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Empirical Modeling of Electromagnetic Acoustic

Transducer Data

K.J. Coakley

Statistical Engineering Division, NIST, Boulder, CO
A.V. Clark and C.S. Hehman*

Materials Reliability Division, NIST, Boulder, CO

We characterize the observed phase and amplitude of acoustic birefringence data

collected with an electromagnetic acoustic transducer (EMAT). Our characterization

models are extended versions of an idealized model for acoustic birefringence. In the

extended models, angle-dependent terms account for observed variability in phase and

amplitude which is not predicted by the idealized theory. Possible sources of this extra

variability include material inhomogeneity and angle-dependent sensor gain. The ad-

justable parameters in the model are determined by minimizing the sum of the squared

phase residuals plus the sum of the squared amplitude residuals. To facilitate conver-

gence, we determine the model parameters by fitting the extended models sequentially

according to model complexity. Ten experimental data sets were collected from the

same sample. We estimate the mean value of each model parameter and its associated

standard error. For each extended model, we estimate the mean phase delay between

the fast and slow modes. We also estimate the mean rotation angle of the pure-mode

polarization directions (relative to a reference coordinate system in the specimen).

From run to run, we observed phase data drift. However, the difference between the

phases of the slow and fast modes did not follow this drift.

Keywords: acoustic birefringence, ultrasonics, stress determination, statistical mod-

eling, spatial variability.

* Presently employed at MDK, Inc., Chapel Hill, NC.
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1. Introduction

We develop an empirical model for acoustic birefringence data collected at the National In-

stitute of Standards and Technology (NIST). Due to acoustic birefringence, different modes

can travel at different velocities within a material. We measure the interference of polar-

ization modes which travel at different velocities within a material. Acoustic birefringence

experiments yield information about the stress in a material [1-5].

In the experiments, an electromagnetic acoustic transducer (EMAT) generates an acoustic

wave which is transmitted through a material. The EMAT signal is modeled as a mixture of

two orthogonal polarization modes. In general, the two polarization modes travel at different

velocities. According to the idealized theory, the phase and amplitude of the echo signal vary

as the EMAT rotates with respect to the specimen system where the x (or y) axis corresponds

to the direction where only the fast (or slow) polarization mode is transmitted. Call the x

and y axes the pure-mode polarization directions.

In a previous study, researchers [5] showed that the idealized theory does not account for

the observed variability in amplitude data. They looked at data from many echoes. They

speculated that the additional variability might be due to additional scattering due to the

secondary texture or layered texture in the material.

In this work, we characterize the variation of both the phase and amplitude for a par-

ticular echo as the EMAT is rotated. We quantify angle-dependent effects not predicted by

the ideal model. Unlike in Reference 5, we do not analyze multiple echoes.

In our model, we allow for the phase of the slow and fast modes to depend on angle. This

dependence might be due to material inhomogeneity. We also introduce terms so that the

differential attenuation of the slow and fast waves depends on angle. Further, we allow for

detector gain to vary with angle.

The adjustable parameters in the extended model are determined by nonlinear regression.

Although material inhomogeneity and angle-dependent detector gain are plausible sources

of the extra variability, there may be other physical explanations for the data. Further study

is needed to resolve this question.

The paper is organized as follows. We first present the idealized theory. Second, we

describe the extended model. Third, based on data collected at NIST, we model estimate

model parameters and their associated standard deviations.

2. Idealized Model

Consider an ideal sinusoidal signal at frequency u which is a mixture of two orthogonal

polarization modes. One mode has a slow velocity of propagation, the other a fast velocity

of propagation. Suppose that the signal is transmitted through the material, reflected off a

boundary, and then detected. Denote the wave numbers of the fast and slow waves as kf

2



(
1

)

and ks . Call the total path length traveled 2. We model the detected signal as

s(t,z) = A cos(ks z — cot + ip) + B cos(kfZ — wt + ip)

where

A — r cos
2

77
(
2

)

and

B = r sin
2

77, (3)

and ip is a phase angle. The angle 77 is the relative angular position of the EMAT with

respect to the direction where only the slow mode is transmitted in the stressed state. In

general, stress causes the pure mode polarization directions to rotate by an angle <p. Hence,

77 = 0 — 0 ,
where 0 is the angular position of the EMAT relative to the slow direction for

the unstressed state. The term r is a scale factor that depends signal attenuation, signal

strength, and detector gain.

In this ideal model, the slow and fast modes are attenuated at the same rate. Further,

detector gain is independent of angle. The sensor is rotated as a function of time. As the

EMAT rotates, 77 varies. According to the ideal model, as 77 varies, so do the phase and

amplitude of the signal.

We express the signal s as the real part of a complex signal w. That is,

s = Re(w), (4)

where

w = Aexp(z0i) + F?exp(z02 ), (5)

where

0 i = {ksz — ut + ip)
(
6

)

and

02 = (kfZ — cot + ip).

The amplitude and phase of w are

M = y
/A2 + B2 + 2ABcos{91

-9
2 )

and

Or

tan(PHASER) = gg
A sin 6 X + B sin d2

A cos 9i + B cos 02

(7)

(
8

)

PHASE(w
)
= tan

1 {Im(w), Re(w)) = tan
1
(Asin0i + 5sin02 ,

Acos0i + Z?cos02 ).

We estimate the amplitude and phase of the measured signal at a particular frequency

by computing its Fourier transform.
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3. Empirical Models

We extend the idealized model by adding angle-dependent terms. We assume that the

rotation rate (a^) of the sensor is constant. The orientation of the sensor at the zth time ti

is modeled as

fji = di + a2 ti, (9)

where d2 is the estimated angular rotation of the EMAT and di is an estimated offset

angle. (In this work, if a is the true value of a model parameter, d is the estimated value

of that parameter.) To a good approximation, at the initial time ti = 0, the angular

direction EMAT coincides with the slow velocity direction for the unstressed state. In the

experiment, we trigger the data collection system as the rotating EMAT passes by a marked

line (corresponding to the slow direction for the unstressed state). That is, at ti, r)i « —

0

where cf) is the stressed induced rotation of the slow direction. Due to timing error, we expect

a slight misalignment error between the actual angular position of the EMAT at ti and the

slow direction for the unstressed state.

The relative amplitudes (eqs (2,3)) of the slow and fast modes at time ti are modeled as

Ai = 7i cos
2

r)i (10)

and

B
x
= sin

2
fji, (11)

where

7i = |d6 + dn cos f]i + di2 sin f/i \

.

(12)

The term 7* accounts for angle-dependent differential attenuation of the slow wave relative

to the fast wave. In the ideal case with no differential attenuation effects, 7 = 1. That is, in

the ideal model, a6 — 1 and an = Qj2 = 0.

We predict the fast and slow phases as

#1 = d3 + d7 cos fji + as smfii (13)

and

62 = d4 -f d9 cos f/i + dio sin?);, (14)

respectively. In the ideal case, the phases are independent of angle and a7 = ag = a9 =
a10 = 0. For the nonideal case, we allow these parameters to be nonzero. If the material

is inhomogeneous, we expect the phase of the fast and slow modes to depend on rotation
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angle. In this model, <a3 and a4 denote the average value of the phases of the slow and fast

modes over the full 360 degrees in which the EMAT rotates.

At the fth time t{ ,
we model the predicted phase of the signal (which is the interference

of the fast and slow modes) as

PHASE{wi )
= tan" 1

(a, A), (15)

where

Ci = Ai sin §i + Bt sin §2 (16)

and

£>i = Ai cos 0i + Bi cos §2 . (17)

The predicted amplitude of the signal (in volts) is

|w*| — \J\Pi\\JM + Bf + 2AiBi cos(#i — §2 ), (18)

where Pi is an angle-dependent scale factor

P = d5 + di3 cos fji + di4 sin 77*. (19)

In the ideal case, only 0:5 would be nonzero. In the nonideal case, the sensitivity (gain) of

the detector is allowed to vary with angular position. For a discussion of these higher order

effects, see Reference 7.

3.1 Implementation Details

The model described in the previous section has 14 adjustable parameters. To facilitate

convergence, we determine the values of the 14 adjustable parameters sequentially. Models

of increasing complexity are fitted to the data sequentially. The estimated parameters deter-

mined from each model serve as initial guesses for the parameter estimates in the successive

model. Model 5, the simplest model, has five adjustable parameters (a*., k = 1,5). For

this model, aG = 1 and am = 0 for m > 6. In Model 10, the last 4 parameters are set to

0 but the first 10 are adjustable. In Model 12, a13 = <ai 4 = 0, but the first 12 parameters

are adjustable. Finally, we fit the full model Model 14. In the simplest model (Model 5),

the initial guess for the aG is the squared value of the maximum amplitude computed from

the observed data. The initial guess for a3 and a4 are the minimum and maximum phases

computed from the data (Table 1).
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Table 1. Parameter bounds and initial guesses.

Parameter Lower bound Upper bound Initial guess

1 0 7

T

7t/2

2 0.09 s~ l 0.12 s' 1 0.105 s" 1

3 -4 4 min(phase(w ))

4 -4 4 max(phase(w ))

5 0.01 xmax(\w
\

2
)

100 xmax(\w\ 2
)

max(w 2
)

6 0.0001 1000 1

7 -0.5 0.5 0

8 -0.5 0.5 0

9 -0.5 0.5 0

10 -0.5 0.5 0

11 -0.5 0.5 0

12 -0.5 0.5 0

13 —2.0 x max(\w\
2

)
2.0 x max(\w

\

2

)
0

14 —2.0 x max(\w\
2

)
2.0 x max(\w\

2

)
0

The adjustable parameters are determined by minimizing the sum of the squared phase

residuals plus the the sum of the squared amplitude residuals. That is, we minimize

L — Lq + LA, (20)

where

Le = i jr(PHASE(Wi )
- PHASER))2

(21)

and

La = ttU BKI - M) a
. (22)

iV i= 1

Above, N is the number of data points and V0 = 1 volt.

Before fitting the model to the data, we compute the mean phase of the measured signal

over all times (or angular positions). This mean is subtracted from all phases. After we

estimate the phase and amplitude of the signal as a function of angle, we add the mean

phase back to the estimated phase. In the optimization, 6 X < #2 - The program does not

identify whether 9 X corresponds to either the slow or the fast mode.

During fitting, the parameters are constrained to fall between lower and upper bounds

(see Table 1). If the bounds are Li and Ui ,
we express the constrained parameter a* in terms

of an unconstrained parameter qi as

= L
l + (Ui - Li)/(l + exp(gf )). (23)
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We minimize L as a function of the unconstrained parameters q =
(<?i, #2 , Qk) using a

quasi-Newton method where the Hessian matrix and gradient are approximated numerically

[
6],

As a check, the model parameters were fitted to one of the ten data sets using a different

optimization algorithm. The alternative optimization algorithm was similar to the one de-

scribed above except that the parameters were not constrained. That is, for each parameter,

the lower and upper bounds were pushed to -oo and oo. For each of the 14 parameters,

the fractional agreement between the estimates provided by the two algorithms was within

5 x 10~ 6
. Since the estimated fractional standard deviation of each parameter due to ran-

dom noise and run to run variability (Table 2) is much greater than 5 x 10
—

6

,
the difference

between the two algorithms is negligible for the data studied here.

Table 2. Parameter estimates for Model 14. (The estimated standard deviation, that is the

standard error, is denoted as SE.)

Parameter Mean estimate SE of estimate SE of mean estimate Zstat

< 0.11119 0.04231 0.01338

<*2 0.10479 s'
1 0.00061 s- 1 0.00019 s' 1

<*3 -1.40222 0.03382 0.01069

a4 -0.88195 0.03154 0.00998

<*5 7.48664 V2 0.16321 V2 0.05161 V2

<*6 0.97565 0.00706 0.00223

a7 -0.02226 0.00365 0.00116 -19.25607

<*8 0.03252 0.00826 0.00261 12.44404

<*9 -0.02207 0.00774 0.00245 -9.01981

Quo 0.02097 0.00330 0.00104 20.11370

an -0.02377 0.00636 0.00201 -11.82574

a12 -0.00454 0.00597 0.00189 -2.40581

<*13 -0.27915 V2 0.09533 V2 0.03015 V2 -9.25945

<*14 0.06408 V2 0.04172 V2 0.01319 V2 4.85706

<*4 — <*3 0.52027 0.00641 0.00203

4. Observed Data

Ten experimental data sets were collected for the same sample. The initial angular position

of the EMAT was varied from run to run. On the specimen, angular markers were spaced at

an interval of 10 degrees. As the EMAT rotated past a particular angular marker, the signal

generator was activated. In each of the 10 data sets, the number of samples varied slightly.

For each data set, the number of samples is approximately 400. In Figure 1 and 2, observed

and predicted amplitude and phase for the idealized model (five parameters) and empirical
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models in increasing complexity (10, 12, and 14 parameters) are shown for one of the 10

data sets. In Figure 3 and 4, phase residuals and amplitude residuals are shown for the

same data set. From each of the 10 data sets, we compute the RMS value of the phase and

amplitude residuals. From these, we compute mean RMS values and associated standard

errors of these mean RMS values (Table 3). In this work, mean values and standard errors

of mean values are denoted using a special notation. For instance, 0.0246(11) signifies that

the mean is 0.0246 and that the associated standard error of the mean is 0.0011.

Table 3. RMS prediction errors.

Model order \fL~e VLa yjL2
A + L2

d

5 0.0246(11) 0.0829(11) 0.0865(4)

10 0.0273(11) 0.0670(11) 0.0724(4)

12 0.0144(2) 0.0396(5) 0.0421(5)

14 0.0137(1) 0.0378(5) 0.0402(4)

For the kth data set, define an adjusted rotation angle (in radians) as

<*! = oil
- (k — 1)7

r

18

If our prior knowledge of the initial rotation angles is correct, the adjusted rotation angles

should be equal. The variability of the adjusted rotation angle appears random (Figure 5,

upper left).

However, the estimated values of 0:3 and a4 drift upward as the initial angle is increased.

We attribute this trend to time drift in the electronics. For estimating birefringence, the

difference a4 — <a3 is of interest. Although both a4 and a3 follow a clear trend, the difference

does not (Figure 5, bottom right).

To better demonstrate the drift, phase data from all 10 experiments are plotted in the

upper part of Figure 6. In the lower part, corrected phases are plotted. The phase data from

each run are corrected by subtracting |(d4 4- d3 )
from each phase data point. On the x-axis

of Figure 6, we plot 7)(mod 360 degrees).

The fitted values of the angular correction factors a*, k > 6 were all statistically signifi-

cant. That is, the difference between the mean value of each and 0 was not explainable by

random estimation error. For each parameter, we compute the ratio of the mean value of

the estimate (from all ten runs) divided by the standard error of this mean value. We define

this ratio to be zstat . When the absolute value of this ratio (|zSfa«|) is large (say greater than

2) the difference between the mean estimate and zero is statistically significant.

In Table 4, we list the values and associated mean values of the adjusted rotation angle aj

and the phase delay a4 — a3 for the various models. From the observed data, we computed

the difference between the maximum and minimum phase for each data set. The mean
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difference is 0.6126. The estimated standard deviation of the difference is 0.0068. Some of

the variability in the rotation angle is due to timing errors. The signal generator is started

by a human operator (rather than by an automatic procedure) as the EMAT rotates past

an angular marker. Hence, better experimental techniques may lead to a reduction in the

variability of the offest angle.

5. Summary

The empirical models account for variation in both the phase and amplitude of the EMAT
data (at a particular frequency). The empirical models are generalizations of the idealized

model. In the extended models, the following depend on angle: the phase of the slow and fast

modes, differential attenuation of the slow and fast waves and the EMAT detection efficiency.

From multiple measurements, we estimated the mean value of the parameter estimates and

associated standard errors. All the parameters in the extended models varied from 0 by

a statistically significant margin. We fitted the model to both phase and amplitude data

simultaneously. As the complexity of the extended model was increased, the estimates of the

adjusted rotation angle and the difference in the mean phases of the two polarization modes

stabilized (Table 4).

The phase data drifted from run to run. However, the difference between the estimated

slow and fast model phases (which is of interest in stress studies) did not drift. Given the

parameter estimates in the extended model, we adjusted the phase data from different runs

for relative drift (Figure 6).

Although material inhomogeneity and angle-dependent detector gain are plausible sources

of the extra variability not predicted by the ideal theory, there may be other physical expla-

nations for the data. Further study is needed to resolve this question.

Table 4. Adjusted rotation angle (a{) and phase delay (a4 — <23) statistics.

model order adjusted rotation angle (radians) phase delay (radians)

5 0.0732(53) 0.5269(57)

10 0.0982(59) 0.5254(53)

12 0.1177(45) 0.5207(66)

14 0.1112(42) 0.5203(64)
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Figure 1. Observed and predicted phase for

14 parameter models.

MODEL 14

of 10 data sets according to 5, 10, 12, and
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(V)

AMPLITUDE
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MODEL 5 MODEL 10

MODEL 12 MODEL 14

Figure 2. Observed and predicted amplitude for one of 10 data sets according to 5, 10, 12,

and 14 parameter models.
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Figure 3. Phase residuals (observed-predicted) corresponding to Figure 1.
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C/D

Figure 6. Top: Phase data from 10 data sets. On x-axis, we plot the angular position of the

EMAT (mod 360 degrees) as predicted by 14 parameter model. Bottom: Phase data from

each of the 10 data sets is adjusted to account for drift.
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