play a

vital role in the performance of parallel programs. These are absent or insignificant in

most sequential programs. A simple extension of a sequential profiler on a

multiprocessor can measure the total time a segment of code spends on each processor.

-8 -

This is one possible measurement metric. However, a code segment’s total processor

time is not related in a simple way to parallel runtime (Anderson and Lazowska [5]

discuss this). If the results from a profile are interpreted incorrectly or if a profile is not

available, a programmer can waste time and effort improving code that has little impact

on overall performance.

code segment % of execution time # of calls

s_lock (

)

64.3 359031

pop (

)

0.1 13183

push (

)

0.2 13183

swap (

)

5.1 811141

bubble_sort (

)

3.8 6592

codel na (not avail .

)

na

select (

)

0.4 6591

main (

)

7.9 1

partition_list (

)

11.3 6736

s_unlock (

)

1.3 359031

Table 1: Abbreviated quicksort Results from gprof

Table 1 (above) gives abbreviated results from a parallel gprof file for the quicksort

routine. Two important metrics from the profile are (1) the percentage of execution time

consumed by a routine and (2) the number of instances the routine was called. For metric

(1) it is clear that a majority of time for this parallel quicksort is spent in the s_lock()

routine. In addition, execution time mildly suggests four other routines: bubble_sort(),

swap(), main(), and partition_list(). Regarding metric (2), only swap(), s_lock(), and

s_unlock() stand out with high invocation counts. The programmer must decide from this

information where to make changes. The task would be more obvious on a uniprocessor;

generally, any time saved would be reflected in a shorter response.

Unfortunately, gprof data are murky in a parallel domain; interactions in the

program structure and concealed wait states have to be accounted for (e.g., [6]). Perhaps

the programmer will improve s_lock(), since it consumes the majority of overall runtime.

Routines bubble_sort(), swap(), partition_list(), and main() may be overlooked;

improving these routines seems to offer little benefit. Analyzing the data from a call

-9 -

graph perspective focuses attention upon swap(), s_lock(), and s_unlock(). It is not easy

to relate invocation counts to runtime effect in a parallel domain. It may be that a simple

profile of a parallel program offers no clear plan of attack; alternately, it might encourage

a wrong interpretation of results.

3.1.2 New Approach. SPT testing of the parallel quicksort begins within the familiar

framework of a 2
6-2

fractional factorial experiment design [2]. There are 2
4 = 16 trials.

Results from the analysis appear in Table 2 (see page 11). The first column is the

observation (trial) identification (trials run in random order). The next six columns

designate treatment settings for six factors chosen in the experiment. The six factors (fl

to f6) are (from left to right): s_lock(), push(), pop(), swap(), bubble_sort(), and codel.

Although the first five factors are function calls, codel is a segment of code (a loop)

within the main quicksort function. SPT can resolve coarser or finer, and is not restricted

to function calls. A plus sign in a given row denotes that treatment is set (i.e., delay

present). Minus denotes treatment absent (i.e., no time delay). Thus row 5 (— + - + +)

shows f3, f5 and f6 (pop(), bubble_sort(), codel) with delays set. The response column,

Rspn, is the average of three separate trials for each row’s treatment combination. Error

estimates, S, also arise from these trial replications. An "Effects" column gives the mean,

(I, and effects {p}. The "Sources" column lists the most likely factors for an effect.

Some confounding (mixing together of factor effects) has been deliberately introduced to

shorten testing (see [2]).

It is clear from line 9 of Table 2 that swap() is least tolerant of source code

perturbation. The significance of PWap() is hard t0 doubt, since
Pswap () = 501. A

survey of remaining effects indicates no other outstanding combinations. In contrast to

earlier s_lock() indications with gprof s metrics, the effect Psjock{) in line 2 of the

analysis is subtle and weak. Associated with non-productive wait states, s_lock() is not

the source of the major bottleneck. SPT points first and foremost to swap(). An
examination of the swap() routine reveals that it is very short. Coding swap() in-line

frees it from procedure-call overhead, perhaps its major execution cost. The result is a

one-step, 23% boost in quicksort's performance.

- 10-

trial fl f 2 f3 f 4 f 5 f 6 Rspn Effect* Sources

1 19.11 48.03 Mean, |i

2 + - - - + - 19.99 1.98 s_lock (

)

3 - + - - + + 21.73 1 . 12 push (

)

4 + + - - - + 26.51 0.66 s_lock () &push (

)

5 - - + - + + 21.91 1.30 pop (

)

6 + - + - - + 26.42 0.66 s_lock () &pop (

)

7 - + + - - - 21.51 -1.24 push () &pop (

)

8 + + + — + — 26.60 -0.10 s_lock () &push (

)

&pop (

)

9 - - - + - + 72.75 50.10 swap (

)

10 + - - + + + 72 . 97 -1.84 s_lock () &swap (

)

11 - + - + + - 73.32 -1.12 push () &swap (

)

12 + + — + — 72.66 -0.46 s_lock () &push (

)

&swap (

)

13 + + + 73.49 -0.98 pop () &swap ()

,

OR bubble_sort (

)

14 + — + + — — 73.13 -0.32 s_lock () &pop (

)

&swap (

)

15 + + + + 72.52 1.10 push () &pop () &swap ()

,

OR codel
16 + + + + + + 73.81 0.74 s_lock () &push () &pop (

)

&swap (

)

* Standard Error for effects: S = ± 0.10

Standard Error for the mean: ± 0.05

Table 2: Calculated Effects for 2
6-2

Factorial Design, Parallel quicksort Example

- 11 -

Source (s

)

Mean

27.52

Effect

s_lock (

)

6.50 <- -1

push (

)

4.26 <- _ *

s_lock () &push (

)

1.36

pop (

)

4.46 <- —

s_lock () Scpop (

)

1.36

push () Scpop (

)

.48

s_lock () &push () Scpop (

)

- .46

bubblesort (

)

-.08 <- -2

s_lock () Scbubblesort (

)

-.36

push () Scbubblesort (

)

-.72

s_lock () &push () Sc

bubblesort (

)

.80

pop () Scbubblesort (

)

-.58

s_lock () Scpop () Sc

bubblesort (

)

.54

push () Scpop () Sc

bubblesort (

)

1.28

codel OR
s_lock() Sc push () Sc

pop () Scbubblesort (

)

iV _

Standard Error of an effect: S = ± 0.08

Standard Error of the mean: ± 0.04

Table 2-B: Effects for 2
5 1

Factorial Design, Improved Version, Parallel quicksort

A second iteration of SPT demonstrates a better balance in the modified quicksort.

The new version with in-line swap() is run in a 2
5-1

design. Swap() is not tested. In

examining Table 2-B, above, the reader should know that the data, synthetic delay

function and experiment design differ from those used for Table 2: This precludes any

direct comparison across the two tables without rescaling (discussion follows). The

- 12 -

largest effect in Table 2-B is indicated by <— 1. Unfortunately, it belongs to s_lock(), a

system function that the programmer cannot change easily. The recourse is an

algorithmic redesign that uses less of s_lock(). Although this would lie beyond what SPT

can recommend, SPT can certainly assist in the selection. The factor bubblesort(), shown

as <—2, again has little effect overall and can safely be ignored. The three remaining,

user-accessible factors—push(), pop(), and code 1—have an almost perfect balance among

their effects. If the sort’s speed is adequate at this point, the programmer may want to

stop. No single recoding improvement emerges among the factors. Main effects for the

improved quicksort (qs +) and the original (oqs) have been normalized in Table 2-C

(below) as percentages of unperturbed runs for each sort version.

(3, oqs P , qs + Sources

10.36 14.86 s_lock (

)

5 .86 9.74 push (

)

6.80 10.20 pop (

)

262.17 — swap (

)

- 5.13 - 0.18 bubblesort (

)

5.76 10.20 codel

Table 2-C: Normalized Main Effects Show Sensitivity Changes

3.1.3 Shared-Memory Results. SPT unequivocally distinguishes a major performance

bottleneck in the parallel quicksort. In contrast, a micro-level profile tool such as gprof

can confuse true performance contributions with unproductive busy waiting; this distorts

gprof s sense of what code is important. The newer tool, Quartz [5], tries to improve

upon gprof by dividing all profile times by the average level of parallelism for each

profile category. This diminishes emphasis upon categories that are highly parallel and

have little room for improvement via concurrency. A Quartz-like evaluation might

reduce s_lock()’s accounted time in Table 1. The most optimistic circumstance of full

64 3
16-level parallelism would give —~~4. But s_lock() would still have a standing

16

roughly the same or higher than swap(), for swap() also has attendant concurrency.

- 13 -

In comparison to the largely constructive, micro-model approach of metric methods

(gprof, Quartz), SPT is more straightforward. It simply avoids structural metrics and

their interpretations. Comparing columns of results of gprof-Wkz tools with SPT’s results

yields important distinctions. Numbers from gprof are raw measurements of interior

(factor) detail. The user must constitute models that predict a program’s responses. SPT

is exactly the reverse. Program responses are first measured and then correlated against

precisely controlled changes in factors. Consequently, the SPT list of effects for factors

is anything but raw data. Effects in the SPT model (equation (1)) beckon to exactly those

code locations with greatest impact upon performance. The quicksort example shows

SPT to be very accurate in identifying real bottlenecks in a program on a well-balanced

parallel system.

3.2 Example 2-DM: Ring-Connected Nodes

Distributed-memory systems present definite challenges to designers of Quartz-like

tools. Compared to shared-memory, the measure level -of -parallelism is significantly

more difficult to capture as a distributed-memory statistic. In contrast, SPT works as

usual. SPT uses macro-level analysis and does not rely upon precise internal system

details.

The distributed-memory "Ring" example exhibits a broader than usual set of SPT

gains. It is an exaggerated object lesson for the host architecture. A more ordinary

example (e.g ., a benchmark "Mesh" for fluid-like computations) requires the same

approach as this example, but it will not yield improvements quite so drastic. The

program slice in Figure 2 (below) is for an iPSC-1 distributed-memory hypercube

system. Temporarily ignore the six invocations of delay. Each of the system’s 16

processor nodes contains a copy of the code sketched in Figure 2. All the hypercube

nodes have been programmed as a single ring; each Node Program B sends its main

messages to one unique node and receives from another. At the start, each node sends a

main message. Thereafter, the outermost "B:loop" awaits main messages via a RECVW.
It passes each message to an <if-statement>. Each branch of the <if-statement> also

awaits a secondary message for flow control. The TRUE branch is much more likely.

- 14 -

. . . <start> . .

.

B : loop . .

.

delay (FI); RECVW () ; delay (F2); /* get main msg */

if (. . .

)

loop
{code A} .

.

endloop

delay (F3); RECVWO; delay (F4)

else . .

.

delay (F5); RECVW () ; delay (F6)

SEND () ;
/* send main msg */

endloop: B

Figure 2: Node Program B—Slice with Perturbations F1-F6

Following SPT’s steps 1-5, the investigation again proceeds in stages of DEX
refinement and elimination. Initial screening of Node Program B is via a first set of

delays at code locations labeled a through h. These are not shown in Figure 2, but appear

in Table 3 (below) as source labels for effects. Delay levels of treatment are 0 (rescaled

as -1) and 10 (rescaled as +1). Factor c, which corresponds to code segment {code A},

is known to be computationally important. Other segments are simply chosen uniformly

throughout B. The experiment uses a 2
8-4

resolution IV design (see [2]). This design

confounds main effects with three-way interactions, the latter assumed to be negligible.

Second-order effects are confounded with each other (see the Source column in Table 3).

There are 2
8-4 = 16 trials. Trials are run with the test code configured for normal service

of light communication and heavy computation, (code A} is by far the most sensitive

(arrows in Table 3). An independent check (by varying intrinsic program parameters)

reveals that a 10% increase in {code A}’s execution time causes a 7% increase in overall

program response time. This is true even though {code A} is very short (one multiply-

and-assign within a for-loop). Consequently, a warning comment should be placed in the

program stating that changes to {code A} should be done with care. This experience is

similar to the earlier quicksort example. However, negative effects in Table 3 hint there

is more to be learned.

- 15 -

Source (s

)

Mean

26.75

Effect

a -2.25 . # ?

b -2.50 . # ?

ab+cg+dh+ef 2.75
--> c 18.50 <- - (code A}

ac+bg+df+eh 2.25

ag+bc+de+fh 2.50

g -2.75 . 4 ?

d 3.00

ad+bh+cf+eg -2.75

ah+bd+ce+fg -2.50

h 2.75

af+be+cd+gh -2.50

f 3.25

e 3.00

ae+bf+ch+dg -2.25

Standard Error of an effect: S = ± 0.50

Standard Error of the mean: ± 0.25

Table 3: Node Program with Delays a-f

3.2.1 Optimization Rather than Screening. The most significant effect in Table 3 is (3C ,

which is 18.5/0.5 = 37 standard uncertainties (deviations) removed from 0. It is unlikely

that c’s true effect is zero and that c’s observed effect arises from sampling noise. In

contrast, other delays at a, b and g show weaker but negatively signed effects. These

delays appear to promote shortened overall runtimes, an unusual circumstance (see

in the table). At four or five standard uncertainties in magnitude, these unusual delay

effects are worth investigating. Perhaps delays can make the "Ring" run faster.

- 16-

Delays a, b and c (not shown in Figure 2) are near synchronous receives (RECVWs)

in Node Program B. To investigate further, a second experiment is devised with a fresh

copy of the program that has delays before and after all RECVWs. Figure 2 shows this

version with its delays FI through F6. The program is now configured with parameters

for heavier communication and lighter computational load, since prior experience has

shown communication congestion can be a problem. With delay(O) everywhere (no

perturbations), the program takes 66 seconds. A two-level (treatments of 0 and 10), 2
6-2

resolution IV factorial experiment of 16 trials uncovers an improvement of 37% with

F1=F2=F2=10. However, different delay treatment levels uncover strong signs of

nonlinearity in the program response. This triggers two methodology changes: (i) more

than one level of delay seems appropriate in the investigation, and (ii) the linear response

model is abandoned for this example.

A sequel experiment is performed in which F1-F6 have five possible levels: X=0, 7,

14, 21 and 28. Although this might entail 5
6

possible combinations, the experimental

design (called an 0A25[5 6
] layout) uses only 25 trials in its search [7]. Sample results

follow in Table 4.

trial# FI F2 F3 F4 F5 F6 Result notes

1 0 0 0 0 0 0 66 Normal Case.

7 7 7 14 21 28 0 47

16 21 0 21 7 28 14 33 Twice as Fast

.

25 28 28 21 14 7 0 50

Table 4: Complex Search of Delay Settings

Linear effects are not calculated. Instead, the OA 25 [5
6

] layout is used simply to

search the parameter space of delay settings in a geometrically balanced way. The

chosen trial has the best response (see [8], pp. 386-389, on "Informal Methods"). This

straightforward approach can be quite effective, as one can see with the response of 33

seconds (trial number 16). Certain permanently installed delays enhance Program B’s

speed. The explanation lies with the iPSC-1 system. Heavily used message-passing

- 17 -

provokes communication failures, which then require retransmissions. Delays help

synchronize nodes and cut the wasteful communication congestion. However, given the

nonlinearities involved, discovering a very good setting (such as 21-0-21-7-28-14) is

non-trivial. Conventional linear models, even contour plots, seem to be of little

value [9]. If only naive methods are employed, the challenge will probably elude all but

the most determined practitioners. DEX’s rational and efficient search methods help

greatly. In practice, Node Program B of Figure 2 would be adaptive, making delays

when heavily communication bound and omitting them otherwise.

3.2.2 Distributed-Memory Results. The experiment for distributed-memory shows that

under ordinary circumstances, SPT indicates which code sections are most sensitive to

delays, and equally important, which sections are insensitive and easily modified, (code

A} is to Node Program B as swap() is to quicksort. However, when an iPSC-1 program

is communication bound, delays can sometimes enhance performance. In this third case,

the synthetic perturbations transcend their role in the investigation to become part of the

solution. Such cases are likely to be increasingly rare, because over time architects will

strive to remove obvious system bottlenecks.

4. Different Delays, Distinct Systems

This last section explores some questions that arise naturally about the choice of

delay values. Example 2-OM has demonstrated clearly that the level of delay matters in

some special circumstances. However, even in everyday cases this may be true.

Because actual treatment levels are rescaled to - and +, there may be a tendency to

overlook values of delay treatment. A third example program will demonstrate that even

a generally well-behaved code can display quite distinct sensitivities on different

architectures. For the shared-memory case, delay values above a critical level yield

essentially the same results. The distributed-memory variant is not so well-behaved.

The delays added to a program must be large enough to surmount noise inherent in

the experiments. In the terminology discussed earlier, S is the standard uncertainty, an

estimator for the standard deviation of an effect. Let 3S denote an expanded uncertainty,

a noise band; expanded uncertainty is often chosen at 2S (95+% significance), but here

3S (99+% significance) works well and identifies clear-cut bottlenecks. Delay treatments

- 18-

should be chosen such that truly important effects exceed 3S. Otherwise, an effect lost in

noise cannot be separated from it. As will be seen shortly, both delay setting and choice

of expanded uncertainty depend upon objectives within the investigation; studies of

subtle phenomena will require lower settings for both.

The vehicle of exposition is Mesh, a computer benchmark running on both the

shared-memory Sequent (example 3-SM) and the iPSC-1 hypercube (example 3-DM).

In Mesh’s computations, each logical node at a mesh intersection receives and uses state

information from four logically immediate neighbors to update its state. Fluid

computations may have this character. The concrete topology for the actual tests is a 4-

by-4 grid with edges wrapped around. This gives each logical node a real processor on

both machines, each of which has 16 processors. Neighbors to any node are one step

apart on the iPSC-1 hypercube, so all communication avoids intermediate nodes. The

shared-memory version does not worry about allocation, since all addresses are equally

reachable.

4.1 When Delay Choice Matters Less: Example 3-SM

A shared-memory experiment with Mesh demonstrates what effects from different

sizes of delay look like under benign circumstances. On a system where effects are truly

linear, as they are here, a bigger delay (treatment) of a significant factor will cause a

larger change (effect) in the observed response. In Figure 3-a (follows), Mesh is running

on the shared-memory Sequent as example 3-SM. Notice how progressively larger

delays generate linearly proportional changes in the two observed main effects. Under

such circumstances, the major concern is that delay size be chosen adequately large

vis-a-vis expanded uncertainty. Beyond this 3S threshold, the size is unimportant,

because the flat slope means that effect per unit delay is constant and predictable.

Consequently, the researcher can be relatively casual in selecting a delay setting. The

setting certainly matters much less than in the distributed-memory case, which follows.

- 19 -

shared-memory

—

1

40-1

distributed-memory

o
co

T
o
CO

luaujjeejj, s.jopej jo pang

o
CO

•o jsss
Q)

TJ II

q -u

8- q
* -*s

<D ftJ

II -U
<D M
to 0)

•-S O
O q
q 3

luetupejj. s.jopej p pang

Figure

3:

Two

Main

Effects

of

"Mesh”

4.2 Higher Unpredictability: Example 3-DM

Given earlier experience with Ring example 2-DM, the distributed-memory version

of Mesh is also a likely source of non-linear behavior. To explore this possibility

quickly, a natural program parameter was systematically changed and the responses

compared. (Not all programs are so obliging.) Mesh has a parameter for grain, the

amount of computing done for each state, which in turn is proportional to the computing

done upon each message datum. The figure below shows typical Mesh response times as

grain is increased. Observe that up to grain=32 (x-axis), Mesh is erratic in response.

This is a nonlinear regime in which delays and their attendant responses might not obey

the assumed linear response model. Investigation thus breaks into at least two main

parts, the linear region of larger computational grains, and a nonlinear region where

communication heavily influences program behavior.

With suspicions raised about the Mesh variant 3-DM, a conscientious effort must

now be made to check observed effects against a spectrum of delay values. Figure 3-b

(page previous) shows these results. First, observe that uncertainty (the noise band) is

higher on this implementation. Also, while the strongest effect (main loop delay) is

similar for both architectures, it is weaker for the hypercube version (3-DM), with a less

certain behavior for smaller delays.

-21 -

The second main effect shows that small delay treatments of its factor actually

accelerate execution. This is analogous to behaviors seen with the earlier Ring (2-DM),

but on a reduced scale. Once delays reach five nominal units, the second factor’s effect

becomes insignificant. Altogether, the results show an expected program computational

slowdown from larger delays, and an unconventional system speedup from smaller

perturbations. The lesson for 3-DM and similar cases is that the experimenter must have

some knowledge about sizes of perturbation, and from this adjust the delay treatment to

suit factors of interest.

5. Conclusions

Statistical screening is different from building a detailed performance model, e.g.,

the FORTRAN virtual system in [10]. SPT applies DEX screening to avoid the

inefficiency of one-factor-at-a-time examinations as it searches for important effects.

This use of screening is not unique. In computer system tuning, several gross hardware

or operating system factors may be systematically treated and screened by substitution at

the module level [8]. Examples are memory at 1 Mbyte/processor versus 4

Mbytes/processor, or file transfer via FTAM or FTP. But SPT examines applications in

code-level detail. Rather than several factors, there may be several hundred.

Consequently, component substitution for each application factor becomes thoroughly

impractical. System tuners may have little practical choice but to use ad hoc substitution

treatments. They often work within tightly constrained circumstances. Fortunately, SPT

has more latitude. Real-time applications aside, source code is very tolerant of inserted

synthetic perturbations. By deliberately avoiding component substitution, SPT

treatments are uniform ,
which encourages automatic testing. Computer controlled scripts

can generate and schedule experiment trials.

A large distributed-memory system may have difficulty capturing global information

for metrics at fine enough resolution. SPT avoids this problem by not depending upon

detailed performance metrics. Similarly, interpretation of detailed metrics can be

uncertain. Change in some state may induce a corresponding change in response time

that exceeds explanation via level-of-parallelism, the highest multiplier one might first

expect [6]. However, interprocess communication can render process states highly

interdependent. The combinatoric nature of the interdependencies strains analysis. SPT

-22-

successfully skirts this problem by approaching the application and system as a complex,

poorly understood entity. Structural complexities and interpretations within program or

system then matter far less.

Since it needs little internal detail, SPT makes no demands for special measurement

resources such as fast clocks, counting registers or on-line data collection. Coarse global

timing can provide good results: a one-second clock tick is serviceable. The distributed-

memory example, 2-DM, uses a one-second tick for its results. Alternately, better

instrumentation combined with SPT opens many exciting new opportunities. Analogous

to its modest need of instrumentation, SPT in its basic form has a low visual demand.

Simple character-display screens suffice. Tables 2 through 4 are typical SPT displays.

The table below depicts some differences between conventional micro-level and the

SPT macro-level tuning paradigms:

Micromodel Macromodel/SPT

Factors measured (metrics) fixed (in patterns)

Overall Response derived measured

Model fixed (construct

)

derived (effects)

Basis theoretical empirical

5.1 Further Directions

While the two examples in the text illustrate essential aspects of SPT, the technique

opens a rich field of possibilities and challenges. Consider the question of program size.

The text examples are small, around 400 lines. Applications are usually larger. The

largest SPT test has involved 12K lines on a shared-memory architecture. At this

magnitude, source code presents very real and practical questions on the choice and

handling of delay sizes, and especially, the identification and handling of a large number

of factors. For example, the statistical approach for large programs may shift away from

factor interactions as they become less likely. Instead, emphasis is given to screening

-23 -

many factors (64-128) in each iteration step. Initial large program experiences indicate

that much effort is spent within the screening analysis loop (steps 1-5). Code

improvement (step 7) takes a smaller fraction of the effort.

Eventually, SPT will have a programming environment to support its features. An
intermediate step will be a library of tool set routines. These will generate experiment

layouts, support simple analysis and generally relieve some of the tedium of handcrafted

setups.

5.2 Summary

SPT combines synthetic delays with DEX to yield an attractive new technique for

MIMD program improvement. DEX lends to SPT some formidable powers of search and

analysis, while in turn SPT’s synthetic treatments render DEX setups and trial variations

much faster and more convenient. Both shared-memory and distributed-memory MIMD
architectures are suitable hosts.

Acknowledgments

Thanks go to C.S. Lyon, A. Mink, A. Shives and T.E. Wheatley for suggestions on

earlier versions of the text, and to colleagues at the Supercomputing Research Center,

Bowie, MD., for their willingness to entertain and critique our approach.

-24-

6. References

[1] G. Lyon. Application on synthetic perturbation tuning, Patent and Trademark Office,

Washington, DC.

[2] G.E.P. Box, W.G. Hunter, and J.S. Hunter. STATISTICS FOR EXPERIMENTERS.
John Wiley & Sons (New York, 1978).

[3] S.L. Graham, P.B. Kessler, and M.K. McKusick. "Gprof: A Call Graph Execution

Profiler." Proc. ACM SIGPLAN Symposium on Compiler Construction, June,

1982.

[4] C.A.R. Hoare. "Quicksort." Computer Journal 5, l(January 1962), 10-15.

[5] T.E. Anderson and E.D. Lazowska. "Quartz: A Tool for Tuning Parallel Program

Performance." Proc., SIGMETRICS 1990 Conf., May 1990, 115-125.

[6] R. Snelick. "Performance Evaluation of Hypercube Applications: Using a Global

Clock and Time Dilation." NISTIR 4630, July, 1991, 26 pp.

[7] R.N. Kacker, E.S. Lagergren, and J.J. Filliben. "Taguchi’s Orthogonal Arrays are

Classical Designs of Experiments." J. Res. Natl. Inst. Stand. Technol. 96,

5(Sept.-Oct. 1991), 577-591.

[8] R. Jain. The Art of Computer Systems Performance Analysis. J. Wiley & Sons

(New York, 1991), 720 pp.

[9] J. Filliben. Private conversations with and notes to authors. November, 1991, NIST.

[10] R.H. Saavedra-Barrera, A.J. Smith, and E. Miya. "Machine Characterization Based

on an Abstract High-Level Language Machine." IEEE Trans, on Computers 38,

12(Dec. 1989), 1659-1679.

-25 -

