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A MECHANISM FOR CAPTURE INTO RESONANCE
T. J. BURNS* AND C. K. R. T. JONES^

Abstract. We present a mechanism for capture into resoncince in perturbed two-frequency Hamil-

tonian systems. When an isolated attractor of the averaged system passes through a resonance on

a time scale which b asymptotically slower th£in that on which the damping works, it transfers its

domain of attraction to the resonance.

1. Introduction. The method of averaging is one of the main perturbation tech-

niques used to obtain information about solutions of systems of the form

i =

where e is a smeiU positive perturbation parcimeter, (f)
= G are fast

phase variables, I = (/i, . .
. , In) € H” are slow variables which cire first integrals of the

unperturbed problem, u{I) = (a;i(J), . .
. ,

cUm(I^)) are the frequencies of the unperturbed

motion, and the functions f and g are 27r-periodic in 0. Define the averaged system

for the slow variables to be the system obtained by eliminating the oscillatory part of

f to leading order in e,

(1.2) j=eF(J). =

The idea behind the averaging principle is that the averaged system should provide a

good approximation for the evolution of the slow variables I over a time interval of

order 1/e (see e.g. [3], [4]).

When m = 1, so that there is just one fast variable, if the frequency is boimded

away from zero, i.e., uf{I) > > 0, then the averaging principle holds true in great

generality (see e.g. [3], [4]). (In this paper, Ci denote positive constants.) However, the

resonant interaction of two or more fast variables can affect the validity of averaging.

Indeed, Arnold [2] has given ein example in the case m = 2 which shows that, without

further assumptions, trajectories of the original system (1.1) Cein be captmed in a

resonance, with the result that
|
J(t)— J(t)| can be 0(1) after a time of order 1/e. Thus,

traditioncilly capture in resoneince hzis been viewed as ein obstacle to the applicability of

the averaging principle in systems with multiple frequencies. As a partied remedy to this

situation for the case where m = 2, Neishtadt has proved theorems giving estimates on

the measure of the set of initial conditions that lead to solutions captured in resonance,

which must therefore be excluded when appl3dng the method of averaging; see below for

more details. However, capture in resonance in perturbed two-frequency systems edso
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offers an explanation of some of the interesting phenomena of resonant motion that

occur in nature. Particularly striking examples occur in celestial mechanics, such as

the 3 : 2 ratio of the spin to orbital periods of the planet Mercury in its motion around

the Sim (see e.g. [10], [16]), From this viewpoint, capture in resonance is desirable,

and results are sought that guarantee such capture to be an event of high probability.

In this paper, we will describe a mechanism that cein make capture in resonance very

likely. The mechanism involves an interaction between the asymptotic structures of the

averaged system and a resonance in the Ccise where m = 2.

We shall consider a perturbed two-frequency Hamiltonian system of the form (1.1),

where 0 < e -C 1, and the right-hand sides have period 27r in ^ and are anedytic on

the set K, = {(J,^) : I E G C C^, \Im{4>i)\ < p, i = 1,2}, where p > 0 eind C? is a

complex, compact domain. We assume that the system (1.1) is real for real values of the

arguments of the right-hand sides, and consider only real solutions. A resonance is said

to occur in the unperturbed system (1.1) whenever (fc,a;) = 0 for an irreducible integer

coefficient vector k = (Aii, ^^2 ) ^ 0. Notice that there is no information about resonances

in the averaged system (1.2). The original perturbed system (1.1) with m = 2 is said

to satisfy Condition A if uj2{I) ^ 0 and the rate of change of the frequency ratio ufi/uf2

cilong trajectories of the system is bounded away from zero. Arnold [2] has shown

that when Condition A is satisfied, the orbits of the system cross the resonance zones

transversely, cind the averaging principle is vahd for (1.1) with m = 2.

Since the work of Arnold, there have been a number of studies which give conditions

for the validity of the averaging principle, for most initial conditions, in perturbed two-

frequency systems of the form (1.1) (for references, see [3], [4], [18]). The strongest

result of this t3rpe is due to Neishtadt [20], and it can be stated as follows. Assume

u>2 ^ 0. System (1.1) is said to satisfy condition N if the rate of change of the frequency

ratio (jJi/u}2 cdong trajectories of the averaged system (1.2) is bounded away from zero,

i.e.,

(1.3) |i(J)|>Cj-'>0,

where

(scalar product in BP'). Neishtadt has proved that if condition N holds, eilong with a

certain nondegeneracy condition B (which is typically the case), then for most initial

points (Io,<^o)) if -^(0) = •^(0), then

(1.5)
I

J(f) — J(t)| < CaVe jin ej ,
0 < t < 1/e.

The exceptional set of initial points of trajectories for which (1.5) does not hold ha.s

measure < c^y/e\ it includes those trajectories which are captured by a resonance.

Hence, capture in resonance can be viewed as an event with low probabihty, and passage

through resonance is the t)rpical behavior for a time ~ 1/e in perturbed two-frequency

Hamiltonian systems which satisfy the conditions of Neishtadt ’s theorem.
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Standing in contrast to Neishtadt’s theorem are the many stable resonances which

have been observed in the Solax System. In particular, the 3 : 2 spin/orbit resonance

of the planet Mercury, which is known to an accuracy of lO""* [16], appears to be a

stable resonance in a dissipatively perturbed two-frequency integrable system that is

deemed unlikely by Neishtadt’s result. However, it turns out that, in some models of

this spin-orbit resonance [10], Neishtadt’s condition N is violated repeatedly [17], [6]. In

this paper, we will formidate a simple model problem which gives a clear focus on this

phenomenon. An application to the motion of Mercury will be given in a forthcoming

paper. We shall consider a perturbed two-frequency Hamiltonian system with effectively

a single resonance, which has the property that, in a compact neighborhood of this

resonance, Neishtadt’s transversahty condition holds for a time ~ 1/e^, then is violated,

then holds again for a time ~ 1/^^, and so on, as a certain slow variable (related to

very slow change in the eccentricity of Mercury’s orbit) varies between zero and one

(mod 1). We will show this provides an interesting transfer of capture mechanism for

the treinsport of phase space (see Wiggins [23]). As feir as we know, this transfer of

capture idea Weis first proposed by Kyner [17] in a study of the spin-orbit resonance of

Mercury.

Our example is as follows,

4>\ =

( 1 .6 )

^

/i = £ [sin((^2 - <^i) + 5 cos 2x72 - \h ,

h =

for (J, <f>) £ D where D = Rx and = il(mod 1). There is effectively only

one resonant phase, 9 = (f>i
—

<l>2 ,
corresponding to the resoncince curve t; = 7i — 1 = 0.

Thus the system is equivalent to

= Vy

= 1
,

= £ [B(t) - sin ^ - J77 ,

= £^— & ,

B{t) = icos27rT -

V’ = ^2 )
T' = h, and {r],T,6,ip) £ R x x T^. System (1.7) is a trivial example of

a partially averaged system, in which the motion near a particular resonance is studied

by retaining in the perturbed system only the harmonic terms specific to the resonance

of interest (see [3], [4]). The averaged system for the slow variables in system (1.7) is

given by

\£ [x,{p) - x
]

,

0
,
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where x,, the zero of the averaged torque, is defined by

(1.10) x,(p) = 4B(p).

Condition N is violated at the resonance ii B{p) = 0, which occurs at p = | and p = |.

Thus, B(p) = 0 is equivalent to the zero of the averaged torque coinciding with the

resonance {77 = 0}.

Henceforth, we sh2dl ignore the equation for V’ in (1-7), and consider the resulting

1^ degree of freedom system for (7/,r, ^) € i2 x x T^,

e = rj,

(
1 . 11

) Tj = £[B{t) - sine

f =

If we rescale the system by introducing the slower time s = y/et and the normalized

distance to the resonance z = rjly/e, we obtain

= z,

(1.12) z' = B{t) — sin 9 — jy/e z,

t' =

where ' = d/da. This system is in the “pendulum” normal form obtained by partial

averaging in the neighborhood of a given resonance in more genercd systems of the form

(1.1), which can have infinitely many resonances (see e.g. [4], [18]). Thus, the model

problem we shall consider is equivalent to the equation of a pendulum with friction

and very slowly varying periodic external torque, which changes sign twice during each

period. Neishtadt’s condition B for system (1.6) requires that the saddle equilibrium

point of system (1.12) be nondegenerate. Since |B(t)| < |, condition B is always

satisfied by (1.6).

We shall show that for the above model problem, permeinent capture into resonance

is quite likely. We formulate this phenomenon in two Theorems. The first concerns the

existence of an attractor near the resonance curve, while the second addresses its domain

of attraction zmd hence the likelihood of capture into the resonance through tending

asymptotically to the resonant attractor.

Theorem 1.1. For sufficiently small e, system (1-12) has a unique attracting

periodic orbit V' which is located within an 0{y/£)-neighborhood of the resonance curve

2 = 0 .

In order to study the domain of attraction of V*, we shall use certain sets of initial

conditions that can be viewed as sample test sets. However, they are formulated to

cover a neighborhood of the zero of the averaged torque, which we now define. We
assume that Neishtadt’s condition N holds initially in a set containing the resonance,

so that the zero of the averaged torque satisfies |a;*(T(0))| > 2do > 0, for some constant

do. Without loss of generality, we may eissume that x,(t(0)) > 0. Then Neishtadt’s

4



Theorem implies there exist positive numbers e 2 {do) and Ti{do) such that, for all e G

(
0,C2 ]) most solutions of system (1.11) with initied value 77 (

0
)
in some bounded interval

containing i,(t(0)) satisfy

rjiTife) € {rj e R: 0 < do < x,(t(0)) - do <t] < x,(t(0)) + do },

so that the corresponding solution of the scaled system (1.12) satisfies

(1.13) [^•('^(0)) - do]/y/e < z[Tily/e) < [x,(t(0)) + do]/v/7.

The goal of the remainder of this paper is to study the fate of a set of initial points

imder the flow of system (1.12) which satisfy condition (1.13).

In order to simplify the notation, we assume that the initial values lie within a

subset of {t = 0} at scaled time s = 0, namely the “strip”

(1.14) = {(^, 2,t) : 0 € S\ [x,(0) - do]/v^ < 2 < [x*(0) + do]/v7, r = 0}.

We formulate the Capture Theorem in terms of this “test” set. We use the notation

ci;(*) for the w—limit set of a point.

Theorem 1.2. For system (1.12), there is a subset Se C Se for which x G 5*

implies that cj(x) C V* and meas (Se — Se) = 0 (exp(—cf£))
,
where c is a positive

constant which is independent of e.

If the zero of the averaged torque did not pass through the resonance, then condi-

tion N would be satisfied in a set containing the resonance, and Neishtadt’s Theorem

would entail that most initial data enter a neighborhood of the zero of the averaged

torque, which is an attractor in the averaged system (1.9). We offer the interpretation

to Theorem 1.2 that if the zero of the averaged torque pcisses through the resonance

sufficiently slowly, then it deposits its domain of attraction into the resonance. A key

point is that the passage should be slow enough, which is encoded through the assump-

tion that f is O(e^). It is ein open question how far this assumption caji be relaxed.

In the next section, we will present a more detailed discussion of the contents of this

paper.

2. Outline of Results. In this section, we shall first review some results which

«ire known for the unperturbed pendulum system obtained by setting e = 0 in the scaled

system (1.12), and then we shall review some results which are known for the “frozen”

pendulum system obtained by setting r' = 0 in system (1.12). This will provide a

framework which we will then use to outline the contents of the remaining sections of

this paper.

When e = 0, system (1.12) is Hamiltonian, r is a fixed parameter, and there is a

closed invariant curve of saddle-point equilibriiim solutions,

U = {{6,z,t) e S :9 = 7r - 0(t), z = 0},

5
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and a closed invariant curve of center equilibrium solutions,

(2.2) V = z,t) e s : e = e{T), z = o},

in the solid torus

(2.3) S = CxS\

where C is the cyUnder x R, and

(2.4) 0(t) = cLrcsin5(T), l®('^)l <

Fore = 0, the quaUtative phase portraits of orbits of (1.12) on the cylinder Ct = 5n{T =
const} are given in Fig. 2.1 for the two cases (a) 0 < 5 < 1, and (b) J5 = 0. In each

z

Saddle
point

0 = ±7C

Fig. 2.1. The undamped pendulum with constant torque.

CcLse, there axe two equiUbrium points on the cylinder, a saddle point and a center. In

the first case, there is a homoclinic orbit which contains the center equiUbrium point in

its interior eind approaches the saddle point as t —+ ±oo. The solutions inside the region

enclosed by the saddle point and the homocUnic orbit correspond to periodic osciUations

of the pendulum, and this oscillatory region grows in area as B decreases toward zero.

When S = 0, instead of a single homocUnic orbit containing the center equiUbrium

point, there is a pair of homocUnic orbits which encircle the cylinder, one \nCr^{z > 0}

and the other in Ct H {z < 0}, connecting the stable and unstable manifolds of the

saddle point, and together these enclose the region of oscillation. Outside this region,

the orbits encircle the cylinder, corresponding to complete rotations of the pendulum,

with a counterclockwise direction of rotation in the upper region, a clockwise direction of

rotation in the lower region, and the angular speed z is a 27r-periodic function of 9 in both

6



cases. The two types of periodic motion of the pendulum in this case, corresponding

to oscillations and rotations, are called periodic solutions of the first and second kind,

respectively. For S < 0, the transformation 6 —> — z —> —z reduces the problem to

the case with B > 0.

When 0 < e <C 1, the system (1.12) is dissipative, but r changes only by an amount

~ £ over an interval in s ~ l/v^- Thus, assume for the moment that 0 < e «C 1, but

that T is still a fixed parameter. Then the “frozen” dissipative system

e' = z,

(2.5) z' = B{t) — sin 9 — z,

r' = 0,

is equivalent to the equation of a pendulum with viscous damping and constant torque,

and it is known (see e.g. [1], [22]) that, if the ratio of the torque to the damping

coefficient, which is the scaled zero of the averaged torque x,(r)/<y/e = B{T)/{jy/£), is

greater than a certain criticeil value (« 4/7r; see [22]), then its quahtative phase portrait

on the cyhnder Cr = S 0 {t = const} is as indicated in Fig. 2.2(a). There cire two

Z

(a)

Z

Saddle
point

Fig. 2.2. The damped pendulum with constant torque.
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attractors, a stable spiral point at the resonance {z = 0}, and a roteiry solution which

can be shown to be nezir the zero of the averaged torque. Since the orbit of the attracting

rotary solution is a closed curve encircling the cylinder, it is called a limit cycle of the

second kind, to distinguish it from a limit cycle of the first kind, which encircles an

equilibrium point on the phase cylinder without encircling the cylinder itself. As the

parameter B decreases, the limit cycle moves smoothly down the corresponding cylinder,

until the critical value of the parameter ratio is reached at r = r^i, when the orbit merges

with the stable and unstable manifolds of the saddle point to become a homoclinic

saddle connection. For smaller nonnegative values of B, the saddle connection breaks,

eind every orbit except the saddle point and its stable manifold approaches the spiral

point asymptoticcilly with increcising time, as indicated in Fig. 2.2(b). Once ageiin, for

B < 0, the transformation 0 —* —0, z —> — z reduces the problem to the case with

B > 0. Thus, as B decreeises and becomes negative, the spiral point remains the only

attractor in the system, until the negative of the criticeil parameter value is reached

when T = tb, and a saddle connection appears below the z = 0 circle on the cylinder,

then it breaks, eind the limit cycle reappeeirs and moves down the cylinder as B decreases

further. After B reaches its minimum value at r = 1, the limit cycle moves back up

the cylinder as r increases, disappeeirs when the lower saddle connection forms when

T = Tc, reappears when the upper saddle connection forms when t = td, and so on

periodically, eis the parcimeter r varies between zero and one (mod 1).

Thus, in the “frozen” dissipative system, the invariant closed curve (2.2) of center

equilibrium points V becomes a normally h3rperbolic invariant closed curve of stable

spiral equilibrium points. Also, there exist numbers ta, tb, tq, td G ^
with 0 <ta<

tb < Tc < Td < 1, such that, for all r in the arc {td, ta) C containing 0, there is

an attracting invariant surface in B fl {z > 0}, and for all r in the arc {tb, tc) C
containing |, there is an attracting invariant surface in 5 D {z < 0}. These siirfaces

are composed of asymptotically stable rotary solutions which correspond to zeros of the

averaged torque. At each of the endpoints of these arcs, the surface develops a cusp

at the saddle equilibrium point, and for r in the closed set [r^, tb] U [tc, T£)], no such

surface exists, so the only attractor in 5 H ([t^, tb] U [tc, td]) is the curve of stable

spired points. This leads to the conjecture that, in the “unfrozen” system (1.12) with

r' = > 0, there is an attractor V' associated with the resonance, eind there is also

an attractor associated with the zero of the averaged torque for eis long as it is located

away from the resonance. It also suggests that the following transfer of capture scenario

is possible in the “unfrozen” system.

Suppose that initially the zero of the averaged torque is located outside the reso-

ncince region near 77 = 0 in system (1.12). Without loss of generality, we may assume

that it is located above the resonance in «S PI {z > 0}. If a solution of the system is

initiedly located above the resonance in <S D {z > 0}, then it will be attracted to the

zero of the averaged torque. If a solution of the system is initially located below the

resonance in «S D {z < 0}, then by Neishtadt’s theory, as time increases this solution

is likely to pass through the resonance, and thus also will be attracted to the zero of

the averaged torque. However, as time continues to increase, the zero of the averaged
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torque will move downward and cross the region of the resonance, and while this hap-

pens, the domain of attraction of the zero of the averaged torque could be transferred to

the domain of attraction of the resoneince attractor. Of course, this heuristic argument

does not take into accoimt the interaction between the 0{y/e) daimping and the effect

of the rate of chcinge of the parameter r with respect to the scaled time s.

Nevertheless, in this paper, we will prove that this transfer of capture is indeed what

happens. In particular, the results we will present in the following sections will estabhsh

that very nearly edl solutions of system (1.12) are captured by V* as a —» oo.

In Section 3, we will prove there exist numbers t^, t^, with < r*, and an

overflowing invariant set in n {2 > 0, < t < r^} which contains the surface

{(0 ,
2,r) € 5 : X = x,(t), < T < r^}. Furthermore, we will show that, under the

flow of system (1.12), any solution with initial value in the strip Se enters this invariant

set before t(s) = t^. In Section 4, we will prove there also exist homochnic orbits in the

time-dependent system. In Section 5, we will prove that the curve of equilibrium points

V perturbs to a periodic attractor V' which is O(v^)-close to V. Finally, in Section 6,

we will prove our main result about almost certain capture in resonaince. Theorem 1.2.

3. The Finite-Time Rotary Attractor. We shall henceforth unfold the phase

space S to form the phase space x 5^ wherein (^, 2
) G and t € In this

section, we will define the component of the finite-time rotary attractor which hes in

{z > 0} and establish some of its properties, on an appropriate interval in r, which will

be used in the proof of Theorem 1.2 in Section 6. It will turn out that the intersection

of the attractor with each strip {t = const} is the limit cycle of the second kind of the

“frozen” system (2.5) for the given value of the parameter r. A completely anedogous

discussion apphes to the component which hes in {z < 0}.

Continuing the outhne in the preceding section of known results for the scaled

“frozen” system (2.5) (see [22]), the cissociated equations for the trajectories of system

(2.5) in B? X are given by

(3.1)

(3.2)

dz

Id
dr

d9

B{t)- sin 9

z ^ ’

0
,

for z ^ 0. Let Ar denote the unique Hmit cycle of the second kind of the “frozen”

system (2.5),

(3.3) ^ = {(®.*) : ^ = V’(s.’’). * = u'(^,’'), a € B}
,

for each r G (t£), ta). As a function of s for fixed r, Ar heis minimum period At in s

given by

(3.4) At
d9

0 2p(^,T)’

where Zp(^,T) is the unique 27r-periodic solution of Eq. (3.1), so that

(3.5) w{s,t) =Zp(V’(5,r),T) > 0.

9



It can also be shown that

(3.6) t) = x(5 , t) + 27rs/A^
,

where x(5, r) is a function of period At in s, with x(0) t") = 0, for each fixed r E (t/j, t^).

Thus, for fixed t E (t^), t^), the limit cycle of the second kind is an attracting 27r-

periodic function of 9, Ar = {(^, 2 ) : z = Zp{6,T), 9 E il}. Also, for each r E {td, ta),

it can be shown that the mean of Zp with respect to 9 satisfies

(3.7) Mg[zp] = Zp{9,T)d9 = B{r)l{\y/£) = x^{T)fy/e.

Thus, for a given fixed r, the meein M®[zp] is equal to the zero of the averaged torque

(1.10) scaled by 1/v/e. If To, tj, E [0, ta) satisfy n > Ta, then by monotonicity of B
on this interval, B(0) > B{Ta) > B{Tb) > 0, and it can be shown in this case that

Zp{^}Ta) > Zpi^jTb) > 0 for all ^ E [0,27r]. Furthermore, min{2p(^,T) : 9 E [0,27r]}
J, 0

as r t r^. Similarly, it can be shown that if Ta, u E (r^j, 0] satisfy u > To, then by

monotonicity of B on this interval, jB(0) > B{n) > B{ra) > 0, and it can be shown

that Zp(9fTb) > Zp{9jTa) > 0 for all 0 E [0,27r], and also min{zp(^,T) : 9 E [0,27r]} | 0

eis T I T£>. Thus, for any small positive number di < do, independent of e, there

exist positive numbers Tj < t^ < t* < t^ E (t/j, ta), such that Zp{9,r) > d\, for all

{9,t) E [0,27r] X [t#, t’^], and Zp{9,T) > \di, for all {9,t) E [0,27r] x [Tf, t^].

Definition. For a given value of di, the rotary attractor is the smooth surface

(3*8) A = UTe[r,„,T#] Ar.

Note that A is not invariant in the full system (1.12). We nevertheless refer to this

closed set cis an attractor because, cis we shall now show, it possesses an attracting

neighborhood V, relative to an appropriate T-intervcd.

Let 7 be the number such that (1 — 7)B(t^) = B(Tf) and (1 — 7)5(t*) = B(t^),

so that 0 < 7 < 1. For each t E [t#,t^], let B^ = B(r), B^ = (1 + 7 )
5°, and

B~ = (1 — 7 )
5°. Also, let z°{9 ), z:^{ 9 ), and z~{9

)
denote the trajectories of the rotary

limit cycles Ar, A^, and A~ of the “frozen” system (2.5) with B{t) replaced by 5°,

and B~, respectively. The next Lemma establishes that, on the appropriate T-interval,

the limit cycles remain bounded away from the resonance, and Ar lies below A^ and

above A~. Recall that 5(0) = 1.

Lemma 3.1. For each t E [t#,t^] and for all 9 ^ R,

(3.9) 0 < < z~{9) < z°{9) < zf{9) < 6/\/e.

Proof. Let

Gi{9,z) = {B° - sin ^ - \y/ez)/z,

10
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Then for all ^ € il and z > 0, G^{6,z) < G^{6^z). Furthermore, since the means (3.7)

of the two limit cycle trajectories z° and z+ satisfy Mfl[z°] < Mg[z+], it follows there

must exist a number 6 € [0,27r] such that z°(6) < z:^{0). By a standard comparison

theorem (see e.g. [5, Corollary 2, p. 26]) and 27r-periodicity of both functions in it

follows that z°(6) < z^{9) for all ^ € il. Similarly, it can be shown that z~{6) < z°{6)

for all ^ € i2. The lower bound follows from the discussion preceding the definition of

A. The upper bound is established as follows. The curve z:^ is at its highest point when

T = 0 and dz^/d^ = 0. By (3.1), this implies that z:^{6) < [(1 + 7)B(0) + l]/( 5 \/e)
<

6/v/e. 0

Let

(3.10) U {(^,z,t): eeR, z-{e) < z < z^{0)}

.

Lemma 3.2. For Eq. (1.12), V is "positively invariant relative to the set B? x

Proof. For each r E ['t#,'^’*^), the vector field of (1.12) is always directed into the

set V. To see this, we compare the first two components of the vector field of system

(1.12) with the corresponding vector fields which define the bounding curves and

A~. Along the upper bounding curve, we have for t E

{z, Bf - sin 0 - \Viz) A (z, - sin ^ - \\/ez) = (bJ - z = < 0,

since 5° > 0 on Similarly, along the lower bounding curve, we have for

T E

(z, B~ - sin ^ - \\/€z) A (z, B° - sin ^ - \Vez) = - B-^ z = ^B° > 0.

It is also clear that trajectories of system (1.12) must exit V along the face 7^n{T = r^}.

The next Lemma establishes that Se enters V under the flow of the full system

(1.12)

. Let s* = T*

Lemma 3.3. S^- s* cVr\{r - t*}.

Proof The points in y/iSe = {(^ i ^^ jt )
: t

/ = y/Ez, where (^, z,r) E 5*} (see

(1.14)) aje bounded away from the resonance at 7/ = 0 in system (1.11). Thus, we may
use the method of averaging (see e.g. [3]) to cissert there exists a near-identity change

of variables w = rj -{ eh{rj,T,d) such that {ri,T,6) i-> {w,t,6) is a diffeomorphism on

y/eSe X [0,T^] X R which transforms the equations for the slow variables in system

(1.11) into the system

(3.11) "w - -ie[u; - i*(t)]

-

h 0(£:^),

(3.12) T =
11



Letting ty = u + x,(t), we then have that

(3.13) i) = —\ev 0{e^).

Hence, for 0 < t <

ri{t) = x,(t) + aexp (-Jet) + 0(e),

where a is a constant which depends on the initial data. Thus, for all solutions of system

(1.11) with initial value for rj in y/eSg, there exists a positive constant T2 such that,

for sufficiently small e, T(T2 /[e/| Ine]]) = 0(e|lne|) < t* and v(T2/[e/| lne|]) = 0(e).

Hence, T){T2/[e/\ lne|]) — z,(T(r2/[e/| lne|])) = 0(e), which in turn implies that, in the

scaled system (1.12), z(r2/[\/7/| Inej]) — i,(r(r2 /[\/e/| lne|]))/>/e = 0{y/F). Using a

comparison argument similar to that used in the proof of Lemma 3.1, it follows there is

an 5* such that t(s*) < r* and every orbit of system (1.12) with initial value for z £ Sg

is contaiined in "P H {r = t(5*)}. The conclusion of the Lemma then follows from the

positive invariance of V.

Let r* = J,
so that H(t,) = 0, and let f be a number such that B'{t) < 0 on (0,f]

and such that f > r,. Consider the upper bounding curve of P^# = PdJt = r^}.

The set x [T^,f] forms a barrier, preventing Sg s from drifting up, since for

T = T*, the vector field points down on and this effect is only strengthened as

B{t) decreases. Thus, we have the following Lemma, wherein P^# is the set of cdl points

below X [T^,f]. Recall that, at the end of Section 1, we have assumed that r = 0

when s = 0.

Lemma 3.4. For all t e[T*,f], Sg s c P^# •

4. Heteroclinic Orbits. In the phzise space x S^, wherein {0,z) € R^ and

T E 5^, there are infinitely many curves of saddle points when £ = 0. Indeed, setting

£ = 0 in (1.12) renders

e' = z,

(4 . 1
) z=B{T) — smdy

T =0,

which is the equation of a forced pendulum with the forcing B depending on the pa-

rameter T. In each shce with r fixed, (4.1) heis infinitely many critical points at

(4.2) 8k{T) = (0(t) -I- 2kir, 0)

and

(4.3) Uife(T) = (-[0(T)-f tt]

-

f2A:7r, 0),

where k £ Z and 0 (t) = arcsinH(T), as in (2.4). The «fc(T) are the centers discussed

in Section 2, while the points itjfc(T) are saddle points in each r-shce.

12



Since B is periodic, each set

Kk = {ukir) : T G [0, 1]}

is a simple closed curve in the phase space x . Moreover, it is normally hyperbolic

relative to the flow induced by (4.1). By Fenichel’s Theorems on invariant manifolds

(see [8], [9], [14]), it must therefore perturb to an invariant manifold for (1.12) when

£ > 0 but sufficiently small. Moreover, this invarieint manifold is edso a simple closed

curve. Since t' > 0 when e > 0, this manifold must be a periodic orbit, which we denote

Fenichel’s theorems also guarantee that the local stable and unstable manifolds for

Uk perturb to the same for U^.

We next address the question of whether the periodic orbits have any heteroclinic

orbits between them. When £ = 0, the condition B{t) = 0 (which gives an unforced

pendulum in (4.1)) exactly guarantees the existence of two heteroclinic orbits between

Uk and Uk+i, one in z > 0 (Uk —* Uk+i) and the other in z < 0 (Uk+i —* Uk)- In

particular, this structure occurs at r = t,, where r, = g, so that B(t,) = 0 and

B'(t^) < 0. We shall see that both of these heteroclinic orbits perturb to a heteroclinic

orbit when £ > 0, between the relevant periodic orbit. However, the structure holds on

a small interval of r’s, and to uncover it, we must blow r up near r = r,. To this end,

set

r - T,

where p E X, some closed, bounded interval containing 0.

Now,

B(t) = B(t^ + y/ep) = y/e/3{p,e).

We rewrite (1.12) as

^' = z,

(4.5) z = -sind y/e/3(p,£) -

p =e,

which limits, when £ = 0, to

e' = z,

(4.6) z' = — sin ^

,

p' = 0.

an unforced pendulum with redundant parameter p. Equation (4.6) has a tube of

heteroclinic orbits connecting each pair of saddle points, eind our goal here is to study

which (if einy) survive the perturbation. This is achieved by a Melnikov argument.

Replace p. = y/e in (4.5), and append p = 0,

(4.7)
z' = - sin ^ + p^{p, p) - \pz

,

13



As for (4.5), when /i = 0 we have a tube of heteroclinic loops connecting Uq to U\^

see Fig. 4.1. We need only consider these connections as all others are reproduced by

^^0

P

Fig. 4.1. Tht heteroclinic loop.

treinslation in 6 by 2k'K. Let qQ = qo{p) € x be a point on the heterochnic orbit

in /i = 0, 2 > 0, see Fig. 4.1. Moreover, choose q~{p,p,) smoothly on the unstable

manifold of Uq, so that g“(p, 0) = q°{p)- Similarly, choose q'^{p,p) € W*, the

stable manifold of Ui, smoothly so that q'^{p,0) = q°{p)- We set d{p,p,) = f{qo{p)) A

(9”(Pi P’) — 9'^{Pi p))) where q = (z, 6) eind f{q) = (
2

,

— sin 6), the first two components

of the vector field of (4.7) with p, = 0. This mecisures the distance between and W*
as a function of p.

Since d(p,0) = 0 and d is smooth, we have that d{p^p) = pD{p,p) and

dp M=0
= D(p,Q) = M(f,l

which is the so-called adiabatic Melinkov function (see [15]). Thus,

J^{p) = /(9o(p)) A
\ dp fi=0

dq-
\ \

dp 1^=0/

The quantities dq~ fdp and dq'^/dp can be viewed as the first two components of

a solution of the equation of variations of (4.7), with p and p components 0 eind 1

respectively. We write the equation of variations using differential forms, when /x = 0,

clS

(4.8)

S' = dz

,

dz — — COS 6d6 -H ()S — \z)dp
,

dp' = 0
,

dp = 0

.

14



Let Vi,V 2 be two solutions of (4.8), consider

u = d6 A dz{vi,V2 )

,

and calculate

cj' = dff' A dz + d0 A dz

= 0- ^ dfi
,

from (4.8). We parametrize the underl)ring heteroclinic orbit so that it is at at

5 = 0. Then set Uj to be the vector field of (4.7) and set V 2 = (^^, 0, 1), with

(5^(0), 5z(0)) = dq~ldfi . It follows that dO A dfi{vi,V 2 )
= z and so, denoting

ft=0

= d6 A dfi{vi,V2),

(^'- = 0- \z)z.

With the obvious notation, u>+ is formed using dq'^fdfi

(^'+ = 0- \z)z.

fi=0
,
and we also have

We conclude that

But

which implies that

a;_(0) - u;+(0) = / 0- \z)z ds.
«/—OO

u..(0) -u.+(0) =^ A fig,) -^ A /(,“).

/(9o) A - %-) = J_^0-\ dfi dfi

Hence, as in Guckenheimer and Holmes [11, p. 201],

M{p) = 2{Tr$ - 1).

We see that M(p) = 0 if /3 = I/tt. Similarly there is a heteroclinic orbit below (z < 0)

near a p-value at which 0 = — I/tt. Since is decreasing, this gives p~ < 0 < pt and

r~ < T, < T+ at which connections are made above cind below the 0-axis, respectively,

where

(
4 .9 )

= T, -
1
- y/epf.

We summarize the results of this section in the following Lemma.

Lemma 4.1. There exist p“, G I satisfying p~ < 0 < pf, at which heteroclinic

connections are made between Kk and Uk+i above and below the 6-axis, respectively, for

all keZ.
15



5. The Resonance Attractor. Recall that V (Eq. (2.2)) is a closed curve of

center equilibrium points of system (1.12) in the solid torus S (Eq. (2.3)) when e = 0,

which corresponds to countably many curves

(5.1) Vjfc = {sfc(r) : r € [0, 1]} ,
keZ

in the phase space x S^. In this section, we will prove that each of these curves

perturbs to a periodic attractor, and we will also prove a Lemma about the domains of

attraction of these solutions.

Theorem 5.1. For sufficiently small e, system (1.12) has a unique attracting

periodic orbit Vl which is 0{y/£)-close to V*, for each k £ Z.

We shall prove this Theorem using two Lemmas. We first prove that each V* perturbs

to a quasiperiodic attractor.

Lemma 5.2. There exists a positive constant Cz such that, for 0 < e < Cz, system

(1.12) has a unique smooth quasiperiodic attractor which is 0(y/e)-close to Vk, for

each k £ Z

.

Proof We may restrict our attention to the case k = 0. Let 0(t) = arcsinR(T).

Define a change of dependent variables in system (1.12) by

(5.2) ^ = 0(t) + /XU, z = p^dQ fdr •]-
fiv,

where /x = y/e. Suppose |u|, |u| < i/, for some positive constant i/. Then for sufficiently

smedl /X, system (1.12) is equivalent to the system

(5.3) Tx' = V,

(5.4) v' = -n^(T)u + l/xR(r )u^ - \pv + p(w, v, r, /x),

(5.5) r' = /x^

where

(5.6) n{T) = ^cos0(t) = {l -

and

(5.7) IHc. = O(m’).

Solve (5.5) to get r = /x^s, and define another change of dependent variables by

(5.8) u(s) = a{s) cos a + 6(s) sin a, v{s) = —n(T)a(s) sin a + Q{T)b{s) cos cr,

where

(5.9) a(s,/x)= f VL{y^r)dr.
Jo
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Then system (5.3)-(5.5) is transformed into the system

(5.10) dajds = —/2(a, 6, s,/i)sin((T)/fi(T)

,

(5.11) dhjds = i2(a, 6,5,/x)cos(c7-)/f2(T)

,

where

i2(a, 6,s,/x)

(5.12)

^fj.B{T) {a cos cr + 5 sin

+fi ^ + fi^dQfdT^ (—flasina + Qbcos a) + p.

If we set X = (o, 6), system (5.10)-(5.11) can be written in the form
(5.13)

dx/ds = p.q{s,x,p) = fiq^{s,x) x^DcR^,

where q{-,x,p) € C°°{R,R^) is quasiperiodic, and D is compact. This is the standard

form of Bogoliubov for the method of averaging (see e.g. [4]). The hmit

(5.14) T^fJo = ^i(®) = “i®

exists uniformly in x] Qi(0) = 0; both eigenvalues of its Jacobian, evaluated at as = 0,

5Qi(0)/5x, axe real and negative; and the corresponding averaged system is given by

the uncoupled hnear system of equations in R^,

(5.15) dy/ds = -\py.

It thus follows by results of Hale [12, Theorem V.3.1, p. 190] that there is a unique

solution of (5.10)-(5.11), Xj € C{Rx [0, ji],R^), which is a quasiperiodic attractor. The

fact that this solution is smooth follows from [13, Lemma 4.1, p. lOlj. By substituting

this solution back into the original system (1.12), using the changes of Vciriables (5.8)

and (5.2), we have proved there is a unique queisiperiodic attractor which hes within

an 0(-y/£)-neighborhood of 14, for each A; € for all 0 < £ < £3 = /i^.

We next prove a result about the domains of attraction of these queisiperiodic orbits.

Let ^ • s = (^(s),z(s),r(s)) be a solution of system (1.12). As in the preceding section,

let p = (r — T,)//z, where B(t,) = 0 and B'{t*) < 0, eind J is a compact 0(1) interval

in p containing 0 on which B{t) = /i/5(p, p). As long as p G J, system (1.12) can be

written as the perturbed Hamiltonian system

6' = dH/dz-^pfi,

(5.16) z' = -dHiee + pfi,

P' = Pfi,

where H is the Hamiltonian

(5.17) H{z,e) = -2cos^e,
17



and = 0, f2{z,9,p,fi) = /?(/?, /x) - \z, fz{z,6,p,p) - p. When /x = 0,

energy is conserved along the orbits, i.e. H = h, where h is a. constant. Let

(5.18) «2 = i(h + 2),

so that, when /x = 0, /c = 0 on the stable center equihbriiiin orbits (0mod27r,0,/>)

of (5.16), and /c = 1 on the unstable saddle equihbrium orbits (7rmod27r,0,/)) and

along the homochnic orbits which connect their stable and unstable majiifolds. Let

h{s) = H{z{s),6{s)) be the value of the Hamiltonian along the solution ^ • s. The

conditions of the following Lemma specify that at scaled time 5, ^ • 5 is located inside

the region of oscillation about the quasiperiodic orbit VJ.

Lemma 5.3. Suppose there exist an integer j and positive constants s and a such

that p{s) 6 Int (J), (0(5), 0) lies between the saddle equilibrium points i^(t(5)) and

Uj+i(t(5)) (4-S) of system (1 . 12) with e = 0, and h{s) < — a/x. Then ^ • s enters the

domain of attraction ofVj as s ex.

Proof Neishtadt [19], [21] has shown that averaging can be used to approximate

the time-varying energy h, even necir a separatrix. Let

(5.19) T{h) = I ds
JM— /i

be the period of the unperturbed motion (the notation means that the integral is

calculated edong the solution of the unperturbed system with H{z,6) = h), eind let

/° = /i(2,0,p,O). Consider the averaged system

(5.20) II

T(-h)J
[/5(p(5),0)

- iz(s)] ds,

(5.21) II f dH ^
h —f^ds = 0,
H=K dp

^

and suppose that h{s) = h{s), p{s) = p{s). Then for ps < ps < 5, where 5 is a

positive constant, Neishtadt has proved that h{s) < ~otp, and

(5.22) \h{s) - h(s)| -h |p(3) - p(s)| = 0{p\ In p\).

Equation (5.20) can be written in the form

(5.23) h' = [i;(«) - (1 - (k)]
,

where K and E are the complete elliptic integrals of the first and second kind, respec-

tively. It can be shown that the right-hcind side of equation (5.23) is strictly negative for

K £ (0, 1), and it equeds 0 when k = 0, which corresponds to h = —2, by (5.18). Thus,
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as s increeises, the initially small but negative solution of the averaged equation (5.23)

decreases monotonically towards h = —2
,
which corresponds to the stable center equi-

librium solution (2ji7r,0,/?o) of system (1.12) with
fj,
= 0. Furthermore, using (5.18),

equation (5.23) can be written in the form

kK{k)k' = —fi ^E{k) — (1 — k^)K{k)^ .

By a well-known identity in elliptic integrals [7, Eq. (710.04)], this imphes that

W’ = -fiW,

where

(5.24) W{k) = E{k) - (1 - k^)K{k) = i7r7(«).

and I is the value of the action of the unperturbed nonhnear pendulum with Heimilto-

nian (5.17) and energy h = 2{k^ — 1), so that W increases monotonically with k. By

h3rpothesis, initially k = < yl — < !> which implies that W = W{fi) < 1

initially as well. Let a = /x(s — s). Then

(5.25)
dW
da

= -M^,

so that W{a) = W’exp(—a) = when a = fj,{s — s) = ln2. Hence, when s =
i = s + ln2//i, K = k{fi), where 0 < k < k. We clciim there exists a constant

0 < Cfi < 1, independent of ;x, such that « < ce for sufficiently small fi. If not, by

continuous dependence of k on the parameter ;x, there would exist a sequence {/Xn}

with hm„_*oo /Xfi = 0 such that k{fin) t 1. But by (5.24),

and by properties of the elliptic integrals,

|E(/c) — (1 — /c^)if(«)] t 1 S’® « T 1>

which is a contradiction. It follows that, for sufficiently small /x, there exists a positive

constant cr, independent of /x, such that h < —

C

7 < 0, where h = /i(i) and s = 5+ln 2/^.

We also note that k is strictly 0(1). This follows from the fact that W is initially strictly

0(1), and there is insufficient time for the damping to decrease it to o(l). Since W ~ /c^

as K 10, k must also be 0(1). Thus, we must still show that ^ • s enters the domain of

attraction of the periodic orbit Vj as s increcises.

For s > s, we axgue as follows. Define the energy

(5.26) G{z,e,r) = iz^ + V{e,r),

with

j
-2 cos^ - B{t)[9 - 6^^^{r)] if B(t) > 0,

\
—2 cos^ \6 — B{t)\6 — 6^{t)] if B(t) < 0.
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where ^^(t) = — [0(t) + tt] + 2 A;7r, so that (^fc(T),0) is the A:-th saddle equilibrium

point (4.3) of system (4.1) at {t = const}. For fixed r, the level curves G = 7(t)

represent orbits of solutions of the undcimped pendulum equation with constant torque

B{t) (Eq. (4.1)),

(5.28) V) = {(^> 2 ) 6 ; 2 = ±\/2(7(t) - V(0,t)]^ .

Since dV{6jT)/d9 = sin9 — B{t) and d'^V{9^r)l d9'^ = cos0, in each slice {r = const},

the function V hzis a local minimum at 91{t) = 0(t) + 2k‘K and a local maximum at

^jJ(T), for each k E Z (see [22]). Hence, when B{t) > 0 and 7(t) = V’(^“+i(t), r),

the set (5.28) consists of the saddle point u_,+i(t) and the homoclinic separatrix loop

which leaves and enters this saddle point and encloses the center sj^t). Similarly, when

B{t) < 0 and 7(t) = V^(^('r),T), the set (5.28) consists of the saddle point Uj^r) and

the homochnic separatrix loop which leaves and enters this saddle point cind encloses

the center «j(t). When B{t) = 0, the set (5.28) consists of both saddle points and the

two heteroclinic orbits connecting them. Also, when 7(t) = V{9^{t),t), the set (5.28)

consists of the single equilibrium point «j(t).

Let g{s) be the value of G at the point and define g = g(s). Then g = A+ 0(/x)

since B{f) = 0(/x), where f = t(s), so that for sufficiently small /i, there is a positive

constant cg such that g < —cg. Consequently, the point ^ ^ • s is located on the level

curve G(9,Zff) = 5 ,
which is a simple closed curve containing the center equilibrium

point Sj(f). We also know there is a slightly larger constant g^ for which the same is

true, and this curve conteiins the one corresponding to g in its interior, see Fig. 5.1. We
next find such a curve for each t E S^. Define

(5.29) 0 = y - /

g^ -V{9*j{f),f) /

V^(«)'+i(t).f)-K(9‘(f).f)]

v(«j(f),f)-v(«;{f),f)]

if B{f) > 0,

if B{f) < 0,

so that 0 < a < 1, and also define

“^(^i+i(^))'r) + (l -a)^(^i('^)>'^) if B{t) > 0,

aV{9^{T),T) + (1 - a)V{9^j{T),T) if B{t) < 0.

The energy e^r) thus satisfies e(f) = g^, and V{9j{T),T) < e{r) < V{9^^^{t),t) if

B(t) > 0, and V{9j{T),T) < e(r) < V(9^(r),r) if B(r) < 0. Thus, for each r E S^,

the level curve corresponds to a periodic solution of the first kind of the undamped

system (4.1) encircling the quasiperiodic attractor. Consequently, the set

(5.31) Vj = Ur{(9,z,T) E S : G(z,9,t) < e(T)}

is a closed neighborhood of VJ which contains ^ • s in its interior for all s > J (see

Fig. 5.1), since | lies in the interior of Vj, and the vector field of system (1.12) is

either tangent to or directed into Vj. This can be verified by compzuring the first two

components of the vector field of the undamped system (4.1) with those of the damped

system (1.12) along the boundary of Vj,

(z, B(t) — sin 9) A (
2

,
B(t) — sin 0 .
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Fig. 5.1. Section air — f of the neighborhood Vj of the quasiperiodic attractor.

Hence, g{s) is bounded for all s > s.

Now, by Lemma 5.2, there exists a positive constant cg, independent of fi, such

that, if

g{s) - V(0;(r(s)),T(s)) < Cg/i,

then ^ • 5 is in the domain of attraction of VJ. Suppose that ( • s never enters this domain

of attraction, so that

^(s) - V(0*(t(s)),t(s)) > Cg/i

for all a > 5. Then

dg dG dz dGd6 dG dr

ds dz ds 66 ds dr ds

= z{s) B{t{s)) — sin^(s) — j/iz(s)| + [sin^(s) — H(t(s))] 2(s) +

= -i;x{2[^(a)-V(^(5),r(a))]} + 0(/x^)

< -5/^ {2 [5(a) - ^(^;(5),T(a))]} +

< -icg^2 ^

< 0

for sufficiently small (jl, which impHes that ^(s) — ^(s) — —00 as a —» 00 . This

contradicts the fact that g remziins bounded for all a > a . Hence, ^ • a enters the

domain of attraction of Vj as a —> 00 .

To complete the proof of Theorem 5.1, we must still prove that the attracting

quasiperiodic orbits VI of Lemma 5.2 are actuadly periodic. We will do this by finding

an inveiriant neighborhood of the quasiperiodic attractor in much the same way we

did for the roteiry attractor in Section 3 and then using a fixed-point argument. In

the “frozen” system (2.5), there is a compact curve of stable spiral equilibrium points

V| = Ut{(^, 2,t) : 6 = 0(t) -f 2A:7r, z = 0}, and the real paxts of the eigenvalues of

system (2.5) hnearized about the equihbrium point for each fixed r are both equal to

From this it follows there is a tubular neighborhood of the curve V* into

which the vector field of system (2.5) is directed, and the component of this vector field

normal to is Hence, is an 0(1) positively invariant neighborhood of Vj^
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in the “frozen” system. Since the “frozen” system differs from the “un-frozen” system

(1.12) only in the r-component of the vector field, and this component is only in(1.12)

,
it follows there is also an 0(1) positively invciriant tubular neighborhood of

the quasiperiodic orbit Vjt in system (1.12). By periodicity of the vector field (1.12) in

r, there is a Poincare map P : B? —> il* which tahes the plane {r = 0} into itself, and

since is invaricint under the flow of system (1.12), P maps the section D {r = 0}

of this invariant tube into itself. Hence, by Brouwer’s Fixed Point Theorem, there is

a fixed point of P in 7]^* fl {t = 0}, for each k £ Z. By properties of the Poincare

map, these fixed points correspond to periodic solutions of period 1/e^/^ of system

(1.12)

. By Lemma 5.3, each periodic solution must lie in the domain of attraction

of the corresponding quasiperiodic solution Vj^, which by Lemma 5.2, is unique in a

neighborhood of V*. It thus follows that is in fact a periodic solution of system

(1.12) for each k E Z.U

6. Proof of Capture Theorem. In Section 4 we determined some values of t,

namely r~ and r,'*', at which heteroclinic orbits existed. From those considerations, we

see that |r+ — t~
\

= 0{>/€) but in p-variables, — p~| = 0(1), where p = {j — T^)ly/£

and T, = |, so that B(r*) = 0. We shall determine various values of r to be used in

the proof of the Theorem. These values will all be within 0( y^) of r, but be bounded

apart in p. We shall use repeatedly in this section that B'{t) < 0 on (0, f] where f > r*.

The proof strategy consists in following a vertical section of the strip Se under the

action of the flow. Let L = Lg C Se he a. verticcd segment

(6.1) Lg = {(^,z, 0) : 6 fixed and [x*(0) — doj/Ve < z < [s*(0) + do]/\/F},

see Fig. 6.1. We shall thus consider sets of the form L • Sj where Si will take on various

z

values. Indeed, we shall determine Veilues of r, denoted tq, • • • T5 ,
and the values of s

will be related to these r-values as the scaled times needed to attain the relevcint r-sHce,

i.e.,

Si=Tif£^^^, t = 0,...,5.
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Suppose that the statement of the Theorem can be shown to hold for L = and each

6 € [0,27r], wherein the estimate on the mecisure of the set not captured in resonance is

uniform in It then follows that the Theorem will hold in general by integrating the

estimate in 6.

In the following we set Bk{T) to be a neighborhood of ujt(r), which is a square in the

eigenvector coordinates. The square Bkij) is to be small enough so that the system can

be assumed to be effectively linear in Bkir), see below. From the discussion in Section 4,

u*.(t) perturbs to a saddle periodic orbit Uk{r,e) for e sufficiently small. K c is small

enough itfc(T,e) E Bk{r). In the following, we have set ujfc(r,e) = (^fc(T,e),zjfc(T,e),T).

We firstly set r = tq in the following Lemma.

Lemma 6.1. There is a tq < t~ for which all points in

L • 3n{6 = 6k(T, e), z > 0}

must lie in Bkir), for any r E [to,t] and any section L of Sg.

Proof This is an easy consequence of Lemma 3.4, with tq = t* .

Definition. A left primary segment of the stable manifold WI{t) of Uk{r,e)

(relative to the Poincare map on the r-shce) is the connected component of W;t(T) D
< e < e)} contauning Uk{T,e). Similarly, a right primary segment

of the unstable manifold W^{r) of Uit(T, e) is the connected component of

n {^a:(t,£:) <B< 6k+i{Ty£)} containing Uk{T,e); see Fig. 6.2.

The corresponding right and left primary segments of WI^{t) and Wf^{T) are defined in

the obvious way. With these definitions, we can determine the first values of r. From

z

Fig. 6.2. Primary segment ofW^_^{T).

the discussion in Section 4, we can set Ti and Ts so that

T“ < Ti < Ts < rf

with the property that, in R^\{Bk-i{T) U Bkir)}

(r) n = 0,
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for all r E [tijTs]. Moreover, we Cein guajcintee that and are separated

by a distamce bounded below by Cioy/E in U iBjfc(T)}, where Cio is a con-

stant depending only on Ti and T5. Similarly and are also uniformly

separated in ll^\{5jfc_i(T) U for all r E [tijTs].

In the next Lemma we shall need to mahe estimates on the behavior of trajectories

eis they pass near the saddle periodic orbit Uk- This is facilitated by the use of Fenichel

coordinates, see Fenichel [9], Jones and Kopell [14]. These coordinates straighten out

the stable eind unstable manifolds of Uk, even for e ^ 0. In Fenichel coordinates, near

Uk, system (1.12) can be rewritten as

a = X+a + a^i(a, 6,t)
,

(6.2) b‘ = X^b bg2{a,b,T)

,

T = £3/2
,

where A4. > 0 > A_ and < 6. These are valid in Bk = UrSkir), which we take to be

a neighborhood of the periodic orbit Uk = {(0,0, r) : r E [0, 1]}. Indeed, we set

^k{T) = {{a,b,T) : |a| < r], |fe| < 77}.

The quantity 6 depends on 77 and Cein be made eis small as desired by choosing 77 small.

Note that, in Fenichel coordinates, the set {a = 0} is the (local) stable manifold of

Uk and {6 = 0} is its (local) unstable manifold. The first quadrant {a > 0, b >
0} n Bk{T) we shall denote 7^a:('^); this is the region between the (local) stable cind

unstable manifold of Uk{r) that points “upwards” in (0,z,r) coordinates. As above, we
denote 'Rk = ^JrR'ki'r)-

We next choose a Vcdue of T2 such that, in p coordinates, p\,P2 and ps eire 0(1)

apart (using the obvious correspondence between r and p), cind we show this forces L-

s

to be close to U Wj^ inside Bk(T).

Lemma 6.2. For any y E L • S 2 D Bk(T2 )j

d(y,W,“(r)uW:(r}) = 0{exp(-c„/£)).

Proof. We firstly observe that if a; • S2 € Rk{T2), with x E L, and x s E Bj(T)

for some < s < S2, then we must have x • s E This follows easily from

the topological configuration of the stable and unstable manifold of the saddle periodic

orbit. If ® • 5 enters a part of Bj{T) other than Rj{'r) then this argument shows that it

can never enter Ri{r) at another i or later r.

The key point in the proof of this Lemma is to show that the trajectory {® • s :

s E [31,32]} can only pass through a bounded number of the neighborhoods Bk- It

teikes seeded time 0(1) between leaving Bk and entering Bk+i- In such a passage, cleaxly

z > C12 > 0 for some constant C12. The energy Eo{z,6) = _ [cos^ + B{to)6] must

decrease during such a passage by a constant K. If x • s, for s E [31,32], has N such

jumps then Eq has decreased by, at least, NK. While the trajectory passes through

Bk, Eq can increase, and we must estimate this increase.
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Suppose that the trajectory a; • s, 5 € [
51 , 32], passes through Bi,Bi+iy . .

. ,Bi+N]

note that it cannot miss a Bj by Lemma 6.1. In each Bi+j,0 < j < N, the trajectory

must be above for it to be able to continue in the sequence. Suppose that x • s

enters Bi+j at a point aj. Then it follows that Oq > ci^y/e for some constant C13 > 0,

independent of j. The time spent in Bi^j is estimated by

<

from integrating (6.2). Hence

(6.3) 5^<ci4lln£|,

where C14 = Ci4(A4., 77 ). In 7^,+j, it is possible that z < 0 but it has a lower bound

z > —Cisv^e since the periodic orbit is within 0{^/£) of 2 = 0 by FenichePs Theorems.

An easy calculation shows that

(6.4)

in such an s-interval. But from (6.3) and (6.4), Eq can increase by, at most, Ci7-y/£| lne|.

Since there are N such possible increases, we see that Eq heis a net decrease of at least

N{K -cir\/^\]ne\).

As e —» 0 and N —* +00
,
this increases without bound. But this contradicts the fact

that X 32 E Bk for some k. It follows that x • s petsses through a bounded number of

The trajectory spends time 0(1 /e) between r = Ti and r = T2 (which we postulated

to be 0(1) apart in p-coordinates). Since it spends 0(1) scaled time between BkS and

hits only finitely many, it must spend 0{\/e) in some Bk- In that B*, the trajectory

pa.sses through 7^* and from (6.2) we must have Uq exponentially small. It follows that

d{x • s, U IVfc(T)) is exponentially small while the trajectory lies in 7?.*.

However, this passage through TZk must be the Icist cis the next neighborhood hit

would be in a part of Bk other than TZk- This proves the Lemma.

The preceding Lemmzis have set up a configuration for L • S2 ,
nzunely that it in-

tersects 0 = ^jk(T2 ,c) (z > Zk{T,£)) inside Bk{T2 ) (Lemma 6.1) and it lies exponentially

close to W^{t2 ) at the exit point of Bk{T2 ). We can thus divide L • S 2 into segments

as follows. Let the original section L = Lg he parametrized by Zq ^ z < zi,

and set 2* = min{2 > zq
: (0,z,O) • S 2 has 0 component equal to 0jfc(T2,e)}. If

L* = L n {2* ^ z < 2*'*'^}, then set • S 2 ,
so that jC^ is a segment of L- 32 which

reaches from 0 = 0k(7‘, e) to 0 = 0k+i(T, e); see Fig. 6.3. We also define jC^~^ = • S2 ,

where = {z < 2^}; here, 2^ is the smallest 2 for which L • S 2 intersects 0 = 0j(T,e).

We make a similar definition for {2 > 2^}. In the next Lemma, we shall study the

interaction between £* and the stable manifold of the saddle point.

dEo

d3
< Ci6\/?



Lemma 6.3. Each segment £* has exactly one intersection with

Proof. It follows from Lemma 6.2 that there is at least one intersection, as L • 52

lies below in 'Rk{T2 ),
since it is exponentially close to at that point and by

the Melnikov calculation, WJ^'^ and axe 0{y/e) apart.

It remains to show that there is at most one such intersection. We shall compare the

taxigent vector io L-S2 at such an intersection point with a tangent vector to WI^!^i{t2 ).

Indeed, let © 1 (
5
)
be tangent to L-s so that, at s = 0, ®i(0) = (0,1,0) in (0,z,T)-space.

K® is tangent to W]||^i(t2 ), it suffices to show that the basis in {6,z) given by (», Vi(0))

(forgetting the t components) has positive orientation, for then L'S2 can cross W)fe^i(T2 )

in only one direction, ajid multiple intersections cire prevented.

First, let «i(s) and » 2 (>s) be any teingent vectors ceirried along by the flow of (1.12).

The axea speinned by (t>i,» 2 )
in the (5,s)-plane is given by d6 A dz{vi^V 2 ). As in

Section 4 above, d6 and dz satisfy the equations of variation, which for (1.12) are given

by

dB' = dz,

(6.5) dz = — cos Odd + B'{r)dT — \^Jedz ,

dr' = 0

.

Setting r = A dz(ri, t> 2 )i we calculate

(6.6) r' = B‘{r)dd A dr- \y/ET.

We specify that ri should be the vector field itself, Vi = {$' ,z',t'), and V 2 a tangent

vector, V 2 = {SB,6z,0), which at s = 0 takes the value (0,1,0). In this case, (6.6)

becomes

(6.7) r' = -e^l^SBB'ir) - \y/lV.

Now, the trajectory must stay in z > 0, as otherwise it will move to the left as s

increases; but this contradicts the C^-closeness to the saddle orbit as guaranteed by

Fenichel’s Theorems. Then r(0) = = z > 0 cind if F = 0, F' > 0 (as long as z > 0),

we see that F > 0 at the intersection point in r = T2 . This says that the beisis formed by

26



the vector field and the tangent vector to L- 32 (in that order) has positive orientation,

which is not quite what we need. However, it is also true that the basis formed by

the tangent vector to Wfc’^(T2), nctmely v, and the vector field (in that order) also has

positive orientation (by repeating the argument). The Lemma follows. 0

The next step is to choose a r = T3 (which is 0
(
1
)
larger than T2 in p). On account of

Lemma 6 .2
,
we can choose r = T3 so that L • S3 either lies in the capture set or in some

^4(73)- We shall now find how much of it lies in

Let y’Sz E L-ssfl W'4 ’‘^(t3). Then y ss E Bkirs). Set E|(t) to be the strip of width

about Wj^(t) inside Bkir), i.e., S|(t) = {{a,b,r) : |a| < e^} in Fenichel coordinates.

Further, recalling that rj is the length of a side of Bk{T), set Sfc(T) = {(a, 6,r) £ :

b > T)/m}; the integer m is chosen so that z > Cis > 0 in Sfc(T). Now choose 73 < T3

so that y • 33 6 1)1(73), which can easily be done. In the following, we shall study the

segment of L • S3 which lies in 1)1(73). Let y E L for which y • S3 G L • S3 fl 1)1(73), and

(^0(s),^2(s),O) be the tangent vector to L • s at y • s which takes the value
(0 ,

1
,
0 )

at

s = So; see Fig. 6 .4 .

Lemma 6 .4 . For any y E L, for which y • S3 G L • S3 H 1)1(73),

(6.8) ^^(33) ^ Ci9 > 0

independently of p.

Proof From the considerations in the proof of Lemma 6 .3
,
the slope of the tangent

vector to L • s at y • s is greater them or equal to the slope of vector field there, for

s G [30,33]. This implies that

6z
^

z

or

Ssi
^

z

Te
~ z

and hence.

(6 .9 ) (ln^0 )' > (Inz)^

It easily follows from integrating
(6 .9 )

that

S0{S3) > Z(S3) > Ci9,

as needed.

Lemma 6.4 has the important consequence that the curve L • s does not contract

too much. We must also study the emgle between the tangent vector and the vector

field. We denote this angle ^(s) and prove the following Lemma; see Fig. 6 .4 .

27



Fig. 6.4. The tangent vector to L • s and angle made with the vector field.

Lemma 6.5. At y • 33 £ L Efc(T3), we have

(6 . 10) 1^(33)! > C2oe“'*.

Proof. Using the notation above, we can write

r= I(tf',2:')||(l«, 32)1 sin

each piece being a function of s. From Lemma 6.4, it suffices then to prove the estimate

(6.10) for
<f>

replaced by F.

If 62(33) > 0, the Lemma easily holds. Thus we can assume that there is a sq <
•So < 33 for which 62(3^) = 0 and — 33] > T > 0. But then in [50,33], 66(3) is

decreasing cind 66(3) > 66(33). From (6.7), we then have

(6.11) r' > -IVer - e’^’W(i3)S'(T),

and the Lemma easily follows by integrating (6.11) from So to 33.

In T = f3, we study the piece of Le • 33 near the intersection with W^^^(f3). Since

at each point u £ L 33(1 EI(t3), the curve L • 33 makes an angle of at least (by

Lemma 6.5) with the vector field and the vector field makes an angle O(c^) in E|(f3)

with the vertical (a fixed), the curve L S3 is locally given by the graph of a function

b = g(a). Moreover it must traverse from one vertical side of ^^(73) to the other (by

an application of the Mean Value Theorem). This procedure also applies in the r = T3

slice as the angle does not decrease between 73 and r (nor does ^^(3)). Noting that

this argument apphes when any point y 6 L • 33 fl S^(r3), we Cein conclude that such

a point lies on the curve in question, as it would otherwise force another intersection

with contradicting Lemma 6.3.

We now consider how much of L • 33 D E|(t3) remains in Bk(T) when t = T4. K a

point has left Bk(T) at r = T4 (chosen so that T3 < T4 < T5 but bounded away from T5 by

0(1) in p-variables), then by appl)ring Lemma 5.3 it must be captured. It is clear that

the set of points in EJ(t3) which stay in Bk(T) up to r = T4 have |a| < C21 exp (—€22/^)-

Set

22(1*3) = {(a, 6
) € Bk(T3 ) :

|a| < C21 exp (-C22/e)}.
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As above, L • S3 traverses E2(r3). Let {O^zq) and (^, zi) be the points in L for which

{S,Zo) • S3 G SJ(t3) n {a = -C21 exp (-C22/e)}

and

(^, zi) • S3 e Slfc(T3) n {a = C21 exp (-C22/e)}.

The length of the eirc X • S3 fl E]fe(T3) is given by

where (^^(s), ^z(s),0) is the tangent vector to L • s starting at (0,1,0) zuid based at

(^,z, 0 ). By Lemma 6.4
,

a > 023(21 - zo ).

But by Lemma 6.5 and the width of E]t(T3),

a < C24e^^^ exp (—C25/0)

,

and we conclude that

(6 . 12
) Izi - zo\ < C26 exp {-c^ile )

.

Eq.
(6 .12

)
gives an estimate on the amount of L that is not eventuzdly captured by

virtue of staying in Bk{r). Since this occurs in, at most, 0(l/e^/^) BkS, the Theorem

follows.
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