Test Procedure for Handgun Accuracy

Nicholas J. Calvano
Daniel E. Frank

U.S. DEPARTMENT OF COMMERCE
Technology Administration
National Institute of Standards
and Technology
Electronics and Electrical Engineering Laboratory
Office of Law Enforcement Standards
Gaithersburg, MD 20899

Prepared for
National Institute of Justice
Office of Justice Programs
U.S. Department of Justice
Washington, DC 20531
ABOUT THE TECHNOLOGY ASSESSMENT PROGRAM

The Technology Assessment Program is sponsored by the Office of Development, Testing, and Dissemination of the National Institute of Justice (NIJ), U.S. Department of Justice. The program responds to the mandate of the Justice System Improvement Act of 1979, which created NIJ and directed it to encourage research and development to improve the criminal justice system and to disseminate the results to Federal, State, and local agencies.

The Technology Assessment Program is an applied research effort that determines the technological needs of justice system agencies, sets minimum performance standards for specific devices, tests commercially available equipment against those standards, and disseminates the standards and the test results to criminal justice agencies nationwide and internationally.

The program operates through:

The Technology Assessment Program Advisory Council (TAPAC) consisting of nationally recognized criminal justice practitioners from Federal, State, and local agencies, which assesses technological needs and sets priorities for research programs and items to be evaluated and tested.

The Office of Law Enforcement Standards (OLES) at the National Institute of Standards and Technology, which develops voluntary national performance standards for compliance testing to ensure that individual items of equipment are suitable for use by criminal justice agencies. The standards are based upon laboratory testing and evaluation of representative samples of each item of equipment to determine the key attributes, develop test methods, and establish minimum performance requirements for each essential attribute. In addition to the highly technical standards, OLES also produces user guides that explain in nontechnical terms the capabilities of available equipment.

The Technology Assessment Program Information Center (TAPIC), operated by a grantee, which supervises a national compliance testing program conducted by independent agencies. The standards developed by OLES serve as performance benchmarks against which commercial equipment is measured. The facilities, personnel, and testing capabilities of the independent laboratories are evaluated by OLES prior to testing each item of equipment, and OLES helps the Information Center staff review and analyze data. Test results are published in Consumer Product Reports designed to help justice system procurement officials make informed purchasing decisions.

Publications issued by the National Institute of Justice, including those of the Technology Assessment Program, are available from the National Criminal Justice Reference Service (NCJRS), which serves as a central information and reference source for the Nation's criminal justice community. For further information, or to register with NCJRS, write to the National Institute of Justice, National Criminal Justice Reference Service, Washington, DC 20531.

Michael J. Russell, Acting Director
National Institute of Justice

The Assistant Attorney General, Office of Justice Programs, establishes the policies and priorities, and manages and coordinates the activities of the Bureau of Justice Assistance, Bureau of Justice Statistics, National Institute of Justice, Office of Juvenile Justice and Delinquency Prevention, and the Office for Victims of Crime.
Test Procedure for Handgun Accuracy

Nicholas J. Calvano
Daniel E. Frank

U.S. DEPARTMENT OF COMMERCE
Technology Administration
National Institute of Standards and Technology
Electronics and Electrical Engineering Laboratory
Office of Law Enforcement Standards
Gaithersburg, MD 20899

Prepared for
National Institute of Justice
Office of Justice Programs
U.S. Department of Justice
Washington, DC 20531

January 1993

U.S. DEPARTMENT OF COMMERCE
Ronald H. Brown, Secretary
NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY
Raymond G. Kammer, Acting Director
ACKNOWLEDGMENTS

This report was prepared by the Office of Law Enforcement Standards (OLES) of the National Institute of Standards and Technology (NIST) under the direction of Daniel E. Frank, Manager, Protective Equipment Program and Lawrence K. Eliason, Director of OLES. The technical research was performed by Nicholas J. Calvano, Project Leader, OLES. The preparation of this report was sponsored by the National Institute of Justice, David Boyd, Director, Science and Technology. The technical effort to develop this report was conducted under Interagency Agreement LEAA-J-021-3, Project No. 8705.
FOREWORD

The Office of Law Enforcement Standards (OLES) of the National Institute of Standards and Technology (formerly the National Bureau of Standards) furnishes technical support to the National Institute of Justice (NIJ) program to strengthen law enforcement and criminal justice in the United States. OLES's function is to conduct research that will assist law enforcement and criminal justice agencies in the selection and procurement of quality equipment.

OLES is: (1) Subjecting existing equipment to laboratory testing and evaluation and (2) conducting research leading to the development of several series of documents, including national voluntary equipment standards, user guides, and technical reports.

This document covers research on law enforcement equipment conducted by OLES under the sponsorship of NIJ. Additional reports as well as other documents are being issued under the OLES program in the areas of protective equipment, communications equipment, security systems, weapons, emergency equipment, investigative aids, vehicles, and clothing.

Technical comments and suggestions concerning this document are invited from all interested parties. They may be addressed to the Office of Law Enforcement Standards, National Institute of Standards and Technology, Gaithersburg, MD, 20899.

Lawrence K. Eliason, Director
Office of Law Enforcement Standards
TABLE OF CONTENTS

Foreword ... iii
1. Purpose .. 1
2. Scope ... 1
3. Definitions ... 2
 3.1 Accuracy .. 2
 3.2 Aim Point ... 2
 3.3 Group Size .. 2
 3.4 Reference Line ... 2
4. Test Equipment .. 2
 4.1 Ballistic Test Range 2
 4.2 Gun Mount .. 2
 4.3 Light Source ... 2
 4.4 Shadow Screen ... 3
 4.5 Target ... 3
5. Test Procedure .. 3
6. Discussion ... 5
Appendix A--Light Source ... 7

LIST OF FIGURES

Page
Figure 1. Equipment setup for aligning handgun with reference line 3
Figure 2. Shadow image when handgun sights are aligned with reference line 4
Figure 3. Equipment setup for firing ... 5
Figure A1. Light source ... 7
COMMONLY USED SYMBOLS AND ABBREVIATIONS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Symbol</th>
<th>Description</th>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>ampere</td>
<td>H</td>
<td>henry</td>
<td>nm</td>
<td>nanometer</td>
</tr>
<tr>
<td>ac</td>
<td>alternating current</td>
<td>h</td>
<td>hour</td>
<td>No.</td>
<td>number</td>
</tr>
<tr>
<td>AM</td>
<td>amplitude modulation</td>
<td>hf</td>
<td>high frequency</td>
<td>o.d.</td>
<td>outside diameter</td>
</tr>
<tr>
<td>cd</td>
<td>candela</td>
<td>Hz</td>
<td>hertz (c/s)</td>
<td>Ω</td>
<td>ohm</td>
</tr>
<tr>
<td>cm</td>
<td>centimeter</td>
<td>i.d.</td>
<td>inside diameter</td>
<td>p.</td>
<td>page</td>
</tr>
<tr>
<td>CP</td>
<td>chemically pure</td>
<td>in</td>
<td>inch</td>
<td>Pa</td>
<td>pascal</td>
</tr>
<tr>
<td>c/s</td>
<td>cycle per second</td>
<td>ir</td>
<td>infrared</td>
<td>pe</td>
<td>probable error</td>
</tr>
<tr>
<td>d</td>
<td>day</td>
<td>J</td>
<td>joule</td>
<td>pp.</td>
<td>pages</td>
</tr>
<tr>
<td>dB</td>
<td>decibel</td>
<td>L</td>
<td>lambert</td>
<td>ppm</td>
<td>part per million</td>
</tr>
<tr>
<td>dc</td>
<td>direct current</td>
<td>L</td>
<td>liter</td>
<td>qt</td>
<td>quart</td>
</tr>
<tr>
<td>°C</td>
<td>degree Celsius</td>
<td>lb</td>
<td>pound</td>
<td>rad</td>
<td>radian</td>
</tr>
<tr>
<td>°F</td>
<td>degree Fahrenheit</td>
<td>lbf</td>
<td>pound-force</td>
<td>rf</td>
<td>radio frequency</td>
</tr>
<tr>
<td>diam</td>
<td>diameter</td>
<td>lbf-in</td>
<td>pound-force inch</td>
<td>rh</td>
<td>relative humidity</td>
</tr>
<tr>
<td>emf</td>
<td>electromotive force</td>
<td>lm</td>
<td>lumen</td>
<td>s</td>
<td>second</td>
</tr>
<tr>
<td>eq</td>
<td>equation</td>
<td>log</td>
<td>logarithm (natural)</td>
<td>SD</td>
<td>standard deviation</td>
</tr>
<tr>
<td>F</td>
<td>farad</td>
<td>M</td>
<td>molar</td>
<td>sec.</td>
<td>section</td>
</tr>
<tr>
<td>fc</td>
<td>footcandle</td>
<td>m</td>
<td>meter</td>
<td>SWR</td>
<td>standing wave ratio</td>
</tr>
<tr>
<td>fig.</td>
<td>figure</td>
<td>min</td>
<td>minute</td>
<td>uhf</td>
<td>ultrahigh frequency</td>
</tr>
<tr>
<td>FM</td>
<td>frequency modulation</td>
<td>mm</td>
<td>millimeter</td>
<td>uv</td>
<td>ultraviolet</td>
</tr>
<tr>
<td>ft</td>
<td>foot</td>
<td>mph</td>
<td>mile per hour</td>
<td>V</td>
<td>volt</td>
</tr>
<tr>
<td>ft/s</td>
<td>foot per second</td>
<td>m/s</td>
<td>meter per second</td>
<td>vhf</td>
<td>very high frequency</td>
</tr>
<tr>
<td>g</td>
<td>acceleration</td>
<td>N</td>
<td>newton</td>
<td>W</td>
<td>watt</td>
</tr>
<tr>
<td>gr</td>
<td>grain</td>
<td>N-m</td>
<td>newton meter</td>
<td>λ</td>
<td>wavelength</td>
</tr>
<tr>
<td></td>
<td></td>
<td>wt</td>
<td>weight</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

area = unit² (e.g., ft², in², etc.); volume = unit³ (e.g., ft³, m³, etc.)

PREFIXES

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Symbol</th>
<th>Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td>deci</td>
<td>10⁻¹</td>
</tr>
<tr>
<td>c</td>
<td>centi</td>
<td>10⁻²</td>
</tr>
<tr>
<td>m</td>
<td>milli</td>
<td>10⁻³</td>
</tr>
<tr>
<td>μ</td>
<td>micro</td>
<td>10⁻⁶</td>
</tr>
<tr>
<td>n</td>
<td>nano</td>
<td>10⁻⁹</td>
</tr>
<tr>
<td>p</td>
<td>pico</td>
<td>10⁻¹²</td>
</tr>
<tr>
<td>da</td>
<td>deka</td>
<td>10⁰</td>
</tr>
<tr>
<td>h</td>
<td>hecto</td>
<td>10¹⁰</td>
</tr>
<tr>
<td>k</td>
<td>kilo</td>
<td>10⁹</td>
</tr>
<tr>
<td>M</td>
<td>mega</td>
<td>10⁶</td>
</tr>
<tr>
<td>G</td>
<td>giga</td>
<td>10⁹</td>
</tr>
<tr>
<td>T</td>
<td>tera</td>
<td>10¹²</td>
</tr>
</tbody>
</table>

COMMON CONVERSIONS

(See ASTM E380)

<table>
<thead>
<tr>
<th>Conversion</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ft/s × 0.3048000 = m/s</td>
<td>lb × 0.4535924 = kg</td>
</tr>
<tr>
<td>ft × 0.3048 = m</td>
<td>lbf × 4.448222 = N</td>
</tr>
<tr>
<td>ft-lbf × 1.355818 = J</td>
<td>lbf/ft × 14.59390 = N/m</td>
</tr>
<tr>
<td>gr × 0.06479891 = g</td>
<td>lbf-in × 0.1129848 = N-m</td>
</tr>
<tr>
<td>in × 2.54 = cm</td>
<td>lbf/in² × 6894.757 = Pa</td>
</tr>
<tr>
<td>kWh × 3 600 000 = J</td>
<td>mph × 1.609344 = km/h</td>
</tr>
<tr>
<td>qt × 0.9463529 = L</td>
<td>q × 0.9463529 = L</td>
</tr>
</tbody>
</table>

Temperature: \((T_{\text{F}} - 32) \times 5/9 = T_{\text{C}}\)

Temperature: \((T_{\text{C}} \times 9/5) + 32 = T_{\text{F}}\)
TEST PROCEDURE FOR HANDGUN ACCURACY

Nicholas J. Calvano and Daniel E. Frank
National Institute of Standards and Technology
Gaithersburg, MD 20899

A test procedure has been designed to determine the accuracy of handguns. The test procedure utilizes a collimated light beam as a means of establishing a fixed reference line to which the handgun sights are aligned. The aim point of the handgun once aligned is the center of the target, which is positioned on the reference line. The handgun accuracy is determined as the distance of the 10-shot bullet group from the aim point, expressed as the average value of the X and Y coordinates of the 10 shots.

Key words: aim point error; handgun accuracy; test procedure.

1. PURPOSE

This test procedure was developed to enable the measurement of the accuracy of handguns used by law enforcement officers. The test procedure is intended for use in measuring the accuracy\(^1\) of revolvers and autoloading pistols that employ Patridge-type sights (or modifications thereof) with either fixed or adjustable rear sights.

2. SCOPE

The scope of this test procedure is limited to the measurement of handgun accuracy as defined in section 3. No attempt is made to establish limits for either handgun accuracy or the group size of multiple shots against the target.

Office of Law Enforcement Standards, Electronics and Electrical Engineering Laboratory.

\(^1\)The accuracy of a handgun is ammunition specific; i.e., the results of the test will vary with different types of ammunition.
3. DEFINITIONS

3.1 Accuracy

Accuracy is the distance from the center of a shot group to the aim point on the test target. The center of the shot group is determined by calculating the average value of the X and Y coordinates of 10 shots relative to the aim point.

3.2 Aim Point

For the purposes of this test procedure the aim point is defined as a point on the target that coincides with the intersection of the reference line (see sec. 3.4) with the target.

3.3 Group Size

The group size is the diameter of the smallest circle that can be circumscribed around the outer edges of the 10 shots that impact the target.

3.4 Reference Line

The reference line is the line that extends from the handgun to the target established by the intersection of a vertical plane through the center of the front and rear sights with the plane of the top edges of the front and rear sights.

4. TEST EQUIPMENT

4.1 Ballistic Test Range

The ballistic test range shall provide a minimum firing distance of 7.6 m (25 ft), be equipped with a suitable bullet trap, provide a rigid mounting platform for the gun mount and a means of properly positioning the target.

4.2 Gun Mount

The gun mount shall restrain the handgun in a fixed firing position and provide adjustments for pitch and translation in increments of 0.025 mm (0.001 in) or less.

4.3 Light Source

The light source must produce a collimated beam of sufficient intensity to produce a distinct shadow of handgun sights at a minimum distance of 10 m (33 ft). The light source shall be equipped with a mask or diaphragm to provide a circular beam approximately 2 cm (3/4 in) in diameter.
A small halogen bulb in a housing with a collimating lens is a suitable light source. See appendix A.

The light source mount shall provide adjustments for height, translation and pitch, and once aligned retain the source in a fixed position throughout the test.

4.4 Shadow Screen

The shadow screen shall consist of a translucent material, such as ground glass, in a suitable fixed mount, that permits viewing of the shadow of the handgun sights, projected onto the screen by the light source, through the screen.

The shadow screen shall incorporate a circle and crosshairs as described in section 4.5.

4.5 Target

The target consists of standard graph paper ruled 4 x 4 to the centimeter (10x10 to the inch). A circle, approximately 16 mm (1/16 in) less in diameter than the diameter of the collimated beam from the light source is scribed about the center of the graph paper with horizontal and vertical lines through the center point extending across the circle.

5. TEST PROCEDURE

Place the handgun under test in the gun mount and set up the light source at the opposite end of the test range, 7.6 m (25 ft) from the muzzle of the handgun as shown in figure 1. The rear sight of handguns with adjustable sights shall be adjusted to the midpoint

Figure 1. Equipment setup for aligning handgun with reference line.
of elevation of azimuth excursions and maintained so throughout the test that follows. Aiming through the weapon sights, adjust the light source to achieve approximate alignment with the reference line. Position the shadow screen behind the handgun and turn the light source on. With the ambient lights off (if necessary) adjust the light source and shadow screen until the circle on the shadow screen is centered on the collimated light beam when viewed through the screen. Adjust the handgun until the shadows of the sights are aligned as shown in figure 2; i.e., the top edge of both the front and rear sights just touch the horizontal crosshair on the screen and both sights are centered on the vertical crosshair. It may be necessary to readjust both the light source and the handgun alignment several times to fully align the sights with the reference line.

![Diagram]

Figure 2. *Shadow image when handgun sights are aligned with reference line.*

Once the initial alignment of the source and shadow screen has been achieved, neither is to be disturbed for the duration of the test.

Mount the target 1.5 m (5 ft) in front of the light source and adjust its position horizontally and vertically until the circle is centered within the circumference of the collimated beam. Position a bullet trap in front of the light source behind the target as shown in figure 3. Turn on the firing range lights (if off) and fire a bullet at the target.

Remove the target and measure and record the X and Y distances of the center of the bullet hole from the center of the target. Remove the bullet trap and examine the shadows of the sights to verify that they are still centered as shown in figure 2. Adjust handgun alignment if necessary, replace the target and bullet trap as described above and fire the second shot. Repeat the entire procedure until a total of 10 shots have been fired and the X and Y coordinates have been measured and recorded for each test round. The use of a new target for each shot facilitates the measurement of the X and Y coordinates when the impact points are close together.
Figure 3. Equipment setup for firing.

Calculate the average X and Y coordinate of all 10 rounds and report those values, to the nearest 2.5 mm (0.1 in), as the accuracy of the handgun. In reporting the coordinates, X values to the right of the vertical center line are positive and those to the left negative. Likewise, Y coordinates above the horizontal center line are positive and those below negative.

6. DISCUSSION

The exact trajectory of a bullet fired from a handgun is determined by the characteristics of the handgun itself and the ammunition that is used. Those wishing to determine the accuracy of handguns should therefore conduct the tests using the ammunition that will be issued for use with the weapon.

For practical purposes, no two individuals aim a handgun by aligning the sights with the desired point of impact in exactly the same manner. When an individual is first issued a handgun, he or she will "sight-it-in," prior to qualification firing or use while on duty. Small errors in handgun accuracy can often be compensated for by a simple adjustment of the manner in which an individual aligns the front and rear sights when aiming the handgun.

The test procedure described in this report is used to determine the accuracy of a handgun over a range of 6.1 m (20 ft). The accuracy (distance from aim point) is directly proportional to the distance between the handgun muzzle and the impact point. At a distance of 7.6 m (25 ft), the coordinates of the shot group would be increased by a factor
of 7.6/6.1 (25/20) or 1.25 times that measured on the 6.1 m (20 ft) range used in this test procedure.

The change in sight alignment (horizontal or vertical movement of the front sight relative to the rear sight) required to center the shot group on the reference point (aim point) is calculated as follows:

1) Divide the distance between the muzzle of the handgun and the target [6.1 m (20 ft) or 610 cm (240 in) in this test procedure] by the distance between the front and rear sights of the handgun.

2) Divide either the X or Y accuracy coordinate obtained in the test by the number obtained above to determine the required movement of the front sight relative to the back sight to move the center of the shot group to the aim point.

For example, if the sights on a handgun are 15.2 cm (6 in) apart, the range of 6.1 m (20 ft) used in this test, or 610 cm (240 in), divided by the sight distance 15.2 cm (6 in) is 40. If the Y accuracy coordinate is 6.35 cm (-2.5 in), the top edge of the front sight must move down 1.6 mm (1/16 in) (2.5 in/40 = 0.0625 in = 1/16 in) relative to the top edge of the rear sight to center the Y coordinate of the shot group on the aim point used in this test. This can be accomplished by raising the rear sight 1.6 mm (1/16 in), or removing 1.6 mm (1/16 in) from the top edge of the front sight.

Similarly, an X accuracy coordinate of +6.35 cm (+2.5) or -6.35 cm (-2.5) in would require that the front sight move 1.6 mm (1/16 in) to the left or right, respectively, relative to the notch in the rear sight to move the center of the X coordinate of the shot group to the aim point. Again, this can be accomplished by moving the rear sight laterally, or altering the front sight.

While the purpose of this test procedure is solely to determine handgun accuracy, it is obvious that one can also measure the group size that the handgun produces. This is most easily accomplished with a circle template, recording the group size as the diameter of the smallest circle that includes all of the individual shots on the target.
A sketch of the light source used to develop this test procedure is shown in figure A1. It consists of an aluminum tube [2.2 cm (7/8 in) inside diameter] with a 6-diopter lens in one end and a light bulb mounted on a Teflon cylinder in the other. The Teflon cylinder is machined to provide a smooth friction fit so that the light bulb filament-to-lens distance can be adjusted by moving the Teflon cylinder within the tube.

A 2 cm (3/4 in) aperture centered on the major axis of the tube is attached to the tube approximately 6 mm (1/4 in) in front of the lens. The leads from two C batteries in series extend through a hole aligned with the major axis of the cylinder and are soldered directly to the bulb (MAG Instruments Co., LM3A001)².

This unit provides suitably collimated light to project a sharp image of the sights of a handgun with a filament-to-lens distance of approximately 16.5 cm (6 1/2 in).

²The use of trade names in this report does not constitute endorsement by the National Institute of Standards and Technology, or the National Institute of Justice, nor does it mean that the item is necessarily best suited for the intended application.
Test Procedure for Handgun Accuracy

A test procedure has been designed to determine the accuracy of handguns. The test procedure utilizes a collimated light beam as a means of establishing a fixed reference line to which the handgun sights are aligned. The aim point of the handgun once aligned is the center of the target, which is positioned on the reference line. The handgun accuracy is determined as the distance of the 10-shot bullet group from the aim point, expressed as the average value of the X and Y coordinates of the 10 shots.

Keywords
- Aim point error
- Handgun accuracy
- Test procedure

Abstract
A test procedure has been designed to determine the accuracy of handguns. The test procedure utilizes a collimated light beam as a means of establishing a fixed reference line to which the handgun sights are aligned. The aim point of the handgun once aligned is the center of the target, which is positioned on the reference line. The handgun accuracy is determined as the distance of the 10-shot bullet group from the aim point, expressed as the average value of the X and Y coordinates of the 10 shots.