F.R. Clague


# NIST MODEL PM2 POWER MEASUREMENT SYSTEM FOR 1 mW AT 1 GHz 

F.R. Clague

Electromagnetic Fields Division<br>Electronics and Electrical Engineering Laboratory National Institute of Standards and Technology Boulder, Colorado 80303-3328

December 1993

U.S. DEPARTMENT OF COMMERCE, Ronald H. Brown, Secretary TECHNOLOGY ADMINISTRATION, Mary L. Good, Under Secretary for Technology NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, Arati Prabhakar, Director

## CONTENTS

1. INTRODUCTION ..... 1
2. OPERATION ..... 2
2.1 Initial Steps, Hardware ..... 2
2.2 Software Installation ..... 3
2.3 Measurement Software and Procedure ..... 4
2.3.1 Select Measurement Mount ..... 6
2.3.2 Input Wavetek Serial Number ..... 10
2.3.3 Change Number of Measurement Points ..... 11
2.3.4 Wavetek Operating Instructions ..... 11
2.3.5 Begin Measurement ..... 12
3. SYSTEM DESCRIPTION ..... 17
3.1 Theory of Operation ..... 17
3.2 Hardware ..... 18
3.3 Software ..... 22
4. UNCERTAINTY ANALYSIS ..... 23
4.1 Voltmeter Uncertainty ..... 23
4.2 Uncertainty in Thermistor Mount Effective Efficiency ..... 25
4.3 Mismatch Uncertainty ..... 25
4.4 Dual-Element Error ..... 26
4.5 Random Effects ..... 26
4.6 Expanded Uncertainty ..... 26
5. REFERENCES ..... 27
APPENDIX A. Software Menu Tree ..... 28
APPENDIX B. Instrument Specifications ..... 29
APPENDIX C. Software Listing ..... 30

## TRADE NAME DISCLAIMER

Certain commercial components used in the measurement system are identified in this document in order clearly to instruct the operator in the use of the system. The instructions refer to specific models of specific instruments, and to their controls to ensure that there are no ambiguities. Such use and identification does not imply recommendation or endorsement by NIST, nor does it imply that the identified items are necessarily the best available for the purpose.

# NIST MODEL PM2 POWER MEASUREMENT SYSTEM FOR 1 mW AT $\mathbf{1} \mathbf{~ G H z}$ 

Fred R. Clague

National Institute of Standards and Technology<br>Boulder, Colorado 80303

The design and operation of an automated measurement system designed to measure power accurately at the level of 1 mW and at the frequency of 1 GHz are described. The system consists of commercial IEEE Std-488 bus-controlled instruments, a computer controller, and software. The results of a series of measurements are output to the computer display and, optionally, to a printer. The results are the mean of the measurement series and an estimate of the Type A (here random) and Type B (here systematic) uncertainty. The estimated total expanded uncertainty for the average of six consecutive measurements of a nominal $1 \mathrm{~mW}, 1 \mathrm{GHz}$ source is typically less than 1 percent. The system can measure any power from 0.1 to 10 mW at any microwave frequency by making appropriate changes to the software and, possibly, the hardware.

Key words: automated measurement; microwave; microwave power measurement; power; power measurement; power measurement system.

## 1. INTRODUCTION

This system is designed to accurately measure microwave power at the level of 1 mW and the frequency of 1 GHz . Specifically, it supports the calibration of the Wavetek 8502A pulse power meter, which has a $1 \mathrm{~mW}, 1 \mathrm{GHz}$ calibrator output port. The manufacturer's specification on the power output accuracy is $\pm 1.5$ percent. Use of the system is not restricted to this specific application; relatively simple modifications to the software would make it possible to measure other power levels and frequencies.

The microwave power measurement method is based on the dc substitution technique. The system is implemented using a commercial version of the NIST-developed Type IV microwave power meter, a commercial coaxial thermistor mount, a digital voltmeter (DVM), and a dedicated computer controller. The Type IV power meter is not direct reading; the substituted dc power is calculated using readings obtained from the DVM. The computer controls the measurement process, calculates the results, and prints them out. Measurement results include an estimate of uncertainty for each data set. Automation also allows use of a procedure that adequately corrects for drift of the thermistor mount caused by external temperature changes. The system is packaged in a single operating case with a storage drawer containing all necessary cables, two thermistor mounts, system software, and the operating manuals.

## 2. OPERATION

### 2.1 Initial Steps, Hardware

1. Connect the supplied ac power cables to the DVM and power meter.
2. Connect the supplied IEEE 488 bus cable to the power measurement system and the IEEE 488 bus card in the PC.
3. Connect the thermistor mount to the Type IV power meter. The end of the cable with the single connector goes to the thermistor mount, while the connector marked with an "A" goes to "Channel A " on the power meter and the unmarked connector goes to "Channel B."
4. Depress the input selector switch on the DVM to connect the rear panel input.
5. Turn on all the instruments. The output of the Wavetek 8502A calibrator is more stable after a 2-h warmup, rather than the 30 min specified by the manual. The 2-h warmup period is recommended for both the 8502A and the power measurement system. Also, the thermistor mount should be attached to the calibrator output for at least 30 min before making the measurement. This will reduce the temperature drift of the mount, improving the measurement accuracy. Be sure to note the serial number of the mount selected.

### 2.2 Software Installation

The software includes an installation program that will create a directory and copy all needed files to the hard drive. The drive must have at least 1 MB of free space and TransEra HTBasic 3.0 or higher already installed.

1. Turn on the power to the computer and allow DOS to load. At the DOS prompt, type CD $\backslash$ HTB386 (or other directory where the BASIC system is located) and press ENTER. Then type HTB386C and again press ENTER. At this point HTBasic should be loaded as indicated by the BASIC soft keys appearing at the bottom of the screen.
2. Insert the disk labeled PM2 MEASUREMENT SYSTEM in the 3.5 -in drive and type LOAD "drive:INSTALL", 1 where drive is the name of the drive where the PM2 MEASUREMENT SYSTEM disk is located; for example, LOAD "B:INSTALL", 1 and press ENTER. Be sure to type the quotation marks as shown.
3. The first screen lists the software and computer requirements and asks if you want to continue. Type $Y$ and press ENTER to continue or N and press ENTER to terminate the installation.
4. The name of the source drive (drive from which the files are copied) is requested; press ENTER to accept the default (B:) or type another drive letter and press ENTER.
5. The destination drive (drive to which the files are copied) is requested; press ENTER to accept the default ( $\mathrm{C}: \backslash$ ) or enter another drive. Note: the installation program will create its own directory named NIST_PM2 on the destination drive.
6. The location of the BASIC system files is requested: press ENTER to accept the default ( $\mathrm{C}: \backslash \mathrm{HTB} 386$ ) or enter another drive and directory. Then the directory NIST_PM2 is created, and the program and support files copied.
7. The program asks if you want to use the supplied AUTOST program. It will activate the IEEE 488 bus card and the system printer, and then load and run the measurement program. The AUTOST program includes code lines as described below. Type $Y$ and press ENTER to use the supplied AUTOST.
8. Finally you will be asked if the PC has the Morse KP 800/16 VGA graphics adapter, and the if the $800 \times 600$ display mode is desired. Type $Y$ and press ENTER to use the $800 \times 600$ display mode.
9. This completes the software installation. Type QUIT and press ENTER to leave HTBasic and then, if you have HTBasic version 3.0, reboot the computer (this is necessary to avoid an out-of-memory error that may occur when you try to run the program).

The supplied AUTOST program is a modified version of the example supplied with HTBasic. The following lines in the example program have been changed:

310 !LOAD BIN "GPIBN;BOARD AT-GPIB" ! NATIONAL INST
is un-commented (! removed) to read:
310 LOAD BIN "GPIBN;BOARD AT-GPIB" ! NATIONAL INST

730 LOAD "DEMO",1
is commented out (! added) to read:
730 !LOAD "DEMO",1

If the your PC is configured differently than the one on which the prototype system was tested, additional or different changes may be required.

### 2.3 Measurement Software and Procedure

To run the program follow the directions for starting HTBasic under item 1 in the previous section. If the supplied AUTOST has been installed, the measurement program will load and run automatically. Otherwise, type LOAD "PWR_MTR2", 1 and press ENTER to load and start the program. If the power meter or the DVM is not turned on, the program will report it can not find the power meter at address 713 or the DVM at address 722. Pressing ENTER after each statement will let the program run, but measurements can not be made.

The remainder of this section describes the various software options that are available. The screens and menus as seen on the CRT are shown in figures 2.1 through 2.9. Numbered soft keys, corresponding to the keyboard function keys, are along the bottom of the menus. For quick reference, a menu tree is shown in appendix A .

The first screen displayed by the program is shown in figure 2.1. Additional detail on each item is in later sections of this chapter.

Press F1 to change the thermistor mount to be used in the measurement, or the stored data (such as after a thermistor mount recalibration). The serial number of the selected mount is shown.

Press F2 to enter the serial number of the Wavetek 8502A being measured. The serial number is then displayed and printed with the measurement result.

Press F3 to change the number of repeated measurements to be averaged in a set (at least 6 to 10 is recommended). The present setting is shown.

Press F4 to see instructions on how to operate the Wavetek 8502A (turn the calibrator output on and off).

Press F5 to begin the measurement set.
Press F10 to exit the program.


Figure 2.1. Screen display of the measurement menu.

### 2.3.1 Select Measurement Mount

Figure 2.2 shows the screen after selecting option 1 from the previous menu. Two bolometer mounts are supplied with each system. The calibration data (as listed in the NIST report of calibration) for both mounts is stored in a file called "CALDATA" that is read when the program is started.

Press F1 or F2 to select the active mount.


Figure 2.2. Screen display of the mount selection menu.

Press F3 in the Mount Selection Menu (figure 2.2) to change any entries in the CALDATA file (for a new mount or for the existing mounts if they have been recalibrated).

Figure 2.3 shows the screen that appears after pressing F3. You can change any of the four data entries (mount serial number, calibration factor, calibration uncertainty, or the mount reflection coefficient) in sequence. If there is no change for a particular entry, just press ENTER, and the original data will be retained. At each request for input you can abort the process and return to the mount selection menu. When all the changes have been entered, you are asked if you want to permanently save them to the CALDATA file and if the data is for mount 1 or mount 2.

CURRENT MOUNT
Model/Serial Number: Hp 8478B, S/N 2106A 24522
Calibration Factor $=.9989$
Calibration Uncertainty in Percent $=.38$
Ref lection Coefficient $=.0174$

Enter Mount Madel/Serial Number
Hp 8478B, S/N 2186A 24522

Figure 2.3. Screen display for changing stored calibration data.

Figure 2.4 is the last of the series of screens that appear after pressing F3 in the Mount Selection Menu. It asks for a path and file name for saving the mount data. Note: the name must be "CALDATA" for the file to load automatically when the program is started.

Current/New data in memory

```
MOUNT ONE
S/N Hp 8478B,S/N 2106A 24522
Cf= .9926
Cfu= . }3
Gm= .0101
MOUNT TWO
S/N Hp 8478B,S/N 2186A 24001
Cf= . }993
Cfu= . }3
Gm= . }012
```

Enter path and name of file to SAUE. Enter a blank line to Exit. C: WNIST_PMZVCALDATA

Figure 2.4. Screen display for saving the CALDATA file.

Press F4 in the Mount Selection Menu (figure 2.2) to load or save a CALDATA file.

The menu changes as seen in figure 2.5. If " $S$ " is entered, the data presently in memory for the two mounts will be stored in CALDATA. Again, there is an opportunity to change the path or file name before it is saved, as the screen shown in figure 2.4 is repeated.


Figure 2.5. Mount selections screen after choosing the fourth item.

If for some reason it is necessary to restore the original calibration data, the initial calibration reports are included with the system, and the data could be re-entered. As an added precaution, a backup version of the original CALDATA file, called "CALDATA.ORG", is on the distribution disk. It can be loaded by pressing F4 in the Mount Selection Menu (figure 2.2), entering the "L" for load, and then the file name as shown in figure 2.6 .


Figure 2.6. Mount selection screen when loading a CALDATA file.

### 2.3.2 Input Wavetek Serial Number

Pressing F2 in the Measurement Menu (figure 2.1) will let you input the serial number of the Wavetek power meter being calibrated. The serial number will then be printed on the measurement report as part of the permanent record.

### 2.3.3 Change Number of Measurement Points

Pressing F3 in the Measurement Menu (figure 2.1) will let you change the number of repeated measurements made during the calibration. No less than the default six measurements should be made; more than six will slightly reduce the total uncertainty because of a smaller standard uncertainty with additional repeat measurements.

### 2.3.4 Wavetek Operating Instructions

Pressing F4 in the Measurement Menu (figure 2.1) results in the screen that appears in figure 2.7. It gives brief instructions for manually controlling the 8502 A calibrator output based on information given in the instrument's operating manual. The four numbered steps shown on the screen should be carried out before proceeding with the measurement. Press F10 to return to the main menu.

## CONTROLLING 85日2A CALIBRATOR OUTPUT

Press the following 8502A front panel control keys in the sequence indicated:
(1)-'CW', (2)-'Menu', (3)-'F3', (4)-'F1'.

Then, pressing the 85月2A key '7' will turn the calibrator output ON, and pressing the 8582A key 'CLEAR' will turn the calibrator output OFF.

For more detail see 'Calibrator Output Level Test' on page 6-2 of the 8502A manual.

CAUTION: Do not press any UNITS key when the mount is connected to the calibrator. This will cause the calibrator to output 180 mW which might damage the mount.


Figure 2.7. Screen display of operating instructions for the calibrator output.

### 2.3.5 Begin Measurement

Pressing F5 in the Measurement Menu (figure 2.1) leads to the screen that appears in figure 2.8. (Before starting the measurement, check the mount serial number to be sure the mount in use is the one shown on the screen.) Just before the message TURN RF ON (PRESS 8502A KEY '7') is displayed, the computer will beep once. At that point press key 7 on the 8502 A to turn the rf on and wait for a pair of beeps from the computer. The message will change to TURN RF OFF (PRESS 8502A 'CLEAR'). After pressing the CLEAR key on the 8502A, wait until a single beep sounds again before pressing key 7 to begin the next measurement in the set. This sequence will be automatically repeated until all the measurements making up the set have been completed. As indicated, the measurement series can be aborted by pressing the ESCAPE key.


Figure 2.8. Screen display at the start of the measurement.

When the desired number of measurements is complete, the screen shown in figure 2.9 is displayed. The upper half of the screen shows a summary of each measurement in the set as explained in table 2.1 below. The final results are displayed on the lower half of the screen below the horizontal dashed line. The explanation of each column is given in table 2.2

Press F1 to dump this screen to the system printer. A more detailed report is also available and can be printed or sent to a file, as explained in the paragraph following table 2.2.


Figure 2.9. Screen display of the measurement results.

Table 2.1. Explanation of the upper part of the measurement screen

| Column <br> Heading | Explanation |
| :---: | :--- |
| No. | Number of the power measurement. |
| Power | Result of the individual power measurement in mW. |
| Pwr - 1 mW | Normalized deviation of the measured power from 1 mW , percent. |
| V1 | Power meter voltage with the rf off (see section 3.1). |
| Delta V | Change that occurs in the power meter voltage when the rf is turned <br> on. |
| V1 Drift | Drift of $V_{1}$ in $\mu \mathrm{V} / \mathrm{s}$ that occurred from the beginning of the measure- <br> ment until it was complete. Note that if the drift is greater than 10 <br> $\mu \mathrm{~V} / \mathrm{s}$ the measurement should be repeated after waiting a period of <br> time for the mount temperature to further stabilize. |
| Ref. Offset | The compensation element channel is used as the voltage reference; <br> this column shows the voltage difference between the measurement <br> thermistor channel and the compensation thermistor channel when the <br> rf is off. |

Table 2.2. Explanation of the results section of the measurement screen

| Column <br> Heading | Explanation |
| :---: | :--- |
| AVG PWR | Average power in mW, computed from the measured data set. |
| AVG - 1mW | Percent deviation of the average power level from 1 mW. |
| MAX DEV | The maximum positive and negative deviations from the average. |
| STD DEV | The standard deviation of the mean. |
| W/C UNC | Worst-case uncertainty; the total uncertainty in the measurement when <br> all components are simply added. |
| EXP UNC | Expanded uncertainty; the RSS combination of all uncertainty compo- <br> nents multiplied by a coverage factor $(k)$ of two. For a discussion of <br> standard and expanded uncertainty see section 4 and reference [1]. |

Press F3 in the measurement results screen (figure 2.9) to print a copy of the detailed measurement report which can be used as a permanent record. Press F4 to save the report to a DOS text file that can be imported into a word processor. This report, which is not displayed on the CRT, shows the individual measurements, summarizes the results, and lists the uncertainty components. Figure 2.10 is an example of the report.

The top section of the report essentially duplicates what was shown in the results screen of figure 2.9.

The lower section of the report contains a table listing the uncertainties in the measurement. Each uncertainty component discussed in section 4 is shown, followed by a pair of values. The uncertainty limits column contains values which can be considered the traditional systematic and random components that are added to give the worst case sum. The standard uncertainty column contains the values needed for the method of expressing uncertainty in measurement recommended by the CIPM (International Committee for Weights and Measures) and required by NIST [1]. The final expanded uncertainty is twice the square root of the sum of the squares (RSS) of the standard uncertainties. Section 4 and reference [1] (also listed in the report) give more detail. The two columns make available a choice of uncertainty expression and uncertainty components to meet the user's requirement.

## MEASUREMENT DATA

FOR POWER METER: WAVETEK MODEL 8502A, S/N PM20PGV
USING MOUNT: Hp 8478B, S/N 2106A 24522

| Power <br> $(\mathrm{mW})$ | Pwr-1 mW <br> $(\%)$ | V1 <br> $(\mathrm{V})$ | Delta V <br> $(\mathrm{mV})$ | V1 Drift <br> $(\mu \mathrm{V} / \mathrm{s})$ | Ref. Offset <br> $(\mathrm{mV})$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
| 0.99390 | -0.610 | 2.249627 | 44.848 | 1.4 | -2.429 |
| 0.99474 | -0.526 | 2.249636 | 44.328 | 0.7 | -2.429 |
| 0.99459 | -0.541 | 2.249644 | 44.320 | 0.3 | -2.428 |
| 0.99427 | -0.573 | 2.249646 | 44.306 | 0.1 | -2.428 |
| 0.99461 | -0.539 | 2.249649 | 44.321 | 0.5 | -2.427 |
| 0.99424 | -0.576 | 2.249650 | 44.304 | 0.3 | -2.425 |

## MEASUREMENT RESULTS

The mean of the 6 measurements is 0.99439 mW with 0.008 percent standard deviation of the mean. The maximum deviation from the mean is +0.036 and -0.049 percent. The mean is 0.561 percent less than 1 mW .

The table below shows the values of the major uncertainty components. The total uncertainty is expressed as both the worst case sum and the expanded uncertainty. For a discussion of standard and expanded uncertainty see NIST Technical Note 1297, "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results."

| Value of uncertainty components in percent at 1 GHz. |  |  |
| :--- | :---: | :---: |
| Uncertainty factor | Uncertainty <br> limits | Standard <br> uncertainty |
| DVM | 0.033 | 0.080 |
| Mount calibration factor | 0.350 | 0.202 |
| Mismatch (mount reflection coefficient = 0.0101) | 0.113 | 0.080 |
| Dual element | 0.300 | 0.173 |
| Random effects (standard deviation of the mean) | 0.039 | 0.080 |
| Worst case sum | 0.835 |  |
| Combined standard uncertainty (RSS) |  | 0.279 |
| Expanded uncertainty (coverage factor $=2$ ) | 0.558 |  |

Figure 2.10. Sample of the hardcopy output.

## 3. SYSTEM DESCRIPTION

### 3.1 Theory of Operation

The NIST Type IV power meter is not a direct reading instrument. An external precision dc voltmeter must be connected to the power meter, and the power calculated from the voltmeter readings. For this system, the microwave power $P$ is given by

$$
\begin{equation*}
P=\frac{1}{K_{b} R_{0}}\left(V_{1}^{2}-V_{2}^{2}\right), \tag{3.1}
\end{equation*}
$$

where $V_{1}$ is the output voltage without rf power, $V_{2}$ is the voltage with rf power, $R_{0}$ is the operating resistance of the mount, and $K_{\mathrm{b}}$ is the mount calibration factor. Note that the power is proportional to the "bolometric power," which is simply the change of the mount dc bias power as rf power is applied and removed.

Equation (3.1) shows that, as the rf power becomes small, $V_{2}$ approaches $V_{1}$. Because of the uncertainty "magnification" that occurs in the computed difference of two nearly equal numbers, the power measurement uncertainty becomes very large as the power decreases. The solution to this problem is to measure the difference between $V_{1}$ and $V_{2}$ directly. This requires a reference voltage generator (RVG) which is set nominally equal to $V_{1}$ and, in effect, stores $V_{1}$.

When an RVG is used, the expression for calculating power from measured voltages becomes

$$
\begin{equation*}
P=\frac{1}{K_{b} R_{0}}\left(2 V_{1}-\Delta V\right) \Delta V, \tag{3.2}
\end{equation*}
$$

where $V_{1}, R_{0}$, and $K_{\mathrm{b}}$ were previously defined, and $\Delta V$ is the change in the power meter voltage when rf is applied; that is, $V_{1}-V_{2}$. In providing for a first-order correction of mount drift, the value of $V_{1}$ and $\Delta V$ are estimated by assuming linear drift and taking several other readings while the rf is off, as shown in figure 3.1.

The diagram in figure 3.1 depicts the outputs of the power meter and RVG as a function of time while the rf is cycled on and off. The measurement sequence of five voltage and time readings used to calculate the power and correct for the mount drift is also shown. Note that the reference voltage generator is not set equal to $V_{1}$, nor is it constant with time. This is because it is convenient to use the compensation element of the mount, biased by the second power meter channel, as the reference voltage generator. Thus the RVG does drift


Figure 3.1. Measured power meter voltages vs time.
during the measurement, but this change is also corrected, to first order, by the measurement series.

In terms of the measured voltages, the values to be used in eq (3.2) are given by

$$
\begin{equation*}
V_{1}=V_{1 i}+\left(\frac{t_{3}-t_{1}}{t_{5}-t_{1}}\right)\left(V_{1 f}-V_{1 i}\right) \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta V=V_{2 X}-\left[V_{1 X i}+\left(\frac{t_{3}-t_{2}}{t_{4}-t_{2}}\right)\left(V_{1 X f}-V_{1 X i}\right)\right] . \tag{3.4}
\end{equation*}
$$

### 3.2 Hardware

The system block diagram is shown in figure 3.2. The input switching to the digital voltmeter (DVM) is done with the multiplexer internal to the DVM. The controller is user supplied. The generic specifications for the instruments are given in appendix B.


Figure 3.2. System block diagram.

The internal wiring of the thermistor mount as received from the factory is shown in figure 3.3.


Figure 3.3. Original mount wiring.

Figure 3.4 shows the internal wiring diagram of the thermistor mount as modified for this application. The mount bias connector is replaced and internal wiring changes are made. These changes provide four-wire connections to the measurement and compensation thermistors, which eliminate lead and connector contact resistance errors. Only the modified mounts can be used with the system.


Figure 3.4. Modified mount wiring.

Figure 3.5 is a diagram showing the physical layout of the pc board in the mount with the attachment points for the wires leading to the connector and the thermistor elements.


Figure 3.5. HP 8478B thermistor mount pc board layout with modified wiring.

Figure 3.6 is the wiring diagram for the cable that connects the mount to the power meter.

CONNECTOR A (MEASUREMENT CHANNEL)


Figure 3.6. Thermistor mount connecting cable wiring diagram.

Figure 3.7 is a view of the cable end of the connector showing the pin-out. The specific connectors used are listed in Table 3.1.


Figure 3.7. Connector pin-out (Male cable connector as seen from cable end).

| Table 3.1. Connectors |  |  |
| :---: | :---: | :---: |
| Connector designation | Connector model NO. | Manufacturer |
| Connectors A, B, C | FGG.2B.310.CNAD72Z | Lemo USA INC |
| Connector D | EHG.2B.310.CNL | P.O. Box 11488 |

### 3.3 Software

A software listing is included as appendix C. Comments at the beginning of the code define the variables (and their location) that one might want to change for other applications such as a different power level. However, if changes are made, the user is responsible for the results. NIST cannot support modified code.

## 4. UNCERTAINTY ANALYSIS

The uncertainties associated with the measurement are grouped in two categories according to the method used to estimate their numerical values [1]. The Type A evaluations of standard uncertainty are based on statistical analysis of measurement results. The Type B evaluations of standard uncertainty are based on other methods, such as manufacturer's instrument specifications, measurement results, and scientific judgement. The standard uncertainties obtained by either the Type A or the Type B evaluations are the equivalent of a standard deviation.

The factors listed below contribute to the total measurement uncertainty and are included in the analysis. The standard uncertainty for each component is determined by either a Type A or a Type B evaluation as appropriate.

1. Uncertainty in the dc voltage measurements.
2. Uncertainty in the thermistor mount effective efficiency calibration.
3. Mismatch uncertainty due to the source (8502A calibrator output) reflection coefficient and the thermistor mount reflection coefficient.
4. The "dual element substitution error" associated with the coaxial thermistor mount.
5. Random effects.
6. Type IV power meter uncertainty. There are four sources of possible error internal to the power meter. They are the reference resistors, the operational amplifier open loop gain, input offset voltages, and input bias currents. The Type IV error analysis [2] indicates that all of them are negligible compared to the four factors listed above.

The first five of these items are considered individually in the following sections. An example of the results is summarized in a concluding table.

### 4.1 Voltmeter Uncertainty

The effect of uncertainty in the individual voltmeter readings can be determined by taking the total differential of the expression for power, eq (3.2),

$$
\begin{equation*}
\mathrm{d} P=\frac{2}{K_{b} R_{0}}\left[\Delta V \mathrm{~d} V_{1}+\left(V_{1}-\Delta V\right) \mathrm{d} \Delta V\right] . \tag{4.1}
\end{equation*}
$$

Let

$$
\begin{equation*}
T_{1 f} \equiv \frac{t_{3}-t_{1}}{t_{5}-t_{1}} \tag{4.2}
\end{equation*}
$$

and

$$
\begin{equation*}
T_{2 f} \equiv \frac{t_{3}-t_{2}}{t_{4}-t_{2}} . \tag{4.3}
\end{equation*}
$$

Thus, in terms of the measured parameters,

$$
\begin{equation*}
\mathrm{d} V_{1}=\left(1-T_{1 f}\right) \delta V_{1 i}+T_{1 f} \delta V_{1 f} \tag{4.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{d} \Delta V=\delta V_{2 X}+\left(1-T_{2 f}\right) \delta V_{1 X i}-T_{2 f} \delta V_{1 X f} . \tag{4.5}
\end{equation*}
$$

The quantities $\delta V_{1 i}, \delta V_{1 f}, \delta V_{1 X i}, \delta V_{1 X f}$, and $\delta V_{2 X}$, are the uncertainties in the measured values of $V_{1 i}, V_{1 f}, V_{1 X i}, V_{1 X f}$, and $V_{2 X}$. These uncertainties in the measured voltages are based on the voltmeter specifications, which are usually given in two parts as a fraction of reading term, $\alpha$, and a fraction of full scale term $\beta$. The general expression for the voltmeter uncertainty is given by

$$
\begin{equation*}
\delta V=\alpha V_{\text {reading }}+\beta V_{\text {fullscale }} \tag{4.6}
\end{equation*}
$$

Figure 4.1 shows the uncertainty in power measurement as a function of power level near 1 mW , as calculated using the above procedure for the voltmeter, power meter, and measurement configuration used in this system. In the calculations, the signs of the independent terms are chosen to give the maximum contribution to the total uncertainty. This uncertainty is obtained from a Type B evaluation and has a rectangular distribution.


Figure 4.1. Power measurement uncertainty from the DVM.

### 4.2 Uncertainty in Thermistor Mount Effective Efficiency

This is the uncertainty of the NIST thermistor mount calibration. The NIST calibration also gives a value for the mount calibration factor $C_{f}$, which is the factor used in this measurement rather than effective efficiency alone. It is defined in the next section. The values listed on the report of calibration will, of course, be constant for any given mount, until the unit is periodically recalibrated. This uncertainty is based on a Type $B$ evaluation and has a rectangular distribution.

### 4.3 Mismatch Uncertainty

The net power delivered to a termination by a source is given by

$$
\begin{equation*}
P_{t}=P_{0} \frac{1-\left|\Gamma_{t}\right|^{2}}{\left|1-\Gamma_{g} \Gamma_{t}\right|^{2}}, \tag{4.7}
\end{equation*}
$$

where $P_{0}$ is the power the source would deliver to a nonreflecting termination, $\Gamma_{g}$ is the generator reflection coefficient, and $\Gamma_{t}$ is the termination reflection coefficient. Ideally, the calibrator should deliver a net power of 1 mW to the power detector being calibrated, but that can be accomplished only if the complex reflection coefficients of the power detector, generator, and calibrating thermistor mount are known, which is generally not the case. Assuming, then, that the calibrator output specification is the power delivered to a nonreflecting load $P_{0}$, the measured output is given by

$$
\begin{equation*}
P_{0}=\frac{P_{m}}{\eta_{m}} \frac{\left|1-\Gamma_{g} \Gamma_{m}\right|^{2}}{1-\left|\Gamma_{m}\right|^{2}}, \tag{4.8}
\end{equation*}
$$

where $P_{m}$ is the bolometrically measured power, $\eta_{m}$ is the effective efficiency of the thermistor mount, $\Gamma_{g}$ is the generator reflection coefficient, and $\Gamma_{m}$ is the thermistor mount reflection coefficient. The denominator of eq (4.8) is the mount calibration factor

$$
\begin{equation*}
C_{f}=\eta_{m}\left(1-\left|\Gamma_{m}\right|^{2}\right) \tag{4.9}
\end{equation*}
$$

so eq (4.8) becomes

$$
\begin{equation*}
P_{0}=\frac{P_{m}}{C_{f}}\left|1-\Gamma_{g} \Gamma_{m}\right|^{2} \tag{4.10}
\end{equation*}
$$

The value of $\Gamma_{m}$ has been measured during the NIST calibration, but only an upper limit to the magnitude of $\Gamma_{g}$ is known (from the source return loss specification). Only the limits to the term involving the reflection coefficients are known. Thus,

$$
\begin{equation*}
\left(1-\left|\Gamma_{g}\right|\left|\Gamma_{m}\right|\right)^{2} \leq\left|1-\Gamma_{g} \Gamma_{m}\right|^{2} \leq\left(1+\left|\Gamma_{g}\right|\left|\Gamma_{m}\right|\right)^{2}, \tag{4.11}
\end{equation*}
$$

so $P_{0}$ is also only known within the limits

$$
\begin{equation*}
\frac{P_{m}}{C_{f}}\left(1-\left|\Gamma_{g}\right|\left|\Gamma_{m}\right|\right)^{2} \leq P_{0} \leq \frac{P_{m}}{C_{f}}\left(1+\left|\Gamma_{g}\right|\left|\Gamma_{m}\right|\right)^{2} . \tag{4.12}
\end{equation*}
$$

This uncertainty in $P_{0}$ is the mismatch uncertainty and its relative value is given to first order by

$$
\begin{equation*}
\pm 2\left|\Gamma_{g}\right|\left|\Gamma_{m}\right| \tag{4.13}
\end{equation*}
$$

The return loss specification on the calibrator output is greater than 25 dB , which results in a value for $\left|\Gamma_{g}\right|$ of $\leq 0.056$. Since value of $\left|\Gamma_{m}\right|$ is different for each thermistor mount, the mismatch uncertainty is calculated for each. This uncertainty is based on a Type B evaluation and has a U-shaped distribution [3].

### 4.4 Dual-Element Error

The power detector is a dual-element coaxial thermistor mount. Dual-element bolometer units are nonlinear with power level as a result of a dc-rf substitution error that arises because the two elements are not identical [4]. The magnitude of the error is different for each mount. The error is of concern because the measurement is being made at 1 mW , while the NIST calibration of mount efficiency is done at 10 mW . The only way to determine the error magnitude is by direct measurement, which is difficult at best.

Several methods were tried, but all had one or more deficiencies in giving a completely accurate, self-consistent determination. The problem is the effect is comparable to the noise, especially at 1 mW . However, the different methods did give results in general, if not exact agreement. The results reported here are from measurements on 20 mounts using a six-port reflectometer calibrated at 10 mW . The effective efficiency of each mount was measured at 10 mW and again at 1 mW without disconnecting the mount.

The differences between the effective efficiencies at the two powers for the sample of 20 mounts is used to make inferences about the differences of the entire population ( 80 mounts). A normal probability plot indicated the data can be considered normal. The two-sided tolerance interval [5] for the differences is $[-0.00269,0.00305]$. This interval should include 99 percent of the population with 95 percent confidence. Making the interval symmetric about 0 [-0.003, 0.003] will still include at least 99 percent of the population with 95 percent confidence. This uncertainty is based on a Type B evaluation and is assumed to have a rectangular distribution.

### 4.5 Random Effects

The measurement is repeated a minimum of six times. The standard deviation of the mean of the measurement set is the uncertainty component. This uncertainty is based on a Type A evaluation and has a normal distribution.

### 4.6 Expanded Uncertainty

Table 4.1 shows how the contribution of each uncertainty component is converted to a standard uncertainty. Again, definitions for the variables and terms used are found in reference [1]. The numbers in the table come from the sample measurement detailed in section 2. The components
used in the worst case total shown in figure 2.10 are the values from the half-width interval column except for the random effects. The value of the random component for the worst case total is three times the standard deviation of the mean.

| Uncertainty factor | Evaluation type | Half-width interval (a) | Distribution | Conversion formula | Standard uncertainty |
| :---: | :---: | :---: | :---: | :---: | :---: |
| DVM and power meter | B | 0.034 | Rectangular | $u_{j}=a / \sqrt{3}$ | 0.020 |
| Mount calibration | B | 0.380 | Rectangular | $u_{j}=a \neq \sqrt{3}$ | 0.219 |
| Mismatch | B | 0.195 | U-shaped | $u_{j}=a / \sqrt{2}$ | 0.138 |
| Dual-element | B | 0.300 | Rectangular | $u_{j}=a / \sqrt{3}$ | 0.173 |
| Random effects | E | - | Normal | - | 0.008 |
| Combined standard uncertainty (RSS) |  |  |  |  | 0.312 |
| Expanded uncertainty ( $k=2$ ) |  |  |  |  | 0.626 |

## 5. REFERENCES

[1] Taylor, B.N.; Kuyatt, C.E. Guidelines for evaluating and expressing the uncertainty of NIST measurement results. Natl. Inst. Stand. Technol. Tech. Note 1297; 1993 January. 15 p .
[2] Larsen, N.T. A new self-balancing dc-substitution rf power meter. IEEE Trans. Instrum. Meas. IM-25: 343-347; 1976 December.
[3] Harris, I. A.; Warner, F.L. Re-examination of mismatch uncertainty when measuring microwave power and attenuation. IEE Proc. 128, Pt. H, No.1: 35-41; 1981 February.
[4] Engen, G.F. A dc-rf substitution error in dual-element bolometer mounts. IEEE Trans. Instrum. Meas. IM-13: 58-64; 1964 June-September
[5] Hahn, G.S.; Meeker, W.Q. Statistical intervals: a guide for practitioners. New York, NY: John Wiley \& Sons; 1991, 58-59.

## APPENDIX A. Software Menu Tree

The numbered entries are menu soft-key labels where the numbers correspond to function keys, except for 0 which is function key 10 (F10).


2 SERIAL NO WAVETEK SERIAL NUMBER?

3 NO. POINTS _....... NUMBER OF MEASUREMENT POINTS?


0 EXIT

## APPENDIX B. Instrument Specifications

1. Digital voltmeter: $51 / 2$ digit resolution; 3 V dc range with 0.007 percent of reading and 0.0007 percent of full scale accuracy; 300 mV dc range with 0.012 percent of reading and 0.001 percent of full scale accuracy; IEEE Std-488 bus; optional integrated reed relay multiplexer.
2. Multiplexer: integrated with the DVM (or separate unit); minimum six single-pole, single-throw contacts; maximum thermal offset of $3 \mu \mathrm{~V}$; IEEE Std- 488 bus.
3. Dual NIST Type IV power meter (or two single units).
4. Coaxial thermistor mount: type N male connector; temperature compensation thermistors; dc bias power $\approx 30 \mathrm{~mW}$; maximum $|\Gamma|<0.025$; NIST calibration at 1 GHz ; modified for a 4-wire connection to both the measurement thermistors and the compensation thermistors.
5. Computer controller: programmable in Hewlett Packard Work Station Basic version 5.13 ("Rocky Mountain Basic"), or TransEra "HTBasic" with IEEE Std-488 capability; IEEE Std-488 bus.

# APPENDIX C. Software Listing 

| 100 | NIST-PM2 Power Measurement System Version 2.0 |
| :---: | :---: |
| 110 | File\$= ${ }^{\text {P PWR_MTR2" }}$ ( Started:9001111632/FRC |
| 120 | Rev\$="9312171312" ! NTL/FRC/PGV |
| 130 |  |
| 140! | RE-STORE "PWR_MTR2" |
| 150 | !! |
| 160 | US DEPARTMENT OF COMMERCE |
| 170 | NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY |
| 180 | MICROWAVE METROLOGY GROUP |
| 190 | 325 BROADWAY |
| 200 | BOULDER, CO 80303-3328 |
| 210 | !! |
| 220 | NOTES |
| 230 | 9311151100 - Added Escape key support (setup, update). PGV |
| 240 | 9311110930 - Added keyboard \& knob (mouse) trapping in RF and MBAS sub's |
| 250 | 9310251015 - Added error trapping for PM \& DVM now works under HTB 3.2 |
| 260 | 9310220905 - Load or Save 'CALDATA' file under setup menu |
| 270 | 9310220825 - Automatic backup of CALDATA file. |
| 280 | - Loads new Caldata file (must be bdat) |
| 290 | 9310211400 - Now fully functional under HTBasic 4.0 |
| 300 | 9310201740 - Added print report to DOS ASCII file (hardcopy) |
| 310 | 9309301445 - Now supports bdat file CALDATA. This file stores the |
| 320 | calibration data for the two mesurement mounts used with this system |
| 330 | (PM2). This file must be in the current directory during program. |
| 340 | execution. |
| 350 | 9308260845 - Cleaned up code and squashed bugs |
| 360 | 9308201530 - Print measurement results in text/table format to PRT on |
| 370 | parallel port (\#10) |
| 380 | 9308170735 - Modified for use with Epson FX-86e/FX-800 compatible |
| 390 | printer (e.g., Panasonic KX-P1180 9-pin printer). May work with an |
| 400 | Epson LQ printer (untested)). Screen resolutions of 640x480 or |
| 410 | $800 \times 600$ are sensed automatically. PGV |
| 420 | Written with HTBasic 3.2 ;PGV |
| 430 | $!$ ! |
| 440 | This program attempts to load the following data file upon execution: |
| 450 | Caldata |
| 460 |  |
| 470 | Errors, Select_v, Dvm_init, Pm_init, Ke_199 defined for use with: |
| 480 | Keithley 199 DMM/Scanner |
| 490 | Arbiter 1096A Dual Type IV Power Meter |
| 500 | $!$ ! |
| 510 | This program measures the 1 mW calibrator output of the Wavetek |
| 520 | model 8501A peak power meter. |
| 530 | ! |
| 540 | This version measures V 1 and delta V with the compensation element |
| 550 | used as a voltage source (RVG) to offset the DVM. It also calculates |
| 560 | the measurement uncertainty. |
| 570 | $!$ ! |
| 580 | Total measurement uncertainty components include: |
| 590 | Mount calibration factor, |
| 600 | Calculated mismatch uncertainty for the source (\|Gama|<=0.056) |
| 610 | and the mount, |
| 620 | Dual element uncertainty, |
| 630 | The DVM and Type IV error contributions. |
| 640 | $!$ ! |
| 650 | INSTRUMENTS CONTROLLED: ADDRESS |
| 660 | 1. Keithley $199 \mathrm{DMM} / \mathrm{Scanner} 722$ |
| 670 | 2. Epson FX compatible printer 10 (PRT) |
| 680 | 3. Arbiter 1096A Type IV PM 713 |
| 690 | ! ${ }^{\text {a }}$ ( ${ }^{\text {a }}$ |
| 700 | DESCRIPTION OP PRINCIPAL VARIABLES IN LABBLED COMMON: |
| 710 | ! |
| 720 | - - - - - . . . . . - |
| 730 | The following are in the Common labeled "/Dvm/": |
| 740 | $!$ ! |
| 750 | ** "Dvm_name\$" - The DVM identifier (ie, R199) |
| 760 | ! - |
| 770 | "PO" - Power level in milliwatts. The measurement results are |
| 780 | compared with this value. Default setting is 1 mW . |
| 790 | 1 ! 1 le |
| 800 | "RO" - Mount operating resistance in ohms. It is normally 200 |
| 810 | ohms for a coax mount and may be either 100 or 200 ohms |
| 820 | for a waveguide mount. Default setting is 200 ohms. |
| 830 |  |
| 840 | * "A1-A5" - Praction of reading error, for each DVM range |
| 850 | $!$ ! ${ }^{\text {a }}$ ( ${ }^{\text {a }}$ |
| 860 | * "B1-B5" - Praction of full scale error, for each DVM range |
| 870 | $!$ ! ${ }^{\text {a }}$ |
| 880 | * "R1-R5* - Pull scale DVM ranges available |
| 890 | $!$ ! |
| 900 | - - . - - - - - - . - . - - |
| 910 | The following are in the COMmon labeled ${ }^{\text {//Mount/n: }}$ |
| 920 | $!$ ! ${ }^{\text {a }}$ |
| 930 | ++ "Mount\$" -. Bolometer mount identifier for active mount |
| 940 | (manufacturer, model, and serial number). |
| 950 | $!$ ! |
| 960 | ++ "Cf" - Mount calibration factor as measured by NIST. This value |
| 970 | must be changed after mount replacement or recalibration. |
| 980 | $!$ ! |
| 990 | - - - - - - - - - - . - |
| 1000 | The following are in the common labeled "/Brrs/"; |
| 1010 | ! ${ }^{\text {a }}$ |
| 1020 | ++ "Cfu" - Total quoted uncertainty of the NIST mount calibration |
| 1030 | factor. |
| 1040 | $!$ ! ${ }^{\text {a }}$ |
| 1050 | * "Mmu" - Calculated mismatch uncertainty. |
| 1060 |  |
| 1070 | * "Deu" - Added uncertainty for dual-element error. |
| 1080 |  |
| 1090 | * "Dp" - Power uncertainty due to DVM. |
| 1100 | ! ${ }^{\text {a }}$ ( Mor |
| 1110 | ++ "Gan - Mount reflection coefficient magnitude. |
| 1120 | $!$ ! |
| 1130 | - - - - - - . - . |
| 1140 | The following is in the Common labeled "/Wavetek/n: |






```
5490
5500
5520
5530
5540
5550
5560
5570
5580
5590
5600
5610 
Nc: DATA/Dvm/Dvm_nameS[40] 3.02999E5 ! \ NVM ID 
620 A1: DATA <lll
5630 A2: DATA 
5640 A3: DATA 
5660 B1: DATA 
```






```
5720 R3: DATA 30.2999 % next range up
5730 R4: DATA NC,A1,A2,A3,944, B1, B2, B3,B4, R1,R2,R3,R4
5750 Convert_fs_errs:! Normalize FS count errors to fractional errors
5750 B1= =1/N
5770 B2=B2/NC
5780 
Dvm_init: SUB Dvm_init
    ! Initialize Kel99 DVM/Scanner
    OPTION BASE 1
    COM /Init/Pm_avail, Dvm_avail
    ABORT 7
                                    ! Stop all HP-IB activity (HTB 3.0)
    ON TIMEOUT 7,.5 GOTO DVm_e
    CLEAR 722 ("FOROTAPISIN1X"
    Clear the DVM
    OUTPUT 722;"FOROT4P1SIN1X" ! Initialize Keithly 199 DVM/Scanner
    CALL DVm(V,T)
    Get DVM reading if ready (HTB 3.0)
    Get DVM reading
    FO = DC Volts
    T4 = Trigger Continuous on X
    T4 = Trigger Continuous on X
        P1 = Internal Filter Enabled
    N1 = Channel one
    Dvm_avail=1 ! N1 = Channel one
    Dvm_avail=1 
    SUBEXIT
DVm_e: 
                            : DVM not found
    BEEP
    BEEP Iva_avail=0 ! No DVM available
    Mvmavail=0 1;" No DVM ava
    M, Keithly 199 System DMM/Scanner not found at address 722."
    OUTPUT 1;" Keithly 199 System D
    SUINPU
    SUEEND
    SUE
Menul: SUS Menul (Num_meas, Quit, RevS)
                ! Premeasurement set up & soft keys
    OPTION BASE I
    COM/Wavetek/SnS[7] ! For the serial number
    COM /Mount/Mount$[40],Cf,Defm ! Mount ID
    COM /Init/Pm_avail,Dvm_avail
    COM /Init/Pm_avail,Dvm_avail !
    Sys_prty=VAL(SYSTEMS("SYSTEM PRIORITY")) !Determine system priority
    Sys_prty=VAL(SYSTEMS("SYSTEM PRIORITY")) !Determine system priority 
    Lcl_prty=Sys_prty+1 ! Set local prior
    MSEIag=1
    To write menu
    USER 1 KEYS ( In list set of soft keys
    KBY LABELS ON
    ! Clear keys
        ON KEY N LABEL "" GOTO TOp
                            ! Default destination
    NRXT NEY
    ON KEY O LABRL " MOUNT " ",LCl_prty GOSUB Change_setup
    ON KEY O LABEL " MOUNT NO.",LCl_prty GOSUB Chan
    ON KEY I LABEL " SERIAL NO. ",Lcl_PItY GOSUB Sn 
    ON KEY I LABEL " SBRIAL NO. ",LCl_PItY GOSUB Sn 
    ON KEY 3 LABEL" MBELP ",Lcl_Prty GOSUB Help
    ON KBY 4 LABEL " MRASURE ",Lcl_Prty GOSUB Exit_to_meas
    O LOOP LABEL " EXIT ",Lcl_prty GOTO Quit
Top: 
        BEEP 400,.3
    STOP
    SUBEND
    SU
Ke_199: SUB Ke_199 ! DVM ranges and uncertainty
```



```
    OPTION BASE 1 ! (Keithly 199, 1 yr, 5-1/2 dig)
```



```
    FOR DVM: VALUE FM, QUNTITYY (PO,RO,A1,A2,A3,A4,A5,B1,B2,B3,B4,B5,R1,R2,R3,R4,R5
    COM/Dvm/PO,RO,A1,A2,A3,A4,A5,B1,B2,B3,
        !DVM ID
    SUBEND
    !
    !
    SUBEND
Ke_
        lraction-of-FS error, counts, range R3
    !
    CALL DVm(V;T)
    C
                            DVM ready to go
```



```
                                    ! For the serial number
5850
5880
Mn
5890
5910
5920
5930
5940
5950
5960
5960
5970
5980
6000
6010 D
6020
6040
\ago
6050
    Domtavaic=1 
    RO = Auto Range
6080
6090
6100
%のタのロ
O
タの品号
Oू%
%N%N
O
NNN
MNNN
Og
NN
6250
6260
6270
    O IMgRI.
            LOOP
            IF M_flag=1 THEN GOSUB Menu
            IF Pm_avail=1 THEN Errorloop=1+Errorloop! Check PM every 3000 counts
            IF Pm_avail=1 THEN Errorloop=1+Errorloop
    RND LOOP
Menu: CLEAR SCREEN
    Enu: CLBAR SCREEN ! Main menu
    PEN 6 ! Main menu
    MEN 6
    IF ROws>31 THEN CLIP 15,85,30,87 ! 800x600 display
    IF ROwE>3I THEN A=0
    IF ROWS>31 THEN CLIP 15,85,30,87 % & 800x600 display
    IF ROWB<31 THEN A=3
    IF ROW
    FRAME
    M,
    PRINT TABXY(24,8-A),"-- - MBASUREMENT MENU - - - -" SELECT MEASUREMENT MOUNT"
    PRINT TAABXY(20,11-A),CHRS (129);" ( "M;CHR$(128);"' SELECT ME
    PRINT TABXY(25,12-A),CHR$(136) &" (";MOUNT$;")"ECHRS(138)
    M,
    IF LEN(TRIMS (SnS))<1 THEN PRINT TABXY (25,15-A),CHRS (137)&n"(NO S/N in memory)"&CHR$(138)
    IN LEN (TRIMS (SnS))>0 THRN PRINT TABXY (25,15-A),CHRS (I36)&n (S/N n;SnS;" in memory)"
    PRINT TABXY(20,17-A),CHRS (129);" 3 ";CHRS (128);" CHANGE # OF MBASUREMENT POI
    PRINT TABXY(25,18-A),CHRS (136)&"(Present setting =";Num meas;") "&CHRS(I38)
    PRINT TABXY(20,20-A),CHRS (129);" 4 "';CHRS (128);" NAVETER OPERATING IN
    PRINT TABXY(20,22-A),CHR$(129);" 5 ";CHR$(128);" EEGIN MEASUREM
    PRINT TABXY(48-A,28-A),CHRS(139);"rev n;Rev$
    l
```






| 10920 | COM/Mount/Mount\$[40], Cf, Defm |
| :---: | :---: |
| 10930 | COM /Wavetek/Sns [7] |
| 10940 | DIM Tfiles (80) |
| 10950 | IF OS $=$ " $\mathrm{H}^{\prime}$ THEN : Output to printer |
| 10960 | CALL Kx_init ! Init Panasonic KX-P1180 Printer |
| 10970 | ASSIGN ©P1 TO 10 ! Assign path to printer |
| 10980 | ELSE ! Output to DOS ASCII file |
| 10990 | KEY LABELS OFF |
| 11000 |  |
| 11010 | Enter_name: |
| 11020 | OUTPUT 2;Tfile§; ! Output to CRT |
| 11030 | LINPUT "CHRS (136)Enter path and name of output file. ",Tfile\$ |
| 11040 | Tfile $=$ TRIM (Tfile\$) ! Remove leading \& trailing spaces |
| 11050 | IF LEN (Tfile\$) <1 THEN SUBEXIT ! If no path/file then exit |
| 11060 | ASSIGN ©P1 TO Tfile\$;RETURN Uncreated ! Open file TFile§ |
| 11070 | ASSIGN @Path_1 TO * Close path |
| 11080 | IF NOT Uncreāted THEN ! Dupicate file name |
| 11090 | BEEP |
| 11100 | ON KNOB 1 GOSUB Mousetrap ! Disable mouse movement |
| 11110 | ON KBD GOSUB Keytrap ! Trap input |
| 11120 | DISP "CHR\$(138)Duplicate file name found. Delete file? (CHR§(136)YCHR\$(138)) es or (CHR\$(136)NCHR\$(138))0." |
| 11130 | LOOP |
| 11140 | $\mathrm{DS}=\mathrm{KPD}$ \$ |
| 11150 | EXIT IF UPCS (D\$) = "Y" ! Yes |
| 11160 |  |
| 11170 | END LOOP |
| 11180 | OfF KNOB |
| 11190 | OFF KBD |
| 11200 | DISP "n |
| 11210 | IF UPCS (D\$) $=$ "Y" THEN PURGE Tfile\$ ! Purge file |
| 11220 | IF UPCS (D\$) $=$ " ${ }^{n}$ THEN Enter_name : Enter new path/file |
| 11230 | END IF |
| 11240 | ON ERROR GOTO Error_handler : On file error |
| 11250 11260 |  |
| 11270 | ASSIGN OPI TO Tfile§;FORMAT ON : Open path \& format output |
| 11280 | KEY LABELS ON |
| 11290 | END IF |
| 11300 | OUTPUT PS USING "\#, K";PO ! Compact field - Power in mW |
| 11310 | OUTPUT OP1; ${ }^{\text {a }}$ ( MEASUREMENT DATA ${ }^{*}$ |
| 11320 | OUTPUT ©P1;n" |
| 11330 |  |
| 11340 | OUTPUT ©P1;"n |
| 11350 |  |
| 11360 11370 | OUTPUT ©P1;n" Power Pwr-n;P\$;"mא V1 Delta V V1 Drift Ref. Offset" |
| 11380 |  |
| 11390 | OUTPUT ©P1;" |
| 11400 | IMAGE 3D, 4X, Z.5D, 4X,SZ.3D,4X,2.6D, 2X, 3D.3D, 4X, S2D.D,6X,S2D.3D |
| 11410 | FOR $\mathrm{N}=1$ TO Num_meas |
| 11420 | OUTPUT ©P1 US |
| 11430 | IF N=48 AND O\$="H" THEN OUTPUT ©P1; CHR\$ (12) ! Send form feed (page is 57 lines) |
| 11440 | IF N=48 AND O\$="h" THEN ! Set new line and set page to two |
| 11450 | Lines=0 |
| 11460 | Page 2 |
| 11470 | END IF |
| 11480 | Lines=Lines+1 ! Line count |
| 11490 | NEXT N |
| 11500 | OUTPUT ©P1; ${ }^{\text {n }}$ |
| 11510 | ( Make strings for text output |
| 11520 | OUTPUT Num_meas\$ USING "\#, R"; Num_meas ! Number of measurements |
| 11530 | OUTPUT MS USING "\#, Z.DDDDD"; Pres(1,1) : Mean power in mW |
| 11540 | OUTPUT SdS USING \#\#, Z.DDD ${ }^{\text {a }}$ Pres $(5,1)$ S Sdmu P Percent standard deviation |
| 11550 | OUTPUT Md1§ USING "\#, SZ.DDD"; Pres (3,1) : Max dev from the mean (+) |
| 11560 | OUTPUT Md2\$ USING "\#, SZ.DDD";Pres (4,1) ! Max f dev from the mean (-) |
| 11570 | OUTPUT Av\$ USING *\#, Z . DDD"; ABS (Pres $(2,1)$ ) Mean $\%$ from P0 |
| 11580 |  |
| 11590 | IF Page=0 AND O\$="H" AND Num_meas>12 THEN OUTPUT ©P1;CHR\$(12) ! Send FF |
| 11600 | OUTPUT @P1;"n |
| 11610 | OUTPUT ©Pi; ${ }^{\text {a }}$ ( MRASUREMENT RBSULTS ${ }^{\prime}$ |
| 11620 | OUTPUT ©P1;"n |
| 11630 | IF Num_meas>1 THEN |
| 11640 | OUTPUT ©P1; ${ }^{\text {The }}$ mean of the ";Num_meass;" measurements is ";MS;" mW with ";Sd§;" percent standard deviation" |
| 11650 |  |
| 11660 | IF Pres (2,1)<0 THEN |
| 11670 |  |
| 11680 | ELSE |
| 11690 | OUTPUT ©P1; "The mean is ";Avs;" percent greater than ";P\$;" mw." |
| 11700 | END IF |
| 11710 | OUTPUT ©P1;"" |
| 11720 | OUTPUT ©P1; "The table below shows the values of the major uncertainty components. The total" |
| 11730 | OUTPUT ©P1; "uncertainty is expressed as both the worst case sum and the expanded uncertainty." |
| 11740 | OUTPUT @P1; "For a discussion of standard and expanded uncertainty see NIST Technical Note 1297," |
| 11750 | OUTPUT ©P1; CHR\$ (34); "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement" |
| 11760 | OUTPUT ©P1; "Results."; CHRS (34) |
| 11770 |  |
| 11780 | OUTPUT ©P1; "The table of uncertainties is not computed for single measurements." |
| 11790 | END IF |
| 11800 | OUTPUT ©P1;"n |
| 11810 | IF Nummeas 1 THEN CALL Table ( $¢$ P1) $\quad \therefore$ Print table of results |
| 11820 |  |
| 11830 | ASSIGN ©PI TO * : Close path |
| 11840 | PRINTER IS 1 ! CRT |
| 11850 | SUBEXIT |
| 11860 | Error_handler: ! Brror Branch |
| 11870 | BEEPP |
| 11880 | BEEP |
| 11890 | LINPUT "ERROR - Filename or Directory not found. Press enter.", Fake§ |
| 11900 | Enter_name : Back to enter path/filename |
| 11910 11920 | RETURN |
| 11930 | ! NO RODENTS |
| 11940 | RETURN |
| 11950 | Keytrap: |
| 11960 | ! DEAD KEYS |
| 11970 11980 | RETURN SUBEND |
| 11980 | SUBEND |
| 12000 |  |



