
Cross Validation Comparison
of NIST OCR Databases

Patrick J. Grother

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Computer Systems Laboratory

Advanced Systems Division

Gaithersburg, MD 20899

QC

TOO

.U56

//5123

1993

NIST





NISTIR 5123

Cross Validation Comparison
of NIST OCR Databases

Patrick J. Grother

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Computer Systems Laboratory

Advanced Systems Division

Gaithersburg, MD 20899

January 1993

U.S. DEPARTMENT OF COMMERCE
Ronald H. Brown, Secretary

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
John W. Lyons, Director



J,'

V? '

'

s',

r'-S t??-"
'

'f '!''''t>i3i)

'J

-
,<> I'lgf.'

>



Cross Validation Comparison Of NIST OCR Databases
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Abstract

The quality of reference databases for Optical Character Recognition is vital to the meaningful

assessment of classification algorithms. The National Institute of Standards and Technology (NIST)

has produced two databases of segmented handprinted characters obtained from socially distinct

writer populations. Two approaches to the comparison of the databases are described. The first uses

the eigenvalue spectrum of the covariance matrix as an a priori measure of the variance intrinsic to

the data. The second cross validates the datasets using classification error to quantify the difficulty

of OCR.

The eigenvalue spectra from the training partitions of the datasets are generated during the pro-

duction of the Karhunen Loeve (KL) Transforms, the leading components of which are used as

prototype features for a classifier. The eigenspectra are used to quantify diversity of the character

sets and the Bhattacharrya distance is used to measure class separability.

The digits, upper and lower case letters from the two populations of 500 writers are partitioned

into N disjoint sets. The KL transforms of each such set are used for testing, while the remaining

A’ — 1 sets form the training prototypes for a Probabalistic Neural Network (PNN) neighbour

classifier. Recognition error rates and their variances are calculated over the N partitions for both

databases independently. This quantifies intra-database diversity. The inter-database results, or

“cross” terms, obtained by training and testing on different databases, indicate the generality of

the training set.

The results for digits suggest that the second NIST database (used nominally for testing) is signif-

icantly harder than the first (training) set; the testing images are 11% more variable. The NIST
training data classifies partitions of itself with 1.7% error, and the test set with 6.8% error. Con-

versely the test set generalizes to both itself and the training data with 3.5% error. This effect has

also been reported using non-NIST classifiers.

1 Introduction

In the spring of 1992 the National Institute of Standards and Technology hosted the First Census

Optical Character Recognition (COCR) Conference [1]. One aim of the conference was to ascertain the

state-of-the-art industrio-academic performance on the recognition of NIST segmented numeric, upper

and lower case letters.

Participants in the conference agreed to classify unlabelled images using their proprietary and/or public

domain recognition systems and submit their classifications to NIST for scoring. NIST provided two

databases to all entrants. The first, termed NIST Special Database 3 (SD3) [2], contained the segmented

characters of 2100 writers and the “known” class files. This constituted an optional training set. The

second database, termed NIST Test Data 1 (TDl) contained unlabelled characters from 500 writers,

and constituted the test materials.
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One result of the Conference was that those recognition systems trained solely on the NIST SD3
database generally displayed inferior TDl recognition to those trained on a superset of this data, i.e.

one including SD3 as a subset or other, possibly proprietary, datasets. The notion that the SD3 was

“clean” or “constrained” relative to the TDl dataset was suggested by the writer profiles; SD3 was

obtained from motivated permanent census field personnel whereas TDl was obtained from variously

motivated, more diverse and cosmopolitan high school students. An example is that the European

crossed seven is far more abundant in TDl than SD3.

This study was initiated to formally investigate the relative differences between the databases. The
intent was to obtain some classifier independent measures of the relative database difficulty - to obtain

results that pertain to the properties of the data, and not the particular recognition algorithm. Cross

validation [3] [4] has long been used as a method of obtaining more “mileage” from a data set; by

partitioning the data into disjoint subsets, one for parameter estimation (ie training) and the other for

performance measurement (ie testing), more robust estimates of performance statistics are available.

An alternative approach avoids cleissification altogther, instead favouring statistical description of the

patterns sets.

2 Theory

Whereas Moody [5] expressed cross validation in terms of the mapping error associated between inputs

and targets to a multilayer perceptron, the concept of cross validation is in no way restricted to neural

network classifiers or function approximators. Cross validation is a method for accumulation of a

statistic which, in the case reported here, is the classification error as obtained using a nearest neighbour

classifier.

A problem associated with Multi Layer Perceptron (MLP) networks is that patterns (for example,

crossed sevens) present in a training set only in small numbers are only weakly represented by the

estimated weights, such that generalization is poor. Non-parametric methods do not model the training

data and are thus not usually prone to this problem. Such a method is the ubiquitous K-nearest

neighbour algorithm [6]. The distances of an unknown pattern to elements of a prototype set are

calculated using a suitable, often euclidean, metric. Voting between the classes of the K closest implies

the class of the unknown. Numerous extensions to the scheme have been used effectively including

an elaboration, termed “Probabilistic Neural Network” (PNN), due to Donald Spect [7], in which all

prototypes are included in a Gaussian distance weighted metric thereby emulating the Parzen density

approach. The advantage of the method is that an a posteriori probability is attached to each possible

class; the unknown is classed as that with the highest probability. NIST hcis used nearest neighbour

classifiers that significantly outperform the MLP networks given identical features.

3 Classification

The first stage of classification used the Karhunen Loeve expansion of the images as a reduced dimen-

sionality optimally compact representation. The use of such features in OCR has been described in, for

example [8] [9]. The handwritten binary characters are isolated and represented as the ±1 elements of

a column vector by some consistent ordering of the square image. The mean vector of P such images

is subtracted from each and an ensemble matrix, U is formed with these P vectors as its columns. The

symmetric covariance matrix, R, gives the mean over all images in the ensemble, of all the interpixel

correlations. As such it statistically describes how handwritten character images vary.

R=iuu’' (1)
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The covariance matrix R has eigenvectors as the columns of 'P defined as:

(
2

)

where the only non zero elements of A are the eigenvalues on its diagonal. The eigenvectors are

the directions of maximum variance in the image space and form a complete orthonormal set termed

the principal axes of a hyperellipse in that space. The eigenvalues define the statistical “length” of

these cLxes; thus the first column of corresponding to the largest eigenvalue is the major axis. The
eigensolution of the covariance matrix provides an ordered variance expansion of the image ensemble.

The latter eigenvectors, describing very little variance in the images, are discarded thus affording reduced

dimensionality. Any im^age vectors as a column of a new matrix U is a linear superposition of the basis

vectors:

U = 'fV (3)

where the inversion of this formula, V, defines the Karhunen Loeve Transform, the elements of which

are the components of the image vector onto the principal axes:

V = (4)

These feature vectors are classified using the PNN nearest neighbour technique[7]. Although many
variations have been described the NIST_4 implementation is as follows. The square euclidean distance

of an unknown pattern, v, to the z** prototype of the training set, ti, is

N

(5)

i = i

The distances dj Vz are expressed as a function of the standard deviations of normal distributions centered

on each of the prototypes. A Gaussian is applied as a kernel weighting function.

The weighted distances are then accumulated by-class over the K classes, to which the prototypes

belong.

Pk

p

^ ^ 9i^ki (7)

where Sik is unity if the prototype is of clciss k and zero otherwise. Interestingly this vector may be

normalized to give true a •posteriori probabilities by dividing by '^kPk- For optimal classification it is

necessary to survey over the Gaussian width cr; for digits the best value was taken as 3.0 whereas for

uppers and lowers a value of 4.0 was adopted. Note that as cr —»• oo, gi 1 and classifications defaults

to that class with the highest a priori probability obtained from the row sums of 6.

Rather than use classifiability as a measure of database homogeneity it is possible to obtain a priori

measures. Consider the databases as image ensembles for which the Karhunen Loeve Transform (KLT)

is defined [10]. The variances of the transform coefficients are the eigenvalues. Since the eigenvectors.
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the basis of the KLT, form a complete orthonormal set, any image (including those of the ensemble

from which the covariance matrix is calculated) is exactly a linear superposition of those bases. If the

eigenvalue spectrum is relatively flat then the variance in an image ensemble is distributed over many
eigenvectors and more are needed for an adequate representation, as for instance in achieving a low

reconstruction mean square error level. Note that the total image variance is related to the scatter of

the data, 5, defined as

S = E{ ||ui - UjW } (8)

where the expectation, £"{•}, of the underlying distribution is replaced by the sample mean whence

1
^ ^

i=l j=l

i=l j=l

(
9

)

(10)

i=l j=l

Given that the u are mutually independent and from a single distribution the double sums are replaced

thus

2=1 Z =1 j=l

The latter sums are the mean vectors defined prior to equation 1 to be zero. The first sum of inner

products is the also the trace of the sum of the outer products which is identically the covariance matrix.

5 = 2 trace UU^ (12)

The diagonal elements of the covariance matrix are the variances of the image pixels. Given that the

total variance is conserved under unitary transformation:

Rii = trace R = trace A (13)

It is found that the scatter statistic is twice the sum of the eigenvalues. Further expressing the eigenval-

ues as a percentage of their total yields the percentage of the ensemble variance that is represented by

a subset of N eigenvectors. For comparison of the two databases the difference in the percentages as a

function of N is considered. If an eigenspectrum is wide, then the percentage variance described by the

N leading eigenvectors will be small. If the cross validation percentage classification error is also low

the information discarded by using an incomplete KL transform is irrelevant even though there is much
of it. Alternatively, if the eigenspectrum is narrow, with much of the variance captured, then a low

recognition rate implies that the discarded transform coefficients are valuable. This latter sensitivity

to the high order KL-transform is undesirable since the motivation for feature extraction is reduced

dimensionality.

Consider the two class problem. Throughout assume that the a priori probability of each class is

identical and therefore 0.5. Let the conditional density functions for the two classes be pi(u) and P2 (u)

such that the a posteriori probabilities of an example being of class k is

4



(14)Qkiu)
Pkju)

p(u)

where p(u) is the mixture density function pi(u) + P2 (u). The decison rule for classification of an

unknown vector u then becomes simply to choose class 1 if pi(u) > P2 (u) and vice versa. The usual

problem of not possessing the density functions is obvious. This rule will still not generally give zero

error - given a vector u consider the conditional error to be

r(u) = min{ 9i(u) , q2 {u) )

and the total (Bayes) error to be the expectation of r(u) thus

(15)

e r(u)p(u) du
j

min{ pi(u) , p2 (u) )
du (16)

e= pi(u)du+ / p2 (u)du (17)
Jl2 Jli

where the volumes Lk correspond to classification of u as class k. This is still of little utility given

the inaccessability of the density functions. However it is possible to compute an upper bound on e by

using the lemma that min{a, b) < for 0 < s < 1. The upper bound on the error then reduces to

= l J pI{u) du = > e (18)

and for a normal distribution the c(s) can be obtained eventually as (see [11])

c s = s(l - s)

{P2 - PlY R-12^(s) iP2 - Pi) +
det Ri 2 (s)hn

2 det Rf det R
2

’

(19)

where Ri 2 (s) = sRi + (1 — 5)R25 and and R* are the mean vectors and covariance matrices of class

k. The left hand side is termed the Chernoff distance and is parameterized by s. It reaches a maximum
at s = 0.5 only when Ri = R2 in which case the term Bhattacharyya distance is used. These distance

measures are useful in defining class separability and are reasonable even when the data is not normal

although strictly tests for normalitv should be applied (The Kolmogorov-Smirnov test for example, in

[
12]).

The first term of equation 19 measures the distance between the cleiss means normalized by the mixture

covariance R 12 . The second term quantifies the distance due to differences in the covariances. The
values of are given in table 2 for the ten classes of the two NIST data sets. Note that the matrix is

not symmetric since the upper and lower triangles refer to different databases.

4 Cross Validation Results

This study generated a Validation Comparison Matrix. The matrix has rank two and dimension equal to

the number of databases in the comparison which in this case is also two. The row and column indices of

the matrix denote, respectively, the databases used for training and testing. The absolute claissification

error values in the matrix are irrelevant since the entries were all produced using identical classifiers none
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of which were particularly optimized. The interesting features are the relative percentages discussed

below.

The on-digaonal terms, cu, indicate the mean result for standard u-fold cross validation of the

database. The oflf-diagonal elements, Cij i j, result from cross-cross validation. The first u partitions

of database i are used as training sets for the t;-fold cross validation of the database. In the case of

t’-fold partitioning of the training set there will be uv results the mean of which is Cij.

All elements have an attached sample standard deviation.

N

(
20

)

If an homogenous training set is large enough then recognition error and this deviation will approach

zero. The standard deviation is also affected by the data set redundancy. For instance, consider a

database to which a copy of itself is appended, and which is classified with, for example, a single

nearest neighbor algorithm. Perfect recognition could then be achieved if, as in the cross validation

scheme used here, the partitions are contiguous blocks from the dataset.

For comparing the means of two different databases the standard error is used. It is accessible by

dividing the standard deviations by a further VN. The discussion of the comparisons of the means and

the variances is aided by invoking the results of Student’s “t-test” and the “F-test” (see for example

[13]) which utilize this quantity and not the cr values of equation 20.

They are used to assess whether two distributions have the same mean and the same variances. The
entire corpus of human hand-printed characters may be considered as one distribution of which SD3
and TDl are subsets, but for this study the two sets are extracted from different distributions, namely

the characters of the two social writer groups outlined in the introduction. The t-test quantifies the

difference in two means as a multiple of their mutual root mean square standard errors.

(
21

)

Attached to it is a significance, 0 < p < 1, giving the probability that |f
|

could be at least this large by

chance. That is if p takes on a “small” value then the distributions have “markedly” different means.

Similarly the F-test quantifies two variances as a ratio taken to be greater than 1 (i.e. either (t\I<7\

or its reciprocal). The value of F directly indicates differing variances. The attached significance, p is

again a probability. Small values indicate significantly different variances.

The statistics are derived from the two samples obtained by testing the 10 partitions of SD3 and

TDl data using one or other training set. In all cases, digits, upper-case and lower-case letters, the

calculated value of the t is found with very low significance implying the mean differences are not at all

spurious. However in no case does the attached probability for the F-test indicate that the variances

are significantly different.

4.1 Digits

The handwritten digits of the first 500 writers of NIST Special Database 3 (SD3) were partitioned into

blocks from 50 writers. The number of characters in these ten sets were not identical but varied by

only 0.2%. The number of SD3 digits totalled 53449. The 500 writers of NIST Test Data 1 (TDl) were

similarly partitioned. The number of TDl digits totalled 58646. The pure 10 fold cross validations for
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Correct % Test SD3 Test TDl

± cr 50 writers 50 writers

Train SD3

450 writers

1.7% ± 0.3 6.8% ± 0.4

t = 28.5 p = 0.0

F = 1.5 p = 0.3

Train TDl

450 writers

3.5% ± 0.3 3.8% ± 0.5

t = 1.4 p = 0.2

F = 2.1 p = 0.3

Table 1: Inter and Intra database Cross Validation Recognition Errors for Digits.

SD3 and TDl were obtained using the characters of 90% of the wTiters as prototypes for the characters

of the remaining 10%. The mean incorrect classification percentages are quoted on the diagonal of table

1 .

The first partition only {u = 1) of SD3, that is a fixed 450 writers, were used as prototypes for the

clcissification of all u = 10 sets of characters of TDl, and vice versa. The off-diagonal elements of the

validation comparison matrix, so obtained, are given in the table.

The most relevant result from the above table is that, using the classifier as described above, training

solely on SD3 implies a 5% loss when classifying TDl. This is effectively NIST’s experience with its

NIST-O and NIST_1 conference entered systems.

The on-diagonal elements of the cross validation matrix show that SD3 is a less diverse digit set than

TDl. That is the test partitions of SD3 are more like their training sets, in the nearest neighbour

sense, than is the case with TDl. Greater on-diagonal terms indicate a higher intrinsic diversity for

that database. If we relate the low TDl classification to the width of the eigenvalue spectrum or the

volume of the eigenspace it is apparent that TDl would benefit from the use of a less incomplete KL
transform as input to the classifier.

Figure 1 shows the eigenspectra of the SD3 and TDl characters. Note in particular the total variances

for the 1024 pixel digits are 576 (SD3) and 637 (TDl) indicating that TDl is absolutely more diverse

(larger scatter). Approximately 6.6% more of the variance of SD3 is described by 48 KL coefficients (as

used by the classifier) than is the case for TDl.

The off-diagonal terms show that SD3 as prototypes for TDl is markedly inferior to TDl as a training

set for SD3. The implication is that TDl is a superset of the SD3 set, i.e. TDl contains sufficiently

distributed prototypes to classify SD3 - whereas TDl contains exemplars that are not “closely” present

in SD3. That TDl classifies itself and SD3 equally (to within one standard deviation) implies that TDl
is a more general dataset.

Table 2 shows the Bhattacharyya upper error bounds for all the digits of SD3 and TDl. A full Chernoff

table is expensive to compute so only the s = 0.5 value is given which is generally an overestimate of



TDl
0 1 2 3 4 5 6 7 8 9

0 60.06 0.00 1.53 0.74 0.37 2.06 2.08 0.27 0.52 0.23

1 0.00 56.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2 1.85 0.00 51.74 2.94 1.96 3.23 2.53 3.79 6.71 2.21

3 0.99 0.00 7.79 57.99 0.96 4.05 0.95 2.75 7.80 3.63

SD3 4 0.59 0.00 2.24 1.00 50.13 3.49 1.94 5.14 3.07 16.30

5 2.60 0.00 2.96 5.77 3.63 63.12 6.42 1.92 8.55 3.02

6 0.91 0.00 1.74 0.33 0.81 1.61 44.89 0.10 0.63 0.06

7 0.21 0.00 3.38 1.26 1.99 1.30 0.08 55.93 1.44 13.54

8 0.13 0.00 7.59 4.38 2.40 4.72 2.05 2.95 74.93 3.82

9 0.18 0.00 1.72 1.48 8.36 2.92 0.28 12.88 5.30 71.70

Table 2: Bhattacharyya bounds for digits of NIST Special Database 3 and NIST Test Data 1. The

entry gives the upper bound on the classification error between the class of SD3 and the class of

TDl given all their examples in isolation.

the upper error bound for any given entry. It is found in the case of digits of different class that the

first “mean-difference” term of equation 19 is dominant. The exceptions are in the discrimination of

any class from class “1”, and from digits of the same class obtained from differing databases when the

second covariance-difference term is larger. Note the strong overlaps off-diagonal - the “4” - “9”, “5” -

“8”, “3” - “8” and the “2” - “8” possses small Bhattacharyya distance. Uniquely ones are well separated

from all else. If the off-digaonal row (or column) elements, reweighted by a priori probabilities of 0.1 not

0.5, are summed, then the total of these is 4.42%. This figure and the individual error levels are higher

than was typically achieved using real classifiers. This overestimation of the error is due to either

the normally distributed model being inappropriate, or the classes are separable by an alternative

(nonlinear) classifier, or the values at s = 0.5 are well above their minima. The on-diagonal terms

compare the examples from two distributions for a given class. If two distributions are identical then

a usual distance measure will yield 0 and the mixing error will be 100%. In this case the large on-

diagonal values indicate that the data from SD3 and TDl are at least partly separable and therefore

different. The magnitudes of the terms in equation 19 indicate that this is largely due to differences in

the covaricinces.

4.2 Uppers

The handwritten uppers of the first 480^ writers of NIST Special Database 3 (SD3) were partitioned

into blocks from 48 writers. The upper case letters totalled 10790 examples. The 500 writers of

NIST Test Data 1 (TDl), similarly partitioned, yielded 11941 characters. As in the case of digits

there is a 5% difference between the classification of SD3 on itself and on TDl. Again TDl is more

diverse in classification of itself than is the case with SD3. The total variances are 734 (SD3) and

650 (TDl) indicating that SD3 is absolutely more diverse. With classification using 96 KL coefficients

the percentage variance captured for SD3 was 4.8% less than that for TDl. This is reconcilable by

considering the separability of the inter-class separability of the SD3 set to be greater while intra-class

variation is larger.

The off-diagonal elements, however, are the same indicating that neither set is more general than the

other. That the off-diagonal elements are higher than the on-diagonals indicates the databases contain

unique subsets that require “specialist knowledge” contained only in that database.

'•None of the uppercase letters of 20 writers were successfully segmented in the preparation of SD3. See section 5.



Correct % Test SD3 Test TDl

± cr 48 writers 50 writers

Train SD3

432 writers

14.2% ± 1.4 19.4% ± 1.4

t = 7.9 p = 0.0

F = 1.0 p = 0.8

Train TDl

450 writers

19.3% ± 1.7 16.5% ± 1.4

t = 3.8 p = 0.0

F = 1.5 p = 0.4

Table 3: Inter and Intra database Cross Validation Recognition Errors for Uppers.

4.3 Lowers

The handwritten lowers of the first 490^ writers of NIST Special Database 3 (SD3) were partitioned

into blocks from 49 writers. The lower case letters totalled 10968. The 500 writers of NIST Test

Data 1 (TDl), similarly partitioned, yielded 12000 characters. In particular the total variances are 740

(SD3) and 638 (TDl) indicating that SD3 is absolutely more diverse. With classification using 96 KL
coefficients the percentage variance captured for SD3 was 2.3% less than the that for TDl. The cross

validation matrix shows that the lower case datasets are equally difficult and yet different - they are

insufficiently general to classify the other as well as they classify themselves.

5 Caveats

5.1 Segmentation

This paper is an initial report into the work NIST conducted immediately after the COCR conference.

As such it is a provisional investigation of database quality. It is reasonable to conclude that the digits

of SD3 are cleaner than those of TDl. However the study is not experimentally flawless - it is not

a conclusion that the writers of SD3 em wrote characters neater than those of TDl, only that the

characters ultimately included in the database are cleaner. One reason for this is that SD3 and TDl,

both obtained from fields of full page forms, were arrived at with different segmenters. From a possible

65000 characters on each 500 form set, final numbers of human checked characters were 53449 (SD3)

and 58646 (TDl). The SD3 segmentor, an old version, produced 9% fewer isolated characters than

the updated model used for TDl, the principal reason for failure being connected characters. If the

characters from SD3 that were not segmented resemble the difficult images that putatively characterize

TDl then the difference between the two databases may not be writer-letter dependent at all, rather it

would be a function of the writer-connectivity that different writer groups use.

^None of the lowercase letters of 10 writers were successfxiUy segmented in the preparation of SD3. See section 5.
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Correct % Test SD3 Test TDl

± <J 49 writers 50 writers

Train SD3

441 writers

19.6% ± 1.4 23.5% ± 1.4

t = 5.9 p = 0.0

F = 1.1 p = 0.8

Train TDl

450 writers

25.9% ± 1.8 19.2% ± 1.1

t = 9.6 p = 0.0

F = 2.5 p = 0.1

Table 4: Inter and Intra database Cross Validation Recognition Errors for Lowers.

This problem could be negated by resegmenting and rechecking SD3 using the identical algorithms

applied to TDl. A new different database, a superset of SD3, is then obtained, which can then be used

in a more controlled comparison with TDl.

The Chernoff integral of 18 is approximated using the normal distribution assumption to obtain an

analytic easily computable expression. This assumption is certainly untrue for binary images. The
sensitivity of the values in the table to the parameter s was not computed in this study.

5.2 Classifier Dependence

The eigenvalue spectrum describes the information loss suffered when only the leading KL coefficients

are used in classification. The classification of incomplete KLT’s is peculiar in that variance ordered

information is discarded. It is not clear that using a much higher number of coefficients in the digit clas-

sification will not equalize the on-diagonal cross validation entries. Even though the nearest neighbour

recognition of minority patterns in a higher dimensional (but lower variance) KL space is not possible

for parameterized classifiers, the nearest neighbour schemes do better.

Instead of using a “lossy” incomplete feature classifier it is possible to instead use a full description

of the image; the complete KL transform. Variance equalization may be more reasonable - choose the

number of KL features corresponding to either an absolute level of described variance or percentage

thereof. Thus in the case of digits, 43 eigenvectors describe 75% of the variance whereas to reach this

level with TDl, 70 KL coefficients are required. Alternative features may be used that do not bias

information loss. For example image row and column pixel histograms or orthogonal moments are

known to be classifiable features for OCR.
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6 Conclusions

Given the experimental scheme described, it appears that NIST Test Data 1 is indeed a more diverse

and general digit set than NIST Special Database 3. The NIST training digits classified themselves

with 5% more accuracy than they classified the test set. Further, the use of NIST Test Data I as a

training set yields a 3% improvement over Special Database 3 in the classification of that test set. The

hypothesis that differing writer populations are responsible for this diversity remains only a possible

conclusion. Indeed, the fact that the cross validations for the uppers and lowers yield insignificant

differences between the two databases weakens the argument for digits.
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Figure 1: Eigenvalue vs Index for SD3 and TDl. From top digits, uppers and lowers. All writers were

used.
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