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Abstract

Approximation of absolutely continuous measures of maps of the

interval and the closely related tasks of computing Lyapunov expo-

nents and metric entropy are accomplished in principle by iterating the

map to produce a sufficiently long trajectory. There is an alternative

approach based on approximating the fixed point of the Frobenius-

Perron operator. We present a Monte-Carlo implementation of the

original piecewise constant method proposed by Ulam. This method

has the advantage of not requiring explicit evaluation of the elements

of the approximate Frobenius-Perron operator. Convergence rates of

Ulam’s method and some recently proposed higher order variants are

discussed. Using the classical Bohman-Korovkin theorems of approx-

imation theory the optimality of the rates are shown to be a conse-

quence of the saturation phenomenon. Finally Ulam’s scheme is used

to estimate the leading Lyapunov exponent of a one dimensional map
with an absolutely continuous measure. We propose an analytical

criterion for comparing the results of using this method with an esti-

mate obtained by iterating a long trajectory and illustrate its use in

a numerical example.
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1. Introduction. Given a non-singular mapping r of a compact subset X C R,

it is of interest to determine whether or not an absolutely continous invariant measure

exists, for such a measure is one indication of the chaotic behaviour of trajectories of

the map. The existence of such a measure is equivalent to the existence of a fixed

point /* of the Frobenius- Perron operator Pr : L^{X) and if

(
1

) Prr=f\

f* (suitably normalized) is the density of /i with respect to Lebesque measure (m) and

is called a stationary density. Since the pioneering work of Lasota and Yorke in [18]

(1) has become an important strategy for establishing the existence of smooth invariant

measures. Computing /* is also an important alternative to iterating r and creating a

histogram. Examples in [13] show that iteration produces roundoff and discretization

effects that can lead to misleading results. Boyarsky and his coworkers have recently

made progress in approximating measures associated with a class of expanding maps

of the unit interval by using invariant measures of a Markov map that approximates

the original map [8], [9]. These maps include the ones originally considered in [18]. The

solution of (1) for Markov maps reduces to solving a matrix vector problem and the

corresponding stationary densities were shown to converge to the stationary density of

the original map by Gora and Boyarsky [8].

In 1960, Ulam [22] proposed approximating Pr itself by a finite dimensional Markov

operator, Pn{'^)- In this setting X —
[0, 1]. He conjectured that the corresponding fixed

point fn converges to /*, provided f* exists. T.Y. Li proved this for the maps r for

which inf[o,i] \t/\ > 2. As in the previous approximation method finding fn can be ac-

complished by solving a matrix vector equation. However Ulam’s method uses a simple

uniform partition of the interval and for that reason, it has a natural generalization to

domains in higher dimensions. Convergence in this setting was proved by Keller [14] for

expanding maps. Chiu et. al. in [3], using a spectral approach obtained upper bounds

on the rate of convergence with explicit constants. Earlier Hunt and Miller used spec-

tral analysis and the Cauchy integral representation of the resolvent to show similar

bounds on the rate of convergence when the operator Pr is quasi-compact in [12].

Unfortunately this condition is not satisfied by many of the maps of the Lasota-Yorke

type [5]. However under certain boundedness conditions randomly perturbed maps in

PP are quasi-compact in L^{X) [11]. In this paper we will mainly be concerned with

rates of convergence of Ulam’s method and some recently proposed higher order variants



given conditions on the smoothness of f*. These rates provide error estimates for the

method and help to answer the question: given a reasonable approximation of the map

T and its derivative can one obtain a good approximation of the Lyapunov exponent?

A positive Lyanpunov exponent is one of the few unambiguous indications of chaos,

and since the dynamics of many maps and differential equations in can be reduced

to the dynamics of a one dimensional map, this question is important.

In §2 we describe Ulam’s method and its implementation using a Monte Carlo cal-

culation of Pn(r).Using this approach one can avoid the problem of analytical evaluation

which in general is quite difficult. In §3 convergence rates are discussed. Such rates

were obtained by Chiu et. al. in the case when f* is of bounded variation or is in a

Sobolev subspace of . We will obtain similar bounds using the classical Bohman-

Korovkin theorems of approximation theory. We propose that the optimality in the

rate of convergence discussed by Chiu et. al. for the piecewise linear version of Ulam’s

method can be seen to be a consequence of a so-called saturation theorem (see [4]).

This is also true of the piecewise quadratic version as well. These theorems imply a

limitation in the speed of convergence independent of any extra smoothness /* might

have, and this is evident when examining the numerical results in a recent paperof Ding

and Li [7] on Markov finite approximations of the Frobenius-Perron operator. The

errors using the quadratic version of the method are the same order of magnitude as

the those of the linear method. We demonstrate in two numerical examples in §4 that

the bounds on the rate of convergence obtained in §3 can be achieved in our Monte

Carlo implementation although the error will be larger than methods based on exact

analytical evaluations. In §5 we apply Ulam’s method to the problem of computing

the leading Lyapunov exponent of a one dimensional map. Bounds on the convergence

rate of the method based on iteration can be obtained from extensions of Koksma’s

inequahtya [16]. These bounds do not take into account the effects of roundoff so, they

apply under ’’ideal” conditions and for a large enough number of iterations. Based on

these considerations a criterion for comparing Ulam’s method and the iteration method

under ideal conditions is presented and illustrated in a numerical example. Since the

bounds are asymptotic in the number of iterations the comparison is a rough one. Nev-

ertheless, the example shows that good results can be obtained with a modest amount

of computation and more importantly the criterion gives a precise way of assessing the

performance of Ulam’s method or any other method to results obtained by iteration.
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This aproach applies not only to the Lyapunov exponent but also to any functional that

is an expected value with respect to the invariant measure.

2. Numerical Implementation of Ulam’s Method. Ulam’s method is based

on the approximation of Pr by a Markov operator of finite rank. First introduce the

finite dimensional subspace

(2) A„ = {/€LHX):/ = X;/.x.}
1= 1

where Xi is the indicator function of the ith subdivision /, in a partition of X, and

/, are constants. We assume the measure of the subdivisions are all the same so that

m(/t) = Ijn = h. Let TTn be the operator on = V-{X)^

(
3

)
TTt I'- An

where TTn/ = fiXt and = 1/A Jj.f. Let Pn(r) = TTnPr- If ^ {/ G L^X) :

/ ^ 0) /;</ = 1} is the set of densities then, Pn{r), inheriting the properties of P.r)niaps

densities to densities and is therefore a Markov operator. Furthermore, P„(t)/ G An if

/ G An, so the search for fixed points of Pn{'^) reduces to the solution of a matrix vector

equation. Li proved the existence of a fixed point /„ and proved the convergence of

{/n} to /* when r is an expanding piecewise C’ map of the type considered by Lasota

and Yorke. The defining relation for the operator Pr is

(
4

) / .
f - I P-rf

(
5

)

It is not hard then to show that the matrix representation of Pni'T') is,

ru.)
Pnir)

m(7,)

Our implementation makes use of a Monte Carlo approximation of these elements as

analytic evaluation may nbt be feasible. This is typically the case when r has a compli-

cated formula or when an analytic expression for r is unavailable because for example

it was obtained numerically or from an experiment. In each subinterval /j, M points are

selected at random from a uniform distribution. Call them {Pk} Jt=i, 2,--M-Then {t(P^‘)}

is calculated. Let be the number of points t(P^) in Jj.We then will have

M ^ m{h)
3

(
6

)



Let the resulting approximate matrix be called Pn{'^)- The fixed points of Pni'T') can

be found by the usual matrix-vector methods. Now it was shown in [12] that if t is

ergodic the matrix Pni^) is an irreducible,stochastic matrix. It follows that there is

always a unique fixed point so for large M we expect the same conclusion holds for

P^(r). The algorithm is highly parrallelizable,and for large n, takes no more than a

couple of minutes on a workstation.

3. Convergence. In this discussion we assume that X is the closed interval

[0,1], and that Pr has 1 as a simple eigenvalue. Using the Cauchy integral representation

of the projection onto the eigenspace for {!}, Chiu, et. al. proved the following upper

bound on ||/* — /n||, the norm of /* — /„.

Theorem 3.1 (Chiu,Du and Li [3]). Let r satisfy m/[o,i]|T'| > 2. Then

\\r-fn\\<c-\\r-Qnf*\\ where c is a constant independent of and f*

.

c depends on the upper bound of the norms of the resolvent operators of Pr and Pnij)

and Qn is the operator TTn, for the piecewise approximation originally considered by

Ulam. Methods based on higher order approximations were developed by Ding and Li

[7] and in these cases is an operator mapping L^[X) onto the finite- dimensional

subspaces of piecewise linear and piecewise quadratic functions corresponding to the

piecewise linear and piecewise quadratic approximations of /* considered by them. As

will be shown below. Theorem 3.1 thus reduces the problem of estimating the error

of Ulam’s method and these related methods to a problem in classical approximation

theory. That is, assuming /* has some degree of smoothness, upper bounds on the right

hand side in theorem 3.1 can be obtained. Chiu,et.al. assumed /* was in a Sobolev

subspace of (7(0,1). Here Bohman-Korovkin theorems will be used to extend some of

their results.

To apply the Bohmaii-Kprovkin theorems in [4] we introduce the positive operator

Ur, : L^{X) -> A„ Ur,{f,-) = Efc=i ^)t(/)Xfc(-)- For Ulam’s method, \k{f) is fk

defined in equation (3). If we define the functions e,{x) = x*,z = 0,1, 2,then one

observes that.

(
7

) LAi(co) ’) sq

and for fixed x,

4



(
8

) U„{f{x),-) = f{x)U„(e„,-) = fix)

An upper bound follows from the following Bohman- Korovkin inequality. In its proof

we assume the continuity of f, but we do not need the continuity of Un[f, ).

Proposition 3.2. If f e C[X) then,

(9) \Unif,x) - f{x)\ < l/(x)lleo(x) - C/^(eo,x)|

(10) +{Ur,{eo, x) + t/„(eo, x)^/^)w(/, ar,{x))

a„(x) = Un{{t — x)^, x) and tu(/, •) is the modulus of continuity of f.

The proof of the proposition closely follows along the lines of the proof of Shisha

and Mond in [4] and is given to make our presentation self contained. We begin first

with a preliminary lemma.

Lemma 3.3. Let,

(11) Qn(/, 2:) = ^ h{f)hk{x)
k=X

where

(12) ^i^if) = ETf f
1= 1

^ ''Li

with X)f=i bkt = 1, hk{x) > 0 for all x, and Ikt CLre partititon intervals. Then for each x,

(13) Qn{\f\,x) < Qn(|/|^x)^Q„(eo,x)^

Proof: Apply the Cauchy-Schwarz inequality to the sum (11), the sum in equation

(12) and the integral in (12)

Proof of Proposition 3.2 We observe that,

(14) \f{t) -/(x)| <a;(/, |t-xl) = a;(/,(?- |t - x|<^“^)

(15) <uj{f,8){l + 6-'^\t-x\)

Now \Un{f, x) - /(x)| =
I
ELi(^fc(/) - f{^))Xk{x) + ELi f{^)Xk{x) - f{x)\.

Hence,using equation(8),

(16) \Un{f,x) - /(x)l < Ur^{\f{t) - /(x)|,x) + |C/„(eo,x) - eo(x)ll/(x)|

5



Let ^ > 0 be arbitrary. On using(15) the right hand side of (16) is

(17) < uj{f,6){Un{eo,x) + - x|,x)) + l/(x)||Lr„(eo,x) - eo(x)|

From lemma 3.3,

(18) Un{\t - x|,x) < - x)^x)2(C/„(eo,a:))2

The right hand side is,

(19) C/n(eo,x)2an(x)

and thus, on setting 6 = an(x),

(20)

C/„(/,x) - /(x)| < |/(x)||Lrn(eo,x) - eo(x)| + (C/„(eo,x) + (C/„(eo, x))^)a;(/, (^)

Since 6 was arbitrary the conclusion follows from taking 6 = Oin{x) Q.E.D.

Using theorem 3.1 and equations (8), and (7) we have the following error estimate for

the piecewise-constant version of Ulam’s method;

Proposition 3.4.

(
21

) II/’ -/nil < Ci||a.(/,a„(l))||

the constant Ci is 2c.

We conjecture that Theorem 3.1 holds for a wider class of maps and for these, f* may

be merely continuous. In these cases. Proposition 3.4 is useful. When f is Lipschitz,

Proposition 3.4 implies that the error of the method is 0(h). It is not hard to show

that this is also the case when f is of bounded variation

Lemma 3.5. Suppose f is defined on [0,1] and is of bounded variation and let

(
22

) U^f = Ef‘X.
t=l

where

(23) /. = l/h f f
J li

and Xt 'Is the indicator function of the set Then,

u„f -f\\<h- Var{f)(24)

6



where Var(f) is the variation of f over [0,1]

Proof:

(25) f \UJ f l/‘
-

(26) -£/ l/(^(^))
-

for some point u(x) in Now since the are disjoint except at the endpoints,

f
^ = hVar{f)

k=i

Q.E.D.

We will now examine some higher order methods introduced by Ding and Li. Let

= {/ G : f(x) = £?=i where {]>t}^=o continuous piecewise linear

functions with respect to the partition = 1, . .

.

,n. Specifically,

0t(x)

1 -1- -

—

^ ^ h
if x,_i < X < Xt

^ h
if X, < X < Xipi

0 otherwise

where [xi_i,Xi] = [(z — l)h,ih] is If

The operator ; L^(X) is defined by; Ln{f,x) = where

and

(28) /o = l/h f f f„ = 1/h f f
Jl, Jlr.

In analogy with Ulam’s piecewise linear method, let Tr^f[x) = Ln{f, x), so that the

finite Markov approximation to Pr becomes Pn{'^) = TPnPr- Ding and Li showed that

Pni^) ' A^ ^ A^, has a fixed point ff^ G fl P,and the the sequence {f^} converges.

They assumed firstly that r was piecewise
,
map with inf [op] |t'| > 2,and secondly

that there is a unique stationary density. Chiu, Du and Li obtained error bounds

for f* G W^’^(0, 1) n C^(0, 1), where is the space of absolutely integrable

7



functions with absolutely integrable first and second derivatives. Given the conclusions

of Theorem 3.1,they show that there is a constant c such that

(29) =

for n large enough

The Bohman-Korovkin inequality we will use is

Lemma 3.6. Let f e C^{X). Then,

\Ln{f,x) - f{x)\ < |/(x)||X„(eo,x) - eo(x)| + |/'(x)||Xn(i - x,x)| +

(30) +{Xn(eo, x)^/^ + l}a„(x)u;(/', an(x))

where an(x) = Ln{\t — x|^, x)^/^

The proof is very similar to that of Proposition 3.2 A direct calculation shows that

Q:n((E) < const i. It is also not hard to see that L^^eo, x) = eo(x), and Ln{t — x,x) =

O.We then will have the following estimate for the piecewise linear method.

Proposition 3.7. Let the conclusions of Theorem 3.1 be satisfied. Further suppose

that f* is in C^(X). Then,

(31) II/* - /^ll < ccm5t • /i|a;(/*',/i)|

One can derive other conditions for the 0(/i^) rate of convergence stated in equation

(29),when /*' is continous.

Proposition 3.8. The following conditions imply that (29) holds.

1. /*' is Lipschitz

2. /*" is X“(0,1)

Proposition 3.7 shows that as long as /* is we can expect an improvement in

the error over the original piecewise constant Ulam method.This is quite evident in

numerical computations of Ding and Li (see tables 1-4 in [7]).However the degree of

improvement will
(
not surprisingly) depend on the smoothness of /*. For example if

/* is of bounded variation, then Chiu et. al. found an upper bound that is 0(h). This

is however already achieved in the piecewise constant case so the implication is that

there is no improvement. And if /* is merely Holder continuous, then Proposition 3.7

will lead to upper bounds that are slower than 0{h^).

8



Chiu et. al. briefly note that the upper bound in (29) is ’’optimal” for the piece-

wise linear method; moreover the results of computations using a piece- wise quadratic

approximation developed in reference [7] suggests that the rate of convergence is of the

same order of magnitude as the piecewise linear method. A possible explanation for this

lies in the following saturation theorem due to DeVore [4] that highlights the limitations

of this approach to approximation of f*.

Theorem 3.9 (DeVore [4]). Let f* e C{0,1), and let - 1,2, - be a

sequence of positive linear operators, Qn : ^7(0,1) —> 0(0, 1).

If Pn{x) =1/2 Qniit — xY, x) > 0, and if for each x,

(32) ei(x) Q^(ej, x) — 02;(/in(^)) ^ — 1^5

1

then

(33) f{x) - Qn{f,x) = Oj.{prx{x) foT X G [0, 1]

ifff is linear

Ox means that the little o behaviour is allowed to be pointwise in x. Now for the linear

method where Qn = Ln, = const. h^ > 0 by calculation. It is also true that

Ln{ei, x) = Ci{x), i = 0, 1, so we conclude that

Proposition 3.10. Suppose f* is in C^(0,1) but is not linear. Then,

(34) r{x)-Ln{f\x)^Ox{h^)

This suggests that the accuracy of the piecewise linear method does not improve

indefinitely with the smoothness of f*

Let us turn now to the piecewise quadratic method introduced in [7]. Here we con-

sider the finite dimensional space Al-{fe L^(0, 1) ; T,lZo fk(f>k}- (t>k are continuous

piecewise quadratic polynomials. They are defined as:

(1 -f ^‘-1 ^ ^

4>2t{x) — < (^^ - 1)^ if X, < X < Xt+i

0 otherwise



when k=2i.

When k=2i-l, the formula for (f)k is;

2(^)( 1 -^) <x<x.

0 otherwise

The operator mapping L^{0, 1) to is defined by Sn{f, x) — Ylk^o fk(f>k where the

constants fk are

We note that Sn : ^(0, 1) ^ ^(0, 1).

As in the piecewise linear case Ding and Li showed that fixed point of the Markov

finite approximating operator

(39) Pn(T)/ - Sr^Prf

converges to f* when r satisfies the same conditions as in the piecewise hnear case.One

can show by calculation that ei[x) — Sn[e^,x) = 0,i = 0,1) fJ-n{x) = 0[h^) as in

Theorem 3.9.

Proposition 3.11. The conclusion of Proposition 3.10 also applies to the piece-

wise quadratic method defined in equation (39).

Whatever the degree of smoothness of /*,the rate of convergence for the piecewise

quadratic method is not faster than 0(/i^).This could explain the apparent similarity

in rates of the piecewise linear and piecewise quadratic caculations in [7].We note that

Sn{f,x) ^ f{x) when f is a quadratic function with f" 0. This suggests that satura-

tion results from the fact that the integrals used in the approximating polynomials are

10



of limited accuracy [21] and that using splines may give better results. (See [6] for con-

vergence rates and numerical results for approximations based on Galerkin projections,

where the same phenomenon seems to be present.)

4. Numerical Results. We turn now to a discussion of some numerical reults

obtained from the Monte Carlo implementation of Ulam’s method described in section

§1. The theoretical analysis in the preceding sections neglected the error due to the use

of Monte Carlo approximations of the elements of Pn(T).There will be an additional

error as can be seen in table 1. The map Ti(x) = 1/2 + (1/8 — 2\x — is not of

Lasota-Yorke type (it is conjugate to one) and doesn’t satisy the hypothesis of Theorem

3.1. Nevertheless the stationary density can be calculated.The second column gives the

errors for the Monte Carlo method and the third column lists the errors for the

method based on analytical evaluation of the elements [7] of Pn{T)

TABLE 1

ERROR for ti

n Monte Carlo exact method

8 .3648 .22924

16 .1989 .10271

32 .0979 .05257

64 .048 .02564

128 .0368 .01337

256 .0196 .00645

The number of Monte Carlo test points used in the calculation was M= 1,000 per box.

It is interesting to note that the Monte Carlo error is 0(h) in this example, con-

sistent with the theoretical bound in §3. We conjecture then, that these upper bounds

hold for a wider class of maps. This rate is also achieved in a second example[10];

T2(x)
l/v/2 - - x| if a: G [0, 1/^] U [1 - 1/VS, 1]

1 - llV2^l - (1 - |1 - 2a:|)2 if x € [1/^8, 1 - l/\/8]

11



TABLE 2

ERROR for T2

n Monte Carlo

8 .216

16 .1208

32 .0576

64 .0295

128 .0171

The number of Monte Carlo test points used in this second calculation was M==8,000

per box. Explicit formulae for the stationary densities are known in these cases. They

are = 12(x — and = 2 — |2 — 4a;| for Ti and T2 respectively. Graphi-

cal comparisons between the approximations and exact densities can be found in the

appendix.

5. Approximation and Iteration: A Rough Comparison. We return to

the question posed in the introduction concerning the accurate computation of the Lya-

punov exponent of a one dimensional map. If several simplifying assumptions are made,

one can make a comparison between the accuracy of computation by iterating as op-

posed to approximating the invariant measure and then integrating. First for simplicity,

assume that /* = 1, and secondly that log(|T'|) is of bounded variation.We neglect any

possible error in its computation. Comparison of the methods will be made under the

best of conditions in that we will also assume that there is no roundoff error incurred by

iterating. Note however that if there is a positive Lyapunov exponent, roundoff error

is likely because small perturbations will on average grow larger as iteration proceeds.

The following definition will be used in this discussion.

Definition: Given a sequence <i, ^ 2 ,
• • • of numbers in [0, 1], the discrepancy of the first

N terms of the sequence is
,

(40) Dn = sup ^[a,b)/N — [b — a)

[a.b)C[0,l]

where t{[a,6) is the number of t^’s lying in [a, 6). The concept of discrepancy plays

an important role in quasi-Monte Carlo integration and the study of uniform distribu-

tion of sequences in [0, 1]. J.P.Lambert noted the connection with iteration of ergodic

12



maps. ([17])

It is known that is uniformly distributed in [0, 1] iff limiv_oo = 0. Now

let be a function of bounded variation. Given a uniform invariant measure the goal of

both methods is to estimate Jq (j){t)dt. The upper bound on the error of finite iteration

follows from

Lemma 5.1

discrepancy Dpp.

(41)

(Koksma’S Inequality). Let . - tpj be a finite sequence with

. Then,

N
= ei{N) < V[4>)Dnf 4,(t)di-llNj^m

" .=1

Setting f — log jr'IjWe see that the error in calculating the Lyapunov exponent from

iteration is 0{Dn).

T

he problem of lower bounds on Dpf has been studied extensively

and the result of Schmidt (see [16]) is that there is a lower bound on the rate at which

Dpj can go to zero. For any infinite sequence in R, NDpj > clog{N) for infinitely many

N with c = [66logA)~^ .Thus the fastest possible rate at which Dpf can approach zero is

0(log[N)/N). Choosing a sequence of grid sizes h = 1/n for which eu — \\f*
— /n||,the

error in the Ulam approximation satisfies eu < clog(iV)/iV,one can call the Ulam

approximation equivalent to iterating r N times under optimal conditions. Of course

6/ may be much smaller than the upper bound log[N)l

N

particularly if N is small, so

the comparison is rough. It becomes precise if it can be determined that D pj has order

of magnitude log{N)/N.

We close with some numerical illustrations. Consider a piecewise linear function

of the unit interval T3 as depicted in figure 1 .The function is a Markov map with

respect to the partition V = {[^0, ^i), [<ii, <12), [02, as), [aa, 04]}, where aq = 0 < cti <

02 < as < 04 = 1. Boyarsky and Scarowsky in [1] proved that piecewise monotone

Markov maps of the interval satisfying an expanding condition including inf [0,1 ]

|t/| > 1,

have unique absolutely continuous invariant measures. In the piecewise linear case the

density of these measures are functions that are piecewise constant on the intervals of

the partition. In [2] Boyarsky used this fact to develop a method for estimating the

Lyapunov exponent of a piecewise expanding map. The leading Lyapunov exponent

of T3 can be calculated exactly so the accuracy of the Ulam approach can be tested in

this case. Table 3 column 2 shows the error as a function of the number of grid boxes
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n. The intermediate endpoints were ai = 1/G^,a2 = (1-9) * ai,a3 = (3.25) * ai, where

G = With this choice, T3 satisfies the conditions of Boyarsky and Scarowsky’s

theorem. The stationary density (normalized so that Jq f*dm = 1) is,

1.0530... if 0 < X < ai

0.6762... if ai < X < 02

1.1269... if 02 < X < 03

1.0679... if 03 < X < 1

Let {^ 1 ,^ 2 , . . .} be a sequence of iterates of T3 . We assume that any initital transients

have been discarded so that the t, are effectively distributed with density /*. If the

corresponding distribution function is F* recall that F*{ti), F*{t 2 ), . .

.

is a sequence

that has a uniform distribution. We can apply the results of our previous discussion to

this sequence. Now,

l\(t)r(t)dt = r 4,oF-\Fit))dF{t)= l%oF-\y)dy
Jo Jo Jo

and also J2o~^ T,o~^ <t>
° where y, = F{U).

(f)
o F~^ is certainly of bounded variation if 0 is and hence Koksma’s inequality can

be used to bound — fo The right hand side will involve the

variation of o F~^ and the discrepancy of the sequence {F(f,)}.

TABLE 3

COMPARISON OF LYAPUNOV EXPONENT COMPUTATION METHODS

number of subdivisions Ulam error average iteration number of log{N)IN

n (absolute value) error iterations N

16 .0019 .008 100 .046

32 . .0186 .002 500 .012

40 .0053 * *

64 .0039 .0016 2000 .0038

128 .0015 * *

In estimating the Lyapunov exponent by iterating the map, 20-25 initial values are

used and column 3 of Table 3 shows the average error as a function of the number of

iterations. The exact value is A = .4109964 . . ..

14



The a[s in were chosen to minimize the roundoff errors arising from a finite binary

representation so the iteration errors are pretty good. After N = 2000 iterations it is

probably safe to say that Djv has order of magnitiude log[N) jN

.

Table 3 illustrates the

point that the overall performance of Ulam’s method for is comparable to iteration

under ideal conditions and if we use the comparison criteria described earlier, N = 2000

iterations is equivalent to using Ulam’s method with 40 < n < 64 subdivisions. If we

used the bounds obtained in §3 on eu to bound the the Ulam error in Table 3 we

would have obtained the more conservative n = 128 subdivisions. The computations

for column 2 were performed with approximations to the invariant density using the

methods described in §2 with M:=2000 Monte Carlo points. The reason for the small

error at n = 16 is not clear to us. The next example illustrates the chief advantage

of computing Lyapunov exponents with invariant measures; accurate results can be

obtained in cases where roundoff error is a significant problem. For many initial values,

iterating a map T4 with a-i = 1 /4,02 = 1 / 2,03 = 3/4, produces a sequence that is

attracted to the periodic orbit determined by the {o,}, thereby resulting in an extremely

inaccurate estimate of the Lyapunov exponent. Given that /* is

8/7 if 0 < X < 1/4

4/7 ifl/4<x<l/2

8/7 if 1/2 <x <3/4

^

8/7 if 3/4 < X < 1

the exact value of the exponent is jlog[2) = .396084- • Table 4 gives the errors for

Ulam’s method. Table 5 displays the results of iterating 25 equally spaced points and

averaging the results. Boyarsky’s method, based on the construction of Markov par-

titions, yielded exact results for every partition used. Note that to obtain the value

in [2], the exact value must be divided by log(2). Despite the superior performance of

Boyarsky’s method on Markov maps, the advantage of this implementation of Ulam’s

method is that uniform partitions are easier to calculate especially in higher dimensions.

This will be explored in a forthcoming paper.
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TABLE 4

ULAM’S METHOD: ERRORS IN ESTIMATING f*

number of subdivisions Ulam error

n (absolute value)

16 .0012

32 9.95 e-04

64 3.12 e-04

TABLE 5

ITERATION

number of iterations

50

100

500

1000

ERROR for

average iteration error

(25 points)

.023

.025

.100

.114
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