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Proposed Uncertainty Analysis for RCS
Measurements

R. C. Wittmann M. H. Francis L. A. Muth
R. L. Lewis

Abstract

From a study of several Radar Cross Section (RCS) measurement

facilities, we identify significant sources of uncertainty and develop

methods for estimating their effect. Our goal is to provide a reason-

able and uniform formalism for evaluating RCS measurements which

can be used on a variety of test ranges to produce comparable esti-

mates of uncertainty.

1 Introduction

All measurements of a quantity, such as a (Radar Cross Section or RCS),

should be quantified by a statement of uncertainty

<7 = <70 ± A(7, (1)

which indicates the metrologists’s best estimate (Tq and an uncertainty A(7 >
0 which is suggested as a reasonable bound for the measurement error. In

addition, uncertainty estimation often identifies the principal sources of error

which must be must be controlled to improve measurement quality. The

intent of this report is to provide an outline which may serve as a basis for

RCS uncertainty analysis.

Our use of the adjective “reasonable” is intentionally imprecise (see ap-

pendix A). As will become apparent, determination of A(7 is often subjec-

tive. It is therefore of paramount importance to clearly delineate assump-

tions and procedures leading to the estimate of uncertainty. The end user

should be able to apply this information to reach his or her own conclusions

about the quality of the data. Furthermore, in areas (such as RCS) where

many workers use a variety of techniques to measure a certain parameter, it

is of value to have a common method for estimating uncertainty. When a

uniform approach is used, reported uncertainties better reflect the relative

merit of corresponding measurements.
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Although we might wish otherwise, the procedures presented here will

not cover all possibilities. It will be necessary to correct, modify, or de-

velop new approaches to handle specific measurement problems. As always,

the final responsibility for a meaningful uncertainty analysis rests with the

metrologist.

Section 2 presents an overview of the proposed uncertainty analysis,

which is a hierarchical system of tables for reporting and summarizing com-

ponents of uncertainty. The individual components of uncertainty are de-

scribed in section 3. Here we identify sources of uncertainty and discuss

methods for estimating their impact on RCS measurement errors. The dis-

cussion is general, and modification may be required for application to an

individual range. Section 4, which parallels section 3, discusses uncertainties

associated with measurement of the calibration target.

2 Reporting Measurement Uncertainty

Error bounds need not be symmetric:

(Jo + A(7+ > ct > (To — A(T_. (2)

For simplicity, we will continue to use eq (1) with Act = max (Acr^., A<t_).

Uncertainties are also stated logarithmically

A<7± (dB) = 101og(l±^). (3)

As before, we will often use symmetric bounds. In this case

A(t (dB) = -Acr_ (dB) = -lOlog (l - . (4)

However, because of the nonlinear nature of eq (3) unsymmetrical bounds

may be given when reporting larger logarithmic uncertainties. For example,

if A(j/(To = 1, then A(t+ (dB) 3, while Aa_ (dB) = — oo. In the limit

Act —> 0, logarithmic uncertainty is linearly related to relative uncertainty

by

Act (dB)« 4.34—
. (5)

(^0

Sample uncertainty tables are shown in figure 1. The numbers to the

left of each entry are references to the section of this report where the corre-

sponding uncertainty is discussed. Individual sources of uncertainty (called

components of uncertainty) are listed above the line in each table. These

are combined to give overall estimates of uncertainty which are shown below

the lines. Uncertainties are reported logarithmically. An entry of “neg.”
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UNKNOWN TARGET UNCERTAINTIES dB

3 . 1 Average Illumination 0.4

3.2 Background-Target 0.1

Interactions

3.3 Cross Polarization 0.6

3.4 Drift 1.0

3.5 Frequency neg.

3.6 Integration neg.

3.7 I-Q Imbalance neg.

3.8 Near Field 1.0

3.9 Noise-Background 0.9

3.10 Nonlinearity 1.0

3.11 Range neg.

3.12 Target Orientation n.a.

3.13 Calibration Target (4.14) 0.9

3.14 Overall Uncertainty (RSS) 1.7

-2.7

CALIBRATION TARGET UNCERTAINTIES

4.1 Average Illumination 0.0

4.2 Background-Target 0.1

Interactions

4.3 Cross Polarization 0.0

4.4 Drift neg.

4.5 Frequency neg.

4.6 Integration n.a.

4.7 I-Q Imbalance neg.

4.8 Near Field neg.

4.9 Noise-Background 0.9

4.10 Nonlinearity 0.0

4. 1 1 Range neg.

4.12 Target Orientation 0.0

4.13 Calibration Target 0.1

4. 14 Overall Uncertainty (RSS) 0.9

Figure 1: A sample summary of RCS uncertainties.
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indicates that the effect has negligible impact (here taken operationally as

less than 0.1 dB). An entry of “n.a.” indicates that this source is not con-

sidered a factor in the current evaluation (integration error, for example, is

not applicable when the target is stationary). The entries are arbitrary and

do not necessarily represent typical uncertainties.

The method of uncertainty combination is Root Sum Square (RSS). That

is, the overall uncertainty Aa is calculated as

A(7\^ _ ^ /Act,'
^

<Jo / V
V (To

(
6

)

where Act, are the components of uncertainty. Note that relative (not loga-

rithmic) uncertainty is used in the calculation of eq (6).

In turn, each component of uncertainty may be the overall uncertainty

of a separate lower level table. An example is the second table in figure

1, which gives uncertainties associated with the standard target calibration.

The overall calibration target uncertainty (4.14) is included above as a con-

tribution to the measurement uncertainty (3.13). The upper level tables

presented in figure 1 provide a convenient summary of the major features

of the analysis. Lower level tables may not be formally provided but they

should be available to document the details. Contributions which are typi-

cally subdivided include noise and background (here combined in 3.9) and

nonlinearity effects (3.10) which are often specified on a component by com-

ponent basis.

The uncertainty analysis may be compared to the roots of a tree, expand-

ing downward in ever greater detail. At the lowest level we use worst-case

estimates of uncertainty so that each component is an RSS of one or more

worst-case uncertainties.

The term “worst case” is applied subjectively. Estimates of worst-case

uncertainty will generally be strongly influenced by practical experience.

This is especially true for uncertainties which depend on the nature of the

target, such as those associated with cross-polarization errors. In cases where

the uncertainty in a parameter has been estimated statistically, we will (by

fiat) equate the corresponding worst-case uncertainty with two standard

deviations. (For example, assume that the ruler used in an experiment

comes from a lot with a standard deviation in length of 1 mm. We would

assign a worst-case length uncertainty of 2 mm.)
Uncertainty tables, such as figure 1, must be valid over the entire range of

parameters which occur in a given experiment. When uncertainty is a strong

function of a parameter (such as signal-to-noise ratio) it may be desirable

to divide the parameter range into parts and produce separate uncertainty

tables for each. Thus, there could be a table for peak signals, where the

signal-to-noise ratio is most favorable, and another table for uncertainty in
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sidelobe levels. Similarly it may be advantageous to report uncertainty as a

function of frequency band.

3 Unknown Target Uncertainties

Following current practice, the scope of this report is largely limited to a

discussion of monostatic measurement of scalar, main-polarization RCS, that

is, to the measurement of the squared amplitude of the vv or hh component

of the scattering matrix (u for vertical, h for horizontal polarization). For

far-held measurement the governing relationship is the radar equation, here

expressed as the ratio of unknown target RCS to calibration target RCS:

where

(LV (LV ^3.

a

R
G
f
Pi

Pr

RJ \GJ \fs) PtPs

= radar cross section m^,

= range (distance) m,
= antenna gain,

= frequency 5 “^,

= transmitted power W,
= received power W.

(7)

The subscript s identihes quantities associated with the (standard) calibra-

tion target. Since eq ') does not explicitly apply, compact range measure-

ments are given separate consideration where appropriate.

To simplify notation where the context allows, we will use the symbol

Act to denote a generic component of uncertainty. For simplicity, hrst-order

calculations are often employed, even when uncertainties are large. (More

accurate computation may not be justihed in some cases, due to highly

subjective evaluations in other cases.)

3.1 Average Illumination

Here we discuss uncertainties due to geometry that result from differences

in average illumination between unknown target and calibration target mea-

surements.

Dynamic range pointing errors introduce an uncertainty in RCS through

gain reduction. Let

G ( tt9\

g; = U j
’

where is 1/2 of the antenna’s 3-dB beamwidth, 9 is the worst-case pointing

error, and GjGo is the gain reduction factor. Then from eq (7)
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Act (dB) = —40 log (9)

Equation (9) assumes that the antenna has a cos^ pattern and is optimally

boresighted. Any valid approximation is acceptable, although measured

pattern data are preferred. Estimation of tracking uncertainty by including

contributions from both eqs (9) and (20) is, perhaps, overly conservative.

A closer examination indicates that, at least to first order, tracking error

is bounded by the larger of the values eqs (9) and (20). The table entry

corresponding to the smaller value may be set to 0.

Eor static and compact ranges, illumination uncertainty is not so much
a matter of pointing, but rather is tied to the fact that illumination is

nonuniform over the test volume. Let us assume that the incident field

can be divided into an ideal plane wave plus a residual nonuniform com-

ponent. The impact of the nonuniform component is considered in section

3.8. It is possible to correct for average illumination effects by determining

G.IG = [E]) / {E^) [see eq (7)] from measured or calculated field data. The

average intensities {El) and (£’^) are computed over the calibration target

and unknown target volumes, respectively. Uncertainty in GsjG should be

estimated and entered here. For example, a relative gain uncertainty of 0.1

dB produces a component of uncertainty Aa ^ 0.2 dB.

3.2 Background-Target Interactions

This effect concerns energy that at some point is scattered from the target

and then rescattered by the background. On static ranges, this is primarily

a problem of target-support interaction. A thorough analytic treatment

of this interaction seems impractical at best. The effect could be studied

experimentally by varying the target-support interface. Currently, estimates

of this uncertainty should be regarded as especially tenuous.

3.3 Cross Polarization

Here we account for the fact that due to alignment or physical imperfection,

the antenna will not be perfectly polarized {h oi v). If a target’s cross-

polarization response is large compared to the main-polarization response,

there can be significant error even if the antenna has good polarization

isolation.

Define the scattering matrix parameters

receiving (antenna),

5^ transmitting (antenna),

scattering (target).
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where u and // are v for vertical polarization and h for horizontal polarization.

The received signal is

S = R^Ty^jSv + R^;T^JhSh + RhThvSv + RhThhSh (10)

or

S = RvTvvRv 2R^TtjhRh + RhThhRh (H)

for a reciprocal monostatic measurement system. Consider the case of a

vertically polarized antenna, so R^ >> Rh- The first term on the right of

eq (11) is the desired interaction (nn), the second term {vh) is a first-order

error, and the third term {hh) is a second-order error. We will model the

unknown target as strongly depolarizing with = Thh = or

A5 Rh

5 R.

Thus,

Act (dB) = -201og (l - 2 X
, (13)

where Cp is the antenna polarization isolation. [In this case Cp = 2Q\og {R^ / Rh).]

It is important to remember that eq (13) makes specific assumptions about

the unknown target and does not represent the worst-case scenario. As

an example, according to eq (13) a polarization isolation of 30 dB gives a

component of uncertainty of 0.6 dB.

In principle, it is possible to correct for polarization errors if complete

polarimetric measurements were available [1, for example].

3.4 Drift

All physical systems are unstable to a certain degree. Drift uncertainty

can be explored by observing a fixed target over an extended time. During

a measurement, drift may be checked by observing a secondary standard,

or by periodically remeasuring a particular target orientation. In fact it is

possible to correct for drift by adjusting the system gain after each drift

check. The component of uncertainty may be given as the expected drift

over the duration of the measurement, or as the drift which is observed

between successive calibration points. As an example, assume that extensive

observation indicates that a measurement system drifts by less than 0.1 dB

in an hour. An estimate of drift uncertainty for a half-hour measurement

might be 0.05 dB.

7



3.5

Frequency

From eq (7) the component of uncertainty in RCS due to uncertainty in

frequency is

A<t (dB) = -201og ^1 - (14)

The uncertainty A/ in frequency may be taken as the effective bandwidth

of the system, that is, as the minimum of the transmitted bandwidth and

the received bandwidth. (Where software gating is applied, it is necessary

to consider the effect of digital filtering in estimating A/.) For example,

consider a measurement at 10 GHz with a transmitted bandwidth of 20

MHz (corresponding to a 50 ns pulse). Then, A/ < 20 MHz and Act (dB)

= 0.02 dB.

Frequency uncertainty is easy to control and should usually be negligible.

If this uncertainty were important, we should consider, in addition to eq

(14), that unknown target RCS, calibration target RCS, and system gain all

depend implicitly on frequency (see appendix C).

3.6

Integration (Moving Target)

This uncertainty is due to target motion during the measurement. On static

ranges, integration error can be controlled by slowing or stopping target

rotation, or by doing less averaging. On dynamic ranges such control is

much more difficult. Perhaps the best way to estimate this target dependent

effect is through simulation.

3.7

l-Q Imbalance

For an input test signal cos [ut + (;;!)), an amplitude imbalance a, and a phase

imbalance /?, the in-phase and quadrature responses of the receiving system

(see section 3.10) are

I = K cos (<;;!»)

,

(15)

Q = an sin {(f) — (3)

.

(The constant k, is determined in the calibration.) When there is an I-

Q imbalance, measured amplitude will be a function of input phase. The

uncertainty may be estimated by measuring power [oc {P + Q"^)] as input

phase
(f)
of the test signal is varied from 0° to 360°. A peak-to-peak variation

of 0.1 dB, say, corresponds to about a 0.05 dB uncertainty in RCS.

3.8

Near Field

The radar equation, eq (7), assumes that the target is illuminated by a plane

wave. Compact ranges also try to approximate an incident plane wave.
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In practice, there will always be some taper or ripple. Complete analysis

of illumination effects would be difficult and, perhaps, not very useful. A
simple, but crude, estimate is to use peak-to-peak amplitude variation over

the target volume (down range as well as cross range). That is, a 0.5 dB taper

would give a 0.5 dB component RCS uncertainty. Although this estimate

might be regarded as conservative for peak signals, the effect can be much
larger for lower signals since nonideal illumination may cause locations of

nulls to shift.

Our estimation method is most appropriate for targets whose RCS is

dominated by a localized scatterer which might lie in a region of low or

high illumination. Information on the location of target scattering centers

can be used to refine uncertainty estimates. For example, if the primary

scattering centers are relatively uniformly illuminated, then uncertainty may
be reduced accordingly.

3.9 Noise-Background

Here we group sources of uncertainty which contribute to the received signal

whether or not the target is present. Our estimation is by direct measure-

ment with target absent and any support structure properly terminated.

We employ background subtraction and averaging as appropriate to miti-

gate uncertainty. The observed residual noise-background is bounded by the

worst-case estimate N

.

For a signal 5, uncertainty is calculated as

Act (dB) = -201og (l -
, (16)

where e„ = 201og(5/A^). For a signal-to-noise ratio tn = 20 dB, A<t (dB)

I dB.

In some cases it might be preferable to estimate clutter and noise uncer-

tainties separately and to enter their RSS here.

3.10 Nonlinearity

Assume that it is possible to break the rf feed between antenna and receiver

so that a test signal can be injected into the “receiving system.” The receiv-

ing system should include receiver, mixers, and as much of the rf hardware

as possible while excluding the antenna. Significant sources of nonlinearity

uncertainty which cannot be included in the receiving system (such as a

remote mixer) must be separately evaluated (perhaps in a subtable).

When a complex signal s = x iy is injected into the receiving system,

the response is given generally by

Sm = K^{x,y) X i Ky{x,y)y b. (17)

9



When Kx 7^ A'y, the system is imbalanced (see section 3.7). When 6 0,

the system is biased (see section 3.9). When Kx and Ky depend on the input

signal {x and y), the system is nonlinear. We assume that the receiving sys-

tem is nearly ideal (after calibration) and that interaction between balance,

bias, and linearity can be ignored to first order.

Nonlinearity uncertainty may be estimated by noting the residual devia-

tion from linearity while using a precision attenuator to vary the test signal

from a given reference level. The calibration target signal should be used as

the reference level, if possible. Nonlinearity uncertainty can be no less than

the calibration uncertainty of the precision attenuator.

3.11 Range

The uncertainty

A,T(dB) = -40log(l-^) (18)

is based on eq (7). In general, range can be measured accurately and ac-

cordingly range uncertainty is seldom significant.

Range uncertainty is not applicable (n.a.) to compact ranges.

3.12 Target Orientation

Uncertainty in orientation can lead to large errors, especially for electrically

large objects. Uncertainty can be estimated as follows

Aa (dB) = -10logb-|^^V (19)

where a could be the predicted or, perhaps, the measured RCS, and 9 is

a suitable angular variable. If it is important to determine only peak and

sidelobe envelope levels (which seems often the case), then this uncertainty

can be largely ignored (n.a.).

In cases where orientation errors are significant, the process of binning

(that is, averaging RCS over specified angular regions) can be useful; how-

ever, the bin size should be much larger than the uncertainty in orientation.

3.13 Calibration Target

The entry here is the overall uncertainty associated with measurement of

the calibration target. See section 4.14.
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3.14 Overall Uncertainty (RSS)

The entry here is the RSS of the components of uncertainty sections 3.1-3.13.

See eqs (3) and (6).

4 Calibration Target Uncertainties

The calibration target functions as a transfer standard to provide an abso-

lute power reference for RCS measurements. The uncertainties associated

with calibration are largely the same as those associated with any other

RCS measurement. Thus, tnis section closely parallels section 3, but with

additional comments on issues specific to calibration. (See appendix B for

an alternate treatment of calibration uncertainties which reflects current

practice at some dynamic ranges.)

4.1

Average Illumination

See section 3.1.

When the calibration target is tracked, we may compute a pointing-error

uncertainty according to

Acr (dB) = —40 log cos
(
20

)

When the calibration target is stationary we may use the (average) gain

over the standard as the reference level and enter 0 for the component of

uncertainty.

4.2

Background-Target Interactions

See the discussion in section 3.2.

4.3

Cross Polarization

If we can assume that the calibration target is not depolarizing when it is

properly aligned, we may take T^v = Thhi T^v = 0 in eq (11) to get (for a

measurement of the vv component)

A5 Rh

5 Rv
(
21

)

which is basically a second-order effect. Thus,

Aa (dB) = -201og (l -
, (22)
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where tp is the antenna polarization isolation (see section 3.3). Equation

(22) makes specific assumptions about the calibration target, so it should

be used with care.

As an example, according to eq (22) a polarization isolation of 30 dB
gives a component of uncertainty of about 0.01 dB.

4.4 Drift

See the discussion in

4.5 Frequency

See the discussion in

4.6 Integration

See the discussion in

4.7 l-Q Imbalance

See the discussion in section 3.7.

4.8 Near Field

See the discussion in section 3.8.

section 3.4.

section 3.5.

Act (dB) = —201og ( 1 — Ms
\ Is

section 3.6.

(23)

4.9 Noise-Background

See the discussion in section 3.9.

Aa (dB) = -201og (l - 10-^"/2o^
. (24)

4.10 Nonlinearity

See the discussion in section 3.10. When the calibration target signal is

used as the nonlinearity reference level, enter an uncertainty of 0. Nonzero

uncertainties are appropriate if the calibration level is not the same as the

nonlinearity reference point or if the calibration target is measured over a

wide range of levels, as in dynamic RCS calibrations where the calibration

target is tracked as it moves through the range.

12



4.11

Range

See the discussion in section 3.11.

(25 )

4.12

Target Orientation

See the discussion in section 3.12.

(26)

4,13

Calibration Target

This uncertainty addresses how well the RCS of the calibration target is

known. Consider two cases:

(1) Primary Standard: For our purposes, this is a target whose RCS is

computed. Errors arise because the predicted RCS value may be incorrect

and/or because the actual standard object may correspond imperfectly to

the ideal object. Uncertainty estimates usually range from negligib for

spheres, which make ideal primary standards, to several tenths of a decibel

for plates and polyhedrals. Further research is needed to better evaluate

this uncertainty.

(2) Transfer Standard: The RCS of such a calibration target is deter-

mined by comparison with another (base) standard. The uncertainty should

be the overall uncertainty corresponding to (4.14) in a lower level table for

the base standard.

4.14

Overall Uncertainty (RSS)

The entry here is the RSS of the components of uncertainty sections 4.1-4.13.

See eqs (4) and (6).
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A Appendix

Interpretation of Uncertainty

In the main text we have presented a formalism for uncertainty analysis.

Here we briefly discuss the motivation for our procedure, especially regarding

guidelines presented in a recent NIST publication [2].

Uncertainties are commonly divided into the categories “random” and

“systematic.” Unfortunately, there seems to be no clear practical distinc-

tion between random and systematic, and we have made little attempt to

distinguish these types of uncertainties in the main body of this report. We
assume that any appropriate actions (such as averaging and background sub-

traction) already have been taken to mitigate uncertainty. The remaining

uncertainties are evaluated as Type B uncertainties.

The treatment of Type B uncertainty in [2] is statistically motivated and

is based on a generalized concept of probability [3]. The experimenter as-

signs a (prior) distribution for each parameter reflecting his or her “personal

degree of belief” that the parameter might have some value. We may then

apply a probabilistic analysis to estimate combined uncertainty. In this

approach, it is natural to specify uncertainty in terms of probability, but

this probability must be interpreted as a subjective belief and cannot (and

must not) be interpreted in the usual random-variable (frequency) sense. To

avoid confusion, we have de-emphasized probability, and have simply used

the term “reasonable.” This practice appropriately begs the question “just

what is reasonable, anyway?”

Let us assume that a worst-case uncertainty is equivalent to a 2-sigma

uncertainty. [We write out sigma (standard deviation) to distinguish it from

a (RCS).] That is, at least for a normal distribution, we are 95% certain that

the error is bounded by our worst-case estimate. Under this hypothesis, the

procedure of [2] is essentially identical to ours. However, the NIST document

recommends reporting I -sigma bounds for components of uncertainty and 2-

sigma bounds for expanded (overall) uncertainties. In this report we have

used 2-sigma bounds for both component and overall uncertainties.

Figure 2 is a modification of figure 1 following the NIST convention (with

component of uncertainty = A<t/2 and overall uncertainty = Act). Note

that the entries 4.14 and 3.13 are not the same since 4.14 is a 2-sigma value

and 3.13 is a 1-sigma value.
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UNKNOWN TARGET UNCERTAINTIES dB

3.1 Average Illumination 0.2

3.2 Background-Target 0.0

Interactions

3.3 Cross Polarization 0.3

3.4 Drift 0.5

3.5 Frequency neg.

3.6 Integration neg.

3.7 I-Q Imbalance neg.

3.8 Near Field 0.5

3.9 Noise-Background 0.4

3.10 Nonlinearity 0.5

3.11 Range neg.

3.12 Target Orientation n.a.

3.13 Calibration Target (4.14) 0.4

3.14 Overall Uncertainty (RSS) 1.7

-2.7

CALIBRATION TARGET UNCERTAINTIES

4.1 Average Illumination 0.0

4.2 Background-Target

Interactions

0.0

4.3 Cross Polarization 0.0

4.4 Drift neg.

4.5 Frequency neg.

4.6 Integration n.a.

4.7 I-Q Imbalance neg.

4.8 Near Field neg.

4.9 Noise-Background 0.4

4.10 Nonlinearity 0.0

4.11 Range neg.

4.12 Target Orientation 0.0

4.13 Calibration Target 0.0

4.14 Overall Uncertainty (RSS) 0.9

Figure 2: A sample table of RCS uncertainties following NIST conventions.

See appendix A.

15



B Appendix

Sphere-Calibration Constant in

Dynamic RCS Measurements

In the main text (see section 4) components of the uncertainty budget for

measurement of the calibration target are explained. In the special case of

dynamic tracking of a sphere it is the current practice to introduce a sphere-

calibration constant, determined from data, which is then used to correct the

power measurements from other targets. In this appendix we examine the

details of computing such a calibration constant with the intent of elucidat-

ing how measurement uncertainties enter into this data analysis. In a further

study, this information will be fundamental in proposing improvements for

this procedure.

The sphere-calibration constant p is defined as

P = (27 )

where Pr is the error-free measured received power and Prt is the error-free

theoretical received power. This constant, if known for a given measure-

ment system, can be used to convert measured received power to theoretical

received power on a dynamic RCS range.

In general, received power Pr is expressed as

_ P[Go a GqX'^ , .

^ “
AttR^

'

47rR2 47r
’ ^ ’

where Pt is the transmitted power, R is the range, a is the theoretical RCS
of the sphere under observation, A is the wavelength at which measurements

are being made, and Go is the on-axis gain. All theoretical quantities can

be specified without errors, but in practice the measured quantities will

have errors in them. Hence, we define error-contaminated quantities

R and Go, which represent the measured received power, the calculated

theoretical received power, the measured range and the measured on-axis

gain, respectively.

The error-contaminated and error-free quantities are related simply by

Pr=Pr+ SPr

R=R + SR (29)

Go = Go + A,

where SPr, SR, and A are the errors in the measured power, measured range,

and the measured on-axis gain, respectively.
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We can write the sphere-calibration constant p as

= EL. = E^Ek
^

Prt
~

Pf, Pr,

to explicitly exhibit the fact that the computed theoretical received power

P^^ is different from the exact theoretical received power Prt^ which cannot

be determine^' from data.

We can use eq (28) to express P^^ in terms of measured quantities, and

eq (29) to express Pr in terms of measured quantities. Thus,

^^ A _ SPA

Pr‘, aGHFP aGl I P, J

and

^ ^ Ghik' = 1 A - (\ - AV'
P„ GWIR* g^\ r) \ Go)

where a = PtcrX'^

/

and g = g{0,(f>) defines the receive (transmit)

antenna gain function. We can now combine the above expressions to obtain

the sphere-calibration constant in terms of measured quantities

= Prktp cr ta. (33)

where

and

(34)

In the above derivation we assumed that the quantities A, Pt and g (^, (f))

are known exactly, or, at least, are constant throughout the measurement.

This of course is not correct, and the errors in these quantities can easily be

incorporated in eq (33) by including factors such as ca, ep,
,
and tg. We will

not do so here.

By definition pdB is given by

PJB = lOlog [pk) - lOlog (oGg)

-2Q\ogg{e,<i)) ^ E lOloge,.
s=P,R,G

(35)
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The the first line in eq (35) can yield the calibration constant as it is obtained

in current practice; hence, the second line in eq (35)will yield the total error

Ap = p — p’^, which is the diflFerence between the exact sphere-calibration

constant p and the calibration constant computed from data.

To obtain the sphere-calibration constant, we average eq (35) over a large

number of measurements, as the received power is measured as a function

of measured range and time. Hence, the averaging is usually over a range

of decibels, which in practice is as large as 10 dB. We get the measured

calibration constant {pis) as

(WB> = 10 (log {Prt)) - lOlog
, (36)

and the error Ap is

Ap = -20 (log [p(^, </>)]) + / ^ lOlogeA- (37)

\s=P,R,G /

We make the following observations:

(a) €r k 0.013 dB is small (assuming SR 2 — 10 m);

(b) cg is an unknown constant offset present in all measurements, and,

hence, will not introduce an error in measurements on targets;

(c) the beam pointing error term 20 (logp {6, fi)) is unknown, presumably

small, but could be large in a dynamic tracking system;

(d) ep can be significant for S/N < 30 dB.

The terms expressing the beam-pointing error and the error in the mea-

sured power deserve further examination.

In the main text an estimate of the beam pointing error was given for a

cos^ beam shape. Alternatively, we can model the beam in one dimension

as

g{e) = 10-^^'/^°, (38)

where = log 2, and 29o is the 3-dB beamwidth. It is easy to show that for

a uniform distribution of 9 the average of the beam pointing error for this

model is

- 20 (log [5 (0)1) « 2^, (39)

where 9m is the maximum beam pointing error. This can be significant for

narrow beams!

Since, in practice, sphere-calibration measurements are taken over a few

thousand meters as the calibration sphere is moving with the wind, the

received power varies over approximately a 10 dB range. Since SjN

^

the

signal-to-noise ratio, varies inversely with the range, the factor (^PrR^'^ in

the computed sphere-calibration constant favors weaker signals, thereby in-

troducing errors in the sphere-calibration constant that could be eliminated

18



by alternative calibration procedures. This will be examined under a sepa-

rate study.

C Appendix

RCS Frequency Dependence

In the main text (see section 3.5) we discuss the component of uncertainty in

RCS due to uncertainty in frequency. There, we mention that target RCS,

standard RCS, and system gain all depend implicitly on frequency. Here,

we examine examples of these dependencies.

Consider the situation where a small calibration target is used. If the

target were a perfectly conducting ellipsoid or a squat cylinder, then its

RCS would be proportional to [4]. The antenna gain, in the case of a

parabolic reflector or a horn, is proportional to [5]. Thus from (7), a

frequency uncertainty A/, gives

‘-x)'
which may be compared to eq (23). If A/^//, = 0.2%, we have A<t (dB)

= 0.05.

Next, consider two identical point scatterers which are separated by a

down-range distance L. Their individual responses will be AttL/X radians

apart in phase (A is the wavelength). A frequency uncertainty A/// =
X/{2L) is equivalent to a 360® uncertainty in relative phase. For point scat-

terers separated by 125A, a 0.2% frequency error will produce a 180® relative

phase change, and could cause the combined response to vary from a maxi-

mum to a null.

A(7 (dB) = —60 log
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