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Economic Data: Handle with Care

Janet E. Rogers*

Mathematical and Computational Sciences Division

National Institue of Standards and Technology

325 Broadway

Boulder, CO 80303-3328

This paper provides compelling evidence that common practices employed in order to simplify

the least squares analysis of economic data can lead to incorrect results and conclusions. Two
examples are presented using state per capita income data over the period 1965 to 1991. The

first example documents how parameter estimates can be changed by seemingly inconsequential

mathematical transformations of the model. The second supports the assertion that the mea-

surement errors inherent in economic data must be addressed. The results from both studies

demonstrate the importance—and computational feasibility—of formulating economic models

precisely.

JEL classifications: C51; C63; 047.

Keywords: errors in variables; linear least squares; nonlinear least squares; orthogonal distance

regression; total least squares.

1. Introduction

Early in their book Estimation and Inference in Econometrics [1, page 57], Davidson and

MacKinnon state

. .
.
[the model that] is linear in the parameters and in the logarithms of all the variables

will be very much easier to estimate than the nonlinear model. . . Thus, it should come

as no surprise to learn that loglinear regression models, like

ln[yt] = l3i+ fh ln[2t,2] + + vt , (1-1)

are estimated very frequently in practice, while multiplicative models with additive error

terms, like

yt = exp[f3i]z^^24^^ + , (1-2)

are very rarely estimated.

* Janet.Rogers@NIST.gov
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Davidson and MacKinnon do not advocate that researchers select between linear and nonlinear

models strictly on grounds of convenience. In many instances, however, the choice between two

mathematically equivalent models is not well delineated. Furthermore, few texts provide numerical

examples that demonstrate the consequences of choosing one model representation over another,

and the numerical comparisons that are presented generally show only relatively small changes in

the estimated parameters, which could lead researchers to think that these issues are “much ado

about nothing.”

This paper provides researchers with empirical evidence highlighting the dramatic impact that

mathematical transformations and simplifying assumptions can have on the conclusions drawn from

an analyses. While the results presented here do not have universal applicability, they do serve

as a clear warning to researchers who do not explicitly address the possible ramifications of such

transformations. The inferences from this paper are straightforward; researchers must examine

the transformations they employ and the assumptions they make—and explicitly address their

implications—or risk reporting incorrect results and conclusions.

Two relatively simple examples, suggested by recent publications, are considered. Both use

the method of least squares—one of the most common computational procedures employed in

economic research—to estimate values for the K unknown parameters l3 of an overdetermined

system of equations,

yt = ft[P] + ,
t=l,...,T, (1.3)

where yt denotes observation t of the response (dependent) variable, denotes the mathematical

model being investigated, and £t denotes the unobservable random error or disturbance in yt- The

generalized least squares estimators for this problem are the values b that minimizes the residual

sum of squares 5[/3], that is

b argmin S[(3]

0 (1-4)

subject to: 5[/3] — e'^ ^e,

where e denotes the column vector with elements et /t[/3] — yt, t = 1, . .

.

,T, and fl denotes the

T X T covariance matrix E[££']. Often the disturbances can be assumed to be identically and

independently distributed, so that ft = and 5[/3] = a~‘^e'e.

Programs for finding the least squares solution are ubiquitous.

• Linear models are those of the form ft[l3] = xt/3, and linear least squares (lls) procedures

solve for

b
, (1.5)

where y denotes the vector with rows yt, t = 1, . .
.
,T, and X denotes the T x K matrix with

rows Xi = {xt,i,xt,2^ T^t,K) containing the explanatory (independent) variables associated

with observation t. For uncorrelated disturbances with constant variance, eq (1.5) reduces to

the familiar ordinary (unweighted) least squares solution

b (X'X)-^X'y- (1-6)
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• Nonlinear least squares (nls) must be used when /t[/3] ^ xt/3. Most NLS procedures have a

LLS procedure at their core. However, when the model is nonlinear in the unknown parameters

the T X K derivative matrix X composed of rows

\ d0i apK )
(1.7)

is a function of /3, and therefore the solution defined by eq (1.5) will change as /3 changes, nls

solutions are therefore computed iteratively, progressing from an estimate /3„ at iteration n

to an estimate at iteration n + 1 until the parameter estimates “good enough.”

NLS procedures have greater complexity than LLS procedures: the functional form of the model

ft [^]—and frequently the derivatives dft[f3]/dPk—must be supplied; starting values are

required to begin the iterative process; and finally, convergence criteria must be selected.

• Errors in variables problems, also known as measurement error problems, occur when the ex-

planatory variables include a stochastic component Vt so that Xt = x* + vt, t = 1, . .
.
,T, and

jE'[X'£:] 0. Common weighted or unweighted least squares methods, whether linear or non-

linear, are inappropriate in this case and other solution procedures should be employed. The

method of instrumental variables (iv), discussed by Davidson and MacKinnon [1], Greene [2]

and Judge et al. [3], is one frequently applied technique for estimating /3 when there are er-

rors in the explanatory variables. Another procedure for extending least squares data fitting

procedures to measurement error problems problems is orthogonal distance regression (odr),

which is especially appropriate when the model is nonlinear in the explanatory variables or

the variances of the measurement errors are known to within a constant.

The theoretical properties of least squares estimators are described in most econometric texts;

Davidson and MacKinnon [1], Greene [2] and Judge et al. [3] are three excellent references. Under

fairly weak regularity conditions, LLS, NLS, iv and ODR estimators are all consistent, even when the

disturbances are not independent with constant variance. Furthermore, LLS, NLS, and ODR esti-

mators are maximum likelihood estimators (mle) when the disturbances are normally distributed
dcf

with covariance matrix known to within a constant, that is, when S ~ N{0,Q)^ where £ = e for

def
LLS and NLS and £ = {e' ,v\' ^

. ,vt')' for ODR [4].

Table 1. Least squares techniques.

Model w.r.t. /3

Errors in

variables Technique

MLE when

£ ~ N{0,n)

Linear No Linear least squares (lls) Yes

Nonlinear No Nonlinear least squares (nls) Yes

Linear or nonlinear Yes Instrumental variables estimation (iv) No

Linear or nonlinear Yes Orthogonal distance regression (odr) Yes

Researchers are sometimes tempted to transform nonlinear models into linear models so that

LLS can be employed rather than NLS. They are also frequently tempted to ignore measurement
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errors in the explanatory variables so that lls or nls can be used in place of iv or ODR. The

consequences of inappropriately applying such transformations and making such assumptions are

often not fully appreciated, however. The next section provides empirical evidence showing how

the results of an analysis can change enormously as the model is transformed to have different

mathematical representations. Further, the section following documents significant differences be-

tween the results obtained using NLS and those obtained using ODR, emphasizing the importance

of explicitly modeling the measurement errors inherent in economic data.

2. Linear and Nonlinear Least Squares

Researchers often transform nonlinear models into linear models as a simplification. These math-

ematical transformations should be applied only after their effects on the error terms e have been

investigated, however. Consider, for example, the model

yt = Pi exp[P2 Zt] + £t ,
t = 1, . .

. ,
T

,

and its logarithmic transformation

ln[y<] = ln[/?i] -f P2 Zt + In 1 +
et

Pi exp[p2Zt]
= ln[/3i] + P2Zt + vt

(
2 . 1

)

(
2 . 2

)

where Vt In 1 I^ /3i exp[/322t]
When it is correct to assume that e = (ei, . .

. , st)
' ~ -^(0, fig),

then it is also correct to assume that v = (ui, . .
. ,

r;]^) ' ~ A^(0, fi^) although Fur-

thermore, if the disturbances e are homoscedastic and then, unless E [Pi exp[P2 Zt]] is

constant for all t, it must be the case that the disturbances v are heteroscedastic and fly /
for some constant The converse is also true.

The statistical implications of mathematical transformations of models and data are generally

acknowledged, but frequently ignored. In many instances, transformations appear to be applied

for no reason other than to allow the least squares solution to be found using LLS rather than

NLS. Although these simplifying transformations are often innocuous, they can sometimes lead

to significantly different parameter estimates. This section demonstrates this phenomenon using

linear and nonlinear forms of a logistic growth model.

Sigmoidal or “S-shaped” curves like that specified by the logistic function can be used to char-

acterize data that display a monotonic increase in growth rate up to an inflection point, after

which the growth rate decreases to 0. These functional forms have been used by Griliches [5] and

Mansfield [6] to analyze the diffusion rates of new technologies, and by Clark et al. [7] to model

the growth of the manufacturing sector in developing economies.

Berry and Kaserman [8] also use the logistic function to model the determinants of state-level

economic development in the United States. They postulate that the true per capita income y*
^
for

state s in year t has a sigmoidal shape—increasing rapidly at first as new technologies are introduced

and then leveling off as the equilibrium value is approached—and thus can be represented by the

logistic function

ys,t
= Qc

1 -1- 4>s exp[-js{t - to)]

t =
, tr, (2.3)
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where ag denotes the asymptotic (steady-state) limit on real per capita income, (pg is a measure of

how far initial per capita income yg^to is from its asymptotic value, and 75 denotes the growth rate.

Assumptions made regarding the unobservable disturbances Sg^t allow the statistical specifica-

tion of model
(
2 . 3 )

to be completed.

A. One possibility is that the error
^
in the observed value of real per capita income yg^t is

additive, and thus that

a.c

ys,t — + Sc
1 -f </)5exp[-7s(t - to)]

' ’

which is nonlinear in the unknown parameters Og, (f)g, and 7^.

t , . .
. ,

tp

,

>. 4
)

B. Suppose, on the other hand, that the disturbance in observation yg^t is multiplicative, so

that ln[y5 J = ln[y*^£5 J = ln[y*j] + Ss^, where ln[s^ The statistical representation

of model
(
2 . 3

)
then becomes

ln[ys,t] = ln[os] - ln[l -F 0sexp[-75(t - to)]] + ,
t = ti,...,tr,

which is again nonlinear in the unknown quantities as, (pg, and 75.

(
2 . 5

)

C. If the disturbance is additive but as is a known constant, say ds, the appropriate statistical

specification might also be

a.c

ys,t
1 + 0s exp[-7s(t - to)]

which is nonlinear in the two parameters 0s and 7s.

d” ^s,t J
^ t^, . . . ,

tj'
, (

2 . 6 )

D. Finally, when as is the known constant ds, then an appropriate statistical specification of

this logistic model could also be given by

In
ys,t

ys,t

= - to) +£?,( ,
t = ti,...,tT, (2 .7 )

which is linear in the two parameters ln[0s] and 75.

Ordinary (unweighted) lecist squares techniques can be applied to each of these four models,

and under the assumption that the specified disturbances are independent and identically nor-

mally distributed, the results will be MLE.^ Note, however, that if or are assumed to be

homoscedastic, then and must be heteroscedastic. Furthermore, because as is not known a

priori for state per capita income data, the results obtained using nonlinear model (2.6) or linear

model
(
2 . 7

)
are statistically questionable. That is, the arbitrary assignment of a fixed value to ds

creates a distortion in the estimated values of ln[0s] and 7s. In addition, the estimated variances

Tdeally, assumptions regarding the distribution of e and how it enters the estimating equation should emerge as

part of the derivation of /t[/3]. Statistical techniques for evaluating these assumptions are provided, for example, by

Greene [2], Ratkowsky [9], and Seber and Wild [10]. When the distribution of the error term cannot be hypothesized

a priori, Godfrey and Wickens [11] and Leech [12] provide procedures for choosing the form of the error distribution

based on analysis of the data.
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and covariances of \n[(f)g] and 7s are likely to be incorrect, primarily because the uncertainty of ag

and its correlation with (pg and jg is not captured in these two models.

Figure 1 is a graphical presentation of the least squares estimates of the growth parameters

7s obtained using these four statistical representations of the logistic growth model. The response

variables are real per capita income for the 48 contiguous United States over the period 1965 to

1991, adjusted to constant 1987 dollars [13, 14, 15]. For models (2.6) and (2.7), dg is set to $1000

plus the largest real per capita income for state s over the observed time span, as suggested by

Berry and Kaserman [8]. The values for 4>g and 7s obtained using LLS and model (2.7) are used as

starting values for the NLS procedure employed to solve model (2.6). The nls estimated values for

(pg and 7s along with the selected value of dg are then used as starting values to fit models (2.4)

and (2.5).

The thumbnail plots displayed in Figure 1 show that the asymptotic 95 percent confidence

intervals for 7s obtained using model (2.4) under the assumption that the real per capita income

data include an additive Gaussian stochastic component are not in general significantly different

from those obtained using model (2.5) under the assumption that the real per capita income data is

log-normal. The results obtained using the linearized, two-parameter model (2.7), however, do not

in general overlap the confidence intervals obtained using either model (2.4) or (2.5)—and frequently

do not overlap the confidence intervals obtained using the nonlinear, two-parameter model (2.6)

—

thus showing sensitivity to the value chosen for otg. The estimates of economic growth obtained

using the linear approximation (2.7) are therefore inconsistent with the nonlinear least squares

estimates obtained using either model (2.4) or (2.5) and are often inconsistent with model (2.6) as

well.

Given the accessibility of high quality nonlinear optimization software, it is arguably better to

use NLS to solve for the parameters of a nonlinear model with additive error rather than to apply

LLS to a linearization of the model: linearizing transformations change the statistical model, and it

is unlikely that it can be determined beforehand under what circumstances the use of a linearizing

transformation will make a significant difference in the results. The next section, however, shows

that even NLS might not be adequate in the presence of measurement errors.

3. Measurement Errors and Orthogonal Distance Regression

Errors in variables, factor analysis, simultaneous equation models, and measurement error models

are all names used to describe the least squares problem that arises when the explanatory variables

X as well as the response variables y include measurement errors. The optimization procedure

for the linear measurement error problem is sometimes called total least squares (tls) [16]. The

optimization procedure for the nonlinear measurement error problem is called orthogonal distance

regression (odr). For both linear and nonlinear models, the problem is that of finding parameter

estimates that minimize the sum of the squares of the weighted orthogonal distances between each

observed data point and the curve described by the modeling equation.

The issues surrounding measurement errors have been examined by a number of authors. An-

derson [17, 18], for example, contains an excellent survey and explanation of the relationship be-

tween the various forms of measurement error models. Theoretical and computational analyses
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are also presented by Dagenais [19], Fuller [4], Morgan [20], and Van HufFel and Vandewalle [16].

Boggs et al. [21] describe the results of a Monte Carlo study of nonlinear measurement error prob-

lems. Aigner [22, 23], Chamberlain [24], Chamberlain and Griliches [25], DeLong [26], Greene [2],

Griliches [27], Griliches and Ringstad [28], and Malinvaud [29] each discuss the use of measurement

error models in econometrics.

The primary result of each of these references is that when both the response and the explanatory

variables have significant measurement errors, then use of LLS or NLS is not always theoretically

justified and will likely produce poor estimates. Other estimation methods should therefore be

used. The method of instrumental variables (iv) is one commonly employed technique for solv-

ing economics measurement errors problems. Another procedure for solving measurement error

problems is the method of orthogonal distance regression (odr). Although not often employed by

economists, ODR is an especially appropriate technique when the model is nonlinear or the variances

of the measurement errors are known.

The importance of explicitly addressing measurement errors is demonstrated here using ODR

and a variation of the analysis presented in the preceding section. Per capita incomes for the 48

contiguous United States are jointly modeled by

t-i

y*s,t
=

y5,to n ’
s = i,...,48, t = (3.1)

T=to

where y*^ again denotes the true per capita income for state s in year t, y*j.^ denotes the true per

capita income for state s in year to, and 7s is the rate of economic growth for state s in year t,

predicted by
9 8

ls,t + ^oys,to + X! J Zs,t/3 ,
(3.2)

7=1 ;=1

with Tj, denoting dummy variables that identify nine geographic regions of the United

States, Qs,t,ji denoting the values of eight tax and expenditure variables for state

s in year t, /3 (ai, . .
.

,

ag, 00 ? 01 ?
• • • ? 08)

^ denoting the unknown parameters, and

= {i"!, ,')"9,ys,to:Qs,t,i, ,(}s,t,8) denoting all of the explanatory variables associated with

observation t. The explanatory variables for state s at time t are:

• INITIAL INCOME—real per capita income in to = 1965;

• CORPORATE INCOME TAX—real per capita state corporate income tax;

• INCOME TAX—real per capita individual state income tax;

• PROPERTY TAX—real per capita state property tax;

• SALES TAX—real per capita general state sales tax;

• OTHER TAXES—total real per capita state taxes less state corporate income, property, sales

and individual income tax revenues;

• EDUCATION—real per capita spending on state institutions of higher education;

7



• HIGHWAYS—real per capita spending on highways;

• PUBLIC WELFARE—real per capita spending on public welfare;

All variables are adjusted to 1987 dollars using the national price deflator [13]. The five tax revenue

variables exclude local taxes, and the variable EDUCATION does not include local government ex-

penditures. Numerical characteristics of these data are listed in Table 2. The economic implications

of the results presented here are discussed by Rogers in reference [30].

It is appropriate to use nls to solve for the parameters of model (3.1) when the underlying

statistical model is

ys,t — Vs,to (I “1“ Tsr) T ^s,t

r=to
9 8

subject to: 7^,4 = ^ ain + /3oys,to + Pj(ls,t,j ,

2=1 j=l

(3.3)

where Eg.t denotes the error in real per capita income for state s in year t. The statistical represen-

tation of model (3.1) that explicitly incorporates measurement error terms is

ys,t — {ys,to + ^s,to) (l+7sr) + £s,t

9 8 (3.4)

subject to: = E oiiTi -t- Po{ys,to + ^s,to) + X] + ^s,t,j) 9

2=1 j=l

where Sg^to denotes the error in real per capita income for state s in year to, and 6g^t,j is the error

associated with explanatory variable qs,t,j- Models (3.3) and (3.4) highlight the difference between

solving this problem using NLS versus using ODR: the former assigns all of the random error to the

response variable while the latter distributes this error among all of the stochastic variables.

The ODR estimators of the weighted minimization problem associated with model (3.1) are

def
b = argmin S{(3)

48 T / 8
\'

subject to: s{0) = y: + X^
I

X^
)

S= 1 f=i V ,=i /_

def

(3.5)

f-1

^s,t — ys,t {ys,to 4” ^s,to )
(I T 7s,t) 5

t — tl-i 1

T= to

Ts,t ~ {^s,t T ) t — ti, . .

. ,
tj'

,

where Vg^t = (un ,
• • • , ,

Vy^ tQ^'^gs 1 11 I'^qs t s) denotes the unobservable disturbances in the ex-

planatory variables Zg^t, with = • • = = 0, =
£y^ ^^ ,

and
^ ^ ^j j = 1 , . .

.

,

8, and

ujg: and ujy are weights used to compensate for differences between <7^ and When = ujy = 00,

the solution to model (3.5) is the same as that obtained using NLS for which Vg^t = 0 V t.
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The solution to problem (3.5) is found using ODRPACK [31], a portable collection of publicly

available Fortran 77 subroutines designed specificly for the ODR problem.^ Model (3.5) is encoded

using a multiresponse format: the 26 values of real per capita income t — 1966, . .
. ,

1991 form

the “observation” for state s = 1, . .
.
,48. Using this multiresponse format allows the measurement

error in ys,toi well as those in the explanatory variables to be handled correctly. Starting

values for the NLS optimization are obtained using LLS and a linearization of model (3.5); the

NLS results are then used as starting values for the ODR optimization. Derivatives are computed

using ODRPACK’s forward finite difference option, and default values are used for the convergence

criteria.

Assuming the values for total state income and total state population are each accurate within

approximately 1 percent, real per capita income values will be accurate within approximately 2

percent [33]. Similarly, although total tax revenues and expenditures are known precisely, the 1

percent accuracy of the state population values will result in 1 percent accuracy of the real per

capita representations of these values. Use of the national price deflator to adjust the data to

constant dollars also introduces errors in so far as relative and/or absolute purchasing power parity

is not constant across states. The accuracy of the real per capita income values used in this study

are therefore at best accurate within approximately ±$250 to ±$350 (2 to 3 percent), while tax

and expenditure values are at best accurate within approximately ±$1.

To assess the effect of different magnitudes of the measurement errors Eg, to-,
tbe analysis reported

herein is repeated using = 1, 2, . .
.

,

10. The ordinary NLS solution, which is equivalent to setting

Ui>S = ujs = oo, is also reported. For each of the ODR analyses, uts = 50.

The residual variance of the ODR solution is estimated by

S{h)
(3.6)

where ^(b) is the sum of the squares defined in model (3.5), b denotes the least squares estimators
dcf

of the unknown parameters, and u = nx q — p denotes the degrees of freedom in the fitted results.

Here, n = 48 is the number of observations (states), p = 18 is the number of unknown parameters

being estimated, and q G [1,26] is the number of independent responses per observation. For

the results reported below, ^ = 13 and r' = 48 x 13 — 18 = 606. This is a compromise between

assuming that each response is effectively independent {q — 26) as suggested by Bard [34, p. 195],

and assuming that these multiple responses provide no additional degrees of freedom {q
= 1), as

suggested by Bates and Watts [35, pp. 140-141].

The outcomes from the analyses of models (3.3) and (3.4) are shown graphically in Figures 2

and 3, and are listed in Table 3. The plots show how the 95 percent confidence intervals vary with

cje and Us- The tables list the parameter estimates and their asymptotic standard errors, as well

as the t-value for the null hypothesis that the estimated parameter value is 0 and the two-sided

significance level at which this null hypothesis would be rejected. The standard errors are derived

"ODRPACK is an implementation of the ODR algorithm developed by Boggs, Byrd, and Schnabel [32]. It has

been used to solve problems in many different fields on machine architectures ranging from PCs to supercomputers.

ODRPACK accommodates many levels of user sophistication and problem difficulty; implicit as well as explicit models;

multiresponse data; and correlation within the components of a multidimensional observation. Source code and

documentation for ODRPACK are available from http;//uww. netlib.org/netlib/odrpack/.
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under the assumption that there are no important omitted variables and that the covariance matrix

of the response variables is diagonal. The validity of this assumption will be explored in future

work.

These figures and tables document the consequences of ignoring measurement errors in the

explanatory variables. The outcome of tests of the hypothesis that the parameters are equal to 0

are different at the 5 percent significance level for half of the explanatory variables depending on

whether NLS or ODR is employed. Furthermore, when NLS is employed (a;^ = oo), the coefficient on

INITIAL INCOME is negative and significantly different from 0 at the 0.1 percent significance level;

when ODR is applied and 10 < < 4, this coefficient is not significantly different from 0 at the 5

percent significance level; and, when < 3, it is positive and significantly different from 0 at the

0.1 percent significance level. (Similar results are reported in DeLong [26].) The conclusion drawn

from the NLS analysis of this dataset with respect to the coefficient for INITIAL INCOME, which is

important for the test of income convergence across states and regions, is thus different than that

drawn from an ODR analysis when = 10, and is diametrically opposite that drawn from the ODR

analysis with > 3. Note also that these differences are less significant than those that would

have been obtained if the Bard estimate of the number of degrees of freedom had been employed.

The measurement errors estimated using = 1 are shown in Figure 4, and those obtained

when = 4 are shown in Figure 5. When = 4, the variance of the measurement errors £sto

is approximately $300, or 2.5 percent of the mean adjusted real per capita income value, $12 280.

The mean is computed using adjusted real per capita income data from years 1965 to 1992; the

median value is $12 089. When — 1, this variance is approximately $600, or 5 percent of the

mean adjusted real per capita income. The measurement errors for the other explanatory variables

show some pattern between states that needs further exploration.

Also, model (3.4) implicitly specifies that the coefficients of the independent variables are homo-

geneous across states. Canto and Webb [36] reject this hypothesis, conjecturing that tax levels and

degrees of progressivity are likely to be different, and hence result in significantly different values

for the various coefficients. While it is not possible to make a definitive test of this hypothesis for

the analysis reported here. Figures 4 and 5 do show that in a number of instances the measurement

errors for a given explanatory variable and state are either always positive or always negative,

possibly indicating that the hypothesis of homogeneity should be rejected.

4. Conclusions

This paper describes two studies of United States per capita income data that show that common

mathematical transformations performed on economic models in order to permit use of simpler least

squares procedures can significantly alter the results obtained. The empirical evidence presented

herein, although limited in scope, highlights the importance of specifically testing assumptions made

during any given analyses. The first example shows that the results obtained by applying linear

least squares to a linearization of an inherently nonlinear model are significantly different from

those obtained when nonlinear least squares is applied directly to the nonlinear model. The second

illustrates the potential consequences of not explicitly modeling measurement errors in economic

data. Together, the results of these two studies demonstrate the importance-—and computational
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feasibility—of formulating economic models precisely.
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Figure 1. 95 percent asymptotic confidence intervals for 7. The s-axis limits for all states are —0.05

to 0.25, and the position of 0 is shown as the vertical dotted line. Plotted results are as follows.
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a 2.4 Nonlinear Additive Estimated
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Figure 2. 95 percent confidence intervals for coefficients of explanatory variables. The weights

that were used to obtain the solutions are shown along vertical axis, and the position of 0 is shown

by the vertical dotted line. All parameter values have been multiplied by 10®.
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the position of 0. The dashed horizontal lines indicate the position of two standard errors above

and below 0, and the middle tick label on each vertical axis is the value of one standard error.
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Table 2. Response and explanatory variables.

Variables Mean Median Minimum Maximum

Response: per capita income

Explanatory: INITIAL INCOME

CORPORATE INCOME TAXES

PROPERTY TAXES

SALES TAXES

INDIVIDUAL INCOME TAXES

OTHER TAXES

HIGHER EDUC.^TION

HIGHWAYS

PUBLIC WELFARE

12401.41 12200.56 5652.90 22618.77

9087.61 9117.42 5652.90 11956.17

62.95 50.19 0.00 2823.85

23.09 5.01 0.00 1802.04

231.49 232.59 0.00 811.15

184.50 167.54 0.00 925.00

315.49 261.46 24.81 5023.03

205.10 198.32 1.02 662.36

214.91 189.25 67.92 1402.01

216.17 194.25 30.66 727.44

• INITIAL INCOME values are computed for the year 1965.

• All other values are computed using data from years 1965 to 1992.

• All data are converted to 1987 dollars using the national price deflator [13].
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Table 3. Statistics for estimated parameters.

Variable Weights

Us

Parameter

value

xlO"®

Standard

error

xlO-^

t-value

Two-sided

significance

level

%
INITIAL INCOME 1 50 1.548 0.451 3.434 0.06

2 50 1.197 0.388 3.081 0.22

3 50 0.824 0.330 2.496 1.28

4 50 0.513 0.288 1.784 7.49

5 50 0.270 0.259 1.043 29.72

6 50 0.080 0.239 0.335 73.76

7 50 -0.065 0.226 -0.287 77.46

8 50 -0.176 0.217 -0.810 41.84

9 50 -0.264 0.211 -1.253 21.06

10 50 -0.333 0.206 -1.617 10.65

oo oo —0.745 0.177 -4.219 0.00

CORPOR.'^TE INCOME TAXES 1 50 31.006 13.202 2.349 1.92

2 50 32.885 12.539 2.623 0.89

3 50 35.285 11.667 3.024 0.26

4 50 37.621 10.866 3.462 0.06

5 50 39.764 10.240 3.883 0.01

6 50 41.649 9.788 4.255 0.00

7 50 43.310 9.469 4.574 0.00

8 50 44.727 9.244 4.839 0.00

9 50 45.892 9.082 5.053 0.00

10 50 46.860 8.965 5.227 0.00

oo oo 37.555 8.004 4.692 0.00

PROPERTY TAXES 1 50 24.945 16.372 1.524 12.81

2 50 35.560 15.248 2.332 2.00

3 50 44.501 13.986 3.182 0.15

4 50 50.966 12.924 3.944 0.01

5 50 55.681 12.133 4.589 0.00

6 50 59.334 11.566 5.130 0.00

7 50 62.173 11.172 5.565 0.00

8 50 64.402 10.897 5.910 0.00

9 50 66.225 10.699 6.190 0.00

10 50 67.646 10.554 6.410 0.00

oo oo 50.562 9.317 5.427 0.00
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Table 3. Statistics for estimated parameters, continued.

Variable Weights

UJi UJS

Parameter

value

xlO-®

Standard

error

xlO-®

t-value

Two-sided

significance

level

%
GENERAL SALES TAXES 1 50 0.715 3.813 0.188 85.13

2 50 -2.193 3.629 -0.604 54.59

3 50 -4.324 3.398 -1.272 20.37

4 50 -5.600 3.185 -1.758 7.92

5 50 -6.338 3.017 -2.101 3.61

6 50 -6.769 2.891 -2.342 1.95

7 50 -7.042 2.800 -2.515 1.22

8 50 -7.227 2.736 -2.642 0.85

9 50 -7.347 2.688 -2.733 0.65

10 50 -7.430 2.653 -2.801 0.53

00 oo -5.409 2.370 -2.282 2.28

INDIVIDUAL INCOME TAXES 1 50 -3.368 4.424 -0.761 44.67

2 50 -6.235 4.160 -1.499 13.45

3 50 -8.807 3.847 -2.289 2.24

4 50 -10.547 3.576 -2.949 0.33

5 50 -11.623 3.371 -3.448 0.06

6 50 -12.242 3.221 -3.800 0.02

7 50 -12.646 3.118 -4.056 0.01

8 50 -12.924 3.049 -4.238 0.00

9 50 -13.085 2.997 -4.366 0.00

10 50 -13.197 2.958 -4.461 0.00

00 oo -12.125 2.651 -4.573 0.00

OTHER TAXES 1 50 -30.454 4.964 -6.135 0.00

2 50 -31.117 4.684 -6.643 0.00

3 50 -30.732 4.351 -7.063 0.00

4 50 -29.681 4.051 -7.327 0.00

5 50 -28.441 3.815 —7.455 0.00

6 50 -27.213 3.640 -7.476 0.00

7 50 -26.173 3.523 -7.430 0.00

8 50 -25.326 3.430 -7.383 0.00

9 50 -24.603 3.368 —7.305 0.00

10 50 -24.020 3.321 -7.233 0.00

oo oo -18.059 2.953 -6.115 0.00
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Table 3. Statistics for estimated parameters, continued.

Variable Weights

Parameter

value

xlO-®

Standard

error

xlO"®

t-value

Two-sided

significance

level

%
HIGHER EDUCATION 1 50 6.586 7.570 0.870 38.46

2 50 4.174 6.990 0.597 55.07

3 50 2.946 6.363 0.463 64.36

4 50 2.166 5.844 0.371 71.10

5 50 1.476 5.460 0.270 78.69

6 50 0.703 5.186 0.136 89.22

7 50 0.114 5.004 0.023 98.18

8 50 -0.315 4.872 -0.065 94.86

9 50 -0.767 4.780 -0.161 87.25

10 50 -1.128 4.712 -0.239 81.09

oo oo -3.260 4.183 -0.779 43.60

HIGHWAYS 1 50 17.811 7.389 2.410 1.62

2 50 17.571 6.496 2.705 0.70

3 50 16.250 5.676 2.863 0.43

4 50 14.658 5.068 2.892 0.40

5 50 13.208 4.650 2.840 0.47

6 50 11.967 4.355 2.748 0.62

7 50 10.971 4.159 2.638 0.86

8 50 10.178 4.020 2.532 1.16

9 50 9.540 3.920 2.433 1.52

10 50 9.038 3.847 2.349 1.91

(X) oo 4.971 3.375 1.473 14.12

PUBLIC WELFARE 1 50 -10.590 7.364 -1.438 15.09

2 50 -9.350 6.794 -1.376 16.92

3 50 -7.799 6.189 -1.260 20.81

4 50 -6.631 5.694 -1.165 24.46

5 50 -5.889 5.329 -1.105 26.96

6 50 -5.461 5.072 -1.077 28.21

7 50 -5.212 4.894 -1.065 28.74

8 50 -5.061 4.770 -1.061 28.90

9 50 -4.985 4,680 -1.065 28.73

10 50 -4.944 4.615 -1.071 28.45

00 oo -4.159 4.121 -1.009 31.33
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Table 3. Statistics for estimated parameters, continued.

Variable Weights

U>^ UJS

Parameter

value

xlO"®

Standard

error

xlO-®

t-value

Twosided

significance

level

%
NEW ENGLAND

(CT, ME, MA, NH, RI, VT) 1 50 1.642 0.468 3.506 0.05

2 50 2.049 0.404 5.069 0.00

3 50 2.408 0.346 6.969 0.00

4 50 2.682 0.303 8.855 0.00

5 50 2.887 0.274 10.533 0.00

6 50 3.046 0.255 11.964 0.00

7 50 3.164 0.242 13.091 0.00

8 50 3.253 0.233 13.975 0.00

9 50 3.325 0.226 14.685 0.00

10 50 3.381 0.222 15.248 0.00

oo oo 3.709 0.191 19.402 0.00

MIDDLE ATLANTIC

(NJ, NY, PA) 1 50 1.243 0.483 2.573 1.03

2 50 1.711 0.414 4.137 0.00

3 50 2.129 0.350 6.076 0.00

4 50 2.446 0.305 8.021 0.00

5 50 2.679 0.274 9.761 0.00

6 50 2.855 0.254 11.239 0.00

7 50 2.986 0.240 12.428 0.00

8 50 3.084 0.231 13.334 0.00

9 50 3.161 0.225 14.068 0.00

10 50 3.220 0.220 14.649 0.00

oo oo 3.567 0.188 18.935 0.00

EAST NORTH CENTRAL

(IL, IN, MI, OH, Wl) 1 50 0.252 0.531 0.475 63.52

2 50 0.826 0.452 1.829 6.80

3 50 1.338 0.381 3.510 0.05

4 50 1.721 0.331 5.207 0.00

5 50 2.002 0.297 6.742 0.00

6 50 2.212 0.274 8.068 0.00

7 50 2.368 0.259 9.133 0.00

8 50 2.484 0.249 9.972 0.00

9 50 2.576 0.242 10.652 0.00

10 50 2.647 0.236 11.195 0.00

oo oo 3.045 0.203 15.013 0.00
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Table 3. Statistics for estimated parameters, continued.

\'ariable Weights

UJf IjJS

Parameter

value

xlO-®

Standard

error

xlO"^

t-value

Two-sided

significance

level

%
WEST NORTH CENTRAL

(lA, KS, MN, MO, NE, ND, SD) 1 50 0.663 0.513 1.291 19.71

2 50 1.255 0.435 2.887 0.40

3 50 1.776 0.366 4.859 0.00

4 50 2.161 0.317 6.826 0.00

5 50 2.439 0.284 8.586 0.00

6 50 2.646 0.262 10.091 0.00

7 50 2.798 0.248 11.294 0.00

8 50 2.912 0.238 12.229 0.00

9 50 3.001 0.231 12.984 0.00

10 50 3.070 0.226 13.588 0.00

oo oo 3.430 0.194 17.710 0.00

SOUTH ATLANTIC

(de, fl, ga, md, nc, sc, va, wv) 1 50 1.327 0.458 2.898 0.39

2 50 1.875 0.387 4.843 0.00

3 50 2.358 0.325 7.257 0.00

4 50 2.713 0.281 9.655 0.00

5 50 2.967 0.252 11.785 0.00

6 50 3.155 0.232 13.588 0.00

7 50 3.293 0.219 15.014 0.00

8 50 3.395 0.210 16.130 0.00

9 50 3.475 0.204 17.024 0.00

10 50 3.537 0.199 17.733 0.00

oo oo 3.848 0.171 22.566 0.00

EAST SOUTH CENTRAL

(al, ky, ms, tn) 1 50 1.399 0.418 3.348 0.09

2 50 1.908 0.356 5.364 0.00

3 50 2.350 0.301 7.814 0.00

4 50 2.672 0.262 10.204 0.00

5 50 2.900 0.236 12.295 0.00

6 50 3.067 0.218 14.045 0.00

7 50 3.188 0.207 15.401 0.00

8 50 3.277 0.199 16.478 0.00

9 50 3.347 0.193 17.324 0.00

10 50 3.400 0.189 17.994 0.00

oo oo 3.690 0.163 22.674 0.00
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Table 3. Statistics for estimated parameters, continued.

Variable Weights

LUi Us

Parameter

value

xlO-®

Standard

error

xlO-®

t-value

Twosided

significance

level

%
WEST SOUTH CENTRAL

(ar, la, ok, tx) 1 50 1.521 0.420 3.618 0.03

2 50 2.082 0.354 5.883 0.00

3 50 2.557 0.296 8.635 0.00

4 50 2.896 0.256 11.306 0.00

5 50 3.132 0.230 13.624 0.00

6 50 3.303 0.212 15.546 0.00

7 50 3.426 0.201 17.053 0.00

8 50 3.517 0.193 18.197 0.00

9 50 3.587 0.188 19.109 0.00

10 50 3.641 0.184 19.830 0.00

oo oo 3.867 0.158 24.479 0.00

MOUNTAIN

(AZ, CO, ID, MT, NV, NM, UT, WY) 1 50 0.674 0.507 1.329 18.43

2 50 1.211 0.435 2.783 0.55

3 50 1.685 0.370 4.554 0.00

4 50 2.038 0.323 6.308 0.00

5 50 2.294 0.291 7.872 0.00

6 50 2.486 0.270 9.210 0.00

7 50 2.626 0.256 10.273 0.00

8 50 2.730 0.246 11.105 0.00

9 50 2.813 0.239 11.775 0.00

10 50 2.876 0.234 12.309 0.00

oo oo 3.250 0.201 16.180 0.00

PACIFIC

(CA, OR, WA) 1 50 0.384 0.550 0.698 48.56

2 50 0.919 0.473 1.943 5.25

3 50 1.396 0.402 3.471 0.06

4 50 1.757 0.351 5.003 0.00

5 50 2.022 0.317 6.380 0.00

6 50 2.222 0.294 7.566 0.00

7 50 2.370 0.279 8.508 0.00

8 50 2.480 0.268 9.251 0.00

9 50 2.568 0.261 9.850 0.00

10 50 2.635 0.255 10.328 0.00

oo oo 3.103 0.219 14.138 0.00
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