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Relative Permittivity Measurement
of Rectangular Copper-Laminated Substrates
Using the Full-Sheet Resonance Technique

Richard L. Lewis

Electromagnetic Fields Division

National Institute of Standards and Technology

Boulder, Colorado 80303-3328

A measurement program has been undertaken at NIST to evaluate the full-sheet

resonance (FSR) technique, from which consistent relative permittivity values

have been obtained. We present an analysis of the theory underlying the FSR
technique, along with a theoretical formulation correcting full two-port scattering-

matrix measurements of a resonant cavity for the effects of coupling between the

external measiurement circuit and the cavity. A circuit analysis modeling the res-

onant cavity and its external circuit is presented, along with a least-squares so-

lution for the resonant cavity’s primary resonance parameters. The least-squares

analysis features a slight rearrangement of an earlier formulation leading to a

more numerically stable solution. An even earlier solution for a resonant cavity’s

unloaded quality factor, also using a least-squares solution to obtain a coupling

correction, is presented for comparison. The application of these coupling cor-

rection formulations to the FSR technique is discussed, and results from these

two correction formulations are compared with uncorrected results for two sam-

ple FSR panels. Computed least-squares data-scatter uncertainties are obtained

for each FSR permittivity measurement, which are then used to obtain overall

uncertainty estimates for each panel’s measured permittivity, including a repeata-

bility uncertainty estimate. These overall uncertainty estimates are compared to

our earlier uncorrected FSR uncertainty estimate, showing a tightening of the

uncertainty interval for corrected measurements. Finally, om measured FSR per-

mittivities are compared with re-entrant cavity substrate permittivity measure-

ments, showing agreement within expected uncertainty limits between the two

techniques.

Key words: coupling correction; dielectric constant; FSR; full-sheet resonance;

least-squares analysis; relative permittivity; uncertainty analysis

1. Introduction

A number of authors have described a convenient method for measuring the relative per-

mittivity of dielectric substrates having copper-clad top and bottom surfaces [1-5]. This
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method, known as the full-sheet resonance (FSR) technique for measuring microwave cir-

cuit board substrates, determines the dielectric substrate’s relative permittivity e'^ by mea-

suring the resonant frequencies of the resulting parallel plate cavity. Nondestructive mea-

surement techniques such as FSR are important to the microwave communications industry

where knowledge of substrate permittivity is critical to maintaining competitiveness. The
technique is independent of substrate thickness, but is not capable of evaluating the uni-

formity of the relative permittivity over the substrate. A measurement program has been

undertaken at NIST to evaluate the FSR technique using an automatic network analyzer

(ANA), and results to date demonstrate that consistent values for the relative permittivity

are obtained. Here, an improved formulation for carrying out FSR permittivity calcula-

tions is presented, along with a formulation for correcting resonant cavity measurements

for the effects of coupling. Details on improved FSR panel coupling axe also presented,

along with associated measurement uncertainties.

2. Measurement Configuration

Primarily, thin dielectric substrates having open sides and copper-clad top and bottom

surfaces were tested. The entire panel acts as a resonant cavity, so by measuring the

panel’s resonant frequencies we obtain the average relative permittivity of the substrate.

Since multiple resonant modes occur within the cavity, construction of a mode table is

necessary to identify the particular mode excited at a given resonant frequency, which in

turn requires keeping an accurate count of the resonant excitation frequencies encountered.

The presence of closely spaced modes increases the difficulty of maintaining an accurate

resonant frequency count. Consequently, although the number of possible resonant modes

within a panel is limitless, only the lower order modes are useful for determining relative

permittivity. Since accurate permittivity measurements axe hmited to the panel’s low-

order resonant frequencies, higher frequency measurements require reducing the size of the

panel.

We described results obtained using weak: coupHng between the ANA and square FSR
panels in our earlier report [6]. In the present study, rectangular FSR panels are strongly

coupled to the ANA, as shown in Figure 1, using two APC-7 7mm precision coaxial connec-

tors positioned at opposite corners of the panel. Coupling between the coaxial connectors

and the FSR panel needs to be optimized to maintain an accurate count of the reso-

nances excited within the panel. This was partially accompHshed by turning the coaxial

connectors so they directly faced each other. In our eaxHer work [6], weak coupling just

sufficient for the measixrement was achieved by maintaining direct contact between one

coaxial connector’s center conductor and the panel’s upper copper sheet and direct con-

tact between the inside of the opposing coaxial connector’s outer conductor and the panel’s

lower copper sheet. FSR panel resonances were observed by measuring frequencies at which

the transmission scattering-matrix coefficient S\2 peaked. Strong couphng, allowing full

scattering-matrix observation of the resonances by measuring both reflection and transmis-

sion coefficients, was achieved by inserting both corners of the FSR panel far enough into

the coaxial connector openings to maintain direct contact between the coaxial-connector’s

center conductor and the FSR panel’s upper copper surface, and direct contact between the

inside of the coaxial connector’s outer conductor and the FSR panel’s lower copper surface.
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Inasmuch as the tendency of the FSR panel is to spring back from such direct contact,

rubber bands were used to provide light tension drawing the FSR panel corners into the

coaxial connector’s openings. Caution was needed to prevent the connection between the

FSR panel and the coaxial connectors from becoming so taut that the rectangular panel

became bowed or warped, causing the observed resonant frequencies to shift. In order to

detect any unintended resonant frequency shifts, the expected resonant frequencies were

checked against prior measurements made using weak coupling as described above.

The advantage of full scattering-matrix measurement of FSR panel resonances is that it al-

lows either transmission or reflection coefficient measurements to be selected, whichever is

most appropriate. Measurements carried out on two sample panels showed reflection coeffi-

cient measurements to be less affected by frequency pulling due to the proximity of adjacent

resonances than transmission coefficient measurements. Obviously, full scattering-matrix

measurements will generally be more accurate than just transmission measurements. The
only disadvantage of full scattering-matrix measurements is that strong coupling is gener-

ally required; this necessitates correcting the measured results for the effects of coupling

to the FSR panels. The next section presents an underlying theoretical analysis of fac-

tors other than coupling which affect FSR permittivity measurements, while succeeding

sections present a formulation for correcting resonant cavity measurements for the effects

of couphng. These corrections are carried out by measuring the amplitude and phase

of the scattering-matrix elements over a range of frequencies in the vicinity of the reso-

nance, which in turn requires calibrating the ANA, the price for obtaining accurate FSR
permittivities.

3. Theoretical Considerations for Determining FSR Permittivity

The relative permittivity of the substrate in a rectangular FSR panel is obtained from the

resonant frequencies of an ideal cavity having perfectly conducting electric walls above and

below the dielectric substrate and perfect magnetic walls along the sides [1]. This gives

the expression

where c is the speed of light, and are the length and width of the panel, m and n are

integer-value mode numbers, and is the radian resonant frequency of an ideal cavity

corresponding to the m x mode (electric field vector perpendicular to the

conducting plates).

In practice, the resonant frequencies of a real cavity differ from their ideal values due

to conductivity and radiation losses, electric or magnetic field perturbation at the cavity

coupling points [3], and to overcoupled dual resonant modes [7]. When the FSR panel’s

side aspect ratio is nearly (but not exactly) equal to the square root of the ratio of two

integers, then some modes can have their resonant peaks widened, skewed, or doubled [5]

Also, closely spaced resonances can have their resonant peaks distorted [5] by smearing.

Resonances such as these may be used for mode counting but are not useful otherwise.

However, if the FSR panel shape is not a square then an unambiguous low order mode can

be chosen [4 (fig. 3)] for FSR permittivity measurement.
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In the case of a totally closed cavity with imperfectly conducting walls, Collin [8] formulated

a correction to such a cavity’s ideal resonant frequency using a modal-series expansion,

where each mode in the series corresponds to an eigenvalue solution for the field that

would exist in a cavity with perfectly conducting walls on all sides. Collin [8] further

noted that a cavity having a combination of perfect electric and perfect magnetic walls

could be modeled using modal fields appropriate to a mixed boundary condition. Following

Collin’s [8] analysis for a completely closed cavity, the following expression can be obtained

correcting the open-sided FSR cavity for the effects of frequency pulling due to both finite

wall conductivity and radiation loss from the open sides.

1

(
2 )

where is the open cavity’s conductivity quality factor for the metalized sides, the

radiation quality factor [8], + jBj^ = the normalized apertmre admittance at the

open side walls of the cavity, and the cavity’s unloaded resonant frequency. As
approaches infinity, corresponding to negligible radiation loss, eq (2) becomes identical

with the correction formula obtained by Collin [6]. The derivation of eq (2) readily follows

from Collin’s formulation [8 (section 7.7 through section 7.9)] by replacing Collin’s pure

“short-circuit” modes with hybrid “short-circuit open-circuit” modes.

Based on an analysis of a wave reflected from the end of a parallel plate waveguide assuming

an extended dielectric slab [9], we expect the aperture susceptance of the open side wall of

the cavity to be capacitive. Consequently, will be positive and, in the case of separation

distances much less than a tenth of a wavelength between the top and bottom conducting

sheets, we expect [10] > 1. Moreover, the magnitude of the reflection coefficient

from the end of a dielectric-free parallel-plate waveguide [10] is |r| = where t is the

guide width and k = 27:/\ . For typical panel thickness and frequencies under investigation,

this would make |r| close to unity, the character of a fairly good magnetic wall. Also, with

a dielectric substrate, the electric field wiU concentrate within the dielectric, making the

aperture an even better magnetic wall.

A theoretical formulation for the conductivity quality factor of a rectangular FSR is given

by Taber [11], who obtained

~
2Rs

(3)

where /io is free-space permeability, u) is the radian frequency, t is the thickness of the

dielectric substrate, and Rg is the sruface resistance (including surface roughness [12])

of the metalized sides. Equation (3) shows that is proportional to t
,
whereas is

inversely proportional to t [11].

The unloaded quality factor of a resonant cavity is obtained [13] by combining the

cavity’s conductivity, radiation, and dielectric quality factors, resulting in 1/Qq = ^IQq +
1/(5^ + tan 6. Consequently, we can eliminate from eq (2) to obtain

LOmn
— tan S

Gr
(4)
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To a first approximation, the ratio Bĵ / can be estimated using a theoretical formulation

[9] corresponding to the simpler case of an extended dielectric slab, although a theoret-

ical analysis similar to earlier work [10, 14] for the case where the dielectric substrate

terminates at the end of the guide would be preferable since this would match the FSR
configuration under study. Such an analysis should also produce a theoretical value for

(for instance, an expression for is given in reference [15] for a circular disk). Deter-

mining Qj^ theoretically would result in an ability to compute the dielectric loss tangent

tan 8 = I/Qq — 1/ — 1/ Measured FSR unloaded quality factors are typically around

100 with relative uncertainties greater them 3% ;
consequently the relative uncertainty in

computing tan 8 could be around ±5% if the substrate’s loss tangent is around 10“^ and

around ±50% if the loss tangent is around 10~^.

In addition to resonant frequency pulling, electric-field fringing beyond the dielectric sub-

strate can lower the measured relative permittivity. This systematic error can be corrected

by multiplying the right side of eq (1) by the idealized paxaUel-plate capacitance e(.(C'±C/)

and dividing by the actual capacitance e'j.C ± C/, where 0 = 6^ is free-space

permittivity, and Cf is the fringing capacitance of the panel. The relative permittivity is

then obtained iteratively using

C + Cf
f
7rc\

C + Cf/e'^
(
5 )

where e'^. is an improved value for the permittivity and the initial value e(, is obtained from

eq (1). Assigning a value to Cf is problematical, although as an approximation Kirchhoff’s

formula [16] for the fringe capacitance of two parallel circular disks could be used.

4. Equivalent Circuit Model of a Resonant Cavity

An ANA may be used to measure a cavity’s loaded resonant frequency and loaded quality

factor, from which the cavity’s unloaded resonant frequency and unloaded quality factor

[17] can be determined. Following Kajfez’s analysis [18,19] of a single-port resonant cavity,

the equivalent circuit diagram for a two-port resonant cavity in the vicinity of a single

isolated resonance is shown in figure 2. The resonant cavity is represented by the parallel

circuit elements having primary resonance parameters denoted as and with energy

loss in the cavity modeled by the parallel resistor Rg • The input/output ports of the ANA
are represented by the two resistors labeled Rc located at opposite sides of the circuit

diagram. These two ANA ports are each connected to a transmission line of character-

istic impedance Rc^ which in turn are connected to the resonant cavity through the self

impedances of the resonant cavity’s coupling ports Zg = Rg + jXg and Zg = Rg jXg.

The series reactances Xg and Xg axe assumed to vary slowly with frequency compared to

the resonance under study. A straightforward circuit analysis [19] expresses the 5ii reflec-

tion coefficient, at the input port to the resonant cavity, in terms of the exciting radian

frequency co as

‘5'ii — r, ±
d^e

1 ± 2

(7 )
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Here, is the resonant circuit’s loaded resonant frequency, is the resonant circuit’s

loaded quality factor, and is the detuned reflection coefficient corresponding to the

coupling port’s self impedance such that

l±i
1 -r. (8 )

Moreover,

— 2 /Cj

\ tz
5

7
^
= 2 tan

'

Xs/R,

. P

(9 )

( 10 )

Here, is the ratio of the transmission line conductivity (as viewed from the resonant

circuit’s port) to the resonant circuit’s conductivity. An expHcit expression [19] for in

terms of the lumped circuit elements in figure 2 is

Rc Rq

(Re + Rs)^ +
(
11

)

Equation (10) contains ^ = I R^/Rc, while eq (9) introduces k, the resonant cavity’s

overall coupling coefficient,

/c = /? /Cj + /? /% . (12)

Here, (3 and correspond to the 5ii port while (3 and correspond to the S22 port. The
overall coupling coefficient k relates the loaded quality factor to an intermediate unloaded

quality factor according to

Q„ = (l + »c) Q, . (13)

The unloaded resonant frequency is given by

(14)

Again, Xg is the 5ii couphng port’s self reactance while is

reactance. The overall unloaded quality factor of the resonant

help of eq (14) as

the S22 coupling port’s self

cavity is obtained with the

(15)

The transmission component ^21 of the scattering matrix is readily obtained

S21 —
1 + f Q LJ-

(16)

'£ <jj uj.
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where

—
1 “1“ K ( 17 )

Equations (16) and (17) agree with an earlier expression [20] for the amplitude squared of

521 - The phase term in eq (16) is

tan
^ \Xs/Rc]

-
1
- tan ^ 'Xs/Rc'

[ p \

(18)

5. Least-Squares Circle Fit to the Equivalent Circuit Model

The preceding section gives a circuit model analysis of a resonant cavity’s scattering matrix

in the vicinity of an isolated resonance as a function of frequency. The locus of points traced

out on a Smith chart by either of the scattering matrix components or S21 ,
as given

by eqs (7) and (16), is a circle [13]. Kajfez [19] describes a linear least-squares solution

for three unknowns which fits measured reflection coefficient data to a circle. However, a

slight rearrangement of Kajfez’s formulation was required to make his least-squares solution

numerically stable. The resulting linear equation for least-squares resolution is

Z S\\ — Qfj Z 0^2 — <^3 (19)

where aj
;

= 1, 2, 3 denotes the unknowns to be determined by the least-squares fitting

procedure [19]. Specifically, the unknowns are determined by solving the least-squares

matrix equation.

(
1
) (-) {-Su>l (zSii)

(-z) (-z") (zS„)

L(-S^> (-zSJi) {|5„p)J .0=3.

(20 )

Here, (x) = denotes a weighted sum of N measured components Xi where

the weighting coefficients pi are inversely proportional to a particular measurement’s es-

timated variance [19] and the asterisk denotes a complex conjugate. In eq (19), the Sn
are measured reflection coefficient data corresponding to a specific complex measurement-

frequency difference
,
which is defined as

iOLO^
(
21

)

Here, to is the measured radian frequency and is the (unknown) loaded resonant fre-

quency. An initial value for is obtained from the measured resonant minimum; then an

iterative procedure [19] is used to obtain a refined value for by solving eq (19) for the 5ii

reflection coefficient’s resonance minimum, resulting in z = \{oi^ — 0:

3 ). Using this result

with eq
(
21

)
produces the iterated value, =

7



where represents the previous value. Kajfez’s formulation [19] also produces a least-

squares fit data-scatter uncertainty estimate for each of the imknown least-squares fitting

coefficients in eq (19).

From eqs (7) and (19) we make [19] the identification = o^. Also, from eq (7) we see

that the Q circle diameter is equal to d^. Using eq (19) to form the difference 5ii — 0^25 we
find the difference’s maximum amplitude (the minimum of Sn) occurs at the resonance

minimum 2: = 2 (^3
* “ ^3 )

while the difference’s minimiun amplitude occurs as 2

approaches infinity. Consequently, the resulting expression for the numerator in eq (7),

similar to Kajfez’s [19] original expression, is given by

«3 + “3*
(22 )

With this result we can solve eqs (7) and (19) for the unloaded quality factor, obtaining

= 1/Re(a3). Moreover, by noting that ^ = 1 + R^/Rc equals the reciprocal of a

constant-resistance circle’s radius [21] on a Smith Chart, Kajfez [19] obtains the expression

2(1 - |r^|cos<)i)

1 - (23)

where

<t>
= tan ^ — tan ^

[Mr,)]

[Re(r,-rjJ [Ke(r,)J
(24)

Here, F^ denotes the center of the resonance circle. The center’s location is obtained [19]

from the least-squares fit coefficients as

^ ^3*

03 + a * (25)

which takes into account the location of the resonance minimum at 2 = ~ ^
3 )

•

The S22 port’s Q circle diameter can be obtained using an expression analogous to eq

(22). Moreover, d^ can be expressed in terms of the circuit model similar to eq (9) as

d^ = 2k^ / {1 + k). Solving this expression along with eqs (9) and (12) for the overall

coupling coefficient k
,
we obtain the useful computational expression

-I-

2 — I3 d^ — ^ ^
(26)

In addition to the preceding least-squares analysis fitting measured reflection coefficients to

a circle, the measured transmission coefficients S12 = S21 (due to reciprocity) can also be

fitted to a circle. In the case of the transmission coefficient’s least-squares analysis a two-

term linear equation may be used inasmuch as the circle intersects the Smith-chart origin,

thus reducing the number of unknowns by one as compared to the reflection coefficient
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case. With a two-term linear equation numerical stability of the least-squares procedure is

generally assured. A suitable linear least-squares equation for the transmission coefficient

measurements is

ZS21 = - 5'2i «3 , (27)

where the complex measurement-frequency difference z is again expressed by eq
(
21 ),

except now the initial value of is obtained from the measured resonant maximum; an

iterative procedure similar to that described earlier (using in place of a^) is used to

obtain a refined value for the loaded resonant frequency.

Taking into account the resonant frequency maximimi, z = \{a^ — 03 ) ,
and equating

eqs (16) and (27) we find the transmission circle diameter is equal to the magnitude of

= 2 0^/(034
-
03*) ,

where the phase term’s circuit-model representation 7^ is given by

eq (18). Now recomparing eqs (16) and (27) we can make the identification = l/'Ke{a^)

.

When a full set of scattering-matrix measurements are taken, the preceding least-squares

circuit analyses show that a resonant cavity’s loaded resonant frequency and loaded quality

factor can either be obtained from transmission coefficient measurements or from reflection

coefficient measurements, that the coupling coefficients /Cj and can be obtained a number

of different ways using various combinations of results obtained from carrying out least-

squares circle fits on measured 5ii, 522 ,
and 521 '= S12 data using eqs (9) and (17), and that

the coupling-port’s self reactances can be obtained either from eq
(8 )

or from eqs
(
10

)
and

(18). When just transmission coefficient measurements are available, then the additional

simplifying assumption of lossless symmetrical coupling-port impedances is needed.

6. Determining a Cavity’s Primary Resonance Parameters

As previously indicated, any two independent scattering matrix components (recall 5i 2 =
521 )

s-re sufficient to determine a resonant cavity’s primary resonance parameters, the un-

loaded resonant frequency and the unloaded quality factor, provided that the circuit model

assumption of a single isolated resonance remains valid. With full scattering-matrix mea-

surement of FSR panels, the transmission-coefficient measurement portion was found to

be more prone to adjacent resonance distortion than the reflection-coefficient measurement

portion. As a result, calculations using just reflection coefficient data were chosen as the

preferred method for determining a FSR panel’s primary resonance parameters.

The primary resonance parameters are determined by first completing a circle fit for mea-

sured 5ii and S22 reflection coefficient data, during which the quantities <7^ , , /?, and ^
are determined using eqs (20), (22), and (23). The external series reactances Xg/Rc and

Xg/Rc are calculated using eq
(8 ), and the overall coupling coefficient k is evaluated using

eq (26). The values used for the loaded quality factor and loaded resonant frequency in eqs

(13) and (14) are obtained by averaging corresponding values from the 5ii and S22 least-

squares evaluations. The overall imloaded quality factor is then obtained using eq (15),

which completes the process of determining the cavity’s primary resonance parameters.

In general, the solution for the primary resonance parameters of a cavity having a sin-

gle isolated resonance is over determined when full scattering-matrix measurements are

taken. For the purpose of estimating the consistency of the circuit model’s assumption of

a single isolated resonance, the cavity’s primary resonance parameters are calculated using
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both the preferred formulation described above and an alternate formulation which uses

transmission-coefficient and reflection-coefficient measurements to determine the cavity’s

primary resonance parameters. The results from these two independent computations are

then compared. When the multiple resonances of a real cavity are well separated from each

other, then the results obtained from the preferred formulation described above and the

alternate formulation are equivalent, so either formulation could be used to determine the

cavity’s primary resonance parameters. However, adjacent resonant modes can cause the

results computed using these two independent formulations to diverge. Consequently, the

difference between the results from these two independent formulations serves to measure

the validity of the single resonant mode assumption built into the circuit model.

I will just give a brief description of the alternate formulation’s principal aspects. First,

a circle fit for all four scattering-matrix components is carried out using eqs (19) and

(27). Then, values for and are determined for the alternate formulation, except that

now the quantity d^ — yd^^
,
which according to eqs (9) and (17) should equal zero, is

incorporated

into the result. Equation (23) is again used for and /? ,
following which an alternate

coupling

coefficient /c is obtained from eq (26) using these modified d^ and d^ values. The loaded

quality factor and loaded resonant frequency in eqs (13) and (14) are obtained by averaging

corresponding values from the 5i2 and 521 least-squares evaluations, while the sum of

external series reactances in eq (14) follows from eqs (10) and (18) using

^^^) = Ac(l - tan^tan^)tan7g +(/?«i -/?/%) (tan^ - tan^)

.

Here, tan^ = —Imty / (|ty| -1- Kew) with w = d^ = 2(0^ — cig) / (a^ + a^) from

eq (22) is used for two of the tangent fimctions, while tan7^
= —Imu /Reu with u =

2a^/(a^ + a^)

.

The overall unloaded quality factor again follows from eq (15).

Using Kajfez’s formulation [19], a least-squares data-scatter imcertainty estimate is ob-

tained for each unknown fitting coefficient in eq (19). The estimated variance is propor-

tional to the weighted sum of the squared error at each measurement point multiphed by

a diagonal element from the matrix inverse of eq (20)’s coefficient matrix [19]. The law

of propagation of uncertainty [22] is used to obtain each subsequently derived parameter’s

combined imcertainty. Component uncertainty estimates are combined using a root sum
of squares of individual uncertainties to obtain an overall uncertainty estimate, except for

repeatability, for the cavity’s primary resonance parameters. The squared difference be-

tween the primary resonance parameter’s two alternative formulations is included in the

root square sum of variances to estimate model consistency.

In addition to the previously described preferred and alternate formulas for the primary

resonance parameters, numerical results are presented using an earlier formulation by Estin

and Janezic [20] for the unloaded quality factor. The loaded resonant frequency used

in this formulation [20] coincides with the transmission measurement peak (or reflection

measurement dip), neglecting any correction for the coupling-port’s self impedance on the

overall resonant frequency. Estin and Janezic [20] evaluate the cavity’s loaded quality

10



factor using a linear least-squares fit to the measured transmission coefficients 521 ,

resulting in the least-squares fitting equation
[
20

]

(28)

Here,
|
52i„„^| is the maximum value of

|

52 i| and / is the measured frequency. Equation

(28) can be obtained from eq (16) by making the approximation, ~ 2

Estin and Janezic [20] also use a least-squares algorithm for fitting a circle to orthogonal

(real and imaginary) component data, which is used with measured 5ii and S22 refiection

coefficient data to obtain the two circle radii q and q . These two circle radii are then

used
[
20

]
to obtain an overall coupling coefficient for the two port cavity which neglects

iris coupling resistance, resulting in k.' = (r^ -)- q)/(l — q ~ fi) 5
aJi expression very similar

to eq (26). They then use [20] the standard expression (5' = (1 -f /c') Q' for the imloaded

quality factor.

7. FSR Permittivity Evaluations

A simplified formula for computing FSR permittivity is obtained by neglecting fringing

capacitance correction (eq (5)) and retaining just the first term of the ideal resonant

frequency correction in eq (4). The result is

^ {m/x^f + {n/y^fTT C

1 + 1/Qo
(29)

where and are the measured primary resonance parameters. An uncertainty esti-

mate for e(, is obtained from the law of propagation of uncertainty
[
22], using previously

computed least-squares data-scatter uncertainty estimates for the primary resonance pa-

rameters. Since these computations do not take measurement repeatability or other factors

such as fringing capacitance or a full treatment of adjacent resonance distortion into ac-

count, the results are labeled ‘limited’ uncertainty estimates.

In addition to determining substrate permittivity using eq (29), an alternative relative

permittivity evaluation for is carried out, corresponding to using Estin and Janezic’s

formulation [20] for the unloaded quality factor, by replacing and in eq (29) with

the parameters and obtained as described above. Also, for comparison with our

earlier
[
6

]
formulation, which used loaded quality factors, a third relative permittivity

evaluation is carried out by replacing the primary resonance parameters in eq (29) with

27r/^', the frequency corresponding to the transmission measurement’s peak value, and with

/(BW), where BW denotes the transmission measurement’s 3 dB bandwidth [17].

This last expression for FSR permittivity is the same as Howell’s [2] original proposal.

8. Presentation of Computed Results

FSR measurements were carried out for two different resonant panels. Each panel had a

side aspect ratio approximately equal to y/2. Tables 1 and 2 present results obtained for

FSR panel 1 which had a nominal dielectric thickness of 0.38 mm and side dimensions

of 21.54 cm X 30.48 cm, while tables 3 and 4 present results for FSR panel 2 which
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had a nominal dielectric thickness of 1.47 mm and side dimensions of 21.87 cm x 30.88

cm. Nominal permittivity values from re-entrant cavity [23] measurements along with

a second independent measurement are also presented for both panels. Tables 2 and 4

present measured quality factors corresponding to the measured permittivities presented

in tables 1 and 2. The columns labeled “Measurement Mode” and “Frequency” designate

the integral mode numbers and resonant frequency. The columns labeled “Original FSR
Tech.” present measurement results corresponding to our earlier formulation [6] using

loaded quality factors, while the columns labeled “Estin Model” and “Circle Fit FSR”
use unloaded quality factors corresponding respectively to Estin and Janezic’s [20] and

omr modified Kajfez [19] formulations as described above. The mathematical symbols in

the column headings further relate the quality factor and frequency used in each column’s

computations to definitions in the text. The columns labeled “Limited Circle Fit Uncert.”

present computed absolute least-squares uncertainty estimates as described above.

Before each measurement, a full two-port calibration of the ANA was carried out with

respect to the precision 7mm coaxial connectors used to couple to each FSR panel. The
frequency range that was used with each set of calibrated, full scattering-matrix measure-

ments was just sufficient to encompass the ANA Smith chart’s reflection and transmission

coefficient circles in the vicinity of the resonance without including frequencies, furthest

away from the resonance, beyond which the circles crossed. The frequencies were imiformly

stepped over the measurement range with 16 samples averaged per frequency. A subset

of the calibrated frequencies was used at each resonance in order to minimize the number

of calibrations. Consequently, the number of measurement frequencies at each resonance

varied between 50 and 200. Repeating a set of scattering-matrix measurements at a few

resonances showed that the number of measurement frequencies was not crucial to these

sample resonance’s flnal results.

Due to thin sample thickness, the reentrant cavity uncertainty for sample 1 was about 3%
[6], while for sample 2, which was four times as thick, the re-entrant cavity imcertainty

was about 1% [24].

In table 2, computed quality factor uncertainty is under 2.5% at the lowest measurement

frequency and under 7.5% at the next lowest frequency. However, the percentage differ-

ence between quality factors obtained from the two alternative circle-fit computations at

these frequencies is 1.5% and 2.4%, respectively. At the next highest frequency in table

2 the computed quality factor uncertainty is 21% due to the proximity of adjacent reso-

nances, although the percentage difference between quality factors from the two alternative

circle-fit computations is under 10%. In table 4, the computed quality factor uncertainty

at the lowest resonant frequency is 10.5%, while the percentage difference between corre-

sponding alternative quality-factor computations is under 5%. Due to the relatively thick

dielectric, only the lowest order mode of panel 2 was unafiFected by adjacent-resonance dis-

tortion; consequently the resulting computed quality factor uncertainties are greater than

24%. However, except at the next to the lowest resonant frequency, percentage differences

between the two alternate quality-factor computations in table 4 is imder 4%.

Table 5 presents comprehensive relative uncertainty estimates for FSR permittivity, corre-

sponding to using computed least-squares data-scatter uncertainty estimates in conjimction

12



with our earlier report’s [6] analytical uncertainty analysis. The first column of table 5

presents our earlier report’s generic FSR uncertainties [6] for comparison. The next two

columns give estimated uncertainties for each specific panel, based on using computed least-

squares uncertainties and taking measurement repeatability into account. The combined

uncertainty in table 5 is skewed to account for typically lower values from open-side FSR
panel measurements than from other techniques [5], due partly to coupling perturbation

[3] and partly to fringing at the open panel sides.

Tables 6 and 7 present results from estimating the conductivity quality factor for each panel

using the formula = t/^s, where t denotes substrate thickness and Sg denotes skin depth

(ignoring surface roughness). The unloaded quality factors from the modified Kajfez

formulation and Q'^ from Estin and Janezic’s formulation are reproduced from tables 2 and

4 for comparison convenience. From this, we obtain values for tan^ -f- 1/<5r VQq ~

^/Qc corresponding to unloaded quality factors from these two different formulations.

Unfortunately, no simple interpretation of these results is available since is a function

of the aperture field excited by each resonant mode. However, based on re-entrant cavity

loss-tangent measurements, the values in tables 6 and 7 for the sum tan 6 -|- 1/Q^ are

just slightly larger than the value of tan 6
,
showing for the case of tables 6 and 7 that

the reciprocal of the radiation quality factor is comparable or slightly smaller than the

dielectric loss tangent. This raises the possibility that the FSR technique could be used

for approximate loss tangent measurements of lossy dielectrics by developing a reliable

theoretical formula to evaluate for rectangular parallel-plate cavities.

9. Conclusions

Improved expressions for FSR permittivity measurements are presented along with an ana-

lytical formulation, based on Kajfez’s [19] least-squares circle-fit model, correcting two-port

resonant cavity measurements for coupling effects to obtain the cavity’s unloaded resonant

frequency and unloaded quality factor. A slight rearrangement of Kajfez’s [19] formulation

improved the numerical stability of the least-squares algorithm used with this technique.

The current work presents analytical formulations for obtaining coupling corrections using

transmission coefficient and reflection coefficient measurements. Determining a cavity’s

coupHng correction requires the measurement of two independent scattering matrix coeffi-

cients, so transmission coefficient measurements alone are insufficient without simplifying

assumptions.

Using limited measurements, the FSR technique produced repeatable relative permittivity

values which compared favorably to values obtained using other techniques. Improved cou-

pling between coaxial connectors positioned at opposite corners of the FSR panel enabled

full scattering-matrix measurement of the panel’s resonances to be carried out, produc-

ing more accurate FSR measurement results than were obtained previously [6]. Tighter

measured-permittivity uncertainty estimates reflect this improvement.

Additional theoretical development is needed to further refine FSR measurement accu-

racy, which could enable the FSR technique to be used to measure the loss tangents of

lossy dielectrics. Improved FSR coupling mechanisms need to be investigated, particularly

mechanisms (such as in reference [25]) allowing the panel to be excited along a side rather
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than just at a corner. Also, measurement of medium relative permittivity substrates need

to be carried out in order to refine the uncertainty ancilysis.

Helpful comments and discussions with Claude Weil, James Baker-Jarvis, John Grosvenor,

Michael Janezic, Chriss Jones, Richard Geyer, and Bill Riddle of the NIST Electromagnetic

Properties of Materials project are gratefully acknowledged.
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Appendix: Computer Program Flow Charts

A computer program for implementing the calculations described in this report has been

written in BASIC as a number of modular sub-programs. Here we present a set of three

program flow charts to facilitate understanding of the sequence in which calculations axe

carried out and relating program output to specific mathematical symbols described in the

main text.

The main driving program contains a number of softkeys allowing the user to select a

desired action, specifically collecting measured data using the ANA, storing data for later

retrieval, retrieving stored data, and fitting data to a mathematical circle model. These

softkey selections are outlined in flow chart 1. The softkey “NEW DATA MEASURE”
requests the user to specify basic parameters for a FSR calculation; then the computer in-

structs the ANA to read and transfer measured data corresponding to all four S-parameters

over the frequency range previously set on the ANA. The softkeys “STORE DATA” and

“READ DAT FILE” respectively transfer measured ANA data to mass storage and back

agcdn.

Once the softkey labeled “DATA FIT ROUTINES” is selected, the main subprogram

“Fit-data” is called, which carries out a Q-circle fit for each of the four measured S pa-

rameters; the subprogram then goes on to compute the unloaded quahty factor and the

unloaded frequency for the resonant cavity, followed by a FSR permittivity calculation

using eq (29). Flow chart 2 lists the subroutine calls in the main subprogram “Fit-data,”

while flow chart 3 lists the subroutine calls carried out by the least-squares data fitting

subprograms. Flow charts 2 and 3 list mathematical symbols described in the text in-

dicating specific quantities calculated by a given subroutine. The lack of symbols by a

subroutine’s name indicates that the subroutine does not carry out computations; for in-

stance, non-computing subroutines might print out previously computed results or initiate

a sequence of calls to other subroutines which do carry out computations. All subroutine

output are placed in common blocks which other subroutines can access; consequently the

data input for a given subroutine is any previously calculated quantity.

An intermediate printout of results follows each least-squares circle fit computation, con-

sisting of all the mathematical symbols that are listed in flow chart 3 above each of the

indicated print routines. Computed least-squares data-scatter uncertainty estimates are

included in this printout. Following the four scattering-matrix component’s least-squares

circle-fit calculations shown in flow chart 2, the imloaded quality factor and the unloaded

resonant frequency for the cavity are calculated along with a least-squares uncertainty

estimate for these primary resonance parameters using the preferred and alternate com-

putation schemes discussed previously. A separate unloaded quality factor calculation is

also carried out using Estin and Janezic’s formulation [14]. Then two FSR permittivity

calculations are carried out using the two different sets of primary resonance parameters

that were generated, along with a least-squares uncertainty estimate. Flow chart 2 shows

this sequence of events along with a mathematical symbol list for each computational sub-

routine. The printed output consists of all the mathematical symbols that are listed in

flow chart 2 above the routine ‘Display-results.’
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Figure 1 . Coupling schematic between 7 mm coaxial connectors and a copper-clad

dielectric substrate.
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Table 1: Measured permittivity results for Panel 1 using FSR technique.

Measurement
Mode

Frequency

/„
[MHz]

Original

FSR Tech,

using //, {Q^)

Estin

Model
using //,

Q'

Circle

Fit FSR
using

Limited

Circle Fit

Uncert.

0 1 309.94 2.476 2.486 2.488 ±0.007

1 0 439.88 2.466 2.476 2.478 ±0.009

1 1 538.84 2.459 2.471 2.479 ±0.017

0 2 621.92 2.474 2.477 2.478 ±0.011

1 2 762.13 2.466

2 0 881.95 2.461

0 3 935.45 2.45

1 3 1032.21 2.469

2 2 1080.37 2.462

Manufacturer’s Measured Permittivity 2.47 (frequency unspecified)

Re-Entrant Cavity Measured Permittivity range 2.39 to 2.48 (at 440 MHz); ±3% uncert.)

(using old computation technique)

Table 2: Loaded and unloaded measured quality factors

for Panel 1 using FSR technique.

Measurement
Mode

Frequency

/o
[MHz]

Original

FSR Tech,

showing {Q^)

Estin

Model
showing (5

q

Circle

Fit FSR
showing Qq

Limited

Circle Fit

Uncert.

0 1 309.94 58.36 83.8 85.12 ±2.19

1 0 439.88 65.29 92.96 95.2 ±7.48

1 1
± 538.84 61.43 100.3 111.3 ±23.45

0 2 621.92 80.02 102.5 108.8 ±14.4

1 2 762.13 73.32

2 0 881.95 81.15

0 3 935.45 65.3

1 3 1032.21 85.51

2 2 1080.37 90.17
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Table 3: Measured permittivity results for Panel 2 using FSR technique.

Measurement
Mode

Frequency

/o
[MHz]

Original

FSR Tech,

using //, (Q^)

Estin

Model
using //,

(5'

Circle

Fit FSR
using

Limited

Circle Fit

Uncert.

0 1 234.36 4.059 4.159 4.184 ±0.0606

0 1 234.38 4.064 4.173 4.196 ±0.0556

1 0 333.06 4.092 4.145 4.158 ±0.0805

1 1 405.66 4.001 4.149 4.185 ±0.128

0 2 473.79 4.084 4.123 4.118 ±0.096

1 2 578.17 4.019 4.116 4.14 ±0.081

Stripped Sample Re-Entrant Cavity Measured Permittivity 4.22 (at 568 MHz; ±1% uncert.)

Open-Ended Coax Measured Permittivity 4.23 (at 580 MHz)

Table 4: Loaded and unloaded measured quality factors

for Panel 2 using FSR technique.

Measurement
Mode

Frequency

/o
[MHz]

Original

FSR Tech,

showing (Q^)

Estin

Model
showing Qq

Circle

Fit FSR
showing Qq

Limited

Circle Fit

Uncert.

0 1 234.36 19.33 41.29 42.93 ±4.3

0 1 234.38 19.36 42.25 44.436 ±4.7

1 0 333.06 27.63 44.97 53.23 ±19.1

1 1 405.66 16.24 39.85 41.06 ±15
0 2 473.79 32.87 48.35 50.49 ±12.03

1 2 578.17 21.55 46.88 48.386 ±16.3
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Table 5: Relative-permittivity uncertainties using the FSR technique.

Frequency and quality factor uncertainties for specific materials

are based on measurements; other uncertainties are best estimates.

(Side Length uncertainty includes fringing for the first column only.)

Uncertainty
Source

Original
Estimate

Panel 1

Uncertainty
Panel 2

Uncertainty

Frequency 4% 0.9% 2%
Quality Factor 1.6% 0.4% 1.2%

Side Length (fringing) 1.2% 0.4% 0.4%

Fringing Capacitance n.a. 0.9% 2.9%

Coupling Perturbation 2% 1% 1%
Adjacent Resonances 1% 1% 1%

Combined Uncertainty +7% -3% 1—11CO+ +5%,-3%
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Table 6: Measured unloaded qucdity factor and computed conductivity

quality factor for Panel 1 using FSR technique.

Measurement
Mode

Frequency
[MHz]

Computed

Qc

Circle Fit Circle Fit

tan 6 + l/Qji

Estin Estin

tan 6 + 1/Qp

0 1 309.94 101.6 85.12 0.0019 83.8 0.0021

1 0 439.88 121.0 95.2 0.0022 92.96 0.0025

1 1 538.84 133.9 111.3 0.0015 100.3 0.0025

0 2 621.92 143.9 108.8 0.0022 102.5 0.0028

Measured reentrant cavity value for tan 6^ 0.001.

Table 7: Measured unloaded quality factor and computed conductivity

quality factor for Panel 2 using FSR technique.

Measurement Frequency Computed Circle Fit Circle Fit

Mode [MHz] tan6+l/Qj^
Estin Estin

Qq tan 6 + 1 /Qfj

0 1 234.36 340.8 42.93 0.0204 41.29 0.0213

0 1 234.38 340.7 44.436 0.0196 42.25 0.0207

1 0 333.06 406.2 53.23 0.0163 44.97 0.0198

1 1 405.66 448.3 41.06 0.0221 39.85 0.0229

0 2 473.79 484.5 50.49 0.0177 48.35 0.0186

1 2 578.17 535.2 48.386 0.0188 46.88 0.0195

Measured reentrant cavity value for tanS w 0.0185.
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Flow Chart 1. List of main program softkey labels

and their corresponding subprogram CALL statements.

Softkey label Subprogram call Next call k RETURN

‘NEW DATA MEASURE” CALL InputJnfo CALL Read-nwa

‘DATA FIT ROUTINES” CALL Fit-data (see flow chart 2)

‘STORE DATA” CALL Save_results RETURN

‘READ DAT FILE” CALL Read-file RETURN

‘STOP PROGRAM” STOP



Flow Chart 2 . List of subprogram CALL sequences
for the meiin subprogram “Fit -data” called by
selecting the softkey “DATA FIT ROUTINES”.

SUB Fit-data

Main driving subprogram for initiating data fit procedure,

calculating total resonant cavity parameters, and carrying

out an FSR permittivity calculation.

CALL Fit -circle: 5ii data array

Carry out circle data fit for indicated data array

(see Flow Chart 3 for subprogram call sequence)

CALL Straight-line: ^21 data array

Carry out linear data fit for indicated data array

(see Flow Chart 3 for subprogram call sequence)

CALL Fit-circle: S22 data array

Carry out circle data fit for indicated data array

CALL Straight-line: S12 data array

Carry out linear data fit for indicated data array

CALL Ccilc_qualty_fac

Calculate total coupling coefficient for cavity, then

compute unloaded quality factor and unloaded frequency.

Repeat using values and formulation from earlier research.

(Output: K, Qq, { + Ki^i]/[Qo^c] }, ^0 )

CALL Qual-fac-unct

Carry out uncertainty calculations for

principal resonant cavi^ parameters ^
(Output: Alternate

(
k, Q^, { + k^X^]/[Q^Rc\ }, }, )

Uncertainty [k, Wq, Q^] )

CALL Fsr-permittivty

Calculate FSR permittivity using previously

obtained principal resonant cavity parameters.

Repeat using earlier research formulation’s values.

(Output: 4, 4 ); Uncertainty [ej.]
(c»<)

CALL Display-results

Display results from the above calculations.
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Flow Chart 3 . List of subprogram CALL sequences

for the principal least-squares data fitting subprograms.

SUB Fit-circle

Main driving subroutine for fitting S-parameter

reflection coefficient data to a circle

SUB Straight-line

Main driving subroutine for fitting S-parameter

transmission coefficient data to a straight line

CALL Find-S-min
(Obtain Frequency

of S minimum point)

(Output: w/ )^min '

CALL Circle-coef

(Carry out least squares

circle fit to data)

(Output: Oj
; j = 1

,
2

,
3

)

Iteration Complete?

— yes ^ no

CALL Iterate_freq

(Carry out reflection

frequency iteration)

(Output: u,
)' ^max '

^“^UALL Calc-circ-const

(Compute intermediate circle fit

results and uncertainty estimates)

(Output: Qj, /?, F^ A,

CALL CirJst-sqr

(Independent circle fit computation

using ’’numerical recipes” algorithm)

(Output: Tj)

CALL Dlsp-cir_result

(Display results of circle least-squares fit

computation and uncertainty analysis)

CALL Prnt_cir_result

(Send displayed results to printer)

CALL Find-S-max
(Obtain Frequency

of S maximum point)

(Output: u>! )^max

'

CALL Linear_coef

(Carry out least squares

linear fit to data)

(Output: 0^:03)

Iteration Complete?

— yes no

CALL Iterat_xmt_£req

(Carry out transmission

frequency iteration)

(Output:

CALL CeJc-xmt-consts

(Compute intermediate linecir fit

results and uncertainty estimates)

(Output: Q^,d3,l3)

CALL Cir_lst_sqr

(Independent circle fit computation

using ”numericail recipes” algorithm)

(Output: rj

CALL Disp_xmt_result

(Display results of linear least-squares fit

computation and uncertainty analysis)

CALL prnt_xmt_result

(Send displayed results to printer)

CALL Lin_lst_sqr

(Carry out independent amplitude least square fit

as part of comparison with eairlier research)

(Output: Q'^)
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