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Abstract

An anisotropic phase-field model is used to calculate numerically the solidification

patterns of a pure material into an undercooled liquid in a two-dimensional rectangular

region. In the phase-held approach, the solid-liquid interface is treated as diffuse, and

a dynamic equation for the phase variable is introduced in addition to the equation for

heat flow. The phase-held model equations are solved using finite-difference techniques

on a uniform mesh. Calculations for dendritic growth are presented for both four-fold

and six-fold anisotropy, and the effect of the level of anisotropy on the growth of a

dendrite is investigated. A previous study has shown that performing computations

with an interface that is sufficiently thin for the numerical solution to accurately rep-

resent a sharp interface model is computationally demanding. However, even with a

relatively thick interface, the computations using the phase-held model show many of

the qualitative features of dendritic growth, and the method is well suited for handling

the evolution of very complex, realistic interface shapes.

‘School of Mathematics, University of Bristol, Bristol BS8 1TW, U.K.
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1. Introduction

Phase-field models provide a comparatively new setting for the theoretical investigation of

phase transitions, such as solidification of a pure material. The classical free boundary ap-

proach models phase change between two phases separated by a moving interface upon which

boundary conditions must be prescribed. In contrast, the phase-field method introduces a

continuous transition between the two phases across a thin layer of finite thickness. An addi-

tional variable called the phase field is introduced whose value at a point identifies the phase.

The advantage of this approach lies in its coherent description of phase change, whereby no

distinction is made in the model between the solid, liquid or interfacial layer. An important

consequence of the phase-field approach is that numerical solutions of the resulting equations

can yield complicated growth morphologies whose connectedness changes in time; thus, it is

well suited for the numerical simulation of complicated phenomena such as dendritic growth,

a situation which is very difficult to solve numerically employing algorithms based on the

classical free-boundary problem formulation.

Early work on the development of phase-field models for first-order phase transitions

can be traced back to a number of investigators [1-5]. The development of a field equation

for an order parameter or phase-field variable that can be used to model solidification bor-

rows ideas from the related physical problems of diffuse phase boundaries and critical point

phenomena [6-9]. Several computations using a phase-field model have been performed

for one- dimensional planar or radially symmetric geometries [10-13]. Recently, Kobayashi

[14, 15] reported computations of a phase-field model for a pure material in two and three

spatial dimensions, which clearly showed the evolution of solid dendritic structures into an

undercooled melt. Kobayashi ’s work was the first qualitative demonstration of the possible

utility of phase-field models of solidification as a computational tool for modeling compli-

cated, realistic solid/liquid interfaces.

More recently, a phase-field model has been developed and used to numerically simu-

late the solidification of a pure material [16,17]. This model was formulated in a manner

consistent with irreversible thermodynamics [18] and careful attention was paid to the deter-

mination of the phase-field model parameters in terms of the classical material parameters.

This recent model is also well suited to numerical computation. There has also been some
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recent work on the development of a phase-field model for the solidification of an alloy in an

isothermal system [19,20]. The methodology employed in developing these newer models has

provided the necessary framework for the development of a complete phase- field description

for the more general treatment of a nonisothermal binary alloy.

In this paper, additional computations for a two-dimensional region are performed using

the model developed recently for a pure material. The time-dependent heat and phase-field

equations are solved numerically using finite-difference techniques on a uniform computa-

tional mesh for conditions simulating dendritic growth into an undercooled liquid. Compu-

tations are performed for both four-fold and six-fold anisotropy. Some qualitative aspects of

using the phase-field approach for such calculations is investigated. This work is part of an

ongoing effort to develop and evaluate phase-field models of solidification.

2. Governing Equations

Phase-field models of solidification are typically derived from a Landau-Ginzburg or Cahn-

Hilliard type of free-energy functional:

T -L MT) + -(vtf dV, (1)

where V is the region occupied by the system, 0(x, t
)
is the phase-field, T(x, t

)
is the temper-

ature and e is a gradient energy coefficient, which is constant for an isotropic material. The

free-energy density /(<^>, T) is a monotonic function of T and is a double-well with respect

to c/.), which yields two minima with respect to
(f)

representing the free energy of the solid

and liquid phases for each temperature. Different choices for the precise functional form of

/ have been used in the various earlier models [4,15]. In most of the previous developments

of phase-field models, the free energy Eq. (1) has been used to obtain a kinetic equation for

the phase field by requiring that it evolves in a manner such that the total free energy T
decreases monotonically in time. The simplest form of a kinetic equation that is consistent

with this requirement is the following:

d(j)

dt

6F
(2)

where M\ is a parameter that can be related to the interface kinetic coefficient of the sharp

interface problem. Typically in the formulation of a phase-field model, a modified form of

-3-



the heat equation is assumed which includes an appropriate source term to account for the

liberation of latent heat, e.g.,

£Z! -l K— — kV*t
dt
+K

at
j

’ (
3

)

where if is a constant proportional to the latent heat per unit volume, and k is the thermal

diffusivity.

Penrose and Fife [18] have addressed the problem of deriving the set of equations in

a more rigorous fashion by employing an an entropy functional, which is the appropriate

thermodynamic potential for nonisothermal situations. They derived the set of phase-field

equations using a form for the potential, /(</>, T), introduced in earlier studies [3,4]. However,

their choice for the form of the potential function, / has the disadvantage that the values

of <j) representing the solid and liquid states depends upon temperature and other model

parameters. This limitation complicates the implementation of the phase-field model for

practical computation.

A recently developed phase-field model is used for the calculations here which is derived

in [17]. The model is derived from an entropy functional in a manner similar to Penrose

and Fife [18], but it is constructed so that the states
(f)

= 0 and
<f>
= 1 correspond to the

bulk solid and liquid phases, respectively, independent of the temperature. This has the

advantage that latent heat is liberated only in the interfacial region. It is noted here that

different conventions are used for the values of
(f)

corresponding to the bulk phases in the

various phase-field models. This new phase-field model results in the following dimensionless

governing equations for the temperature and phase field:

du 30g{<f>)d<l> 2

m + =Vu

~mWt
= 3°s(4>)iaSu - jg'(<t>) + e

2V 2
^. (5)

where g((f>) = <^>

2
(1 — (j))

2 and prime denotes differentiation. Here, length has been scaled on

some reference length scale w of say the dimensions of the domain, time on the corresponding

thermal diffusion time w 2
/n ,

and temperature by putting T — Tm + ATu, where Tm is

the equilibrium melting temperature and AT is a reference temperature difference (such

as, between the melting temperature and the initial temperature at the boundary of the

domain).
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This isotropic phase-field model is characterized by four dimensionless parameters:

c
cAT
L ’

(
6

)

sflwL 2

(
7

)
\2cgTm

'

[lgTm
(
8

)
m -

,

K,L

8

(
9

)
e = —

,

where c is the specific heat per unit volume, L is the latent heat per unit volume, a is the sur-

face energy, /i is the interface kinetic coefficient, and 8 is a measure of the interface thickness,

which has been related to the gradient energy coefficient, e, by analyzing a one-dimensional

equilibrium solution of the dimensional phase-field equation. In [17], it is shown how the

phase-field parameters a and m are related to the physical parameters which characterize the

interface dynamics (i.e.
,
interfacial energy and kinetic coefficient). Once the characteristic

length scale w has been chosen, knowledge of the physical properties leaves one degree of

freedom, namely e, which then is used to set the interface thickness. It is expected that in

order to model the physical behavior correctly, the interface thickness must be sufficiently

small compared to the interfacial macrostructures that are to be modeled; however, from a

computational viewpoint, it is desirable for the interface thickness to be as large as possible

in order that accurate solutions of the phase-field equations can be obtained for practical

computational effort.

In order to simulate dendritic growth, the phase-field equation given by Eq. (5) is modified

to include anisotropy in the parameter e by introducing

e(6) = er](9) = e(l + 7 cos k6).

The angle 6 is defined as the angle between the normal to the interface and the x-axis, and k

specifies the mode number. Rederiving Eq. (5) after including the variation of the gradient

energy coefficient with orientation yields a modified version of the phase-field equation:

(f>-^ + 30eaS(f){l-(t))u - e
2
-^- (v(8)v'{0)^

(*>

W

(^) + ' fo
2Wv

«} • (
10

)
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In the phase-field model, the interface is represented by a range of contour levels of
<f),

e.g.,

0-1 <
(f)
< 0.9. In order to compute the anisotropic behavior, the orientation angle is

determined in terms of the phase field 4> using the following relation for the normal vector:

n =
V<£

m = cos 6x + sin 9y.

From this expression we have the definition

tan 6 =
fVx

and, in addition, we obtain

Q _ fyxfyxy fiyfixx
Q

(fix&yy tyyfyxy

x ~ m 2 ’ v " m 2

These relations are used to compute the terms in Eq. (10) which arise from expanding the

derivatives of rj(6).

By conducting an asymptotic analysis of the phase-field equations in the limit e —

*

0 with

5, a, and m of order one, the classical description of an appropriate free boundary problem

is recovered. The details are analogous to those given by Caginalp [5] for the form of the

free energy investigated by him, and a thorough development of the interfacial conditions

for the present phase-field model with the assumed form for e(9) is given in [21]. The free

boundary problem satisfied by the leading-order temperature for the phase-field model given

by Eq. (4) and Eq. (10) is

(ii)

with interfacial boundary conditions

du

dn

Liquid

Solid

(12)

and

“ = _r{^ + I,w +,w: }’
(13)

where T = aTm/[wLAT] is the dimensionless capillary length, vn is the dimensionless normal

velocity of the interface into the liquid and /C is the dimensionless interfacial curvature

(measured positive for convex projections into the liquid). The interfacial boundary condition

Eq. (13) reduces to the anisotropic form of the Gibbs-Thomson equation when vn — 0; the

term including vn incorporates the effect of interface kinetics. Note that allowing e to depend

on 6 modifies both the term proportional to velocity and the term proportional to curvature.
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3. Numerical Computations

The objective here is to evaluate the behavior of the phase-field model by simulating the

growth of a two-dimensional dendrite into an undercooled liquid. In order to perform the

simulation, the governing equations are solved numerically in a two-dimensional rectangular

domain of sufficient size to allow for the development of characteristic dendritic structure

(e.g., side arms). Even with the phase-field approach, an optimum solution procedure should

employ some type of adaptive technique, particularly for the phase variable, since it varies

over a very small part of the domain. However, we chose at present to use straightforward

finite difference solution techniques applied on a uniform computational grid, since the nu-

merical implementation of such techniques is straightforward and they are well suited for

taking full advantage of highly vectorized large-scale computers.

The governing equations given by Eq. (4) and Eq. (10) are a pair of coupled, second-

order, nonlinear parabolic equations. They are discretized spatially using second-order finite

differences on a uniform grid characterized by mesh spacings AX and AY in the x and y

coordinate directions, respectively; for the temporal discretization we introduce the time step

At. In order to maximize the computational efficiency, we employ explicit time-differencing

on the
(f)
equation which is nonlinear in all terms except for the highest-order spatial deriva-

tives. The heat Eq. (4) is linear in the temperature u but contains the source term depending

on
(f).

For the present calculations, the thermal field diffuses more rapidly, so to avoid the

diffusive stability requirement, the alternating-direction implicit method (ADI) is used on

Eq. (4). The methods employed here are described in many standard texts on finite difference

techniques for partial differential equations (e.g., [22]).

For the two-dimensional rectangular computational domain, vanishing Neumann condi-

tions for both (j) and u are applied at the boundaries, which have the scaled dimensions of

Xl and Yl in the x and y coordinate directions, respectively. We note that some of the

results presented here for the temperature and phase field are displayed after reflecting the

computational domain about the line y — 0, which corresponds to the axis of the dendrite.

From the chosen definition of the dimensionless variables, the value u = 0 corresponds to

the melting temperature of the pure material, while u = — 1 is the initial undercooling tem-

perature (the dimensional undercooling is AT). Initially for each calculation, a small region
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of solid ((f)
— 0,u — 0) is located at the x — 0, y = 0 corner of the domain, and the remain-

der of the domain is undercooled liquid (u = —1). The shape of the initial solid region is

one-quarter of a circle with an initial radius denoted by ra .

The two-dimensional simulations were performed using property values for pure nickel;

the values for the required material parameters are readily available (see for example [20]).

The property values used to determine the dimensionless parameters for the computations are

a — 3.7xl0 -5
J/ cm2

,
Tm = 1728 K, L = 2350 J/ cm3

,
c = 5.42 J/ K cm3

,
k - 0.155 cm2

/s,

and fi — 285 cm/K s. In order to completely determine the dimensionless parameters Eq. (7)

- Eq. (9), we must choose values for the reference length, w, and the interface thickness 8.

The choice of these parameters is based on the physical structure we wish to compute and

the practical limitations of accurately resolving gradients within the interfacial region for a

desired computational domain of size Xi and Yl-

Because the computational domain is thermally insulated, the value of the dimensionless

undercooling S determines the portion of the domain which can be solidified. The computa-

tions are facilitated by larger values of S (large values of undercooling, AT) because the solid

encompasses a larger portion of the computational domain. In addition, a larger value of S

produces a thinner thermal boundary layer in the liquid so the effect of the adiabatic outer

boundaries is less pronounced. A value of S = 0.5 is used for all the calculations presented.

This value corresponds to an actual undercooling of 217 K, which is an attainable level of

undercooling for nickel. Based on some preliminary computational experiments to determine

how the interface thickness and the size of the domain should be chosen in relation to the

tip radius, we chose a length scale w — 2.1 x 10
-4 cm which yields the parameter value

a = 400 in the definition Eq. (7). For the physical parameters of nickel given above, the

dimensionless parameter m has the value 0.05.

With the parameters S', a and m specified, the parameter e determines the thickness of

the interface. The computational resolution was determined by the extent of the domain

chosen (Xl and Yl) and the number of grid points used in the discretization of the domain.

For all the computations presented here, e = 0.005 is used; this value was found to give an

optimal interface width from the point of view of computational efficiency for the present

parameters and computation scheme. A more complete discussion about the choice of the

model parameters and the effect of varying the interface thickness is given in [16].
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4. Results and Discussion

In Wheeler et al. [16], a quantitative evaluation of the phase-field model for one- and two-

dimensional computations was performed by investigating the effects of interface width and

spatial and temporal numerical resolution. For one-dimensional spherically symmetric calcu-

lations, very good agreement was obtained between the phase-field results and computations

from the corresponding sharp interface formulation solved numerically using a Green’s func-

tion approach. The phase-field model was evaluated by comparison to existing sharp interface

theories of two-dimensional dendritic growth. Exact comparisons were not possible owing to

the differences in the details included in the theories, but the phase-field calculations were

shown to produce behavior which is in agreement with the more well-established theories,

i.e., the Ivantsov/microscopic solvability theories.

Here, we present some additional computations which display the complexity of the so-

lidification structures that can be produced by the phase-field model and show that they

give a qualitative representation of dendritic growth behavior. Similar computations were

performed by Kobayashi [15] using a related phase-field model. The contribution of the

present calculations is that they are obtained from a phase-field model which has been ana-

lyzed in considerable detail and for which the model parameters have been well-established

[16,17,21],

The results presented are displayed as contours of the temperature and phase field. In

all cases, for each temperature plot eleven isotherms are shown which are fractions of the

maximum magnitude of the temperature (0.05, 0. 1-0.9, and 0.95). In the phase field plots, the

interface is represented by contours in the range 0.1 <
(f)
< 0.9 which are indistinguishable.

In figs. 1 and 2, we present computations which illustrate the role played by anisotropy

in the parameter e. Both calculations were performed on half the domain shown with Xl =

4.5 and Yl = 2.25 with 600 grid points in the x direction and 300 points in the y direction

(AX = AY = 0.0075). For these calculations, a time-step of 5 x 10
-5 was used. In the

figures for the purpose of illustration, the x direction has been oriented so that it is vertical

and the solution has been reflected about the center vertical line
(y = 0). Fig. 1 shows the

temperature and phase-field contours at three dimensionless time levels in the computation

(t = 0.1, 0.3, and 0.5) for the case when there is no anisotropy (7 = 0). The initially circular
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solid region is subject to morphological instability and breaks down into a number of finger-

like structures which grow and experience further instability in the form of tip-splitting.

With four-fold anisotropy ( k = 4) and an anisotropy parameter value, 7 = 0.02, fig. 2 shows

the temperature and phase-field contours at the same three dimensionless time levels as in

fig. 1. From the definition of the orientation angle, the preferred growth directions for k = 4

are along the coordinate axes. Additionally, there is a short solid finger with an orientation

of approximately 45 degrees which has grown out early in the calculation. After an initial

transient period, the tips of the needle crystals reach a well-defined operating state with a

particular radius and growth velocity. These values remain constant until the proximity of

the outer boundary of the domain inhibits growth.

In fig. 3 isotherms and phase-field contours at a single time level of 0.6 are plotted for

a lower value of the anisotropy parameter, 7 = 0.01. Again, because of the influence of

anisotropy, a well-defined needle crystal is obtained. However, in this case, regular side-

branching occurs at a distance behind the tip of the growing crystal. The occurrence of side

branching is found to depend on the anisotropy level (7 value), and to some extent on the

numerical error; the side-branched structure occurs more readily as the discretization error

increases. For this set of calculations, the mesh spacing AX = AY = 0.015 was used and the

time-step was 1 x 10
-4

. The dependence of side-arm formation on anisotropy level was also

displayed by the simulations of Saito, et al. [23], which were performed using a boundary

integral approach to solve a sharp interface model with a quasistationary heat equation and

no kinetic effects.

Kobayashi [15] found that the occurrence of side-branched structure is enhanced by in-

troducing random noise into the calculations. For the subsequent calculations presented,

random noise of small amplitude has been introduced into the temperature term in the

phase-field equation Eq. (10), which represents a disturbance to the interface. Fig. 4 is a

calculation with anisotropy, 7 = 0.01, and with a 1% random noise level. Isotherms and

phase-field contours are shown at four time levels which are equally spaced except for the

lowest two time levels. At the lowest time level shown, the preferred directions along the

coordinate axes experience the fastest growth and the solid no longer resembles the initially

circular region. At the second time level, side-arm formation has begun to occur, and in the

last two time levels the side-branched dendritic structure is clearly evident. The presence

-10-



of the random noise does not effect the overall growth conditions of the needle crystal (tip

radius and velocity), but does enhance the irregular production of the secondary arms. Be-

cause the actual computational domain is shorter in the y direction, the growing dendrite

tip reaches the outer boundary in that direction. As in the previous calculations, this one

was performed on half the domain shown and was reflected about the vertical centerline.

For the calculation, Xl — 9.0 and Yl = 4.5 with 600 grid points in the x direction and 300

points in the y direction yielding AX = AY = 0.015. The time-step was 1 x 10~4
.

Finally, we present a set of calculations with six-fold anisotropy
(
k = 6) in fig. 5. Unlike

the previous calculations, a square domain with Xl = Yl = 9 has been used. There are

900 grid points in each direction and the time-step was again 1 x 10
-4

. The calculation

was initiated by a small circular region of solid located in the center of the domain. The

anisotropy level is 7 = 0 .01
,
and a 1% level of random noise is used to facilitate the occurrence

of irregular side branching. The development of the dendritic structure with six-fold primary

structure is shown in the figure at the four dimensionless time values: 0.1, 0.2, 0.4, and 0.6.

The occurrence of secondary side-branches and even some tertiary branch formation is clearly

displayed in the simulation as well as the inclusion of a liquid pocket. Also evident in this

figure and in the previous one is the occurrence of dendrite side-arm coarsening. All these

features and the fact that the calculations produce a well-defined operating state for the

dendrite tip are good examples of how the phase-field model can produce realistic dendritic

growth behavior.

The results presented here demonstrate the complexity of the solidification morphology

that can be simulated using the phase-field approach. This work is part of an ongoing effort

to evaluate the behavior of phase-field models both qualitatively and quantitatively, in order

to access their utility as a practical tool for computing solidification growth morphologies of

real materials under a variety of conditions.
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Figure Captions

Figure 1. The computed isotherms (left) and phase-field contours (right) at three time

levels: 0.1, 0.3, and 0.5 (shown from bottom to top). The calculation is for no anisotropy, 7

= 0. Note that the computations are symmetric about the vertical centerline.

Figure 2. The computed isotherms (left) and phase-field contours (right) at three time

levels: 0.1, 0.3, and 0.5 (shown from bottom to top). The calculation has four-fold anisotropy

(

k

= 4) with 7 = 0.02. Note that the computations are symmetric about the vertical

centerline.

Figure 3. The computed isotherms (left) and phase-field contours (right) at a single time

level 0.6 for a calculation with four-fold anisotropy ( k = 4) and 7 = 0.02. Note that the

computations are symmetric about the vertical centerline.

Figure 4. The computed isotherms (left) and phase-field contours (right) at four time levels:

0.1, 0.3, 0.9 and 1.5 (shown from bottom to top). The calculation has four-fold anisotropy

(k = 4) with 7 = 0.01 and a 1% random noise level. The computations are symmetric about

the vertical centerline.

Figure 5. The computed isotherms (left) and phase-field contours (right) at four time levels:

0.1, 0.2, 0.4 and 0.6 (shown from bottom to top). The calculation has six-fold anisotropy (

k

— 6
)
with 7 = 0.01 and a 1% random noise level.
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