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Abstract

This report overviews shielded open-circuit measurements and presents a com-

prehensive uncertainty analysis. We use a dominant-mode scattering formulation to

develop an expression for the reflection coefficient in terms of bead and sample pa-

rameters. The formulation developed here eliminates the transformation through the

various sections of the sample holder. We also extend the formulation to include

magnetic measurements. The uncertainty analysis indicates a decrease in relative

uncertainty with increasing sample length and with increasing frequency. The real

part of the permittivity at low frequencies is very sensitive to measured phase of the

reflection coefficient and sample length. The imaginary part of the permittivity of

low-loss materials is not extremely sensitive to the sample length. For high-loss ma-

terials both the real and the imaginary parts of the permittivity are sensitive to the

sample lengths. The minima of the reflection coefficient for low-loss materials occur

at nAm/2, where n = 1,2,3... and Xm is the wavelength in the material. These min-

ima in the reflection coefficient correspond to regions of minimum uncertainty for the

real part of the permittivity. The minimum uncertainty for low-loss materials occurs

at frequencies where there is maximal interaction of the fields with the sample.

Key words: calibration; coaxial line; dielectric constant; liquids; loss factor; mi-

crowave measurements; open circuit; permeability measurement; permittivity mea-

surement; powders; reflection method; transmission; uncertainty; waveguide
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Section 2 “r~

Sample Level

Open Circuit

L3 Section 3

1 ^ = 0

Figure 1.1: The dielectric sample holder with grooves in bead section.

1. Background

The shielded open-circuited coaxial line sample holder (OCL) has been used for years

for dielectric measurements of liquids and powders [1]. The sample holder operation is

based on an accurate model of a coaxial line terminated in a shielded open circuit. The

advantage of an open-circuited holder is the ease of sample installation, the broad frequency

capability, and the strong electric field in the sample region. The OCL is composed of an

outer conductor that extends beyond the end of the inner conductor as shown in figure 1.1.

Bussey [1] developed an approximate theoretical model for the shielded open circuit based

on the analysis of Somlo [2].

The OCL consists of three sections. Section 1 is the air line section between the bead

and the connector, section 2 is the bead, and section 3 contains the sample under test.

There are two types of open-circuited holders in common use. The first and most common

type of sample holder has machined grooves in the inner and outer conductors in the bead
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Figure 1.2: The dielectric sample holder for an uncompensated bead.

section. This holder is depicted in figure 1.1. The function of the grooves is to maintain

line impedance. Therefore this type of sample holder is called a compensated OCL. For

the compensated bead, the fringe capacitance caused by the grooves in the conductors in

section 2 can introduce an uncertainty into the effective length of the bead section. The

fringing capacitance at the end of the inner conductor also makes the effective length of

section 3 slightly longer than the physical length of the inner conductor. Somlo [2] has

presented length correction formulas for the shielded open circuit that account for fringing

capacitance effects. The second type of OCL is uncompensated and has uncut conductors as

depicted in figure 1.2. In this type of holder the impedance varies from section to section.

The literature pertaining to the shielded open circuit is extensive and no attempt is

made here to review it exhaustively, von Hippel [3] used an open-circuited sample holder

for liquid measurements. Bussey pioneered the development of the OCL discussed in this

report [1]. Scott [4] studied the instabilities encountered in solving the relevant nonlinear
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open-circuit equations. Hill [5] studied in situ measurements of soils using open-circuited

transmission lines. Jesch [6] used the shielded open- circuited holder for measurements on

shale oil. Biological tissues have been measured using the shielded open-circuited line,

for example by Stuchly and Stuchly [7]. The sample holder is useful in high-temperature

measurements [6,8].

Bussey’s formulation of the open-circuited holder [1] is based on an admittance trans-

formation through the various regions of the holder. In this report we express the problem

in terms of dominant mode scattering. We develop a compact expression for the reflec-

tion coefficient in terms of bead and sample parameters and thereby eliminate the need to

transform through the various sections of the sample holder. We extend the formulation

to include magnetic measurements and present a differential uncertainty analysis.

2. Theoretical Formulation

We begin with a simple mathematical analysis of the electromagnetic fields in the sample

holder. The problem is to relate the reflection coefficient to the complex permittivity and

permeability.

Consider a sample in a transmission fine as indicated in figure 1.1. The effective lengths

of the air section, bead section, and sample sections are Xi, L2, and L3. Assuming only the

dominant TEM mode (see Appendix) and a exp{jujt) time dependence in the coaxial line,

we can write down the following expressions for the normalized, radially integrated electric

fields in these three sections

Fi( 2) =exp(-7i2)-f rexp(7i2:), (2.1)

E2{z) = Cl exp(-722r) -f- C2 exp(722:), (2.2)

3



Ez{z) = Cz exp(-73(2 - L2 )) + exp(73(2 - I2 )), (2.3)

where F is the TEM reflection coefficient and Ci, i = 1,2, 3, 4 are constants to be deter-

mined. The tangential normalized magnetic fields can be found from the electric fields by

use of Maxwell’s equations

Hi{z) = J-[exp(-7i2:) - r exp(7iz)], (
2 .4

)

^2{z) = ^[C'l exp(-722) - C2 exp(722)], (2.5)
Z/2

Hziz) = ^[C3exp(-73(2 - L2 ))
- C4exp{-fz{z - L 2 ))], (2.6)

where Zi are the characteristic wave impedances in the various sections of the line.

The propagation constants of the line sections are

(2-7)
^vac ^

and the permittivity and permeability are written as

~ j^R{i)]^o = ^*R(i)^o, (
2 .8

)

and

~ jf^R(i)]f^o = IJ'*R{i)f>'o- (2.9)

Here is the speed of light in vacuum, u is the angular frequency, Co and s-re the per-

mittivity and permeability of vacuum, and are the complex relative permittivity

and permeability measured in section (z) of the coaxial sample holder.

The model of the open circuit used in this theory is approximate and requires length

corrections to be made to the physically measured length of the inner conductor to account
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for fringing capacitance. The first correction is due to the fringing capacitance at the end

of the inner conductor. Somlo derived an approximate expression for a correction to the

inner conductor length that accounts for the fringing capacitance [1,2]

L'^ = {h- a)(0.6034 + 0.9464x2 + (2.10)

where x = ^ is the free space wavelength, and b and a are the radii of the outer

and inner conductors. L'^ is an increasing function of frequency. Equation (2.10) is valid

for X < 0.3. It is assumed that the frequency of operation is chosen so that the TMqi

mode is below cut-off in the cylindrical waveguide section. This requires x < 0.383 or

f{GHz) < 0.115/6^6^(3^ [1]. The second correction is due to the hemispherical end of the

inner conductor. If Lp is the measured length of the inner conductor in section 3 from the

tip to the end, then the length correction due to the effects of the hemispherical end for a

50 n line is [1] Lj = Lp — 0.42a and for a 75 Q line is Lj = Lp — 0.36a. Therefore the total

effective length of the inner conductor is

Ls = Lj + Z/3. (2.11)

For a flat end on the inner conductor Lj = Lp, so Ls = Lp L'^.

We wish to determine the coefficients in eqs (2.1) through (2.3) by imposing boundary

conditions on the system of equations. The boundary conditions are:

• the tangential components of the electric and magnetic fields {Ep, H^) are continuous

at sample interfaces {z = 9, z = L2 ),

• the tangential magnetic field approaches 0, at the effective position of the open

circuit, 2 = T2 + L3 .

This last boundary condition is an approximation. However, the approximation is rea-

sonable. The validity of the theoretical model is limited to applications where the TMon

5



modes are below cut-off in the cylindrical waveguide formed by the extension of the outer

conductor.

Equations for the coefficients in eqs (2.1) through (2.6) can be obtained by application

of the boundary conditions. If we apply the boundary conditions to eqs (2.1) through (2.3)

and (2.4) through (2.6) we obtain

\ T — C\ C2-,

Cl exp(—72L2 ) + C2 exp(72i^2) — Cz-\- C4 ,

r-i = /3iiC2
- Cl],

/?2[C'i exp(- 72l3 )
- exp(72X3 )]

= C3- C4,

C4 = SC3,

where

S = exp(-273l3).

We cLssume that for air and bead sections = 1. Also

For a compensated bead system /3i = 1 and /?2 reduces to

(
2 . 12

)

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

(2 .20 )
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The boundary-condition equations can be written compactly as

1 -1 -1

0
1

n V

1 -^1

\ f
p

^ f-l\

6-2 0

<^3 1

/ . 0 ,

(
2 .21

)

(
2 .22

)

/ 1 .
. Q

-(l+<5)

0

VO ^2^ {i-s))

where

T) = exp (72T2).

Solution of eq (2.21) yields for the reflection coefficient an equation that is transcen-

dental in the permittivity and permeability:

f_2 I x
(^^iih 73T3 tanh 72T2 + ^2) - I3i{tdinh J3L3 + P2ta,nh-f2L2) . .

exp 7i 1
_l_ ^2) -I- /

9i (tanh 73T3 + /?2 tanh 72T2)
’

Included in eq (2.23) is an electrical length correction for section 1.

For the special case of a compensated bead, eq (2.23) reduces to

r = + (2.24)

The dependence on Li can be ehminated by dividing the reflection coefficients of the

sample filled holder in eq (2.23) by the reflection coefficients measured on an air-filled

sample holder

Fair = exp (—27i(Ti -f T2 -f T3)), (2.25)

to obtain

r = Fair exp (271 T3)
/?2 - tanh(73T3)

^2 + tanh(73L3)

'

(2.26)

2.1. Numerical Results

Figure 2.1 shows the magnitude of the reflection coefficient as a function of normalized

length. The minima of the reflection coefficient for low-loss samples occurs at half-integral

wavelengths in the material.
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Figure 2.1: The magnitude of the reflection coefficient as a function of normalized length

with = (20,-0.01).
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1.08
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0 1000 2000
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Figure 2.2: The real part of the permittivity of air as a function of frequency (maximum

rms uncertainty over the band is ± 0.03).

The determination of the permittivity proceeds by solving the transcendental equation

eq (2.23) which involves the sample length, sample position, and reflection coefhcient.

With modern computer systems, iterative procedures are easy to implement. In figures 2.2

through 2.4 the calculated permittivities of air and carbonaceous sand as functions of the

volume fraction of water are displayed. The uncertainties are due to sample length and

scattering parameters. In figure 2.2 we see increased uncertainty at lower frequencies.

This is due to the increased relative uncertainty in the phase measurement.

2.2. Magnetic Measurements

Two independent measurements are necessary for simultaneous permittivity and perme-

ability determination. This is accomplished for the open-circuited sample holder by taking

measurements with two different inner conductor lengths. The measurement with the sec-

ond inner conductor of length ^3(2 )
can be written as

9



Frequency (MHz)

Figure 2.3: The real part of the permittivity of carbonaceous sand mixture as a function

of frequency and water volume fraction (maximum rms uncertainty ± 0.35).

Figure 2.4: The loss of carbonaceous sand mixture as a function of frequency and water

volume fraction (maximum rms uncertainty ± 0.15).
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(tanh 73 -^3 (2 )
tanh72X2 + /?2 )

- ,^i(tanh 73X3
(
2

)
+ P2 tanh72X2

(tanh 73^3(2) tanh 72^2 + /?2 ) + /?i(tanh 73i^3(2) + /^2 tanh 72X2 )

‘

(2.27)

Equations (2.23) and (2.27) can be solved simultaneously by a Newton-Raphson technique

to obtain 6
^(3 )

and

2.3. Characterization of the Sample Holder

The thickness and the permittivity of the support bead are important quantities and need

to be known very accurately. Since the bead faces are usually not flat, it is difficult to

obtain an accurate effective bead thickness. The sample holder bead can be characterized

by measuring air in the holder and setting the value to the permittivity of air, which

is = 1.00055 for an elevation of 1700 meters, and then solving eq (2.23) for the

propagation constant of the bead
(72 )- Note that in the case of a compensated bead the

expression contains only the nondimensional quantity 72T 2 . The effective length of the

inner conductor in section 3 can also be studied with this procedure.

3. Uncertainty Analysis

Error sources included in the following analysis of the OCL measurement include uncer-

tainties in reflection coefficient, sample dimensions, and bead parameter dimensions. Since

this sample holder is usually used for measurements of liquids and powders, there are min-

imal gaps between conductors and samples. Therefore gap corrections are not apphcable.

In the case of powders, to obtain a statistically valid result, the mean grain size must be

significantly smaller than h — a. The uncertainties in the network analyzer parameters

usually are well documented by the manufacturer [9].

In order to evaluate the uncertainty introduced by the measured scattering and length

parameters, we assume that a differential uncertainty analysis can accurately describe the

r(2) = exp(-27iTi)

11



measurement errors. We assume that the total relative uncertainty with no cross-correlation

can be written as

1

+ +
^^i?(3)

dL2 dL^

2

(3.1)

Af"

f"
^R{3) N V ^iri

+
'de''m
de

Ae11 +
de''

fl(3)

11 dL,
AL2] +

^^R{3)

dL.
AL,

(3.2)

where A^n is the uncertainty in the phase of the reflection coefficient, A|r| is the uncer-

tainty in the magnitude of the reflection coefficient, and ALi are uncertainties in lengths.

The uncertainties used for the scattering parameters depend on the speciflc automatic

network analyzer used for the measurements.

In the analysis that follows it is useful to define the phase parameters

$2 — 72 -^'2
5 (3.3)

^3 = 13^3 . (3.4)

If we define the following function assuming Li = 0

_ (tanh $3 tanh ^2 + ^^2) - l3i{ta.nh. Os + ^2 tanh ^2)
p _ q ('351

(tanh ^3 tanh ^2 + ^^2) + y
5i(tanh O3 + /?2 tanh $2) ’

then we can calculate the various derivatives with respect to the independent variables

or

df

dL2 dL2
(3.6)

^^*R(3)

dL2

IL
dL2

_AL_’
(3.7)

12



and

or

df ^^^(3)
^

dU
(3.8)

_9L

and

or

It is apparent that

and

dLz
(3.9)

dL3 df ’

df ^^!r(3)

^!r(3)

+ II 0 (3.10)

d^R^z)
IL
d\r\

(3.11)
airi

“
df

'

d^*R{Z) .|p|^efi(3)

' airr
(3.12)

II 1 exp(i^ii). (3.13)

The required derivatives can be calculated explicitly

dL2

r
(tanh 63 - ^1^2)

^
(tanh $3 tanh ^2 + <^2) + (tanh 63 + /?2 tanh $2 )

(
, . (tanh 63 tanh ^2 + /^2) - A (tanh O3 + (^2 tanh 62) .

^ ^ ^
((tanh ^3 tanh ^2 + ^^2) + A (tanh 63 + /?2 tanh ^2))^

’ (3.14)

df ^ ,2m (tanh6>2 - A)
dL3 ^ (tanh $3 tanh ^2 + /^2) + A (tanh 63 + /?2 tanh $2)

(t h^ 3)
(^^^^^3tanh^2 d- /32) - A(ta-nh ^3 + /92 tanh^2)

^
^ ((tanh 63 tanh O2 P2) -\- /5i(tanh 63 + 1^2 tanh ^2))^

(3.15)

13



(L3sech^^3tanh^2alr^ + -S^) ~ tanh02)
[ R{^) fl(3)

(tanh 03 tanh 02 + /^2 ) + /5i(tanh 03 + ^2 tanh 62 )

(i3sech^»3tanh«25r?^ + + J^tanhSj)
fl(3) Rj^) fi(3)

((tanh 03 tanh 02 + ^2 ) + ^i(tanh 03 + /?2 tanh 02))^

X [(tanh 03 tanh 02 + ^2 )
— y5i(tanh 03 + ^2 tanh 02)]], (3.16)

di3 _
J^~ /

, (3.17)

dP2 1 f^R(3)
(3.18)

2^!r(3) \ ^fi(3)

The components of the various derivatives in eqs (3.9) through (3.12) are plotted in figures

3.1 through 3.4 as a function of normalized length in the material. The wavelength in the

material is = 3f?(27rc„£ic/^^e^(3)A^/i(3))-

Equation (3.12) provides a way of obtaining derivatives with respect to magnitude once

the phase derivatives are known. For this reason not all derivatives are plotted. In figures

3.5 through 3.10 the uncertainties in and //^(3 )

are plotted as a function of normalized

sample length. The minimum uncertainty for low-loss materials occurs at multiples of one-

half wavelength. These minima correlate with the minima in the reflection coefficient in

figure 2.1. In figure 3.10 the frequency dependence of the uncertainty is displayed.
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/-3

Am

Figure 3.1: The derivative of with respect to |r| with = (5, —0.01)
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Figure 3.3: The derivative of with respect to normalized length of the inner conductor

with = (5, -0.01).

Figure 3.4: The derivative of with respect to normalized length of the inner conductor

with e^(3
)

= (5, -0.01).
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Figure 3.5: The relative uncertainty in €^(3
)

for a low-loss material as a function of nor-

malized length with = (5, —0.01) and (20,-0.01).

Figure 3.6: The relative uncertainty in e'^(3
j

for a low-loss material as a function of nor-

malized length with 6
^(3 ^

= (5, —0.01) and (20,-0.01).
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Figure 3.7: The relative uncertainty in for a high-loss material as a function of nor-

mahzed length with = (5,-10) and (20,-20).

eff(3)

Figure 3.8: The relative uncertainty in for a high-loss material as a function of nor-

malized length with = (5,-10) and (20,-20).
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Figure 3.9: The relative uncertainty in e^(2) ^he bead with e^^2) = (2.03,0) and for

uncertainties in the bead permittivity of Ae'^(2) — 0-02 and Ae^(2) 0-

Figure 3.10: The relative uncertainty in as a function of frequency for permittivities

€fi(3) = (5, -0.01) and 6^(3) = (20,-0.01).
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4. Discussion

In coaxial line 72^ contains the product of angular frequency, sample length, and the

square root of permittivity and permeability. Therefore the effects of sample length and

frequency variations are correlated, so plots of various uncertainty parameters as a function

of normalized length are particularly informative.

As indicated in figures 3.1 through 3.4 we generally see a decrease in relative uncertainty

as a function of increasing sample length and as a function of increasing frequency. The

large uncertainty at lower frequencies indicates a limitation of the method. This results

from the very small phase shift over the length of a sample at low frequencies. At low

frequencies the real part of the permittivity is very sensitive to measured phase and sample

length. As indicated in figure 2.1, the minima of the reflection coefficient for low-loss

materials occur at nA„i/2, where n = 1,2,3.... For low-loss materials these minima in

the reflection coefficient correspond to regions of minimum uncertainty in the real part

of the permittivity. Therefore the minimum uncertainty for low-loss materials occurs at

frequencies where there is maximal interaction of the fields with the sample. For high-

loss materials both the real and the imaginary parts of the permittivity are sensitive to

the sample lengths. In the measurement of air in figure 2.2 we see that the uncertainty

decreases as frequency decreases. This is consistent with the uncertainty analysis results.

The accuracy to which the bead section permittivity is known is important as indicated

in figure 3.9. Errors in these values will cause systematic uncertainties in the measurements.

We acknowledge Howard Bussey for various discussions. This work was funded in part

by a contract from the Office of Intelligent Processing of Materials.
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Appendix: Field Analysis of the Shielded Open Circuit

In this appendix we will review the electromagnetic fields around the open circuit. It

is assumed that materials are homogeneous and isotropic, so there is only an azimuthal

component of the magnetic field. The open-circuit position is assumed to be below the fill

level of the liquid or powder.

Consider a coaxial line terminated by a shielded open circuit. The frequency of operation

is assumed to be such that the modes in the shield region are evanescent. The dominant

TEM mode is assumed to be incident upon the open circuit where a reflected TEM wave is

formed together with evanesecent TMon modes. No energy is lost to the evanescent modes

unless the lines are lossy or a lossy material is in the coaxial line or shield.

The assumed existence of only an azimuthal magnetic field requires that the materials

are homogeneous and isotropic. Under these assumptions the magnetic field satisfies

(A.l)

both in the coaxial line region (3) and the shield region (4).

Since the Laplacian is separable, the solution to the radial electric field in the coaxial

line can be written as a linear combination of TEM and TMon modes.

In both the coaxial line and shield it is required that at the inner and outer conducting

surfaces E^ = 0. The z-component of the electric field is given by

(A.2)

The radial eigenfunctions in the coaxial line that satisfy the correct boundary conditions

for TMon modes on the inner and outer conductors are
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Rn{p)

= DqIp for n=0 (TEM mode)

= Dn[Ji{k3np)No{k3na) - A^i (^Sn/o)Jol^Sno)] n > 0 . (A.3)
' '

TMonmodes

where Nn are the Bessel functions of the second kind and the constants are obtained

by requiring orthogonahty

/ CRn{K)Rm{aOdC = Smn m,n = 0,1,2 . . ..

Ja
(A.4)

Therefore

and

Do =
\/ln(6/a)’

Dn = wk.3n

\ IapRl{p)dp \/2 /J|.(fc3na) _ ^

(A.5)

(A.6)

Unless stated otherwise we will assume that the radial eigenfunctions are normalized. The

eigenvalues k3n are the nth solutions of

[Mk3na)No{k3rtb) - No{k3rta)Jo{k3nb)] = 0. (A.7)

The radial eigenfunctions are orthogonal over [6, a] with respect to weight function p. The

TMon propagation constants are

Tin ~ k-^, (A.8)

the TEM mode propagation constant is

Tio = - \J^*R(i)pR{iy
(A-9)

^vac

The electric field in the coaxial line is

CO

Ep(3) = Ro{p) eXp(-7302) + ^3nRn{p) eXp{^3nZ), ( A.IO)

n=0
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and the magnetic field is

= ^^^Ro{p)exp{--f3z) - ^^^T3nRn{p)eXp{j3nZ). (A.ll)
Tso n=0 ^3^

In the shield region we assume we have evanescent TMon modes. The radial eigenfunc-

tions in this region satisfy the condition Ez = 0 on the boundary. The radial eigenfunctions

must be finite at p = 0, therefore Neumann function are not possible solutions. The eigen-

functions are

Gr,{p) = Br,Jl{Kp), (A.12)

where are normalization constants given by

Bn =
y/lo pjn^np)dp

(A.13)

The fields can be written as

-^p(4) — ^ ^ ^n^nj^nP) 6Xp
(

n=l

and

,S 74n

(A.14)

(A.15)

The eigenvalues An are found from eq (A.?) by letting a —> 0 so that

JoiKb) = 0 . (A.16)

Therefore = Pn/^ where pn is the nth root of Jo{x) = 0.

The tangential component of the electric field is continuous across the coaxial line-shield

interface at z = 0. Matching eqs (A. 10) and (A.14) at 2: = 0 yields

where

Dn —< GnRo > + < GnRm > Tmi (A.17)

m=0

< GnRm >= f' pGn{p)Rm{p)dp. (A.18)
Ja
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The tangential magnetic field components are also continuous across the coaxial line-shield

interface. Matching eqs (A.ll) and (A. 15) at 2: = 0 yields

> - f; > . (A.19)
730 €4 ^=0 ^473m

Equations (A. 17) and (A.19) yield

00 'VC 00

< GnR« > + E < > r„ = 211^ < GnR<, >-'£?,,< GA > (A.20)

m=0 73nQ m=0

or

f; (1 + < GnRn, >r„ = - 1) < G„Ro >
,

(A.21)

m=0. 'y3m^4 ')Zn^4.

Qnm Pn

or

E<?n»r„ = P„, (A.22)
m

Only the reflection coefficient of the TEM mode (To) is of interest since the other modes

are evanescent in the coaxial line.
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