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CROSSTALK BETWEEN MICROSTRIP TRANSMISSION LINES

David A. Hill, Kenneth H. Cavcey, and Robert T. Johnk

Electromagnetic Fields Division
National Institute of Standards and Technology

Boulder, CO 80303

Methods for prediction of crosstalk between microstiip
transmission lines are reviewed and simplified for the weak
coupling case. Classical coupled transmission line theory is

used for uniform lines, and potential and induced EMF methods
are used for crosstalk between nonuniform lines. It is shown
that the potential method is equivalent to classical coupled
transmission line theory for the case of uniform lines. An
experiment was performed for uniform coupled microstrip lines
for frequencies from 50 MHz to 5 GHz, and good agreement between
theory and measurement was obtained for both near-end and far-

end crosstalk.

Key words: characteristic impedance; crosstalk; effective
permittivity; even mode; microstrip; mutual capacitance; mutual
inductance; odd mode; scalar potential; transmission line;

vector potential.

1 . INTRODUCTION

In dense circuits, electromagnetic coupling (crosstalk) between closely

spaced signal lines limits interconnect performance [1] and becomes an

important aspect of circuit design [2]. The general crosstalk problem

involves multiple lines and complex geometries and is very complicated to

analyze. In this report we analyze crosstalk between a pair of microstrip

lines located on a single grounded substrate. This geometry is simple

enough to permit analysis, but still illustrates most of the important

features of the crosstalk issues.

The organization of this report is as follows. Section 2 starts with a

review of uniform transmission line theory for a pair of coupled lines and

goes on to obtain simple expressions for near-end and far-end crosstalk [3].

Section 3 covers two perturbation methods [4,5] that are valid for arbitrary

line orientations, but require that the coupling be weak (multiple

interactions are neglected) . Section 4 presents a comparison of measured
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and calculated results for the S parameters over a broad frequency range for

a pair of uniform microstrip lines. Section 5 contains conclusions and

recommendations for further study. Appendix A demonstrates the equivalence

of the potential method in Section 3.1 and transmission line theory in

Section 2 for the case of uniform, weakly coupled lines. Appendix B

contains a derivation of the transmission line parameters for the simple

example of circular wires above a ground plane. Appendix C discusses length

and frequency scaling of lossless and lossy transmission lines.

2. UNIFORM TRANSMISSION LINE THEORY

2.1 Coupled Line Equations

The literature on crosstalk between transmission lines dates back at

least to the 1930s [6], and textbooks have been written on multiconductor

transmission lines [7,8]. Strictly speaking, classical transmission line

theory applies only to perfectly conducting lines in a homogeneous medium so

that the transmission line modes are transverse electromagnetic (TEM)

.

Microstrip lines do not support pure TEM modes, but at low frequencies they

support quasi -TEM modes [9] that approximately satisfy the transmission line

equations

.

A cross-sectional view of a pair of microstrip lines on a grounded

substrate is shown in figure 1. For simplicity, we assume that the two

strips have equal width w, zero thickness, and perfectly conductivity. (We

will comment on the effects of conductor losses later.) The ground plane is

also assumed to be perfectly conducting. The lines are located on a

dielectric slab (substrate) of thickness h and have a separation s. The

substrate has relative permittivity and free-space permeability The

region above the substrate is free space.

The multiconductor transmission line equations can be compactly written

in matrix form [10], but for discussion we choose to write out the coupled

differential equations. For the source -free case, the line currents, and

and voltages, and satisfy [3]
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(la)

(lb)

(Ic)

(Id)

where x is the longitudinal coordinate and the exp(jwt) time dependence is

suppressed. The C.. are the elements of the distributed capacitance matrix,^ ^ O >::3 ^ ^ LI \J X. \-LI& d J. O L. i. X U d^CLV^ X UCLL LL^ llldl-XXW,

and the L. . are the elements of the distributed inductance matrix [ 111 .

ij

Both the capacitance and inductance matrices are symmetric (C
^2

^ ^21

L
^2

^ ^
21

^' because of the microstrip symmetry, we also have C^^*= C
22

and

= ^
22

' have put the off-diagonal terms on the right sides of the

equations because they will be thought of as source terms for loosely

coupled lines in Section 3.

For perfect conductors in a homogeneous dielectric, the capacitance and

inductance matrices are frequency independent. When the dielectric region

is inhomogeneous (as for insulated wires
[
11

]
or microstrips

[
12 ]), then the

capacitance and inductance matrices depend on frequency. However, they are

approximately frequency independent over a large quasi -static frequency

range [ 13 ]

.

The symmetric microstrip supports an even mode with -> and an odd

mode with - '^
2

‘ even and odd mode propagation constants, 7^^
and

7odd’
given by [3]

( 2 a)

and
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(2b)
'^odd

^ •

The even and odd mode characteristic impedances, and are given by

[3]

Z
ev <hi + " h 2

>

1/2

and

'odd (4l
- ^

12
^

1/2

(3a)

(3b)

Equations (2) and (3) are deceptively simple because computation of the

and elements generally requires some numerical method, such as the

method of moments
[
12 ].

For large spacing (s/w » 1), the coupling capacitance C
^2

^^<3

inductance L
^2

become small. In this case, the propagation constants in eq

( 2 ) approach that of an isolated line 7^

:

jc.(4iCii)
1/2

(4)

Also, the characteristic impedances in eq (3) approach that of an isolated

line Z^:

Zq - (L,,/C^^)
1/2

(5)

2.2 Crosstalk Predictions

To study crosstalk, we consider the geometry in figure 2. The coupled

microstrip lines are identical to those in figure 1 except that they are of

finite length i. Line 1 is fed with a voltage generator at x - 0 ,
and
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all four ports are terminated with an impedance . We label the driven and

terminated ends of line 1 as ports 1 and 2
,
and the near and far ends of

line 2 as ports 3 and 4. The geometry in figure 2 has been analyzed for

both directional coupler applications [13] and crosstalk predictions [3],

For crosstalk prediction, we can assume that the lines are loosely

coupled (s is not too small compared to h and w) . In this case, we can use

the approximate solution of [3] and equate near-end and far-end crosstalk to

the S parameters as follows:

S
31 = V

2
( 0 )/V^( 0 ) and = V

2
(i)/V^( 0 ) ( 6 )

In terms of the microstrip parameters, is approximately [3

- 2 y Ji

S = ff- {1 - e ° [cos(25ki) + sin(25ki)]),
0 0

where

-
<"ev

-

(h2
-

(7)

( 8 )

and

-

•>'odd>/<2j)
= -(^2 h2^0>/<2Zo)- (9)

Similarly, is approximately

S
41

-j sin(5ki)

.

( 10 )

(Reference [3] has the correct exact expression for but has an error in

the weak coupling approximation for and does not agree with eq ( 10 ).)

The transmission S parameter 82 ^
is not needed for crosstalk

prediction, but is approximately [3]
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cos(5ki)

.

( 11 )^21 ” ®

To first order in 6Z, the reflection coefficient -= 0 . To first order in

SZ, the approximate S parameters satisfy conservation of power:

ISiil^ + ISj^l^ + = 1
21 31

( 12 )

2.3 Low-Frequency Approximations

At sufficiently low frequencies (or for sufficiently short lines), we

can assume that ITq-^I « 1 . In that case the scattering parameters of the

previous section reduce to

S21 = 1
.

(13a)

5Z-roi

31
(13b)

and

41
-j 6 ki (13c)

To simplify the crosstalk parameters even further, we write the three

propagation constants in terms of effective dielectric constants:

• 1/2, (14a)

. 1/2 ,
7 - Jti>C /c,
ev ev'

(14b)

and

• 1/2 ,

'^odd
”

J‘^^odd/^’
(14c)
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where c is the velocity of light in free space. The relative effective

dielectric constant [9,13] for an isolated strip is the relative

effective dielectric constants for the even and odd modes [13] are e and
ev

e ... Substituting eq (14) into eq (13), we obtain
odd

31

eff
cZ

0

and

41
-jw

. ,
1/ 2

),
ev odd

2c

(15a)

(15b)

Since e e , e and Z„ are frequency independent for low frequencies,

S^^ and S^^ are proportional to jw at low frequencies. Paul and Everett

[14] have shown this for the same geometry, and they showed experimentally

that the resultant crosstalk waveforms are proportional to the time

derivative of the excitation waveform (when the spectrum of the excitation

is sufficiently band limited). Equations (15a) and (15b) also show that the

crosstalk is proportional to line length £ for short lines.

3. METHODS FOR NONUNIFORM GEOMETRIES

The general crosstalk application will involve many lines and

nonuniform geometries. For simplicity we consider only two lines on a

single substrate, but allow the two lines to have arbitrary orientation.

The two methods that we consider can be extended to multiple lines and

multiple substrates.

3.1 Scalar and Vector Potentials

In this section, we follow the method of Howard and Dunn [4,15] for

weakly coupled microstrip lines. Consider two lines of arbitrary length and

7



orientation located on the same substrate as in figure 3. The lines do not

have to be straight, but here we assume that they are.

We first consider line 1, the driven line, in the absence of line 2.

The current and charge are approximated as a line current and a line

charge located at the center of the strip. The local coordinate

specifies the location on line 1. The charge and current on line 1 produce

a voltage V(x,y) and a vector potential A(x,y) at an arbitrary point (x,y)

at the surface of the substrate (z = h)

:

V(x,y) = J ^l^^l^ ge(r 3

^:x,y) d^^ (16a)

line 1

and
A

A(x,y) " / ^^1' (16b)

line 1

The unit vector is in the direction of line 1. If the line is not

A

Straight, then is a function of position along the line. The functions

g^
and g^ are Green's functions for a grounded substrate geometry that are

defined and discussed in [16] and [17]. The simpler case of a ground plane

geometry (no substrate) is discussed in Appendix B.

We now consider line 2 (the undriven line). The scalar potential V and

vector potential A act as sources that excite line 2. The derivation of the

source terms resulting from V and A is given in [15], and the resultant

transmission line equations for the voltage and the current on line 2

are

2
j ^^2 2^2 (

C 2

)

and

(17a)

(17b)
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A is the component of the vector potential in the direction of line 2:

A

A = Equations (17a) and (17b) are similar to eqs (Ic) and (Id) except

that the source terms on the right side are different. In Appendix A, we

show that the two sets of equations are equivalent for the case of parallel,

uniform lines. Paul's results for illumination of transmission lines by

arbitrary external fields [10] can be shown to be equivalent to eqs (17a)

and (17b) if we recognize that V and A are equal to integrals from the

ground plane to the microstrip (0 to h) of the appropriate components of the

electric and magnetic fields [10].

Equations (17a) and (17b) can be solved for I^ and using standard

methods [15]. Since the effect of line 2 on line 1 has been neglected, the

solution for 1^ and can be considered a first-order perturbation

solution that is valid for weak coupling. To check the validity of the

method, one could allow the first order currents and charges on line 2 to

excite line 1 and determine what spacing or geometry produces a negligible

change in the currents and charges on line 1.

3 . 2 Induced EMF Method

Consider again the geometry in figure 3 where line 1 is the driven

line, and its current and charge produce scalar and vector potentials as

given by eqs (16a) and (16b). We can derive the electric field E produced

by line 1 from [18]:

E = -W - jwA. (18)

Now consider line 2 in the absence of line 1. If we excite line 2 with

a voltage source at we can use standard transmission line theory to

determine the current distribution We now apply the induced EMF

method which has been so widely used in antenna analysis [19] to the
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illumination of line 2 by the electric field given by eq (18). The open

circuit voltage
^2oc^^2^

written as the following integral over line 2:

''2oc<fP f
line 2

E(C )•( d$-

I (C ' )

(19)

(To be complete, the integral should also extend over the terminations

between the ground plane and the microstrip.) Olsen [5] has used the result

in eq (19) to compute crosstalk between lossy transmission lines where the

loss effect [20] has been included in both line 1 and line 2 by using the

appropriate current distributions, ^>^<1 12 (^
2
^’ lossy lines. The

open circuit location can be chosen anywhere on line 2, but is normally

chosen to be at either end since the end points are of most interest.

Expressions of the form in eq (19) have appeared in other analyses of

illumination of transmission lines by external fields [21,22], and Paul's

analysis [10] shows that the potential formulation in eqs (17a) and (17b) is

equivalent to the induced EMF formulation in eq (19).

We again point out that the result in eq (19) is a first-order

perturbation result that neglects any multiple interaction between the lines

and that the line-current approximation is made on both lines. Yuan and

Nyquist [23] have used a full-wave perturbation theory to analyze microstrip

crosstalk where they have not made the line-current approximation.

4. MEASURED CROSSTALK

For crosstalk measurements, we prepared a circuit board with two

parallel, uniform microstrip lines as in figure 2. The dielectric substrate

was duroid with relative permittivity - 2.2 and thickness h - 1.55 mm.

The strip width w was chosen to be 4.8 mm, and this value yields a

characteristic impedance of 50 Ci for a single, isolated line in the quasi-

static frequency range [13]. The strip separation w was chosen equal to the

strip width 4.8 mm in order to push the limit of the weak-coupling theory.
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The line length i was chosen to be 19.6 cm, so the lines range from

electrically short at the lowest measurement frequency (50 MHz) to

electrically long at the highest measurement frequency (5 GHz).

Even though our primary interest was in smaller, shorter monolithic

microwave integrated circuit (MMIC) lines, the larger dimensions of our

circuit board made it easier to perform measurements of S parameters using

an automatic network analyzer. (The subject of scaling the measurements to

smaller lines at higher frequencies is discussed in Appendix C.) We

soldered coaxial, 50-0 connectors to each of the four ports as shown in the

photograph in figure 4. In measuring the near-end far-end (S^^)

crosstalk, we terminated the other two ports (ports 2 and 4 or 2 and 3) in

50-0 loads.

For comparison with the measured crosstalk data, we used the weak-

coupling, uniform-line theory for in eq (7) and in eq (10). These

theories require values for the even and odd mode characteristic impedances

(Z and Z ,,) and the effective dielectric constant for the even and odd
ev odd

modes and the isolated strip (e
,

€ and e „j-) . Accurate quasi-static
^ ev odd eff ^

formulas for these quantities have been published in [13] and [24], and we

used these formulas to compute the following values: Z^^ = 51.64 fl, =

48.36 n, € - 1.973, e - 1.797, and e -- - 1.881. The formulas used to
ev odd eff

obtain these values were checked for accuracy by comparison with published

curves obtained by numerical methods [13]. As expected, is greater than

e ,, because the even mode field is more confined to the substrate,
odd

Comparisons of measured and theoretical crosstalk magnitudes are shown

in figures 5 and 6 for frequencies from 50 MHz to 5 GHz in 50 MHz steps.

The near-end crosstalk in figure 5 is characterized by oscillations as

predicted by eq (7). The low-frequency theory given by eq (15a) is also

shown and is valid for frequencies below about 100 MHz. This theory has the

jw dependence that was discussed by Paul and Everett [14]. The agreement

with the more general theory is generally good (within 2 dB) for frequencies

below 3 GHz. At higher frequencies, the lack of agreement could be due to

dispersion, surface waves, or higher-order modes that are not taken into

11



account in the theory. Connector- to-connector crosstalk might also be a

factor above 3 GHz because of the close spacing of the connectors as shown

in figure 4. However, these frequencies are above the normal frequency

range of use for microstrip lines of these dimensions [13], The agreement

that we have achieved is more than adequate for the application of crosstalk

estimation where high accuracy is not required.

The far-end crosstalk in figure 6 does not exhibit oscillations

because the argument of the sine function in eq (10) never gets large enough

to cause oscillations. (It could for longer lines or higher frequencies.)

We see some minor oscillations in the measured data above 2.5 GHz, but the

agreement remains within 2 dB. We did not include the low-frequency theory

of eq (15b), but it is essentially identical to the more general theory of

eq (10) over the entire frequency range. Both theories show the jw

dependence discussed by Paul and Everett [14].

Comparisons of measured and theoretical crosstalk phase are shown in

figures 7 and 8. The phase of in figure 7 approaches 90° at low

frequencies because of the jw dependence in eq (15a) . At higher

frequencies, the phase contains 180° jumps where the amplitude in figure 5

exhibits nulls. Above 3 GHz, the theory and measurement are no longer in

agreement. The agreement is qualitatively good below 3 GHz, but the

measured phase has an extra retardation, probably because of the phase shift

associated with the connectors. The connector phase shift could be

calibrated out, but we chose not to do so. For crosstalk applications, the

amplitude results (which do not appear to be affected by the connectors) are

much more important than the phase. The extra connector phase shift (which

appears to be proportional to w) would result in a pure time delay in the

time domain.

The phase of in figure 8 approaches -90° at low frequencies because

of the factor -j in eq (15b). The exp(- 7Qi) factor in eq (10) yields a

linear phase shift, and the 360° jumps occur only to keep the phase in the

range from -180° to 180°. Again the measured phase has an extra phase shift

due to the connectors.

12



We also measured the through parameter and it agreed well with eq

(11). We measured to check the matching of the connectors to microstrip

lines, and it remained below -30 dB for frequencies below 1 GHz and below

-20 dB above 1 GHz. To estimate the connector- to-connector crosstalk, we

soldered two connectors to the ground plane in the absence of microstrips

and measured the coupling. It increased from -87 dB at 50 MHz to -37 dB at

5 GHz. Consequently it could have been partly responsible for the deviation

at the high frequencies in figure 5.

5. CONCLUSIONS AND RECOMMENDATIONS

We have reviewed theories for crosstalk between a pair of uniform or

nonuniform raicrostrip transmission lines. We have concentrated on theories

for weak coupling because that is the usual case of interest in crosstalk

applications. For uniform lines, we have simplified the theory to easily

computed formulas for near -end and far -end crosstalk and have also showed

that both types of crosstalk have a simple jw dependence at low frequencies.

We have also performed crosstalk measurements and have shown good agreement

between theory and measurements for frequencies from 50 MHz to 5 GHz. These

measurements were made on a fairly large circuit board (length = 20 cm)

which can be considered a scale model for smaller MMIC lines. Scale model

issues are discussed in Appendix C.

Theories for nonuniform, coupled lines have also been reviewed. These

theories are quite flexible and do not rely on the usual mutual capacitance

and inductance parameters that are used in uniform, multiconductor

transmission line theory. However, we have shown that the scalar and vector

potential theory discussed in Section 3.1 is equivalent to coupled

transmission line theory for the special case of uniform lines. This was

done in Appendix A by demonstrating equivalence of scalar potential coupling

to mutual capacitance and the equivalence of vector potential coupling to

mutual inductance. This equivalence is important because it allowed us to

show in Appendix B that local mutual capacitance and inductance coupling
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occur over a finite length of line that is approximately equal to twice the

line separation.

A number of extensions to this work would be worthwhile. Loss should

be included in the theories because this is likely to be important in small

MMIC lines and does not scale in a convenient way for scale model

measurements, as discussed in Appendix C. More theoretical and experimental

work should be done for complex geometries that include nonuniform lines and

multiple dielectric layers. The potential and induced EMF methods discussed

in Section 3 are useful for such cases, but their limitations need to be

determined. Time-domain theory and measurements [25] should be pursued

because of the importance of pulse crosstalk [14] in digital systems. Pulse

issues could be studied directly in the time domain or by way of Fourier

transforms of frequency- domain calculations and measurements.
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APPENDIX A. EQUIVALENCE OF POTENTIAL AND TRANSMISSION LINE THEORIES

The purpose of this appendix is to show the equivalence of the

potential source terms on the right sides of eqs (17a) and (17b) to the

coupled transmission line source terms on the right sides of eqs (Ic) and

(Id). The conditions that we require are that the two lines be parallel and

only weakly coupled (separation s should not be too small)

.

We first consider the scalar potential term on the right

side of eq (17b). Using the expression for V in eq (16a), we can write the

potential term as

j‘^C22V(f2) - jc^C22 f ‘^^l’
line 1
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where we have suppressed the y dependence of g . If we assume that g6 0

decays rapidly as " ^2^ increases, then we can factor out the charge

from the integral in eq (Al) and approximate the integral over line 1 by an

integral from -<» to <»:

CD

jwC22V(f2) = ^^^^22 ^1(^2) /
-00

The integral over is the potential on line 2 due to a constant unit

charge per unit length on line 1. Frankel [8] defines this quantity as the

element P
2 ^

of the potential matrix [P] which is the inverse of the usual

capacitance matrix. This allows us to write eq (A2) as

~ ja)C22 P
21

Using the definition of the capacitance matrix [8], we can write the

charge on line 1 as

Pl(ri)
» "

^ll^l^^l^-

where we have used the fact that the coupling is weak (|Cj^
2 l

small

compared to . Substituting eq (A4) into eq (A3), we have

ja,C22V(r2) - j‘^C22 P21 <^5)

From the inverse of the capacitance matrix, we can approximate P
2 ^

by

2
'^12'^^^11^22^ if we again assume weak coupling (C

^2 ^11^22^’

write eq (A5) in the desired final form:

ja;C22V(r2) = -j‘^C^2^i(5’2^-
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Equation (A6) confirms that the source terms on the right sides of eqs (Id)

and (17b) are approximately equal and that the scalar potential source term

is approximately to the mutual capacitance source term. The actual

expression for the mutual capacitance is given in Appendix B for the example

of circular wires above a ground plane.

We now consider the vector potential term, -ju)A(C
2

) ,
on the right side

of eq (17a). Using the expression for A in eq (16b), we can write the

vector potential term as

-jwA(r2) = I "^^1’

line 1

where we have suppressed the y dependence of g^. We have also used the fact

A A

that the two lines are parallel (r2^’r2 “ assume that g^ also

decays rapidly as ’ ^2^ increases, then we can factor out the current

from the integral in eq (A7) and approximate the integral over line 1 by an

integral from to oo;

-ja)A(r2) = -jw ^ ^m^^l’^2^ "^^l'
-00

The integral over is the flux linkage with line 2 due to a constant unit

current on line 1. This quantity is defined as the mutual inductance L
2 ^

[8]. Using this definition, we can write eq (A8) in the desired final form:

-ju>A(r2) = -jwL23^I^(f2)- (A9)

Equation (A9) confirms that the source terms on the right sides of eqs (Ic)

and (17a) are approximately equal and that the vector potential source term

is approximately equal to the mutual inductance source term. The actual

expression for the mutual inductance is given in Appendix B for the example

of circular wires above a ground plane.
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APPENDIX B. TRANSMISSION LINE PARAMETERS FOR CIRCULAR WIRES

In general, the microstrip geometry of figure 1 does not permit a

closed- form analysis, and numerical techniques are required to obtain the

transmission line parameters [12]. The difficulties are that the strips

support an unknown current or charge distribution that must be computed

numerically and that the dielectric substrate leads to fairly complicated

Green's functions, g and g [17]. However, it is instructive to analyze a
°e °m

simple, circular-wire geometry to see how the various transmission line

parameters and Green's functions are related.

Consider the two-wire transmission line geometry in figure 9.

Identical circular wires of radius a are located at a height h and a

separation s above a perfectly conducting ground plane. The wires are also

perfectly conducting. We consider the weak coupling case where we assume

s/h » 1. We also make the thin-wire assumption (h/a » 1).

We consider first the electrostatic problem which leads to the

capacitance matrix [C]. Line 1 supports a uniform line charge per unit

length and is at a potential . Line 2 also supports a line charge per

unit length p^ and is at a potential . Following the formalism of Frankel

[8], we write the voltage column vector [V] as the product of the potential

matrix [P] and the charge matrix [p]'.

[V] = [P][p]. (Bl)

The potential matrix is the inverse of the capacitance matrix [C]:

[P] - [C]
-1

(B2)

The elements of the potential matrix are [8]

(B3a)

and
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in(ci/s), (B3b)P, ^ = P
12 21 27re,

2 2 1/2
where d “ [s + (2h)

]
. Since we have assumed that s/h » 1, we can

simplify (B3b) to

P = P
12 21

TT^oS
T (B4)

The elements of the capacitance matrix are obtained from the inverse of [P]:

and

'11 22

'12 21

^ll/^^ll
' ^12^ ^

^/^ll

-Pl 2/(Pii
- P^

2
) '^12/^11

(B5a)

(B5b)

Substituting eqs (B3) and (B4) into (B5)
,
we obtain

27rc
0

11 22 >en(2h/a)

and

(B6a)

'12 21 2 2
s in (2h/a)

(B6b)

It is also interesting to show how the coupling terms (^-^2 “ ^21^

the potential matrix can be derived from the integral of the Green's

function g^ . We can write the Green's function in the following form:

N
1

,
-1 -Iv

®e^^l’^2^ “
47rcQ

'

’^i
(B7)

where

2 2 1/2 22 2 1/2
r - [s + (f^ - ^ and r. - [s^ + (2h)^ + ^
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Then we can write ^
2 \

following integral:

^21 “ -T d: “fi - lir:
-00 0 0

(B8)

which is in agreement with Frankel's result [8] in eq (B3b)

.

It is also useful to perform the integral in eq (B8) over finite

limits, -L to L, to determine what length of the transmission line actually

contributes significantly to the coupling represented by ^
21

’ Thus we

define
21L

as the following finite integral:

^
1

r—J A*--:21L AttCq ^^0 ’^Oi
^ ^^1’

where

, 2
,.
2 , 1/2 ^ ,

2 ,,,,.,2 2
, 1/2r^ - (s + and r^^ » [s + (2h) +

(B9)

This integral can be evaluated in terms of logarithmic functions and

approximated to the following form:

P
21L

TT^od

(1 (1 (BIO)

For
^21L

approximately equal to ^
21

’
need the second term in the

parentheses to be small compared to 1. This yields

l}/s^ » 1/2. (BID

The physical interpretation of eq (Bll) is that the capacitive coupling to a

given point on a parallel line occurs primarily from the charge over a

length 2L approximately equal to 2s.
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Because the inductance matrix [L] is closely related to the potential

and capacitance matrices, we can obtain the elements from the previous

analyses. The simplest relationship involves the potential matrix [8];

[L] = (B12)

From eqs (B3a) and (B12)
,
the diagonal elements, and

hi -
"-22 - ^ ^''<2h/a). (B13)

From eqs (B4) and (B12)
,

the coupling elements, and ^21'

H2 “ Si ^0
^ 0^12

^0
^

ns
r (B14)

The derivation of By integrating the magnetic Green's function g^ over a

line with either infinite or finite limits follows the same mathematics as

the electrostatic case in eqs (B7)-(B11) and will not be repeated.

APPENDIX C. SCALE MODELS

For crosstalk applications involving small microstrip lines,

measurements are more conveniently done on larger scale models
,
such as the

coupled microstrip lines pictured in figure 4. For the time-harmonic form

of Maxwell's equations, scaling of frequency and length in nondispersive

,

lossless media is well known. For the example of frequency- independent

antennas [26], "the entire electrical performance is frequency- independent

if all length dimensions are scaled in proportion to frequency."

Now consider a lossy, inhomogeneous medium (such as a small microstrip

line), characterized by position-dependent permittivity e(r), permeability
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/i(r)
,

and conductivity a(r). If we wish to scale up in size by a factor S,

then the new (primed) parameters need to be related to the original

(unprimed) parameters by [27]

r' = Sr, (Cla)

w' = u/S, (Clb)

a'(r') = a(r)/S, (Clc)

€
' (r' ) = e(r)

,

(Cld)

H' (r'

)

= /i(r) . (Cle)

The length and frequency scaling is as expected, and keeping the

permeability /i' equal to the original /i is automatic for nonmagnetic

materials. Keeping the substrate permittivity constant can be done

approximately for low-dispersion dielectrics, but the main difficulty comes

in scaling the microstrip and ground-plane conductivities. These

conductivities of the scale model should be multiplied by a factor 1/S.

(This means a decrease for S > 1.)

The required decrease in conductivity for the metal strips and ground

plane obviously represents a materials problem unless a different metal with

the required lower conductivity can be used. Normally this is not practical

because it more convenient to use copper in both the original and scale

model. Another possibility would be to adjust the thickness of the strips

and ground plane to obtain the desired resistance R per unit length. The

scaled resistance R' per unit length should equal the original resistance R

per unit length times 1/S. The difficulty in controlling R' by adjusting

metal thickness is that R' depends on thickness in a rather complicated

manner and is strongly dependent on the ratio of skin depth to thickness.

If the metal conductivity and thickness are both scaled according to eq
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(Cl)
,

the ratio is maintained because both the thickness and skin depth

increase by a factor S upon scaling.

If the metal conductivity is not scaled, then a good loss theory is

required to make the proper adjustment in metal thickness. The present

choices are between approximate theories, such as the incremental inductance

rule [28,29] or the phenomenological loss equivalent method [30], and full-

wave numerical methods [31,32]. More work is needed in this area.
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Figure 1. Cross-sectional geometry for a pair of identical raicrostrip

transmission lines.
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line 1 line 2

Figure 2. Two identical niicrostrip lines terminated in the characteristic
impedance of an isolated line. Line 1 is excited at port 1.
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Figure 3 Two microstrip lines of arbitrary orientation located on the same

substrate

.
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Figure 4. Two identical microstrip lines with coaxial connectors.
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Figure 5. Magnitude of (near-end crosstalk)

measurement

.

from theory and
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Figure 6. Magnitude of (far- end crosstalk) from theory and measurement.

Results for the low-frequency theory are not shown because they
are essentially identical to the more general theory.
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Figure 7. Phase of (near-end crosstalk) from theory and measurement.
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Figure 8

.

Phase of (far-end crosstalk) from theory and measurement.
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Figure 9. Two identical circular wires located in free space over a perfect

ground plane.
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