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ABSTRACT

This paper describes a user-friendly computer model, TMPSUB2. This model calculates the temperature

field throughout a solid (but porous) substrate which can undergo exothermic pyrolysis, when it is

exposed to an arbitrary (localized) heat flux which can move uniformly, such as that of a smoldering

cigarette. TMPSUB2 has successfully simulated the thermal runaway signifying smoldering ignition of

the substrate when it is exposed to a set of external heating fluxes. The processes taken into consideration

are three-dimensional heat conduction in the substrate, pyrolysis of the latter, and the diffusion of air into

it at the top surface. TMPSUB2 also takes into account the fact that the substrate consists of two layers

(a foam pad covered by a fabric), with the possibility of an air gap between them, up to three pyrolytic

reaction steps, and with temperature-dependent thermophysical constants. TMPSUB2 solves the equations

describing the physics and chemistry of the heating and ignition process numerically; the results have

been compared with a set of ignition experiments, and have been found to be semi-quantitatively correct,

both for the ignition temperature and for the time to ignition. Analysis of the experiments indicates that

the substrate, which consists of a thin fabric layer over a thick foam padding, behaves as a thermally thin

layer. Use of TMPSUB2 shows that smoldering ignition would result from a stationary hot spot of

intensity and dimension simulating a quietly smoldering cigarette. A users’ guide is included.

Key Words: Computer models; furniture fires; ignition; mathematical modeling; pyrolysis; smoldering

1. INTRODUCTION

Over 1600 people die each year (see ref.[l]) from fifes started by smoking materials (cigarettes, matches,

etc.), and many times that number are hurt and/or disfigured; most of those fires are established in

upholstered furniture. As a result. Congress passed the Cigarette Safety Act of 1984; its goal was to

determine whether safer (from the point of view of fires!) cigarettes were technically feasible. One of

the tasks under that Act was to model mathematically the behavior of upholstered furniture and of the

cigarette, when a smoldering cigarette is dropped onto it. The result was two prototype programs,

TEMPSUB (for TEMPerature of a SUBstrate) and CIG25 (see ref [2]). One of the tasks under the Fire
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Safe Cigarette Act of 1990 (P.L. 101-352) is to "Conduct laboratory studies on and computer modeling

of ignition physics to develop valid, "user-friendly" predictive capability." In order to do this, two (new)

models were to be developed: one for the ignition of the substrate (an advance over TEMPSUB), and

another for the quiescent smoldering of a cigarette which is resting on the substrate (an improvement on

CIG25). In this paper, the first model is described; the cigarette model will follow.

Consider what is involved in developing this computer model: we must simulate the behavior of a

(typical) substrate when it is subjected to a heat flux. In order to do that, the physics and chemistry of

the process must first be understood. It is then expressed as a set of equations describing the behavior;

these equations must then be solved, with the appropriate data and boundary conditions. The solution

method is numerical, and the data input is to a computer.

This program serves to calculate the temperature of the upholstered furniture as a function of time and

position, when it is exposed to a prescribed heating flux. This flux can be highly peaked at a point, vary

with time, and move at a constant (specified) rate over the top surface of the furniture, assumed to be

horizontal. The radiative and convective heat losses from the surface are given correctly. If and when

the temperature rate of rise at a given location suddenly "accelerates" to a value high enough that the

surface glows (that is, T > 5(X)°C or so), we can say that smoldering ignition has occurred. The

ambient oxygen level can be set at whatever value one wishes. The program will not tell us whether

flaming ignition takes place. It also does not treat the case where the flux is applied in a crevice, such

as is formed between the seat cushion and the seat back. The program does not take oxygen diffusion

within the cushion explicitly into account; hence in certain threshold situations, where a small change in

oxygen concentration determines whether ignition does or does not take place, the results are ambiguous

and not to be trusted. Note that it is often difficult to obtain the needed kinetic and/or thermophysical

parameters for the material; or, when available, to know how accurate they are. Therefore this caveat

must also be made: even if the program were perfect, its results are only as good as the input parameters

which are supplied. On the other hand, it should accurately reproduce (or predict) trends.

Here is a brief overview of the dynamics: For the purpose of this work, the "upholstered furniture" will

be taken to be the flat, horizontal cushioned seat - that is, the substrate is a cushion consisting of fabric-

covered foam padding. Assume that there is a localized source of heat on the cushion. The temperature

of the cushion will then rise, locally. In order for ignition to occur, a number of conditions must be met;

the principal one is that the temperature of the cushion must rise, in this region, to a critical temperature

for the initiation of smoldering. This is generally referred to as the ignition temperature. It will be

shown, however, that this temperature is not unique, even for a well-defined material: it depends also

on the magnitude of the incident (igniting) flux. The temperature of the substrate will be calculated,

nevertheless; for, as will be shown, the temperature history will determine whether ignition does or does

not take place.

In order to calculate the temperature as a function of time and position, it is necessary to know the heat

flux from the cigarette (as it is affected by its contact with the chair), how this heat flux distribution

moves with time, and how the seat cushion responds to that "insult." We wish to find whether the

cushion will in fact reach its ignition temperature, to begin with. It may be necessary to know some

other things as well, such as the effect of the presence of the cigarette on the oxygen concentration in the

cushion; that will be dealt with at a later time. Thus the first task is to examine the thermal response of

the cushion to a specified flux distribution. This is done in the next section. In section 3, the numerical

solution method is presented, and some of the physics is revisited in this (numerical) context. In section

4 we discuss a set of experiments where a mock-up was ignited, give the measured ignition times, and

give the input data requited to make computer runs. The results of these runs are given and then
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discussed in Section 5, validating the model to some degree. Section 6 summarizes the work. For the

reader interested in a more extensive discussion, see the references cited here, especially the bibliography

in [2]. A copy of the program on disk may be obtained from the authors, as well as a listing of the

program and the program itself.

2. IGNITION DYNAMICS

The equations describing the relevant physical processes taking place in the substrate will be written in

this section. They will mostly be written in general form to start, and then particularized to our problem.

The assumptions made in the model are summarized and displayed in Table 1

.

Table 1. What is, and is not, in the substrate model

IN
• two porous layers with an air gap

• 3-d heat conduction

• variable (prescribed) thermophysical properties

• correct (nonlinear) boundary conditions

• endothermic (non-oxidative) pyrolysis

• exothermic (oxidative) pyrolysis

• char oxidation

• arbitrary (prescribed) moving heat source

• variable grid on a moving coordinate system

• (approximate) radiative heat transfer within the material

• Impinging air flow, when wanted

NOT IN
• oxygen diffusion

• melting and/or regression of the foam

The most appropriate place to begin (perhaps) is with the heat source; that will be described in

subsection 2a. The equation describing heat diffusion in a solid is given and discussed in subsection 2b;

it is solved for a very simple, special case in section 2c, for later use. Pyrolysis of the substrate is

discussed in section 2d, and the diffusion of gases (a process very similar to the diffusion of heat) in

section 2e. The principal gas of interest here is oxygen. Although we do not explicitly include its

movement in the substrate, those expressions are necessary for estimating the rate at which oxygen can

enter the reactive zone in the substrate, from outside. That boundary condition and its consequences is

discussed in subsection 2f.

2a. Surface Heat Source

The process is initiated by external heating of the surface. Thus, it is necessary to specify the heat gains

at the bounding surfaces of the cushion. The cushion is assumed to be a rectangular parallelepiped;

therefore a Cartesian coordinate system is employed. For the top surface, we have: first, the localized

heat flux from the glowing tip of the cigarette or other heat source; the flux consists of two parts, one

due to convection (<t>^ and one due to radiation
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( 1 )
i>i„ = 4), + 4),

is the heating flux reaching the surface. For a cigarette, these fluxes are strong functions of position,

since the glowing tip is only a few millimeters in extent. With this formulation, <f)^ can be expressed in

the approximate form

4.,
- Q€^,»r4-(i-o)or/ C)

where = Q(r) is the shape, or view, factor of the cigarette as seen by the substrate at the point r. It

is only approximate in this form, because the cigarette surface temperature, Tjg, varies strongly with

position.

The convective flux is given by

4>,(^,y.O = h[T^ig(x,yyt) - T/x,y,t)] (3)

where h is the heat transfer coefficient, is the surface temperature of ±e substrate, which is explicitly

shown to be a function of position and time, and where Tj,jg is the cigarette surface temperature, also a

function of position and time. It is important to point out here that in this version of the substrate

model, the source flux must be specified by the user.

It is equally necessary to specify the heat losses. If the existence of the cigarette is neglected for the

moment, so that the view factors need not be considered, then

= (4)

where the first term is the convective cooling term and the second is the radiative cooling term. In

contrast to the source term, these losses are explicitly included in the program. Here, the dependence

of Tg on X, y, and t has not been shown explicitly, e is the emissivity of the surface and o is the Stefan-

Boltzmann constant (note: we have used e where sometimes a, the absorptivity of the surface, should

be used. When there is thermal equilibrium between the radiation field and the hot surface, then a =
e. We have assumed the latter, for simplicity). Evidently, the loss rate from the cushion surface

increases as it heats up. h is determined by the laws of fluid flow, as well as the thermal properties of

air; the simplest way to find h, however, is to use well-known expressions, usually derived from

correlations. This will be further discussed below.

Along with the partial differential equation (12), we must have boundary conditions: for the top surface,

the net flux entering the surface at each point is connected to the net flux according to

dT{x,y,z,t)

dz
z = 0 , t>0 (5)

z = 0

where 4*net 4*in
“

4*out • (6)

When the cigarette lies on the substrate, the mean convective heating flux over the heating region is given

by

4> = A-
II
(T . -T)r CIg s'

(7)
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If hq is the heat transfer coefficient for quiescent air, then the surface heat loss for the areas away from

the cigarette is

d) = /i (7 - r ) (8)
^out s o'

The boundary condition is greatly simplified if we can say that Eq(8) is valid over the entire surface.

That is readily achieved by using the model convective heating flux <!>*,

d)’ = A. (f . - T) + /i (7 - r )
(9)c eig s' 9'' * o'

hjn is found as follows: the mean initial convective flux from a cigarette was measured to be 37 kW/m^.

Taking the mean value of the cigarette surface temperature to be about <T>cjg = 450°C, the mean heat

transfer coefficient in this area is h^^ = (37000/430) = 86 W/m^-K. h^ is found from Table 7-1

of ref [2a]: the Nusselt number for a heated, horizontal, upward-facing surface is

Nu = OMiRay*

where Ra is the Rayleigh number. Since h = kNu/L, where L is the characteristic dimension of the

surface, we find

h 0.54 k
g^iT-TJ

avL

V4

( 11 )

where jS is the volumetric coefficient of (gas) expansion. Taking the value for T^ = 500 K = 227 °C

as an approximate mean temperature of the surface, and L = 7 mm, we find

\ = 9.7 W/m^-K

For the other surfaces, the boundary conditions (b.c.) can be expressed in different forms, depending on

whether the slab for which we are making calculations is exposed to the air, or is embedded within the

cushion. If the slab were the entire cushion - that is, the other five surfaces are exposed to the air, then

the b.c. would be that the heat fluxes KdTIdx, xdT/dy, KdT/dz, are given by terms of exactly the same

form as (4), except that h is different for the vertical and the downward-facing horizontal surface. On
the other hand, the numerical calculation we are using makes using the entire cushion prohibitively large.

We therefore consider a subsection abstracted from the whole cushion, and the other five faces are

surrounded by more foam. If that foam were a perfectly insulating material, then the b.c. at those faces

is the adiabatic condition; that is, no flux crosses the surfaces: xdT/dx = xdTIdy = KdT/dz = 0. This

eliminates any heat losses from the slab, and makes the calculated temperatures somewhat higher than

they really are. A simpler b.c. is to assume that the temperature at the five faces is constant and

unchanging, remaining at the original (usually ambient) temperature. This produces a larger temperature

gradient than actually prevails, and errs in the opposite direction. That is the default b.c. used in the

calculation, but which of the two b.c.’s is used is determined by an input parameter.

2b. Heat Transfer

The partial differential equation which describes the conduction of heat in a solid, when there is no

radiation heat transfer, does so by giving the rate of change of temperature at every point within the solid.

It is (see, for example, [3])
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= divCKgradr) +5 ( 12)

where T, which is a function of position and of time, is the variable for which we are trying to find a

solution. The other symbols in this equation are: p is the density of the solid, c its specific heat, k its

thermal conductivity, and S is any volumetric heat source or sink, p, c, k, and S may vary with position 1

and with T. Because these may vary in Eq(12), it is conceptually simple to consider a substrate which
\

consists of layers of material. Indeed, it will be straightforward to implement this in practice, as well.

Note that because we only have derivatives of T, T need not be the absolute temperature: it may be taken

to be that relative to a convenient reference temperature. In other places, such as in Eq(2), it must be

taken to be absolute (i.e., in degrees Kelvin).

The first term on the right-hand side describes the diffusion of heat in the solid. If there is any release

of heat - usually by combustion - at the (interior) point in question, it is given by S(x,y,z,t). A general

expression for S is

(13)

where Rj is the reaction rate (in kg/m^-s) and is the heat of combustion (in J/kg), for the ith

reaction. If there is endothermic pyrolysis or evaporation, we have the last term on the right-hand side

as well, where is the latent heat of evaporation or pyrolysis. An explicit expression for Rj will be

given in Section 2b.

Since the furniture (apart from the frame) consists of a fabric-covered pad, it is clear that the program

must take at least two layers (with different properties) into account. Therefore the program was written

so as to permit different values for the relevant thermophysical constants p, c, and k in each layer. In

fact, generally there is not perfectly intimate thermal contact between the fabric covering and the padding;

there is a small but sometimes significant intervening air gap. Normally, one would place a node within

this gap, in order to take a third layer into account; because of the thinness of the gap, and other technical

difficulties, however, a different treatment of the effect of this air gap has been devised: the gap can be

represented in terms of its "thermal resistance" (see Section 3c.). This has been programmed and

successfully tested.

In writing Eq.(12), we have made the simplifying assumption that the cushion is totally opaque; that is,

there is no radiative transfer of heat through the cushion. If there were, the equation describing heat

transfer through the solid would become still more complicated. However, the fabric and foam can each

be thought of as porous, consisting of solid parts interspersed with void spaces. Then taking forward

radiation transfer in those spaces, it is possible to incorporate a first approximation to (one-d) radiation

transfer, as shown by Kunii [4]

K(r) = + (14)

where is the void fraction, and and are the solid and gas-phase thermal conductivities,

respectively; they are each functions of T. Dp is the mean pore diameter, and

h, = 4eaT^ (15)
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Eq.(14) was Eq.(5-50) in refI2]. Finally, we must note that at a given temperature, the thermal

conductivity is proportional to the density (also see Section 3e):

K{p) = (pIp^Kip^) (16)

2c. Time to Ignition

An experimental test for the time to ignition is described in Section 4. We can readily make an order-of-

magnitude estimate for this time, based on Eq(12): For the very special case that the substrate is initially

at the uniform temperature T^, that it is homogeneous, isotropic, inert, and semi-infinite, that the

thermophysical characteristics p, c, and k of the material are independent of the temperature, and (finally)

that the problem is one-dimensional (i.e., the incident flux is the same everywhere on the plane z = 0,

resulting in the slab being subjected to the uniform net heating flux ^netW), then Eq(12) can be solved

analytically and explicitly, and it can be shown ([3], p.76) that the surface temperature is given by

T,it) = +

^TlKpC 0

(17)

For the still simpler (unrealistic) case = constant, this can be immediately integrated, and we obtain

m = +

v/UKpC

(18)

When the left-hand side reaches the ignition temperature Tjg, the time elapsed must be the time in the

right-hand side of the equation, and

^ _ TlKpC

A

/ T -T \2
^ o

4»,net

m

Although not a single one of the simplifying assumptions required to obtain Eq(19) is valid, this

expression is nevertheless very useful as a guide to the form of the dependence of t^g. In particular, we
will use Eq(19) in order to make sense out of the experimental observations, in Section 5a.

(We can, if desired, get a somewhat more realistic result by relaxing one of the assumptions above: it

is possible to write, starting with Eq.(17), an explicit expression for 7^(0 for the case where the net flux

is not constant, but results from some impressed external flux, diminished by a Newtonian (i.e., linear)

cooling loss; that is, where we can write = h*(Ts - T^); see ref[5]).

2d. Pyrolysis of the substrate

As described above, we assume that the substrate consists of a thin fabric covering a relatively thick foam

pad, with a very thin air gap between them. Each of the two materials will heat up and can pyrolyze.

In this section we describe how these reactions are calculated. Pyrolytic reactions can generally be

expressed in the Arrhenius form

7



kg/m^-s (20)

V^.p/.p.) =^p7pox^
-EJFT

where Pf is the density of the fuel and p^x that of oxygen; is the activation energy for the reaction,

and R is the universal gas constant (not to be confused wiA the reaction rate Rp in Eq(20)). It is

sometimes convenient to define an "activation temperature" T^j^:

= EJR (21)

In the remainder of the paper, R is used only to represent a reaction rate. All the quantities in Eq.(20)

except the preexponential factor A are at the location (x,y,z) within the porous solid and at the time t;

this dependence is not shown explicitly in order to minimize the complexity of the expression. Similarly,

the subscript i, corresponding to ith "reaction" has been suppressed from R, A, pf, m, n, and E^. If the

reactions were truly elemental Arrhenius reactions, then m = n = 1. However, Eq. (20) is really a

model equation, and therefore m and n are purely empirical parameters (just as A and E^ are), and need

not be integers.

Oxidative as well as non-oxidative pyrolysis (thermal decomposition) of materials have been included.

The former reactions are generally exothermic, while the latter are generally endothermic. There may

be several oxidative reactions as well as several non-oxidative ones; char oxidation, when it takes place,

is the last step. In this model a maximum of three reactions is permitted for each material. The oxidative

reactions are exothermic; we assume that the rate of each step (reaction) is adequately described by an

Arrhenius equation of the form (20).

It had been hoped that the different pyrolysis steps take place at sufficiently different temperatures, that

the reaction sequence for the ignition of the fabric could be taken to consist of a small number of steps

which follow each other sequentially. That would correspond to the equations taking the form

^ (22)

where p^ is the density of the fuel at the end of the reaction step,

gaseous species which escapes, the reaction rate is given by

^ dt

More generally, if species i is reacting and producing species j, then

ffi - ff -

dt ' 3t

When the reaction produces a

(23)

(24)

We will here discuss only the pyrolysis of the fabric, which is of principal interest: when smoldering

ignition is produced, it is almost always first initiated in the fabric. Pyrolysis of the foam is discussed

briefly in Section 4b. The fabric of particular interest is cotton duck; cotton is principally cellulose.

Analysis of the reaction kinetics of a cellulosic paper by Kashiwagi and Nambu [6] showed that it could

be described by three reactions, all of which will proceed simultaneously (though obviously at different

rates). That means that the equations describing the creation and destruction of different fuel species must

8



be included. Virgin material goes to char, via two pathways: degradation and oxidative pyrolysis; each

gram produces n^ grams of char. The char then goes to ash, via char oxidation; each gram of char

produces n^ grams of ash. Thus one gram of material produces n^nj. grams of ash. The governing

equations are:

Pv = (25a)

and

The density of the solids is

Pa,
=

~ o a CO

Hence

Ps = Pc* Pa

The subscripts denote:

a = ash

c = char

CO = char oxidation

d = degradation

op = oxidative pyrolysis

s = solid

V = virgin material

(25b)

(25c)

(25d)

(25e)

Besides the surface heat source described in section 2a, there are also internal heat sources (and sinks),

given by Eq(13). The heats of combustion must be supplied by the user of the model; those for cotton

are given in sections 4b. 3 and 4b. 4. The global kinetic constants given by Kashiwagi and Nambu are

listed in Section 4.b.l. If the reaction rate of one or more exothermic reactions becomes high, for any

reason, the rate at which energy is being generated will exceed the rate at which it is lost, and a "thermal

runaway" will ensue (very similar to a chain reaction!). During the runaway, the rate of pyrolysis (and

of heating) is limited by the availability of oxygen. Since O2 has 0.001 times the density of the local

fuel, it would immediately be exhausted, but for the supply which (a) diffuses in from adjoining cells,

and that which (b) diffuses in (or is convected in) from the surface.

2e. Gas Diffusion

As oxygen is depleted in the regions where combustion (oxidative pyrolysis, char oxidation) is taking

place, the concentration gradient which results will induce diffusion of oxygen into those regions, from

the surface as well as from adjacent, oxygen-rich regions, assuming the medium is porous and permits

diffusion. Similarly, the gaseous (and other) products which are generated ~ mainly CO2 — build up in

local concentration, and diffuse away.

The equations which describe the rate of change of species concentration are analogous to Eq. (12) for

the diffusion of heat; assuming no convection, the ith species density is governed by

= div(D^ grad ) + S, (26)

01

where is the diffusion coefficient for species i in the background "0", and Sj is the source/sink term.
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If the diffusion coefficient increases with T, as it normally does, then the CO2
diffusion, for example,

will take place preferentially towards the hot regions -- that is, towards the surface. The migration of

gases is expected to have a minor effect on the heat transfer, and hence on the temperature distribution,

from this effect. However, the diffusion of oxygen is important; the rate at which oxygen enters the

reacting region sets the limit on the reaction rate.

A porous medium is one consisting of solid particles embedded in a gaseous medium. Put in a different

way, a gas molecule cannot penetrate any of the solid phase, but is able to traverse the entire medium,

either because of a pressure difference, or merely from the "random walk" which constitutes diffusion.

The diffusivity of a gas species in such a medium is really the diffusivity of those gas molecules through

a gaseous medium consisting of the same or some other gas, where the solid volumes are excluded. That

is the effective diffusivity.

It has been found experimentally (Szekely, ref[7]) that, approximately,

D,„ = Z)„*" C7)

where €> is the fractional void space; this is also referred to as the "porosity" in the literature. The

relationship is strongly dependent on the structure of the (granular) material; thus. Fig. 2.4 from ref [7]

shows that for particles of mica,

O.ffID, - <27a)

whereas for sand, a bed of glass spheres, carborundum powder, and table salt,

= 0.677 (27b)

for < 0.7. As shown in Appendix E, $ = 0.6 for the cotton fabric that will be our main focus of

interest; hence Eq.(27b) is the relationship to be used.

Here is the diffusivity of O2 in N2 . From Eq.(16.3-1) of Bird et al (ref [8]), we find that for O2 in

N2 ,
the temperature dependence is

/ 'p \ 1.823

DTT) = 0.199 ——\ cmVsec (28)
" U93.16j

2f. Boundary Conditions for Gases

There are two cases of interest: first, when the air above the substrate is quiescent, and second, when --

as was the case in the experiment to be described in Section 4 — there is a stream of air impinging on

the substrate. We first obtain a general expression;

When the air above the substrate is quiescent, and there are oxidative reactions taking place in the

substrate, the concentration of oxygen molecules in the air decreases towards the surface, through a

boundary layer. The maximum possible reaction rate is obtained by assuming y^ = 0, as can be seen

from Eq(29). On the other hand, this is clearly not possible, since we must have a finite concentration

at the surface in order to get any reactions at all. It is possible to obtain a value for y^ analytically, if

one makes the simplifying assumptions of an isothermal substrate and a first-order reaction rate (ref [8a]).

10



Mass transfer is a (molecular) transport phenomenon, just as is heat (momentum) transfer. Thus,

analogous to the first term on the right-hand side of Eq.(4), the mass transfer of oxygen across the

surface of the solid can be written as

mo2 ~ (29)

where is the ambient oxygen mass fraction and that at the solid surface; the x,y dependence of the

latter has been put in explicitly in order to emphasize the origin of the spatial dependence of m

The velocity at which oxygen enters the surface is

(see refl2], p. 159-160) where D is the diffusion coefficient inside the solid. Thus

Kas
= P.Y

In TMPSUB (see [2], Eq.(5-64), from ref [9]) the following equation was used:

Yj,
= 6.38x20

-3
7’2.75(j _ j ^ 123.6)

RT.

1/4

cm/sec

(30)

(31)

(32)

On the other hand, in this paper we obtain y in a different way; we will afterwards use Eq(32) in order

to compare the results. The way y is obtained is as follows: Because of the similar origin of mass and

heat transfer, one can often use the Reynolds-Colbum analogy [10]. It is not difficult to show, from the

treatment in Chap. 3 of [10], that the Reynolds-Colburn analogy leads to

hPr^

pc^5c^
m/sec (33)

where h is the heat transfer coefficient appropriate to the problem, Pr is the Prandtl number. Sc is the

Schmidt number (Sc = pfD), and v is the kinematic viscosity.

Case A. Quiescent air.

Here we have

h = kNu/I^ (34)

where k is the thermal conductivity, is a characteristic dimension for the problem, and Nu is the

Nusselt number. We can thus rewrite Eq.(33) as

Y = (35)

In quiescent air, there is a constant movement of molecules in all directions; the flow in any one direction

is exactly compensated by the flow in the opposite direction, normally. If, however, the gas is near a

boundary which "absorbs" some of these molecules (as is the case for oxygen impinging on a reactive

11



substrate) then evidently the return flow is smaller, and hence the impinging flow is not completely

nullified. The result is that there is a gradual decrease in the concentration of those molecules as the

surface is approached. This region is referred to as the "boundary layer."

The quantities in Eq.(35) are to be evaluated at some characteristic (mean) temperature of the boundary

layer. That temperature can be taken to be the mean between T^ and T^. For quiescent air, with the

surface horizontal and facing upward, /<, is the boundary layer thickness. The expression for the Nusselt

number is given in section 2a.

Case B. Impinging air

The Nusselt number for this case is given by Eq.(D10), Appendix D. Inserting that into Eq.(35), we

obtain

Y - 0.767 Sc

where a is the thermal diffusivity of air. Re = vlJJv is the Reynolds number and u^, is the incoming

velocity of the impinging flow.

We now show that when oxygen consumption is significant, it takes place in a very narrow layer; this

is analogous to the flame sheet approximation for combustion in air. As a result, we may take the

concentration of oxygen in that layer to be some appropriate average value, rather than having to actually

program in the species diffusion equations, via Eq(26).

2g. An Approximation to Oxygen Diffusion

In this section, it is shown that a reasonable approximation to the overall reaction rate can be obtained

without explicitly solving the gas diffusion equation, Eq.(26), for the diffusion of oxygen in the substrate.

This is the approximation made in the model.

In the experiment to be discussed in Section 4, a jet of air is directed downward at the substrate. Hence

there is no boundary layer in this case, and the oxygen concentration just outside the surface is 21%.

When the reaction rate is low, the oxygen concentration in the top of the substrate will not be much

affected by the slow reactions. When the reaction rate becomes high , on the other hand, the mean

oxygen concentration in that thin layer becomes low; it cannot get too low, however, since (as discussed

in Section 2f), the reaction rate would then fall. Hence a quasi-steady state is established. Thus, in the

"runaway" phase, the reaction rate must be given by the boundary condition Eq(29).

We will now argue that when significant oxidative pyrolysis is taking place,

(a) taking a constant value for the oxygen concentration ([O2]) in the substrate is a valid approximation,

(b) most of the pyrolysis occurs in the surface layer, and that therefore

(c) we obtain an adequate approximation to the pyrolysis rate, without explicitly including the oxygen

diffusion equations:

When the surface temperature is relatively low, there is negligible pyrolysis, and the oxygen distribution

[02](x) in the substrate is approximately uniform. When Tg has risen to the point that perceptible

pyrolysis is taking place at and near the surface, the [O2] profile in the substrate dips as the surface is

approached from below (i.e., from within);it must reach a minimum and then rise again at the surface.

12



because of the diffusion of oxygen from outside. When the temperature reaches values so high that [OJ
is pulled down to negligible values near (but not the surface, the principal source of oxygen in the

reaction zone is from the air diffusing in from the surface; the region where there is significant oxidative

reaction is then highly localized near the surface, with [O2] being highest at the surface, and falling

rapidly until it reaches negligible values. The characteristic oxygen penetration distance is 6, and it is

clear that 6 is a steeply falling function of T. (At some further distance in, the oxygen must diffuse

towards the surface from other (deeper, or peripheral) parts of the porous substrate, because of the

concentration gradient, so that the profile must rise again as we go deeper -- it can do so because at that

depth the temperature has fallen sufficiently to "freeze out" the (oxidative) reaction rate -- i.e., it is

negligibly small).

Suppose that is high enough to drive [O2] to near-zero at some depth. Then we may write, crudely,

Yix) - (37)

with Yg = surface value of [O2], and 6 = characteristic penetration depth. If we write the reaction rate

in the form

R[x,nx)] = y(jc)"F[jc,7’(x)] = y"G(x) (38)

then the total reaction rate per unit area is

w" = fy(xyGix)dx (39)
J o

where G(x) is a fairly steep (decreasing) function of x. We may further write (still very crudely)

G{x) - (40)

Then

We can also use the mean-value theorem, and write the integral in Eq(41) as

Then

rY"G^e-^'f^dx = Y”G^Qs/^l2
J o

n0,

2 \
- 1/2

(41)

(42)

(43)

We now need an estimate for 6/6. Clearly, the reaction rate must be significant for a distance comparable
to the penetration depth 6: else, if the reactions "froze" before [O2] becomes negligible, [O2] would not

fall below some appreciable value. Moreover, the reaction rate cannot be significant below that depth,

precisely because there is so little oxygen below. Thus 6 = 8. For n, we take n,, = 0.5, as given in

[6]. Then Eq.(43) yields

Y = 2YJ3 (44)

Next, consider the effect of discretizing the equations (see section 3). If 6 > Ax, then assuming that the

reaction takes place in the top cells only , clearly underestimates the reaction rate. However, when 8 is

13



large, the total reaction rate is very low. That is, while the fractional error is large, the absolute error

is small, and (we shall show) typically negligible.

Assume, for the sake of simplicity, only one oxidation reaction. Assume, also, that the temperature and

reaction rate are uniform in a thin sheet of depth 6 at the surface, where T is maximum (this is essentially

what is implicitly assumed in the numerical calculation). Then if the stoichiometric fuel/oxygen ratio is

r, the fuel bumup rate is

R6 = m'l
= (45)

where R is the reaction rate (g/cm^sec or kg/m^s). If 6 is greater than the thickness of the surface cell,

then evidently the reaction rate in the top layer is limited to RAz; whereas if 6 < Az, Eq.(45) gives the

limit. Thus the reaction rate in the top cell is

R^opAz = min[RAz, rm^"] g/cm^-sec (46)

Note that when the reaction rate is so high that 6 < Az, the concentration at the bottom face of the top

cell(s) is close to zero; therefore a reasonable value to take for [O2] in the cell is on the order of the mean

value, 11%, (or 0.12 for the mass fraction); or, according to Eq.(44), < Y> = %(0.2318) = 0.15

We now make a calculation to find a typical value for 6. As is clear from Eq.(45), we must begin by

calculating a reaction rate R. In order to find R, we must anticipate some results from section 4b. 3:

using Eqs(79) and (80), we find that

Rop = Pvkop = Pv 1.5x10'“ Y« " (WjAV„)'-3 exp(-160/RT)

and

R=o = pA. = Pc 3.4x10" (W.AVJ exp{-160/RT)

The meaning of the subscripts is made clear in the list below Eq.(25e). These rates are in kg/m^-min.

We must choose characteristic values for Py, Y, W^j/W^, p^., W^.AVq, and T, in order to get estimates.

Reasonable values are

Wj = Wo/2, Wo = Wo/4, and Y = 0.11

For Py and p^, we assume that the volumes are unchanged, so that

Py/Po = WdAVo and =

Finally, we take p^ = 1560 kg/m^. We then find that

kop = 2.02x10'^ exp(-160/RT) min'*

and

koo = 1.52x10*° exp(-160/RT) min'*

The universal gas constant R = 8.31447 J/mol-K, so that the activation temperature for both reactions

is = 160,000/R = 19244 K. For a temperature in the vicinity of the ignition temperature, say,

400°C = 673.16 K, we then have
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yielding

and

op 7.77 min* and kgo = 0.00584 min’*,

I

!

R
R
op

CO

/^V^op

“ Pc^co

101 kg/m^-s

0.038 kg/m^-s.

Thus at 400 °C, with these assumptions for and p^, oxidative pyrolysis takes place more than 2600

times faster than does char oxidation, and we may therefore take

R = Rop = 101 kg/m^-s

Next, we need to have the rate at which oxygen enters the medium, . Eqs(29) and (31) give the

required value. For the ignition experiment, the appropriate expression to use to find y is Eq.(36). The

temperature at which the various quantities must be evaluated is that of the purging gas. Examination

of Table D1 in Appendix D shows that Tg is quite high. Assume Tg = 800 K. Eq(28) yields 0^(800)

= 1.24 cm^/sec. Tlien the Schmidt number is Sc = 0.663, and

7 * 8.10x10’^ vfe m/s

(with fj. in meters). The characteristic air velocity for calculating Re is given by Eq(D15) in Appendix

D; finally, the characteristic length is the standoff distance, 6. With 6 = 5.4 mm, we find Re = 1 1 .06

and 7 = 4.99 cm/sec.

(Incidentally, if we had quiescent air at 800 K, Muaramatsu’s expression, Eq(32), yields 7 jj
= 2.35

cm/sec).

Finally, taking = 0.232 and = 0, Eqs(29) and (31) then yield

« 13.6g/m2-s

We must also have r (the stoichiometric fiiel/oxygen ratio), in order to use Eq(45) to get the penetration

depth 6. The stoichiometric air/fuel mass ratio for wood is S = 5.78, close enough to that for cellulose.

Hence r = 0.746, and we find 6 = 0.10 mm. Thus the penetration depth b is indeed much smaller than

the layer thickness Ax (which is of the order 0.5 mm).

For Tg = 300°C, on the other hand, we find k^p = 0.053 min’*, so that R(,p = 1.38 kg/m^-s. Then 6

« 7.3 mm, several times Ax, but the resulting mass-loss rate is only 0.043 g/m^-s, which is indeed

negligible.

For the case of quiescent air above the substrate, the mean value for the oxygen concentration to be used

in the top cell during the runaway, is midway between the value at the top surface (i.e., at the bottom

of the boundary layer), and at the bottom of the top cell (presumably, close to zero).

The only time that we cannot justifiably make the simplification that the oxygen concentration in the top

layer is either that at the top surface or half (or 2/3ds) that value (during runaway), is when the reaction

rate is intermediate between the very low values and the runaway value. This period should be relatively

short, and the error introduced by these simplifications should not be large.
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3. NUMERICS

In general, it is not possible to solve Eq.(12) analytically, in spite of the simplifying assumption of no

radiation heat transfer, and even for the case S=0. That is, to write down an explicit expression which

gives T in terms of the inputs. This is so, because of the nonlinear and nonuniform boundary conditions.

It is therefore necessary to resort to a numerical procedure, which is that incorporated in TMPSUB2.

3a. Introduction

The development of TMPSUB2 centers around

the capability to simulate transient heat transfer.

A one-dimensional heat conduction problem

provides the simplest example to illustrate

transient simulation methods. Figure 1 shows a

portion of a one-dimensional conduction problem

in which the material has been divided into thin

layers. This example will be described by

physical instead of mathematical arguments

following the description given by Clausing

(refill], pp. 157-213).

The figure focuses on a representative layer of

material of thickness Ax; centered in a node at

coordinate Xj. This material layer is represented

by a single temperature T; and a corresponding

thermal conductivity Xj, density pj, and specific

heat Cj. Assume this layer has a surface area of magnitude A in the Y-Z plane. The distance between

nodes i and i-1 is given by (= Xj - Xj.j). Subscripts i and n refer to positions in space and time,

respectively. Subscript n is temporarily suppressed until it becomes necessary to consider time, in the

following equations.

The instantaneous internal energy of layer i is given by:

U. = pc A FT. = pc Ax,. AT. = C.J,. (47)

where T is the absolute temperature. This equation also serves to define the heat capacity, C, assigned

to node i. Heat is transferred to and from layer i by three methods:

(1) conduction from layer i-1 at the rate

9,. = ( T;., - r,) k,.X / 6a:, = K,_ ( T,.,
- T,) (48)

(2) conduction from layer i 4- 1 at the rate

= ( Ti.i
-

7’i)
K,. A

I

- T.) (49)

and (3) internal heat generation or radiation absorbed within the layer, Sj.

Eqs(48) and (49) define the thermal conductance, K, in each direction. The possibility of a thermal

conductivity which varies with position is explicitly taken into account here using labels -I- and —

:

and xj+. A good first order approximation for K^_ is the harmonic average of x; and Xj_j:

layer
I

AX|—
^ ^ Y

1-^—6:

^i-1

ax
i

I

2

<i

—

• A

Figure 1 . One Dimensional Conduction
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(50)

2K.K..1

Ki+K..i

with a similar expression for

The change in internal energy of this layer between time t„ and time t^^.! is given to first order in At by

^^,.-..1 " = Arc, (51)

where the time dependence has now been put in explicitly. There are several common solutions to Eq.

(51) depending on when the heat gains are evaluated. One solution involves evaluating at time n:

C T (52)

which is the standard Euler explicit time integration formula. "Explicit" means that T|
^, 4.) can be

directly computed from values known at time n. On the other hand, evaluating at time n+ 1 gives;

C T = ^ AT,., k,AT,»+'• i+l,«+l -Ti.n+l
(53)

which is Euler’s standard implicit time integration formula. "Implicit" means that Tj^+j is computed

from other values also evaluated at time n+ 1. These values depend implicitly on each other and must

be computed by a solution of simultaneous equations.

Clausing ([11], p. 190) also gives a discussion of stability in terms of thermodynamic laws. Rearranging

Eq.(52) to solve for Tj gives

K. r. ,
+5. )Ar/c. ,+r. [C. -(K.

I+,B l + l,B (.B' ' «,B+1 I.B*^ l,B l-.r
(54)

where the time subscript, n, has been added to the K terms to indicate exactly when these values are

evaluated. For the sake of argument, assume = Cin(=Cj)for simplicity. There is no solution

if Cj = 0. If C, is sufficiently small or At sufficiently large, then ( Ki_ „ + Kj^. „ ) At / Cj > 1, and

as Tj n increases T; must decrease, and vice versa. This is thermodynamically impossible. It shows

up in a numerical solution as oscillations, i.e. "instability", in the node temperatures at each time step.

These oscillations tend to quickly increase to totally meaningless values. In general, the smaller the

thermal mass of the element, the smaller the time step needed for a stable explicit solution. This suggests

a simple technique to determine the minimum stable time step for any element in the system.

Thus, rearranging the implicit Eq(53) to solve for Tj gives

i,B+l

^i,nTi,n ^ ^ (^<-.B4l ^-l.B*! '*~^i*l,B4l '^'^t.B+l)
(55)

This equation shows none of the computational or thermodynamic problems of Eq.(54) indicating that

the standard implicit method is stable for all time steps.

The spatial discretization error (for a uniform grid) for the standard explicit and standard implicit methods

is proportional to (Ax)^ (for a variable grid, the accuracy is reduced somewhat; see Section 3d). The

time discretization error is proportional to At.
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The standard explicit and standard implicit methods err in opposite directions. Therefore, a more

accurate solution can be obtained by combining the two methods. Expressing this combination generally

in terms of a parameter /3 gives:

+ 5 . ) + 1
1+5 ,)]^i,n' + l Ti+.n + l +

(56)

where 0 < /3 < 1.

/3 = 0 corresponds to the standard explicit method,

/S = 1/2 corresponds to the Crank-Nicholson method,

/S = 2/3 corresponds to the Galerkin method, and

/S = 1 corresponds to the standard implicit method.

For /S ^ 1/2 this method is unconditionally stable, although the solution may be oscillatory. For j(3 >

3/4 (approximately) the solution is stable and non-oscillatory. For jS = 1/2, the time discretization error

is proportional to (At)^.

The methods presented above extend directly into three dimensions. For a Cartesian coordinate system

and a cell of dimensions Ax; by Ayj by Az^, Eq.(51) can be rewritten to account for conduction from

the six adjacent cells in the 3-D system:

(57)

where

WvAy, Az^/6x.

qj.
= -r.^.t)V Ax. Az^/dy.

% = (^ij*U-^/j.i)VAx,.Az*/6y^,j

<lk- =
(’^ij.k-x

-
T'ij.k') ^k- A^i Ay. / hz,

^k*
= V Ax. Ay. / 6zt,i

and Sj
j ,5^

represents other heat added directly to the cell.

3b. Boundary Conditions

Special treatment is required for cells on the boundaries of the region being modeled. In particular, the

nodes which represent the cells are placed on the boundary, rather than at the center. Referring to the

one-dimensional example in Figure 1, the surface layer is only half as thick as the others.

An adiabatic boundary condition (b.c.) is handled by setting the appropriate heat flux terms in Eq(45) to

zero. A constant temperature (isothermal) b.c. is handled by leaving the temperature unchanged.

The surface of the substrate (z=0 plane; see Fig. 3) transfers heat to the environment by convection and

by radiation. The convective heat gain for cell i,j,l is given by
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(58 )

where is the temperature of the surrounding (ambient) air, and h is the heat transfer coefficient.

A positive value of S^. represents a heat gain by the cell. The radiative heat gain is given by

where

is the temperature of the surrounding surfaces,

a is the Stefan-Boltzmann constant, and

e is the emissivity of the fabric (assuming that a, the absorptivity, = e).

The temperatures in Eq(59) must be absolute (Kelvin) temperatures. In TMPSUB2 the temperature of

the surrounding surfaces is assumed equal to the air temperature. (Note that Eq(59) can be rewritten in

an apparently linear form similar to Eq(58);

(59a)

This form will be useful further on.

The heat flux from a smoldering cigarette to the fabric is represented by the following pair of equations:

.2

X* /

ix^x„+vt) (60a)

and

x-x -vfV

X- y J

(x<x +Vf) (60b)

This heat flux is converted to a heat gain, S^, by multiplying the flux at the position of the node by the

cell surface area. These values are adjusted slightly so that their (discrete) sum is equal to the total heat

flux represented by Eq.(40a,b):

I'jy.dxdy + o.
(60c)

3c. Air Gap

Since the furniture (apart from the frame) consists of fabric-covered padding, it is clear that the program

must take at least two layers (with different properties) into account. Therefore the program was written

so as to permit different values for the relevant thermophysical constants p, c, and k at each node. In

fact, generally there is not perfectly intimate thermal contact between the fabric covering and the padding:

there is a small but sometimes significant intervening air gap. Normally, one would place a node within

this gap, in order to take a third layer into account; because of the thinness of the gap, and other technical

difficulties, however, a different treatment of the effect of this air gap has been devised: the gap can be

represented in terms of its "thermal resistance".
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The optional air gap between the fabric and the

padding is modeled by assuming one-dimensional

heat transfer. Figure 2 shows the basic

configuration and nomenclature for an air gap of

thickness s between cells ij,k and ij,k+l. s is

small relative to the separation between the cells,

6^+1. Although pyrolysis of the fabric and the

possible melting and/or pyrolysis of the padding

may well change the dimensions of the air gap,

the simplifying assumption is nevertheless made

here that the air gap has fixed and uniform

dimensions. The heat transfer between these cells

is given by

Figure 2 . Air Gap Heat Transfer Model

(61 )

where K is an implicit function of qij,k+’

The overall heat transfer coefficient is given by

K =

1 1— +— +

where the fabric conductance is ^/ = 2Ax.Ay.K.^.^/6;t*i >

the padding conductance is Kp = 2Ax,A)^k,.^ ^^ j /

,

the fabric (bottom) surface temperature is ~
^ij.k

~
^ij.k* 1 ^u.k ’

the padding surface temperature is

the radiant conductance is

_
q Ayj(T^+Tp)iTf^f^)

and the convective conductance is = Ax.Ay^. k^/5 .

The conductance of the air, is evaluated at the average of Tf and Tp. These equations are solved to

give K and qij,k+ during the overall process used to compute cell temperatures.

3d. Variable Grid

The heat from the cigarette spreads into the substrate by conduction. In order to correctly estimate the

temperatures near the peak, it is important that conduction to the outer boundaries (at x=0, x=Xn,^,
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y=y^ax’ negligible, since it cannot be known a priori. This requires a relatively large

region relative to the size of the cigarette heat flux pattern. However, setting Ax, Ay, and Az sufficiently

small to achieve the desired accuracy in the conduction calculation can result in an extremely large

number of cells ( N = (x^j^x/^) ‘ (ymax^^y) ‘
) with correspondingly large memory

requirements and computation time.

The heating flux from a smoldering cigarette rises from negligible values to a high peak, on the order

of 60 kW/m^ over a region only a few millimeters in extent. In order to follow this faithfully, the region

must be covered by a mesh which is fine enough so that there are no changes from one mesh point to

another large enough to produce numerical inac-

curacies or instabilities. Thus, the required size

of the grid is inversely proportional to the

temperature gradient, where steep temperature

gradients occur only near the point of peak heat

flux. Therefore, a variable grid is used. This

grid consists of a few constant- width cells near

the peak followed by cells of regularly increasing

size to the outer boundaries. The increase in cell

size is based on geometric progression, and can

be different for each axis. Thus, for example,

Ayj+i = Ry Ayj (Ry ^ 1). The general effect of

this variable grid is shown in figure 3. This is

easy to implement in Eq.(45) which explicitly

incorporates the grid sizes. The variable grid

gives results which are less accurate than a

constant grid. A benchmark test indicates that the

results for R = 1.23 differ by < 0.11% at t= 100 sec. from those obtained for the constant grid case,

with still smaller errors for R closer to unity (see Table Al, Appendix A).

Note: In choosing a grid, the user determines four items, in each coordinate direction: the width of the

constant-width cells in the fine-grid region, the number of such cells, the total number of nodes along that

axis, and the total width in that direction. The program then does the arithmetic, and finds the

corresponding value of Rj. If that is < 1, an error message will be returned. Likewise, if too many grid

points result from the attempted selection, an error message will result.

The point of peak heat flux moves as the cigarette smolders. TMPSUB2 adjusts the x-coordinates to keep

the fine grid region centered on that peak. This adjustment is made by:

(1) computing the new x-coordinates of the shifted grid,

(2) computing a cubic spline curve for the temperature in each row of cells in the old grid, and

(3) using the curve to compute the cell temperatures in each row at the new grid positions.

The standard explicit algorithm for solving Eq.(12), without pyrolysis included, was checked in several

ways, principally by comparing its predictions against known analytical solutions (see Appendix A).

These checks showed that the numerical procedure, and the computer program for implementing it, are

correct, effective, and accurate.
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3e. Variable Thermal Properties

The conductivity and specific heat of the substrate materials are known to vary with temperature.

TMPSUB2 allows the user to describe this variation. The values entered for ac and c are converted to

cubic spline curves giving k(J) and c(T). The conductivity is further adjusted within the program to take

into account the fact that the thermal conductivity is proportional to the density:

(62)K = p k(J) / Po,

where p^ is the original density (recall that the assumption of constant k, p, and c, in section 2c, was a

special case used only in order to obtain Eqs(17) to (19)).

3f. Pyrolysis

Consider pyrolysis from the finite difference viewpoint. We begin with a cell having constant volume,

AV (= Ax Ay Az) and temporarily ignore the subscripts i,J,k. This cell contains a mass Py AV of virgin

(unpyrolyzed) material, a mass p^ AV of char, and a mass p^ AV of ash.* The numerical method must

keep track of the density of each material as a function of time; in this program, this is done via the

difference equation

(63)
Px.n+1 ~

Pjt,B
^

9jt,n+P

where the subscript x may be v, c, or a, and jS indicates the type of time integration, as discussed above,

is modeled using Eqs.(25a,b,c). Note that p^ = p^ = 0 and p^ = p^ = p^ at t = 0.

Some material is converted to gases during pyrolysis; the rate as which gases are created is given by

Eq.(25e). The gases are lost from the cell, and they carry away all the energy they contain -- i.e., there

is an enthalpy loss which does not affect the temperature of the remaining mass. Moreover, since the

gas diffusion equations have not been explicitly included, any possible loss of heat from the escaping hot

gases to the cooler solid in other regions of the substrate is ignored. Thus, the rate of heat gain in the

cell due to pyrolysis is (almost exactly) given by

(64)

The Rj are given in Section 2c, and dp^/dt is given by Eq(25e).

3g. Time Integration

A choice must be made for the time integration method. Following the discussion of Belytschko (ref[12],

pp.55, 419, 445), the advantages of explicit time integration are;

(1) Fewer calculations per time step.

(2) Algorithm logic and structure are simple; this implies that it is good for testing new ideas.

(3) Complex nonlinearities are easily handled.

(4) It requires little core storage compared to implicit methods using direct elimination procedures.

* That is, the densities are here defined on a bulk basis.
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(5) It is very reliable in terms of accuracy and completing the computation.

The only notable disadvantage is that explicit time integration is only conditionally stable so that a very

large number of time steps may be required.

With regard to accuracy, since implicit methods are unconditionally stable, they can easily be used with

too large a time step, leading to significant time integration errors. The stability requirements for explicit

time integration force the time step to be so small that the time integration error is almost always smaller

than the spatial discretization error. Of course, it is also possible to use a spatial discretization that is

much too large.

The addition of pyrolysis to the model required significantly smaller cells in the region of interest, and

therefore required significantly longer execution time. Hence a better method than explicit time

integration was required. The following method attributed to Saul’yev as described by Larkin [13] and

Clausing [11] was adopted:

Again consider the one dimensional presentation of Fig 1. Assume that the calculation of cell

temperatures is proceeding in the positive x direction. Then at cell i, Tj.j is a known quantity and

can be used in computing T; „+j. Eq.(51) becomes

Af/.
i,n-«+l

(65a)

During the next time step, calculate cell temperatures in the negative x direction. In that case Eq.(51)

becomes

AU. ,
= C. ,r. ,-C. T = AHq.

i.n+l i,n*l i,n i.n '’i-,/ ?<+,«+! ^i,n+p ^
(65b)

Both Eqs(65a) and (65b) are unconditionally stable because of the inclusion of the implicit terms;

operating together, the truncation errors during successive time steps tend to cancel leading to an O(At^)

algorithm. This method is directly expanded into 2 or 3 dimensions by adding the j and k position

indices and the qj., qj+, q^., and heat gains. The key factor is that it is only necessary to solve

implicitly for one cell temperature at a time. There are no time consuming simultaneous equations to be

solved. Tests indicate that this method is very accurate except for the possibility of some small

oscillations as with the Crank-Nicholson method.

A question remains on when to evaluate Sj, Cj, and Xj (which is implicit in the q’s) in Eqs(65a).

Numerical errors are minimized by evaluating S; at time step n+*/^. These terms are all functions of

temperature in the TMPSUB2 program. Furthermore, they are such complicated functions that the

equations cannot be solved directly. The following equation must be solved implicitly for Tj
j

„+i.

^ij,k+,n ^

where

(66)

^i.y, t, m
~ P ij, k,m ^ ^i,J, k k, m k,

m

with m = n and n+ 1. The total solid density in the cell is the sum of the virgin, char, and ash densities

[Eq(25d)] and is a function of time due to the pyrolysis reactions:
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The cell pyrolysis for the time step is evaluated at T = (T„ + T„+j) / 2, and component densities also

at jS = 'h. Eq.(66) was rewritten in a form allowing numerical solution by a standard secant method (ref

[14], pp 299-306). This completes the outline of Larkin’s method. The net result of using Larkin’s

method is that the time step is no longer limited by grid size, and pyrolysis is modeled in a reasonable

execution time.

4. EXPERIMENTS

4a. Experimental Arrangement

The next step is to compare the results predicted by TMPSUB2 with experimental results, in which an

electrical heater was substituted for a cigarette. The schematic of an experiment designed to measure time

to ignition is shown in figure 4. This consists of the heater element from an automobile cigarette lighter,

fitted with a concentric jacket to permit an air purge. The purpose of the air purge is to keep evolved

products from the sample from being ignited to flaming, rather than to merely smolder. The heating

element is raised to varying temperatures, all of them high enough for the element to be glowing (500 -

900°C). The purging jet comes through the jacket, past the face of the element, and then out normal

to it, toward the sample; it picks up a good deal of heat as it travels through the device. The resulting

flux distribution beneath the heating element is shown in figure 5. As we would expect, it is axially

symmetric; it is well fitted by a Gaussian profile. Note that the higher the temperature the disk is heated

to, the higher is the peak flux.

The measured flux to the gauge is not the same as what the substrate sees, however, because the latter

heats up, whereas the flux gauge does not; call the former 0 and the latter, 0^. It follows from Eq(3)

that

4>,
= (68)

where Tg is the temperature of the hot purging gas, T^. that of the (cold) gauge, and (f)^ = For the

case where the substrate is being heated, however, the convective contribution goes down:

<!’.
= (69)

where T
5(t) is the temperature of the substrate, which increases continuously. Thus the total flux

decreases monotonically. Although we do not know the gas temperature Tg, we do not need it; for, we
can combine Eqs.(68) and (69) to obtain

(70)

The heat transfer coefficient h was discussed in Section 2. It is found for this experimental configuration

in Appendix D. Analysis of the experimental results, given in Appendix D, yields a number of values

important for this experiment, including h and the disk temperatures; the results are shown in Table Dl;

h is found to be a weak function of

When a mock-up consisting of flexible PU foam covered by #12 cotton duck was placed in position under

the heat source, smoldering ignition occurred after a certain amount of time; the ignition delay depends

on the intensity of the flux, as indicated qualitatively by Eq.(19), Section 2b. The experimentally-

obtained ignition delays are plotted in figure 6 as a function of the peak heat flux.
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Analysis of the ignition delay data:

The ignition delay times as a function of the external flux are given in Table 1.

Table 1. Ignition delay times

«,„(kW/ni2) - 18 25 34.5 44

tig(sec) - 472 70 37 22

Since is constant for each run, then according to Eq(19), a plot of versus should yield a

straight line whose intercept is the critical flux, When this is done, however, the result is not a

straight line. More generally, then, we assume that the relationship has the form

Ad) ^ ^
(71)

Only the correct choice for <})^^^^ will yield a straight line in a logarithmic plot of A<j) vs tjg. When that

is obtained, the slope of the line is -p; it was found that d>grjt
= 16.9 kW/m^ and that p = 1.087, with

A varying from 757 to 816; the average value is 798. If we take p = 1, A increases slowly with

The fact that p = 1, rather than 1/2, indicates that the substrate behaves like a thermally thin material;

that, in turn, suggests that it is principally the fabric which is involved in the heating and ignition. If we
assume that the principal cooling mechanism is radiation, then <|)^^^^

= 16.9 kW/m^ implies that if the

radiative absorption coefficient of the fabric is a = 0.9, then T^g = 759 K = 485 °C -- a remarkably

high value. Even with a = 1.0, Tjg = 739 K = 466°C, considerably greater than the 400°C measured

independently. This shows that there is substantial convective cooling during the heating/ignition process.

4b. Material Data

In order to see whether the program can calculate tjg correctly, it is necessary to calculate the surface

temperature under the heater. In order to do that, however, it is necessary to have correct input data;

among these data are the thermophysical data, icpc.

4b. 1 Fabric

First, consider the fabric. The fabric that was used in the experiment was #12 cotton duck. Material

data for cotton, especially as a function of temperature, are surprisingly difficult to find, even though it

is a common and long-used material.

In Appendix E, we find that reasonable values for the thermophysical constants for this particular cotton

fabric (#12 cotton duck) are

p = 620 kglm^

K(r) = 0.28505 k/T) + 0.84554 K^^,(r) W/m-K (72)
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where

kAD = k,(TJ(TITJ = 1.242xl0-’r WIm-K

(with T in Kelvins) and K — 1 7 •

''gas ^ *
”‘air’

with

a^/f

,
bxlO-^^

1 +

(73)

(74)

The constants are a = 2.6464x10'^, b = 245.4, and c = 12. Then /c(25°C) = 0.1435 W/m-K and

c(T) = K(J)/pa = 7819<c(T); thus, c = 1122 J/kg-K at 300 K.

4b.2 Char

The cotton decomposes and pyrolyses to char. According to Parker [15], [16], the specific heat of char

is just about that of carbon:

c^(T) = 1.43 + 3.55xl0-^T - 132x10^IT^ J/g-K, with T in K (75)

The thermal diffusivity of wood char is approximately constant:

~ 2.1x10'^ m^/s (76)

The density of the char depends on whether the fibers contract while pyrolyzing, or not. Finally, the

thermal conductivity of char is found from

/Cc(T) = a^PcCcCT). (77)

4b.3 Reaction kinetic parameters

When the analysis of a pyrolyzing material is carried out, it is done for a thin layer, in order to ensure

uniformity of temperature and of oxygen concentration throughout the sample. It is then simplest to find

the reaction rate in the form

=
djWJWJ

dt
= A, exp(-EJRT) min

-1

0 /

(78)

for the degradation reaction, rather than as in Eq(20); here W^j = Wjj(t) is the (instantaneous) weight of

the remaining (virgin) material = weight of sample minus weight of char and ash, and is the original

weight. Note that A is commonly given in reactions/minute. The actual reaction rate is given by

“ Po^d-

The relationship between (20) and (78) is simple: since and p^ = Wq/Vq, then as long as

Vo/Vd = const, WjAVo = Pd/Po, and, as in Eq.(20),
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where

Pd exp(-...)

(in the appropriate units). T.J. Ohlemiller (private communication, 10/91) found that for pyrolysis in

pure nitrogen,

= 7.49x10*'* min"*, n = 0.60, and = 43,600 cal/mole = 182.4 kJ/mole

Instead of these parameters, however, we shall use the results of Kashiwagi and Nambu [6] for a

cellulosic paper pyrolyzed in air; that will maintain internal consistency in the reaction set. The global

kinetic constants given by Kashiwagi and Nambu for the thermal degradation reaction of their cellulosic

paper are

Ejj = 220 kJ/mole n^, = 1.8

Aj = 1.2x10*^ min"* = - 570 J/g

The parameters for the other two reactions are given in their Tables 1 and 2, reproduced below. For the

oxidative pyrolysis reaction.

=
op ox

W.

'/op

exp

0 /

op

RT
(79)

where is the volume fraction of oxygen. The kinetic constants are

Eop = 160 kJ/mol n^jp = 0.5

Aop = 1.5x10*'* min"* nfop= 1.3

and H^p = 5.7 kJ/g

For the char oxidation reaction.

with the kinetic constants

E^ =160 kJ/mol

Aj. = 3.4x10** min"*

and

The fraction of ash which remains is 9% by mass. Eqs.(79) and (80) transform to the standard form in

the same way that (78) does. Thus

( W^] »c— exp
IF

\ oj [
RT)

(80)

nco = 0.78

n^ =1.0
H, = 25 kJ/g

^op ~ ^obP
1-n,

'/op
,

op'
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4b.4 Heats of combustion

Brandrup and Immergut (ref [17]) give the heat of combustion from several measurements; as expected,

the results vary:

Hj.(cotton) = 18850 J/g

Hc(fabricl) « 15450 J/g

Hc(fabric2) « 16700 ± 250 J/g (fabric weight was 180 give?)

Note: as material pyrolyzes, we should take c(T) and x(T) for the combination of materials; for the sake

of simplicity, however, we assume that the virgin fuel, the pyrolyzed material, the char, and even the

ash, all have the same specific heat. Then the appropriate density to use in Eq.(12), for example, is the

density of the solid, p^, which is the sum of the bulk densities of all the components of the solid (see

Eq(25d)). As pyrolysis and combustion proceed, p^ decreases monotonically (assuming no fabric

shrinkage).

4b.5a Foam

For the padding component of the substrate, we have PU foam, for which we have the following data

(T.J. Ohlemiller, private communication, 12/91):

p = 0.032 g/cm^ = 32 kg/m^ (81a)

Cp = 1.46J/g-K (81b)

ic(T) = 0.03613 + 2.003x10-^ T, (81c)

with T in °C.

There is one other datum for PU foam: < xpc> ,
the mean value of the thermal inertia, was measured

in the LIFT apparatus (see [5], [18], and [19]) by Quintiere and Harkleroad [19]. However, the foam

melts before it ignites, so that p (and, consequently, k) go up substantially; moreover, the measurement

entails all the other model approximations. Hence the measurement is not directly useful.

4b.5b PU Foam kinetic parameters

The first pyrolysis reaction, which results in the collapse of the foam structure, yields 0.7 g of liquid and

0.3 g of vapor, for every gram of foam which pyrolyzes. The reaction rate, RRj = (mass

gasified/min)/(mass of foam), is given by

RR^ = 0.30fi [

P - P^ej
m

^Po “ P«y

exp
i'/erj

(82)

where m = 1.5 Also,

B = 3.36x10*^ and

Eg = 44,700 cal/mole.

Pq = starting density,

p = current density, and

Pg = density of residue = 0.70po

These densities are those of the solid phase (p^ of order Ig/cm^), rather than that of the foam (p^ = 0.03
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g/cm^). The total heats of pyrolysis of PU foams range between 100 and 200 cal/g; for this foam, it is

closer to the upper value. Assuming it varies linearly with the mass loss, we can estimate 30% of 200,

or

Hp ~ 60 cal/g * 240 J/g

Finally, for the diffusion coefficient for O2 in the fabric, see Eq.(28).

5. RESULTS AND DISCUSSION

Rather than give the final results immediately, it was decided to describe the evolution of our thinking,

including some of the false steps we took, because a good deal can learned that way, and it could be

instructive for anyone else who might work on this problem in the future. With that in mind, we first

consider the results of calculations made assuming an inert substrate:

5a. Inert Case

First, the computer program was used to calculate the peak surface temperature under the heater as a

function of time, for several peak fluxes. The results are shown in figure 7.

The ignition temperature of cotton was measured to be 390-400°C (T.J. Ohlemiller et al, private

communication). According to figure 7, if Tjg = 400°C, then ignition is attained for the 44 kW/m*
exposure at t » 18 sec, and for the 34.5 kW/m^ exposure at t = 50 sec. These values are to be

compared with experimental values of 22 and 37 sec, respectively; this is fairly good agreement. On the

other hand, ignition is not attained at all for the 25 and 18 kW/m^ cases; a conceivable reason might be

that the ignition temperature given above was overestimated. In order to intersect the </> = 18 kW/m^
curve at t » 472 sec, the ignition temperature would have to have been about 290°C; it is very unlikely

that such a large error in the measurement of Tjg would have been made. Even if it were, that would

yield ignition times of 7, 12, and 25 sec, respectively -- much shorter than the measured times of 22, 37,

and 70 sec.

Three possible reasons for the calculated ignition times being so short are:

(a) Endothermic pyrolysis takes place, which slows the temperature rise.

(b) There is significant radiative heat transfer within the material, so that the flux is absorbed in depth,

rather than mainly at the surface.

(c) Tjg = 290°C and the estimates of /<pc(T) were in error, the actual value being larger.

Now, if we consider endothermic pyrolysis, then we must also consider exothermic pyrolysis. Second,

the effect of radiative heat transfer will be small when T is near T^, and small in comparison with the

effects of pyrolysis when T> >T^. Finally, consider item (c): If /cpc were larger, then the rate of rise

of Tg would be smaller, as can readily be seen from Eqs(17)-(19). The final temperature, however, is

independent of xpc. Hence not only would Tjg have to be much smaller, but the estimates of /cpc would

have to have been 9 times too small. This is all possible, but extremely unlikely.

5b. Results with pyrolysis

On the other hand, we know that pyrolysis must take place; Figure 8 shows the effect of including

pyrolysis, for the Q = 25 kW/m^ case. Curve A indicates what the temperature of the fabric surface

would be if the fabric (and foam) were inert. Curve B is the result of "turning on" the (endothermic)

degradation reaction. Note that although the rate of growth of temperature is slowed down quite

29



perceptibly, as expected, the temperature the surface reaches asymptotically is exactly the same (assuming

the same surface absorptivity/emissivity as before).

However, the exothermicity of the oxidative pyrolysis and of char oxidation are far greater than the

endothermicity of thermal decomposition, and should overwhelm it. We cannot, therefore, consider

thermal decomposition alone: if we consider pyrolysis, we must include^ the major reactions. Another

way of seeing this is to note that in order to have ignition, we must have a "thermal runaway," where

exothermic pyrolysis heats up the material faster than heat diffusion and surface losses can carry the heat

away.

Curve c indicates what takes place when the oxidative pyrolysis reaction is included, as well: it is

exothermic, and adds a great deal more energy than the degradation reaction removes. The result is that

the temperature rises, rather than falling. Indeed, it rises so rapidly that it begins to appear like a thermal

run-away. However, the temperature reaches a peak, than declines. The reason is simple: the fuel is

rapidly exhausted; once that happens, the heat source is reduced to the original external flux. This is

clearly depicted in Figure 9, which shows the fuel density as a function of time: The ordinate is

temperature, in °C, md density in kg/m^. The curves marked Tq and pq correspond to the cell with the

highest temperature. Those marked Tj and pj correspond to the (laterally) adjacent cells, and those

marked T2 and P2 to the next ring of cells. These calculations were carried out assuming no char

oxidation. We see that as the reaction accelerates, T^ "runs away" and the density plummets from its

virgin value to that of char. Most significantly, the peak temperatures develop just after the density falls.

Finally, curve d of Figure 8 shows the result of adding the char-oxidation reaction as well: that additional

heat source takes the pyrolysis "over the top": the temperature continues to run away (we have arbitrarily

cut off the calculation at 600°C, here). The question then arose: why is (was) there an oscillation in T^?

The explanation is qualitatively clear: if a cell is (too) large, then the surface/volume ratio is small, and

the heat cannot diffuse away rapidly enough. This is confirmed by Figure 10: with a cell size taken to

be a bit less than half as large, the amplitude of the oscillation declined considerably, and with the cell

size halved again, the oscillations have almost disappeared.

Presumably, as we continue to decrease the cell size, the numerical errors should become progressively

smaller, until a further decrease in cell size would make no further difference in the results. However,

it was found that the results were apparently not converging with decreasing Ax, and that the sensitivity

varied with Q. Investigation of the reason for this great sensitivity revealed that it lay in our use of a

variable grid size: whereas for grids of constant spacing, the numerical approximations are correct to

second order in Ax, that accuracy drops to somewhere between first and second order. Indeed, if the

numerical error is proportional to (Ax)", then n is given by a complex formula (see ref [20], pp.43 and

51). The "flavor" of that expression is given by n ~ (2-l-a)/(l-l-a), where a = dAxIdx. That is, the

accuracy depends inversely on the rate of growth of the grid size. An explicit calculation is given in

Appendix A; see Table A1 there.

By reducing the rate of increase of grid size, therefore, the accuracy was increased, and the results made
to converge better. Moreover, it was decided to switch from an explicit solution method to Larkin’s

semi-implicit method (see Section 3). After those changes, we arrived at the results shown:

The results of four calculations are shown in Figure 1 1 : these were made with an assumed heat transfer

coefficient h = 20, and an assumed oxygen concentration of 20%. For initial fluxes with peak values

of 25 and 34.5 kW/m^, calculations are first made assuming that the substrate is inert, and then pyrolysis

is "turned on." We see that for the 34 kW case, the asymptotic temperature lies at about 430°C, and that

a thermal runaway begins at about 300°C, at t » 20, and is completed at t = 25 sec; that would then
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be the ignition time. It is difficult to state precisely what "the ignition temperature" is, in this case (but

see below).

For the 25 kW case, the asymptotic temperature lies at about 360 °C; the first perceptible deviation of

the curve for the reactive case from that for the inert material occurs at T = 280°C, and is clearly

established at 300°C. The thermal runaway takes place at t = 48 sec. These times may be compared

with the experimentally-established ignition times, which were about 22 and 70 sec, respectively. Thus

we have achieved semi-quantitative agreement. In Figure 12, on the other hand, we see that a thermal

runaway -- and therefore ignition -- apparently did not take place for the 18 kW case. Here, the

asymptotic temperature is about 290 °C; this is apparently not high enough to produce a runaway.

Wherein lies the difficulty? Most likely, one or more of the input values is incorrect. Altering xpc

would principally change the time scale. Fig. 13 shows the effect of changing the assumed oxygen

concentration: the highest curve reproduces the upper curve in Fig. 12. The next two curves show what

happens when < Y> is assumed to be 0.15 and 0.11, respectively. Finally, the bottom curve (again)

corresponds to the inert case. Thus, it is not [O2] having been chosen too low that prevents ignition, and

one or more of the kinetic parameters is probably in error. Refer to Figure 14: curves a and b again

reproduce Fig. 12 (on a different scale). For curve c, the char-oxidation rate was doubled. It is apparent

that the curves overlap completely. A preliminary conclusion inferred from this was that the observed

result was due to all the char that is produced already being oxidized. Observation of the kinetic

constants for oxidative pyrolysis and char oxidation, however, makes it clear that the latter is three orders

of magnitude slower than the former. Therefore merely doubling the char-oxidation rate will only perturb

the energy output slightly - so slightly that it will not even show up in the figure.

For curve d, the oxidative pyrolysis rate was doubled (the preexponential factor A was doubled),

doubling the char-production rate through this branch; this indeed produced a thermal runaway. Curves

e and f are the results of increasing A by 20% and 10%, respectively. Thus, a quite modest increase in

A produces (predicts, that is) ignition, although at 230 sec, rather that the measured 472 sec). Such an

increment is not only well within experimental error, but -- more to the point - is entirely plausible,

when the likely differences between the cellulosic paper and a cotton fabric (with different impurities) are

considered. On the other hand, it was assumed that y = 0.20. For y = 0.15, A must be increased by

30% in order to get ignition (the resulting T(t) curve is very similar to the "best" one). Although this

is greater than the 10% increase found above, it is still entirely plausible.

We have so far considered the sensitivity of the results to the oxygen concentration, the thermophysical

constants of the fabric, and its kinetic parameters. Surprisingly, there are two other significant

parameters: first, if we use h = 22 for the heat transfer coefficient in Eq.(69) (as suggested by the results

of Appendix D, shown in Table Dl), rather than the assumed h = 20, the "asymptotic" temperature (that

at t = 500 sec) reaches only 272 °C, rather than 292 °C, and there is not the faintest possibility of

achieving ignition, unless is substantially smaller than 160 kJ/gm. One solution is to assume that

h=20 is the correct value to use, since the theoretical calculations in Appendix D could easily be off by

10% or more. Another resolution is possible, too: the second parameter which is important in this

threshold region ("threshold," because 18 kW/m^ is close to the critical flux, 16.9 kW/m^) is the thermal

conductivity of the foam padding. In all the runs made above, it was assumed that k = 0.056 J/m-K and

c = 1.9 J/g-K, for the foam at T = 20°C. If it were assumed that k = 0.096, instead, then the foam

would act as a more efficient heat sink, and the surface temperature could be expected to drop; indeed,

a calculation showed that the peak surface temperature at t = 500 s fell to 272 °C for the inert fabric.

In fact, however, the value 0.056 for the thermal conductivity was for a foam of density 48 kg/m^!

Transforming that for a 32 kg/m^ foam, according to Eq.(62), yields 0.036, almost exactly what is given
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in the present test (see Eq.(81c)). This reduces the heat sink, and must yield an increased asymptotic

surface temperature. Using the foam parameters given by Eqs.(81), and h = 20, the t=500 temperature

indeed rises, from 292 °C to 300°C; with h = 22, it is 294°C, and we only need to increase A by 10%

to get runaway.

The "best" set of parameters, then, is that given in sections 4b. 1 and 4b. 3 for the fabric, and 4b.5a for

the foam. For the heat transfer coefficient, use the values in Table Dl. With that set, we obtain the

curves shown in Fig. 15. The corresponding calculated ignition times are given in Table 2. Thus, the

calculated values are all about half the measured values.

Note that the polyurethane foam begins to melt and recede from the fabric when its temperature reaches

about 300 °C, thereby decreasing the heat-sink effect of the padding, and accelerating the heating of the

fabric; this effect has not been included in the model, however.

Table 2. Calculated vs experimental ignition delay times for the four fluxes

Q (kW/m^) Ignition delay, tjg (in sec)

Calculated Measured

18 209 472

25 37.2 70

34.5 19.0 37

44 12.6 22

It has been suggested that we might avoid the necessity of explicitly including the pyrolysis reactions by

choosing some effective ignition temperature. This is not, in fact, feasible: if we take the measured

ignition times and mark them on the four curves in Figure 7, corresponding to the inert assumption, we
find that they intersect these curves at widely varying temperatures; see Table 3. It is apparent that this

"ignition temperature" is a strong function of the external flux.

Table 3. Surface temperatures which would be

attained by the substrate at the measured ignition

times if the substrate had been inert

(in kW/m^) = 18 25 34.5 44

T
•g

(in °C) 291 342 380 400

T
•g

(in “K) 564 615 653 673

On the other hand, if we define "the ignition temperature" as the point on the Tg(t) curve where the

temperature is rising at some rapid rate - say, 100°C/sec - then from Figs. 11 and 13 we see that that

gradient is attained at the approximate temperatures shown here:
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(in kW/m^) = 18 25 34.5

Tn,ax (in °C) = 390 390 380

T.ax (in °K) = 663 663 653

These calculated temperatures are close to each other, and close to the 390-400°C which has been

measured.

6. SUMMARY

We have created several computer programs, of which the central one is TMPSUB2. This program

calculates the temperature history at every point in a substrate which is subjected to a strongly localized

heating flux on its top surface. The (solid) substrate consists of two layers, the top one being a fabric

and the lower a foam pad; there may be a thin intervening air gap. The substrate is taken to be a

rectangular parallelepiped, and it is broken up into several thousand cells. There is a user-friendly front

end for the input, described in Section 3. The program runs well on a 386-level computer with a math

coprocessor, or a 486-chip computer.

As stated in the introduction, this program serves to calculate the temperature of the upholstered furniture

as a function of time and position, when it is exposed to a prescribed heating flux. This flux can be

highly peaked at a point, vary with time, and move at a constant (specified) rate over the top surface of

the furniture, assumed to be horizontal. The radiative and convective heat losses from the surface are

given correctly. If and when the temperature rate of rise at a given location suddenly "accelerates" to

a value high enough that the surface glows (that is, T > 5()0°C or so), we can say that smoldering

ignition has occurred. The ambient oxygen level can be set at whatever value one wishes. The program

will not tell us whether flaming ignition takes place. It also does not treat the case where the flux is

applied in a crevice, such as is formed between the seat cushion and the seat back. The program does

not take into account the effect(s) of the foam possibly melting and receding away from the fabric.

Finally, it also does not take oxygen diffusion within the cushion explicitly into account; hence in certain

threshold situations, where a small change in oxygen concentration determines whether ignition does or

does not take place, the results are ambiguous and not to be trusted. Note that it is often difficult to

obtain the needed kinetic and/or thermophysical parameters for the material; or, when available, to know
how accurately they are known. Therefore this caveat must also be made: even if the program were

perfect, its results are only as good as the input parameters which are supplied. On the other hand, it

should accurately reproduce (or predict) trends.

When the flux to which the substrate is exposed is near the critical flux, the result (i.e., ignition does or

does not take place) is sensitive to most of the parameters, such as the ambient oxygen density, the heat

transfer coefficient, the thermal conductivity of the foam as well as that of the fabric, etc.

The way T(r,t) is found is by solving the PDE which describes the diffusion of heat in a solid, Eq.(12),

numerically. The solid is subjected to a nonuniform and time-varying heating flux at its top surface, and

(simultaneously) experiences convective and radiative heat losses. Moreover, the solid can undergo

pyrolitic reactions; we consider three, here: one endothermic step (thermal degradation to char), one

oxidative pyrolysis to char, and oxidation of the char (to ash).
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The equation set is very stiff, because of the highly nonlinear form of the (Arrhenius) reactions. We have

therefore used a semi-implicit method to solve the equation set.

The way ignition is seen to be achieved (in a cell) is that the temperature undergoes a "thermal runaway."

This does not occur abruptly as a particular temperature is reached, so that the "ignition temperature" is

not well defined. When the transition region between "inert" heating and thermal runaway is narrow,

the concept is adequate. According to this model, the transition region is rather broad, and so it is not

so useful a concept in this context.

What is and is not in the program is listed in Table 1, section 2.

Note that

a) We can get a first approximation to the radiative heat transfer within the material by using Kunii’s

expression, Eq.(14).

b) The effects of cation concentration can probably be modeled by appropriate changes (not described

here) in the kinetic parameters. Finally,

c) the effect(s) of relative humidity in the ambient can likewise probably also be approximately modeled

by making appropriate changes (again, not described here) in p, c, and k.

An experiment was carried out to ignite the substrate. In trying to reproduce those experimental results,

it was found that the calculated results are sensitive to the input values chosen, especially the kinetic

parameters. It was found that the preexponential factor found by Kashiwagi and Nambu (ref [6]) for the

oxidative pyrolysis reaction in a cellulosic paper had to be increased by 10% for the cotton duck fabric

in order to get ignition for the lowest of a set of heating fluxes to which the substrate was exposed. The
result was semi-quantitative agreement with the observed ignition times.
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FIGURE CAPTIONS

Figure 1. One-dimensional conduction

Figure 2. Air gap heat transfer model

Figure 3. Substrate coordinate system

Figure 4. Schematic of heat source for ignition tests

Figure 5. Flux profile from heat source, as measured by a total heat flux gauge

Figure 6. Time required to ignite the fabric, for different (initial) heat flux exposures. Crosses

correspond to the discussion in the text. Filled circles correspond to a different set of

experiments.

Figure 7. Peak surface temperatures of substrate as a function of time, for the four exposures

Figure 8. Peak surface temperatures of substrate exposed to Q = 25 kW/m^, as a function of t, for

a. Material assumed to be inert d. Char oxidation also included, as well

b. Thermal degradation only e. Only one reaction: oxidative pyrolysis

c. Oxidative pyrolysis as well

Figure 9. Temperature and density of central cell (subscript 0), adjacent cells (subscript 1), and cells in

next ring around center (subscript 2), as functions of time

Figure 10. Temperature of central surface cell (i.e., peak temperature) for three different grid sizes: 1 .25,

0.50, and 0.25-mm cubes. Char oxidation was purposely left out

Figure 11. Peak temperature for the 25 and 34.5 kW/m^ cases, assuming (a) no pyrolysis, and (b) all

three pyrolytic reactions

Figure 12. Peak temperature for the 18 kW/m^ case, with the same assumptions as in Fig. 11

Figure 13. Peak temperature for the 18 kW/m^ case, for several values of mean O2 mass fraction, < y >

Figure 14. Peak temperature for the 18 kW/m^ case, with various assumptions for the pyrolysis:

Curve a, no pyrolysis; curve b, "standard" pyrolysis; curve c, double the char oxidation rate;

Curve d, double the oxidative pyrolysis rate; Curve e, 1.2 times the oxidative pyrolysis rate;

Curve f, 1 . 1 times the oxidative pyrolysis rate

Figure 15. Peak temperature as a function of time, for all four cases, using the best set of input data

Figure 16. Total heat flux impinging on gauge, with and without purge flow

Figure 17. Calculated heat transfer coefficient, as a function of the temperature Tg of the impinging purge

gas Jet

Figure 18. Thermal conductivity of cotton as a function of temperature, as measured by different workers
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Figure 4. Schematic of heat source for ignition tests
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Figure 5. Flux profile from heat source, as measured by a total heat flux gauge

39



IGNITION

TESTS

#12

DUCK

(no

w,

no

I)

AIR

lO

C>J

(•03S) 3WI1

Figure 6. Time required to ignite the fabric, for different (initial) heat flux exposures. Crosses
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Figure 7. Peak surface temperatures of substrate as a funaion of time, for the four exposures
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Figure 8, Peak surface temperatures of substrate exposed to Q = 25 kW/m^, as a function of t, for

a. Material assumed to be inert

b. Thermal degradation only

c. Oxidative pyrolysis as well

d. Char oxidation also included, as well

e. Only^ reaction: oxidative pyrolysis
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Figure 9. Temperature and density of central cell (subscript 0), adjacent cells (subscript 1), and cells in

next ring around center (subscript 2), as functions of time
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Figure 10. Temperature of central surface cell (i.e., peak temperature) for three different grid sizes. 1.25,

0.50, and 0.25-mm cubes. Char oxidation was purposely left out
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Figure 11. Peak temperature for the 25 and 34.5 kW/m^ cases, assuming (a) no pyrolysis, and (b) all

three pyrolytic reactions
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Figure 12. Peak temperature for the 18 kW/m^ case, with the same assumptions as in Fig. 11
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Figure 13. Peak temperature for the 18 kW/m^ case, for several values of mean O2 mass fraction, <y>
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Figure 14. Peak temperature for the 18 kW/m^ case, with various assumptions for the pyrolysis;

Curve a, no pyrolysis; curve b, "standard" pyrolysis; curve c, double the char oxidation rate;

Curve d, double the oxidative pyrolysis rate; Curve e, 1.2 times the oxidative pyrolysis rate;

Curve f, 1 . 1 times the oxidative pyrolysis rate
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Figure 15. Peak temperature as a function of time, for all four cases, using the best set of input data

49



EFFECT OF PURGE FLOW ON HEAT FLUX VS HEATER PO\fER

MEASURED AT PEAK POSITION; 5.4 MM BELOW HEAT SOURCE

X

Cx.

E-<W

<
o
E-

Figure 16. Total heat flux impinging on gauge, with and without purge flow
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Figure 18. Thermal conductivity of cotton as a function of temperature, as measured by different workers
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APPENDIX A
Conduction Algorithm Tests

A computer program called TEMPSUB was developed as part of the earlier investigation into the ignition

of furnishings by smoldering cigarettes (Gann et al, ref [2]). This program modeled heat transfer in

furniture, or in a "substrate," using a simple finite difference approximation (FDA) for a homogeneous

substrate with uniform and constant properties. The research indicated that this program would have to

be expanded to include a two-layer model (fabric -I- padding), pyrolysis of each layer, an asymmetric flux

input, and a variable grid.

These features have been implemented by using a slightly different approach to the FDA than was used

in TEMPSUB. The original approach was to convert the differential equation for heat transfer into an

FDA by a Taylor’s series approximation. The new approach is based on the conservation of energy

within a control volume. It is based on physical reasoning and is usually easy to apply. It is most useful

for variable grids, convective boundary conditions, odd-shaped regions, etc. It is more difficult to obtain

accuracy estimates for the control volume approach than for the Taylor’s series approach. For simple

cases involving uniform grids and homogeneous materials the two approaches lead to identical FDAs.

See Torrance or Croft & Lilley (refs [21] and [22]) for further details.

Since there is a considerable increase in the desired capabilities of the upgraded program, it was decided

to develop a program which would allow extensive testing of the FDA. This program is called CTEST3
(Conduction TEST - 3 dimensional) which has the ability to model simple boundary conditions (constant

temperature, heat flux, or convection coefficient) on any of the six faces of the region.

The FDA used in CTEST3, the explicit Euler method, has been checked against several heat transfer

problems which have analytic solutions. The first few tests involve various combinations of constant

temperature, heat flux, and convection coefficient boundary conditions with analytic solutions from the

classic text by Carslaw and Jaeger (ref [3]).

Several of these analytic solutions involve the error function which is defined by

X

(Al)

SO that erf(0) = 0,

erf(oo) = 1,

and erf(-x) = - erf(x).

The complementary error function is also used. It is defined as

(A2)

so that erfc(0) = 1,

and erfc(oo) = 0.
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Repeated integrals of the error function are also useful in conduction problems. These are defined by

the recursive relationships

i“erfc(jc) = J
*erfc(jc)<ic n=l,2,...

X

(A3)

i®erfc(x) = erfc(x) (A3a)

ierfc (x) = i^erfc(x) = - xerfc(x) (A3b)

2ni“erfc(x) = i“'^erfc(x) - 2xi“''erfc(x) n=2,3,... (A3c)

See Appendix II of Carslaw and Jaeger [3] for further details on error functions. Computer subroutines

were written implementing these functions for the computation of the analytic solutions of the heat

transfer tests.

Test 1: One-dimensional steady-state conduction.

CTEST3 has been tested for steady state conduction (with constant thermal properties and uniform grid

spacing). This test consists setting opposite faces on a cubic region to different temperatures and making

the remaining faces adiabatic. After a sufficient number of time steps the temperature within the region

should vary linearly from the hot to the cold face.

T\x) = TXO) + - [JID -
7X0)] (A4)

L

This has been confirmed in all three directions.

Test 2: One-dimensional transient conduction, constant heat flux boundary condition.

This test was used in the development of the original substrate model. The analytic case for a constant

flux involves a homogeneous solid occupying the semi-infinite region x > 0. The solid is initially at zero

temperature throughout. At time t = 0 a constant heat flux, q, is applied to the x = 0 surface. The

temperature within the region is given by (ref [3], p 75, eq 6)

nx.t) = ierfc (A5)

Preliminary testing (again using a uniform grid and constant thermal properties) indicated that as At and

Ax decreased, there was a uniform approach to the analytic solution. As for the accuracy to be expected,

for Ax = 1 mm and At = 0.5 sec, the error (after the first three time steps) was < 1%. We note that

the results of test did not agree with results from the original TEMPSUB model. Further investigation

indicated an error in the TEMPSUB boundary conditions subroutine. Correcting this error brought

results from the two programs into complete agreement.
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Tests show that reducing the grid size along with corresponding reduction of the time step cause the FDA
solution to approach the analytic solution. Therefore, the FDA is consistent. Reducing the time step

without changing the grid size does not improve the accuracy of the solution. In fact, it is best to operate

as close to the stability limit as possible for both accuracy and execution time. Use of the variable grid

gives results consistent with the uniform grid at the surface. The error in the calculated surface

temperature goes down as time increases.

Test 3: One-dimensional transient conduction, constant convection coefficient boundary condition.

This test represents a slab of a homogeneous solid of thickness 2L in the x direction and infinite extent

in the y and z directions which is initially at unit temperature throughout. At time t=0 the temperature

of the fluid on both sides of the slab is changed to zero and heat is convected from the slab through a

constant convection coefficient. Because of symmetry this problem is equivalent to a slab of thickness

L with one adiabatic surface at x = 0 and a convective surface at x = L. The temperature within the

region is given by (ref.[3], p 122, Eq(12))

2Bcos(6„x/I)

B=i [B +B + 6„ ]cos6„* /I * II

where B = hL//c (Biot number),

F = aiH? (Fourier number), and

are the solutions of the transcendental equation S^tanS^ = B.

(A6)

In order to check the calculation of this complicated analytic solution, the solution to a related problem

was also computed. This is the temperatures in a semi-infinite slab with the convective boundary

condition (ref. [3], p 72, eq(5))

II n
( X ) - exp —(x+a^f/K))erfc

^ h rz—^ +-y/at
[yJAat] U j

(A7)

where x is now the distance from the convective surface into the region. There is good agreement

between the FDA and analytic solutions. Again, the error in the calculated temperature goes down as

time increases.

Test 4: Three-dimensional transient conduction, constant surface temperature boundary condition.

This test represents a block of a homogeneous solid in the region defined by -a < x < a, -b < y < b,

and -c < z < c which is initially at unit temperature throughout. At time t=0 the temperatures of the

surfaces of the block are reduced to zero, and the block begins to cool. The temperature within the

region is given by (ref[3], p 184, Eq(5))

64
T(.x,y,z,t) = — EE E

(- 1)
l*m*n

(2M)(2m+l)(2/i+l)

cos
(2/+1)7cx

2a
cos

(2m+l)7ty

2b
cos

(2n+l)nz

2c
(A8)

f (2/+l)2 (2w+ 1)2 (2n+l)2'

1

J
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This expression requires the summation of many terms at small values of time, but only a few terms at

large values of time. The implementation of this complicated equation had to be checked against simpler

analytic cases. The first case represents a homogeneous solid occupying the semi-infinite region, x >
0. The solid is initially at unit temperature throughout. At time t = 0 the temperature at x = 0 is

instantly reduced to zero. The temperature within the region is given by (ref[3], p 59, eq(3))

r(x,f) = erf (A9)

The second case involves a solid which occupies the region x > 0, y > 0, z > 0. It is initially at unit

temperature and at time t = 0 the temperature at the x = 0, y = 0, and z = 0 surfaces is instantly

reduced to zero. The temperature within the region is given by (refI3], p 184, Eq(l))

T{x,y,z,t) = erferf
( X ]

erf y
]
erf

r z

[p^tj [v/4afj

(AlO)

The temperatures near the comers of the block should be very similar to this.

There was good agreement (error < 1 %) for a test with a=30 mm, b=20 mm, c= 10 mm using a 1 mm
uniform grid. The original variable grid model was found to be insufficiently accurate at points where

the grid size changed. It was therefore replaced by the current uniformly increasing grid at a cost of

some increase in code complexity; although the results are not quite as accurate as for the uniformly-

spaced grid, the difference is very minor (see Section 3d).

Test 5: One-dimensional transient conduction, two different materials.

This test consists of one material in the region 1 (0 < z < L) initially at unit temperature and another

material in region 2 (z > L) initially at zero temperature. The boundary at z = 0 is adiabatic. At time

t=0 heat begins to be conducted between the two regions. The temperatures in the two regions are given

by (Ozisik, ref[23], p.328, Eq 8-109)

where

jd" Jerfc
2 iis

'

{ln+\)L-x
+ erfc

(2n+l)L+x

2 B-o

2nL+\L{x-L) - erfc
(2n+2)L+\x(x-t)

(All)

1*
= —

, P = 6=1^
P^l

There was good agreement between the FDA and analytic solutions. It even worked well when the first

layer was only one-half of a grid thick. This may be useful for thin fabric coverings.
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Test 6: Three-dimensional transient conduction, constant heat flux impinging on a circular area (disk)

on a semi-infinite region.

The impinging flux is q, there is convective cooling from the surface, h(T
5
— TJ, and the disk radius

is R. The temperature at the center of the heated area is given by (Thomas ref[24], Eq 5)

m = ^ 4at

K \\ uB}
1 -exp

^ f

h J

K

<i)=0

1 - exp
-h^R

4at

2d2\

Ji

+ erfc
( R

4k}uP' n

2

<0 e " erfc((i))

(A12)

The first part of the above expression is the center point temperature if there is no convective cooling.

Tests indicate that the accuracy of the FDA for this test is primarily dependent on how accurately the

circular flux pattern is represented on the rectangular surface grid. A small grid and assigning cell heat

gain according to the portion of the cell that is within the circle improve accuracy.

Note that tests 1 through 6 involve a step change, which should be the worst condition to simulate with

the FDA. In all cases the maximum errors occurred at the first time step, and the error declined as time

increased.

Test 7: Three-dimensional transient conduction, uniformly moving point-source heat flux.

This test consists of a point source of power Q moving in an infinite body at a constant velocity v in the

X direction (Schneider, refI25], pp.3-86, Eq 78)

Kr 1— (T-rj = — exp
Q " 471 ^ 2a

(A13)

where | = x - vt and t = Adjusting for a semi-infinite body with the point source

moving along an adiabatic surface is done by replacing 47r by 27r in (A 13). Generally good agreement

was achieved for this test. Accuracy was limited by grid size near the point source and the fact the this

is a quasi-steady case in that movement of the point source does not have a beginning point.

Larkin’s method

The FDA algorithm in CTEST3 was transferred directly into the new substrate model TMPSUB2. The

addition of pyrolysis forced the use of a very small grid in the region of peak temperature for a

satisfactory solution. This combined with the stability requirement of the explicit Euler method forced

a very small time step and therefore a very long execution time. A different FDA algorithm had to be

found to achieve a program fast enough to be useful. Larkin’s method was chosen because of its

simplicity in that it uses the same spatial FDA as the original method while the new temporal FDA does

not require the solution of simultaneous equations.
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CTEST3 was not rewritten to run all of the test cases, but several tests were made with TMPSUB2 (some

using a modified surface boundary condition) which indicate the accuracy of the method for different grid

size and time step options. The results of these tests are shown in tables Al, A2, and A3.

Table Al gives the results of several tests which can be compared to Eq.(A5) to determine the effect of

grid spacing. These tests use a region 40 mm thick to simulate a semi-infinite body which is shown to

be appropriate by having negligible heat flux at the constant temperature surface at Z=40 mm.
Comparisons are made based on the temperature of the surface (Z=0 mm). Test 2a: using a constant

1 mm grid spacing the temperature after 100 seconds (502.543) is 0.33% less than the exact value.

Test 2b: using a constant 0.5 mm spacing gives a surface temperature 0.18% below the theoretical value.

Tests 2c through 2f use variable grid spacing to reduce the number of cells and execution time at the cost

of some loss of accuracy.

Table A2 gives the results of several tests where the parameters that control the time step while

maintaining a constant grid spacing, are varied. These parameters are the maximum time step, dtmax,

and the maximum temperature change, dTmax. (Whenever T^+j - T„ exceeds dTmax, the time step is

halved.) Obviously the greatest accuracy should be achieved with small values for these two parameters,

but execution time is reduced by using large values. There is no obvious optimum; the user must choose

values appropriate for results he wishes to achieve.

Table A3 shows tests of different grid spacings for full three-dimensional heat conduction from a

stationary spot heat flux. These tests use representative thermal properties for the fabric and padding.

Various combinations of cell spacings are used to select the best grid.
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Table Al; Grid Spacing Tests

Thermal diffusivity: 2e-07 m^/

s

Thermal conductivity; 0.1 W/mK
Surface heat flux: le+04 W/m^

Distance from surface: 0 m

time Texact Test2a Test2b Test2c Test2d Test2e Test2f
0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000
0.125 17.8412 5.000 9.319 9.319 9.319 9.319 9.319
0.250 25.2313 9.643 16.889 16.889 16.889 16.889 16.889
0.375 30.9019 13.970 23.331 23.331 23.331 23.331 23.331
0.500 35.6825 18.298 28.916 28.916 28.916 28.916 28.916
0.625 39.8942 22.252 33.840 33.840 33.840 33.840 33.840
0.750 43.7019 26.206 38.035 38.035 38.035 38.034 38.034
0.875 47.2035 29.838 42.229 42.229 42.229 42.229 42.229
1.000 50.4627 33.469 45.757 45.757 45.757 45.757 45.757
1.250 56.4190 40.170 52.366 52.366 52.366 52.366 52.366
1.500 61.8039 46.383 58.208 58.208 58.208 58.208 58.208
1.750 66.7558 52.167 63.496 63.496 63.496 63.496 63.496
2.000 71.3650 57.577 68.361 68.361 68.361 68.361 68.361
2.250 75.6940 62.656 73.042 73.042 73.041 73.041 73.041
2.500 79.7885 67.445 77.173 77.173 77.173 77.173 77.171
2.750 83.6828 71.859 81.305 81.305 81.304 81.304 81.302
3.000 87.4039 76.273 85.049 85.049 85.048 85.047 85.044
3.500 94.4070 84.279 92.243 92.243 92.242 92.240 92.233
4.000 100.9253 91.625 98.911 98.909 98.908 98.904 98.893
4.500 107.0474 98.433 105.154 105.152 105.149 105.143 105.125
5.000 112.8379 104.796 111.046 111.042 111.038 111.030 111.002
6.000 123.6077 116.456 121.976 121.970 121.962 121.946 121.894
7.000 133.5116 127.018 132.004 131.993 131.981 132.050 131.966
8.000 142.7299 136.650 141.315 141.300 141.283 141.309 141.188
9.000 151.3880 145.711 150.034 150.014 149.991 149.993 149.830
10.000 159.5769 154.229 158.272 158.248 158.219 158.201 157.994
15.000 195.4410 191.150 194.315 194.266 194.208 194.109 193.654
20.000 225.6758 221.986 224.670 224.600 224.514 224.343 223.631
25.000 252.3132 249.025 251.396 251.307 251.195 250.960 249.998
30.000 276.3953 273.438 275.472 275.367 275.235 274.852 273.660
35.000 298.5410 295.758 297.599 297.487 297.339 296.828 295.425
40.000 319.1538 316.566 318.155 318.040 317.879 317.378 315.771
45.000 338.5137 336.042 337.525 337.408 337.234 336.650 334.844
50.000 356.8248 354.491 355.815 355.694 355.509 354.928 352.929
60.000 390.8820 388.738 389.887 389.758 389.550 388.899 386.532
70.000 422.2008 420.206 421.230 421.093 420.862 420.147 417.431
80.000 451.3517 449.479 450.409 450.262 450.010 449.235 446.188
90.000 478.7307 476.960 477.816 477.660 477.388 476.556 473.195

100.000 504.6265 502.943 503.740 503.574 503.282 502.397 498.738
cells

:

41 81 35 25 18 12
steps; 153 154 154 154 153 153

TEST2A: dz= 1.0mm, nz= 41, nc=41. r=1.000. dtmax=l . 0 , dTmax = 5.0
TEST2B; dz=0.5mm, nz= 81, nc=81. r=1.000. dtmax=l . 0 , dTmax = 5.0
TEST2C; dz=0.5mm, nz= 35, nc=4. r=1.055. dtmax=l . 0 , dTmax = 5.0
TEST2D; dz=0.5mm, nz= 25, nc=4. r=1.115. dtmax=l . 0 , dTmax = 5.0
TEST2E: dz=0.5mm, nz= 18, nc=4. r=1.234. dtmax=l . 0 , dTmax = 5.0
TEST2F: dz=0.5mm, nz= 12, nc=4. r=1.628. dtmax=l . 0 , dTmax = 5.0
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Table A2: Time Step Control Tests

Thermal dif fusivity : 2e-07 m^/s
Thermal conductivity: 0.1 W/mK

Surface heat flux: le+04 W/m"
Distance from surface: 0 m

time Texact Test2b Test2g Test2h Test2J
0.000 0.0000 0.000 0.000 0.000 0.000
0.125 17.8412 9.319 9.093
0.250 25.2313 16.889 16.685 20.000 20.000
0.375 30.9019 23.331 23.148
0.500 35.6825 28.916 28.750 31.538 31.538
0.625 39.8942 33.840 33.688
0.750 43.7019 38.035 38.107 39.690 39.690
0.875 47.2035 42.229 42.125
1.000 50.4627 45.757 45.801 47.841 47.841
1.250 56.4190 52.366 52.390
1.500 61.8039 58.208 58.223 58.553 58.553
1.750 66.7558 63.496 63.506
2.000 71.3650 68.361 68.368 69.264 69.264
2.250 75.6940 73.042 72.899
2.500 79.7885 77.173 77.158 77.403 77.403
2.750 83.6828 81.305 81.191
3.000 87.4039 85.049 85.028 85.542 85.542
3.500 94.4070 92.243 92.222
4.000 100.9253 98.911 98.891 97.831 97.831
4.500 107.0474 105.154 105.136
5.000 112.8379 111.046 111.029 110.120 110.120
6.000 123.6077 121.976 121.963 120.390 120.390
7.000 133.5116 132.004 131.993 130.660 130.660
8.000 142.7299 141.315 141.312 139.622 139.622
9.000 151.3880 150.034 150.053 148.583
10.000 159.5769 158.272 158.312 156.621 157.545
15.000 195.4410 194.315 194.402 192.945
20.000 225.6758 224.670 224.773 223.337 221.615
25.000 252.3132 251.396 251.504 250.229
30.000 276.3953 275.472 275.656 274.420
35.000 298.5410 297.599 297.855 296.726
40.000 319.1538 318.155 318.512 317.415 313.420
45.000 338.5137 337.525 337.900 336.887
50.000 356.8248 355.815 356.236 355.255
60.000 390.8820 389.887 390.336 389.440 382.464
70.000 422.2008 421.230 421.690 420.860
80.000 451.3517 450.409 450.870 450.093 442.530
90.000 478.7307 477.816 478.274 477.541
100.000 504.6265 503.740 504.191 503.495 495.723
cells

:

81 81 81 81
steps

:

154 724 106 42

TEST2B: dz=0. 5mm, nz=81. nc=81. r=1.000. dtmax=1.0. dTmax = 5.0
TEST2G: dz=0 . 5mm, nz=81. nc=81. r=1.000. dtmax=1.0. dTmax = 1.0
TEST2H: dz=0 . 5mm, nz=81

,

nc=81. r=1.000. dtmax=1.0. dTmax = 20.0
TEST2I: dz=0 . 5mm, nz=81. nc=81

,

r=1.000. dtmax=4. 0, dTmax = 5.0
( Same results as test2b because dT > 2.5 at dt = 1.0 )

TEST2J: dz=0 . 5mm, nz=81. nc=81. r=1.000. dtmax=4 . 0

,

dTmax = 20.0
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Table A3

:

3-D Transient Conduction Tests

time test3a test3b test3c test3d test3e
0.00 0.000 0.000 0.000 0.000 0.000
1.00 65.749 70.904 71.046 71.254 71.301
2.00 88.450 91.190 91.381 91.660 91.723
3.00 104.807 106.828 107.053 107.382 107.455
4.00 118.536 120.437 120.692 121.060 121.140
5.00 130.745 132.693 132.974 133.375 133.460

10.00 178.269 180.414 180.785 181.287 181.377
15.00 211.444 213.792 214.214 214.765 214.850
20.00 236.140 238.668 239.121 239.692 239.766
30.00 269.762 272.068 272.539 273.119 273.173
40.00 291.304 293.512 293.988 294.550 294.585
50.00 305.937 308.182 308.659 309.201 309.219
60.00 316.279 318.588 319.064 319.589 319.594
70.00 323.830 326.195 326.670 327.180 327.176
80.00 329.498 331.903 332.376 332.876 332.865
90.00 333.853 336.285 336.757 337.248 337.233
100.00 337.271 339.718 340.188 340.673 340.654

cells

:

18081 18081 18081 19176 18375
steps

:

152 154 154 154 154
time: 303.08 316.37 316.10 338.90 346.32

TEST3A: dx=0.5mm, nx=41, ny=21, nz = 21,
rx=ry=l.i67, rz=1.187, dtmax=1.0.

nc = 4

,

dTmax =
yw=zw = 40,
5.0

TEST3B; dx=0.25mm, nx=41, ny=21, nz = 21,
rx=ry=1.240, rz=1.240, dtmax=1.0.

nc = 4,
dTmax =

yw=zw = 40
5.0

TEST3C: dx=0.25mm, nx=41, ny=21, nz = 21,
rx=ry=1.210, rz=1.210, dtmax=1.0.

nc = 4,
dTmax =

yw=zw = 30
5.0

TEST3D: dx=0.25mm, nx=47, ny=24, nz = 17,
rx=ry=1.161, rz=1.326, dtmax=1.0.

nc = 4,
dTmax =

yw=zw = 30
5.0

TEST3E: dx=0.25mm, nx=49, ny=25, nz = 15,
rx=ry=1.149, rz=1.431, dtmax=1.0.

nc = 4,
dTmax =

yw=zw = 30
5.0
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APPENDIX B
TMPSIJB2 User’s Guide

General Information

TMPSUB2 and two helper programs are

available on a diskette for IBM PC
compatible computers. The distribution

diskette includes both executable and

source code for TMPSUB2, executable

code for the other two programs, and

sample input files. The general

relationship of programs and files is

illustrated in figure Bl. The TSDATA
program is used to prepare data files for

TMPSUB2 which in turn creates two

types of output files. The plot file is used

by the TSPLOT program to display

contour plots of substrate temperatures.

The list file includes a step-by-step record

of the highest temperature in the

substrate.

TSDATA and TSPLOT must be run using MS-DOS on IBM PC compatible computers with VGA
graphics. TMPSUB2 requires a 386 class PC with math coprocessor or 486 class PC (no graphics

needed) in order to achieve satisfactory performance. Typical execution times are 20 to 30 minutes on

a 33Mhz 486 computer.

The TMPSUB2 source code (file TMPSUB2.CCC) can be compiled using any ANSI C compiler. All

TMPSUB2 input and output files are ASCII files. Therefore, TMPSUB2 can be recompiled and run on

a different computer, while still using TSDATA and TSPLOT on a PC and transferring files between the

computers. A different computer may allow TMPSUB2 to execute faster and/or handle more cells for

more accurate simulation.

Be sure to inspect the README file on the distribution diskette. One way to read this file is to place

the diskette in drive A: (or drive B:) and type MORE < AiREADME (or MORE <B:README). A
permanent copy may be made with PRINT < AiREADME. The README file contains a list of all files

on the diskette, instructions for installing the necessary files on your hard disk, and information on any

changes or additions to the program.

There should be at least 1,000,000 bytes available on your hard disk. It is best to create a single

subdirectory for the executable programs and related data files. This will allow you to easily delete all

the files related to this program when you are finished with it. In general, when running on a PC, keep

all files in the current working direaory.

The following sections give details of the operation of TMPSUB2, TSDATA, and TSPLOT.

Figure Bl. TMPSUB2 Programs and Files
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TMPSUB2

All input for TMPSUB2 must be placed in a data file. This file is read as the "standard input stream",

so TMPSUB2 executes on MS-DOS and UNIX computers by redirecting the input file. For example,

if there already exists an input data file — say, TEST1.DAT — one can begin a run by typing

TMPSUB2 < TEST1.DAT Note: TMPSUB2 can be aborted at any time by simultaneously pressing

CTRL and C.

Sample run

If you have not already done so, install the TMPSUB2 program following the instructions in the

README file. For example, from the directory on the hard disk where you want TMPSUB2 installed

and with the diskette in drive A:, type AiINSTALL A: . At the present time you only need to install in

response to the first question you will be asked.

During installation a program will determine the "initial unallocated memory". If the required memory

is greater than this amount, follow the instructions under memory requirements below before proceeding.

Should you wish to examine the directory at this point, a DIR command should indicate the presence of

at least the following files: TMPSUB2.EXE, TEST1.DAT, TEST2.DAT, and MEMREM.EXE. As

mentioned above, begin the sample run by typing

TMPSUB2 < TEST1.DAT
TMPSUB2 will then (1) indicate that it is reading the data file, (2) echo the simulation title to the screen,

(3) initialize the data in all cells, and (4) report the amount of unallocated memory. If there is

"insufficient memory", an error message will be displayed and the run aborted. See the memory
requirements section below for corrective action.

Every time TMPSUB2 completes a time step during the simulation, it displays the time (in seconds) and

peak temperature (degrees C) on the screen. This allows you to monitor the progress of the simulation.

This same information is included on the list file, TESTl .LST, thus providing a permanent record of the

primary value computed during the simulation. The list file also includes an echo of the input file which

helps to identify the simulation and is especially useful in identifying any errors in the input which are

also written to the list file.

The plot file, TESTl.PLT, contains all temperatures in the Y=0 and Z=0 planes at the times specified

plus data to identify the simulation and the coordinate values.

Memory requirements

TMPSUB2 has been written to handle an arbitrary number of cells up to some limit imposed by available

memory or by the operating system. MS-DOS limits available random access memory (RAM, not disk

memory) to 640,000 bytes which is shared by the program, the data in the program, a portion of the

operating system, and perhaps various TSR (Terminate & Stay Resident) programs. TMPSUB allocates

memory for its data arrays from available RAM. When there is insufficient memory to run a particular

simulation, you must either make more memory available or reduce the memory required by the

simulation. One way to make more memory available is to remove TSR programs, such as network

connections. This usually requires rebooting the computer in such a manner that these programs are not
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automatically accessed. MS-DOS 5.0 uses somewhat less memory than previous versions. See you PC
consultant for assistance. Run MEMREM to determine approximately the memory available for data.

The memory required by the simulation is determined primarily by the total number of cells which in turn

is determined by the values on line 4 of the data file (see below). The total number of cells can be

reduced to an arbitrarily small value, but accuracy will suffer. If you must search for the number of cells

than can be run on your machine, begin with a relatively small number and increase it until the

unallocated memory reported by TMPSUB2 is small.

With minimal other uses of memory, TMPSUB2 is limited to less than 20,0(X) cells under MS-DOS. The

only way to simulate more cells is to recompile TMPSUB2 for a different operating system and/or a

different computer.

Contents of TMPSUB2 Data File

line
1

2

3

4

5

6

7

8

9

10

variables brief description
LIST Name of the output file

PLOT Name of the plot file

TITLE Project title; echoed to output

NX NY NZ number of cells in the X, Y and Z directions
(
total number of cells = NX x NY x NZ

)

NCX DXO XW XO X-coordinate data*:
NCX number of constant length nodes

in both directions from XO
DXO length [mm] of constant length nodes
XW total length [mm] of X axis
XO location of center of region of constant length nodes

= initial position of peak flux from cigarette

NCY DYO YW Y-coordinate data*;
NCY number of constant width nodes from Y = 0
DYO width [mm] of constant width nodes
YW total width [mm] of Y axis

NCZ DZO ZW FT Z-coordinate data*:
NCZ number of constant depth nodes from Z = 0
DZO width [mm] of constant depth nodes
ZW total depth [mm] of Z axis
FT fabric thickness [mm]^

Width of air gap between fabric and padding [mm]

Fabric data:
E emittance
TM maximum temperature^ [“C]
NCF number of data points for T, K, C (NCF <= 10)

Fabric thermal properties'*:
T temperature [°C]
K conductivity [W/mK]
C specific heat [kJ/kgK]
Repeat line 10 up to NCF times.

SEP

E TM NCF

T K C

64



11

12

13

14

15

16

17

18

19

20

21

22

23

DV DC DA

A N1 N2 T H

A N1 N2 T H

A N1 N2 T H

E TM NCP

T K C

DV DC DA

A N1 N2 T H

A N1 N2 T H

A N1 N2 T H

BC TA TO OX

QO V Y X+ X-

HC HG

Densities:
DV virgin material [kg/m^]

DC char [kg/m^]

DA ash [kg/m^]

Fabric non-oxidative pyrolysis data:
A reaction rate coefficient [1/min]
N1 fabric mass exponent
N2 oxygen concentration exponent (must be zero)
T activation temperature [K]

H heat of pyrolysis [kJ/kg]

Fabric oxidative pyrolysis data:
A reaction rate coefficient [1/min]
N1 fabric mass exponent
N2 oxygen concentration exponent
T activation temperature [K]

H heat of pyrolysis [kJ/kg]

Fabric char pyrolysis data (similar to 13)

Padding data:
E emittance
TM maximum temperature^ ["C]

NCP number of data points for T, K, C (NCP <= 10)

Padding thermal properties'*:

T temperature [°C]
K conductivity [W/mK]
C specific heat [kJ/kgK]
Repeat line 16 up to NCP times.

Densities

:

DV virgin material [kg/m^]
DC char [kg/m^]
DA ash [kg/m^]

Padding non-oxidative pyrolysis data (similar to 12)

Padding oxidative pyrolysis data (similar to 13)

Padding char pyrolysis data (similar to 13)

Boundary & initial conditions:
BC 0 = adiabatic outer boundaries^,

1 = constant temperature outer boundaries
TA ambient temperature ["C]
TO initial substrate temperature [“C]
OX oxygen concentration [fraction]

Moving radiant flux distribution on surface;
QO peak flux [kW/m^]
V velocity [mm/min]
y standard deviation in Y direction [mm]
X+ std dev in positive X direction [mm]
X- std dev in negative X direction [mm]

Heat transfer coefficients^
HC for quiescent air [W/m^K]
HG for impinging air [W/m^K]
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I

24 dt DT TT

25 LIST I J K

26 PLOT

Notes:

* The relationship between the number of nodes, number of constant size nodes, size of constant size

nodes and total length of an axis must be such that the variable width nodes are increasing in size.

^ The fabric thickness and the depth of the constant depth cells are related: the fabric/padding boundary

must be halfway between two cells. Therefore, the fabric thickness must be 0.5, or 1.5, or 2.5, etc.,

times the depth of the constant depth cells, or the constant depth cells must be 2, or 2/3, or 2/5, etc.

times the thickness of the fabric. The boundary between the fabric and padding must be within the region

of constant depth cells.

^ When the temperature of any fabric (or padding) cell reaches the "maximum" fabric (or padding)

temperature, the simulation is terminated.

^ The way that k(T) and c(T) are input is by entering the values for each at a number of temperatures;

the program then carries out a cubic spline fit to those points, to obtain the values at any other

temperature. Even if k(T) and c(T) are given by explicit equations, this is still the way that the program

"knows" the values.

^ The "outer boundaries" of the substrate consist of the X=0, X=XW, Y =YW, and Z=ZW planes (see

items 5, 6, & 7).

^ These coefficients refer to cases A and B in section 2f. When using HC set HG to zero and vice versa.

The contents of the data file are described further in the description of the TSDATA program. It will

generally be easier to check a data file by processing it with TSDATA, than to compare it line by line

with the description given above.

simulation control:
dt maximum time step [s]
DT maximum temperature change [°C]
TT total simulation time [s]

Debug reports (TMPSUB2 compiled with DEBUG defined)

:

LIST 1 = activate data dumps (default 0)
I J K are the indices of the cell to be studied

Time at which to write temperatures to the plot file;
repeat line 26 up to 10 times.
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TSDATA

The TMPSUB2 data file can be created with any ASCII line editor. However, the contents of the file

are quite cryptic and thus prone to error; far better is to use TSDATA. TSDATA is an interactive

program for creating data files. Because it is interactive, it uses certain commands which restrict its

operation to IBM PC compatible computers. It includes extensive checking of the input data. TSDATA
is especially useful for creating a data file which is only slightly different from another data file. This

is useful in performing the parametric studies for which TMPSUB2 was designed.

Two special files are used by TSDATA. The help file, TSDATA.HLP, contains the text of the

interactive help messages. Help is activated by pressing the FI function key. If the help file is not

available in the current working directory, no interactive help will be available. The configuration file,

TSDATA.CFG, sets the colors of the display. The file included on the distribution diskette assumes that

a standard VGA monitor is being used. If the configuration file is not in the current working directory,

a set of default colors will be used. A new configuration file can be made by using the MAKECFGT
program. See the README file for instructions.

The operation of TSDATA is explained on the following pages which show the messages and input

screens which will appear as the program is run. After reading through these pages, try using TSDATA
with one of the sample data files. Begin the program by typing TSDATA. Abort the program by

pressing CTRL and C.

Sample Runs

At this point the following files should be available in the current working directory: TSDATA.EXE,
TSDATA.HLP, TSDATA.CFG, and TEST1.DAT. If they are not, use the INSTALL procedure.

First use TSDATA to view the contents of the TEST1.DAT file. Type TSDATA. Press ENTER until

the main menu appears; press ENTER again to set up the file information. Enter TEST1.DAT as the

name of the previous data file. Press ENTER to cycle through file names (respond Y to the warning

message about a duplicate file). Press ESC to return to the main menu. Press ENTER to view each

section of data in turn; press ESC to return. When you reach the Save option, press CTRL and C to

abort the program. This process will not have changed TEST1.DAT.

Now create a new data file, TEST3.DAT, similar to TEST1.DAT but with a peak flux of 20kW/m^.
Proceed as above until you reach "Name of new data file:". At this point move the cursor to the "1" in

the file name and press 3 and then press ENTER. Revise the other two file names and the title accor-

dingly. Press ESC to return to the main menu, and move to the boundary conditions option. Press

ENTER and move (using cursor keys) to the peak heat flux. Change the value to 20, press ENTER,
press ESC. Now enter the save option, and respond Y to save the file TEST3.DAT. Then enter the exit

option, respond Y to exit, and respond Y to create a batch file. After this you should have exited

TSDATA. Now type RUN to start TMPSUB2 using TEST3.DAT as input data.
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TSDATA Input Screens and Help Messages

I

Standard title page with disclaimer at start of TSDATA program.

TSDATA — interactive program to prepare data files for TMPSUB2

Version 1.0

Developed at the National Institute of Standards and Technology.
Program author; George Walton

This program is furnished by the government and is accepted by any
recipient with the express understanding that the United States
Government makes no warranty, expressed or implied, concerning the
accuracy, completeness, reliability, usability, or suitability for
any particular purpose of the information and data contained in
this program or furnished in connection therewith, and the United
States shall be under no liability whatsoever to any person by reason
of any use made thereof. This program belongs to the government.
Therefore, the recipient further agrees not to assert any proprietary
rights therein or to represent this program to anyone as other than
a government program.

General description of input process:

This program assists you in preparing input data files for the TMPSUB2
program. It operates best by reading an existing TMPSUB2 data file
which is then modified to create a new data file. A sample data file
is distributed with the program. It can also be used to enter data
from scratch. Several data files can be created in one TSDATA session.

Data are processed interactively through a system of data entry menus.
Keyboard input is required from the user whenever the cursor is in
a data entry field. A data entry field is designated by a special
color as is shown in the lower right corner of this screen. This is
a standard pause allowing the user to read the screen. Pressing any
key in response will allow the program to continue.

While the cursor is in a data entry field, it will often be possible
to get help by pressing the FI function key. Help is intended to
give additional information about the data. For help to work, the
TSDATA. HLP file must be in the same directory as the TSDATA.EXE file.
Program execution may be terminated when the cursor is in a data
entry field by pressing CTRL and C simultaneously.
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General description (continued):

There will usually be several data entry fields on a single screen.
The field may be blank or it may present a default response. The
contents of a data entry field (even all blank) may be edited.
That is, characters may be overwritten, deleted, or inserted.
It may or may not be necessary to make an entry depending on context.

These fields are ordered from top to bottom and left to right.
Pressing the tab key or the down-arrow key moves the cursor to the
next field to the right/down; The shifted-tab or up-arrow moves
to the previous field to left/up. Control-home or page-up moves the
cursor to the first field on the screen. Control-end or page-down
moves to the last field. Movement between fields can be done only
if an entry is not required and no other keys have been pressed.

Data entry begins in the exchange mode, i.e. the value of the key
pressed replaces the character at the cursor. Pressing the insert
key will switch to the insert mode (and from insert to exchange).
The delete key will remove the character at the cursor. Control-x
will clear the entire data entry field. Move the cursor left with
the left-arrow, control-left-arrow, or home keys. Move the cursor
right with the right-arrow, control-right-arrow, or end keys. When
the data is satisfactory, press the ENTER key.

Various checks are usually made on each data entry. These may produce
a warning or error message at the bottom of the screen. The first line
of this message indicates the nature of the problem. The second line
indicates the severity of the problem, the file and line in the TSDATA
source code where the error message originated, and whether some help
may be available by pressing the FI key.

Most errors will return you to the data entry field to correct the input.
Such errors include invalid characters or numeric values outside certain
situation-dependent limits.

Some problems may generate a question;

Question? (y/n) ^

The user can press the Y and then ENTER keys to indicate a positive (yes)
response or N and then ENTER to indicate a negative (no) response.

Some errors are fatal causing the program to terminate.
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Screen 1: (primary menu)

TMPSUB2 data preparation:

^ File information

^ Geometry description

^ Fabric data

^ Padding data

^ Boundary conditions

^ Simulation control

^ Save this data file

^ Exit data preparation

Use cursor keys to move between menu selections.
Press ENTER to activate the menu selection at the X.
Press ESC to return from a selection. Press FI for help.

General help message:

This program assists you in preparing input data files for the TMPSUB2
program.

This is the main menu. It directs you to the different data
preparation subsections.

Begin each data file by entering the "file information".

Data relating to the geometry, fabric, padding, or boundary conditions
may be entered or changed in any order.

The data file is not created until you "save this data file".

Multiple data files can be created in one interactive session.
Terminate the session by entering "exit data preparation".

Note:

An X appears in the selection designator:
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Screen 2:

File information: press ESC when done; press FI for help.

Copy data from previous data file named:

Name of new data file:

Name of list file:

Name of plot file:

Title for this simulation:

Files previously defined in this session:
data files list files plot files titles (first 40 characters)

General help message:

The data files you create are stored in the current directory. If you
want to make a data file which is similar to a previous data file, enter
the name of the previous file. That file must also be in the current
local directory.

TMPSUB2 creates two files when it is run:
(1) the list file (which echoes the input, saves any error messages, and

notes the peak temperature of the substrate during the simulation)

,

(2) the plot file (which becomes the input file to the plotting program
used to view the temperature distribution in the substrate)

.

Files should generally have different names. For example, consecutive
TMPSUB2 runs with the same plot file names will save only the plot file
from the last run (which will have replaced the previous plot files).
Use identical names if you definitely want to replace existing files,
including data files.

The title that you enter here is echoed in the list and plot files. Use
the title as a reminder of the special features of a particular run.

Up to 10 data files created previously in this session are recorded at
the bottom of the screen for your convenience.
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Help messages in response to error messages:

(1) could not open file:

The file which you specified was not found. A typing error is the most
likely problem, or the file is not in the current directory.

(2) duplicate file names:

This message indicates that a file name matches one in the local directory,
or one previously set in this session, or that you have not pressed ENTER
at each of the file names to complete the check of file names.

If you have copied an existing data file, the "new" file names are
the ones that appeared in the existing data file.

Files should generally have different names. For example, consecutive
TMPSUB2 runs with the same plot file names will save only the plot file
from the last run (which will have replaced the previous plot files).
Use identical names if you definitely want to replace existing files,
including data files.

You may use a duplicate file name by responding 'Y' to the question
about writing over the previous file.

Notes:

An entry for the previous data file causes its data to be copied.

The new data file will be created when "save this data file" is executed at the main menu. This save adds

the new data, list and plot file names to the list displayed at the bottom of this screen.

There should be no duplicate file names. That would cause files to be overwritten during simulation.

The program checks for duplicates.

The simulation title is echoed in the output files.

Note that upon entering the "Title for this simulation, " the cursor jumps back to the first box and blanks

it out. This is done only so that if the user has changed his mind (or an error has been made), new (or

corrected) entries can be made immediately. If there has been no error, then simply press ESC.
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Screen 3:

Geometric description;

Fabric thickness:

Width of air gap;

mm

mm

press ESC when done; press FI for help.

X-coordinate data;
Number of grid points;

Total length of substrate:
Size of constant length cells:

Number of constant length cells:

y-coordinate data;
Number of grid points;

Half-width of substrate:
Size of constant width cells:

Number of constant width cells;

Z-coordinate data;
Number of grid points;

Total depth of substrate;
Size of constant depth cells;

Number of constant depth cells;

^ Rx = l.xxx
mm
mm

^ Ry = 1

.

XXX
mm
mm

^ Rz = l.xxx
mm
mm

cells: xxxxx

General help message:

The substrate consists of a thin fabric, padding, and possibly an
air gap between them. An air gap width of 0.0 indicates no gap.

The X direction is along the cigarette; the Y direction is along the
fabric; the Z direction is into the padding.

A variable grid is used. It consists of several constant width cells
near the point of peak incident heat flux followed by increasingly
larger cells out to the boundaries of the substrate. For example;

I I I I I I I I I I I

I I I I I I I I I I I

Y=0 Y=width

Each variable width cell is R times longer than the preceding cell.
Simulation is most accurate when R is only slightly greater than one.
A value of R less than about 1.25 should be sufficiently accurate.
Simulation will generally involve a trade-off of accuracy and run time.

The fabric thickness and the depth of the constant depth cells are
related: the fabric/padding boundary must be halfway between two cells.
Therefore, the fabric thickness must be 0.5, or 1.5, or 2.5, etc., times
the depth of the constant depth cells.

Other help messages:

For the X-axis the following conditions should apply:
4 * NCX < NX and (NX - 1) * DXO <= XW

where NX = number of grid points, XW = total length of substrate,
DXO = size of const length cells, & NCX = number of const length cells.
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I

For the Y-axis the following conditions should apply:
2 * NCY < NY and (NY - 1) * DYO <= YW

where NY = number of grid points, 2YW = total width of substrate,
|

DYO = size of const width cells, & NCY = number of const width cells. '

Because of the assumed bilateral symmetry of the flux, it is only necesary
to make calculations between y = 0 and y = YW (half the width). The number i

of constant-width cells is that in the half-width section. i

For the Z-axis the following conditions should apply: I

2 * NCZ < NZ and (NZ - 1) * DZO <= ZW
I

where NZ = number of grid points, ZW = total depth of substrate,
j

DZO = size of const depth cells, & NCZ = number of const depth cells.
I

The fabric thickness and the depth of the constant depth cells are
j

related: the fabric/padding boundary must be halfway between two cells.
j

Therefore, the fabric thickness must be 0.5 or 1.5 or 2.5 etc., times i|

the depth of the constant depth cells, or the constant depth cells must ji

be 2 or 2/3 or 2/5 etc. times the thickness of the fabric. |l

The boundary between the fabric and padding must be within the region |i

of constant depth cells.
I

P

Notes:
j

I

"Rx", "Ry", and "Rz" are the geometric progression rates. The sample problems have a relatively high
j

value in the Z direction. Tests have indicated this is satisfactory because the low conductivity of the i

padding permits less heat transfer in this direction.
!

"cells:" gives the total number of cells used to model the substrate. It equals NX x NY x NZ. This
|

value is critical to the total memory required for a simulation.

The following figure illustrates the substrate coordinate system and the variable grid:
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Densities:
(
kg/m^

)

Virgin material: char

:

ash

:

General help message;

Emittance is used in computing radiant heat loss from the fabric to
ambient and radiant heat transfer across the air gap.

The simulation stops when the temperature of any fabric cell reaches
the prescribed maximum temperature.

Thermal conductivity (K) and heat capacity (C) can be specified at up
to 10 temperatures. TMPSUB2 uses a cubic spline curve fit for K and C.
As fabric mass is lost by pyrolysis, K is also reduced in proportion
to the current density. Values are required at least two temperatures
even if K and C are constant.

A two-stage, three-reaction pyrolysis model is used: the virgin
material is converted to char in stage 1 and then to ash. The char
density is the value for completely converting the virgin material
to char with no conversion to ash. The ash density is what's left
after total pyrolysis.
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The pyrolysis equations are of the form;
R = A * Dm^nl * Cx^n2 * exp( Ta/T

)
and Q = R * He

where
R = rate of pyrolysis
A = reaction coefficient [l/min]
Dm = density of material (virgin or char

)

nl = related exponent
Cx = oxygen concentration
n2 = related exponent
Ta = activation temperature (°K)
T = current cell temperature [°K]
He = heat of pyrolysis [kJ/kg]

The first reaction is thermal degradation (n2 = 0 and He < 0) of virgin
material. The second reaction is oxidation of the virgin material.
These two reactions produce char. The third reaction is oxidation
of the char to produce ash.

Help message in response to error message:

Temperatures must be given in increasing order.
The lowest temperature should be several degrees less than any
possible substrate temperature. The highest temperature should
be several degrees higher than the maximum temperature.

Screen 5:

Padding Properties; press ESC when done; press FI for help.

Emittance; Maximum temperature;

#
1

2

3

4
5

6

7

8
9

10

Densities;
(

kg/m^ )

Virgin material; char; ash;

Padding help messages are similar to fabric messages.
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Screen 6:

Boundary Conditions:

At X=0, X=Xmax, Y=ymax, Z=Zmax:

press ESC when done;

(^) adiabatic

(P) constant temperature

Initial substrate temperature:

Ambient temperature:

Oxygen mass fraction:

Heat transfer coefficients:
Quiescent air;
Impinging air;

press FI for help

Moving heat flux pattern from the
Peak heat flux:

Initial X position of peak;
+X velocity:

±Y standard deviation (A)

;

+X standard deviation (B);
-X standard deviation (C)

;

arette:
kW/m^
mm
mm/min
mm
mm
mm

General help message:

Select the condition of the outer boundaries (X=0, X=length, Y=width,
Z=depth) by pressing ENTER in the appropriate place.

The incident heat flux from the cigarette is represented by a moving
flux distribution on the surface of the substrate. This distribution
has the shape of non-symmetric Gaussian curve which is described by 6

parameters

:

(1) the X coordinate at the peak of the curve at the start of the
simulation { the initial position of the peak is (Xo, 0, 0) },

(2) the speed, S, at which the peak moves along the X axis { the
position P of the peak at time t is (Xo+S*t, 0, 0) },

(3) the maximum heat flux at the peak { at position (P, 0, 0) },

(4) the width of the curve in the Y direction { at position (P, ±A, 0),
the heat flux is 0.37 times the flux at the peak },

(5) the width of the curve in front of the peak { at position (P+B, 0, 0)
the heat flux is 0.37 times the flux at the peak }, and

(6) the width of the curve behind the peak { at position (P-C, 0, 0),
the heat flux is 0.37 times the flux at the peak }.
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Screen 7:

simulation Control:

Maximum time step:

Maximum temperature change:

Total simulation time:

Plot times (s);
1

2

3

4
5

6

7

8

9

10

press ESC when done; press FI for help.

General help message:

TMPSUB2 uses a variable time step which is chosen so as not to exceed
the maximum time step given and so that the maximum temperature change
in any cell is not greater than the maximum given. This allows the
program to run cjuickly when the temperatures are not changing rapidly.
Smaller values for these two parameters will lead to more accurate
simulations at the cost of longer execution times.

The simulation will stop at the total simulation time unless it has
already stopped by exceeding a maximum fabric or padding temperature.

Plot times are entered in increasing order. When the simulation reaches
a plot time, substrate temperatures are copied to the plot file. Leave
later positions blank if you do not want to use all 10 times. A plot is
automatically written when the simulation stops. The last plot time
should be greater than the simulation time to satisfy a requirement in
the TMPSUB2 program.
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Screen 8:

Save this data file? (y/n) ^

display any error inessage(s).

General help message:

If you entered this area accidentally and are not ready to stop
preparing the current data file, respond 'N' to this question.
This will return you to the main menu.

Help messages in response to error message:

(1) check data.

Data in the indicated section may be incomplete or incorrect.
Enter that section and check the data.

(2) temperature problem.

The lowest temperature for fabric or padding thermal properties must
be several degrees lower than either the initial or ambient temperature.
You need to change (at least) one of those values.

(3) files limit.

No more TMPSUB2 data files can be created in this session.
You probably should exit TSDATA now. You may replace one of the
data files already created.
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Screen 9:

Exit data preparation? (y/n) ^ (1)

display error messages, if applicable (2)

prepare DOS batch file to run all cases (y/n)? ^ (3)

Help messages:

(1) initial message.

If you entered this area accidentally and are not ready to stop
preparing data files, answer 'N' to this question.

(2) error messages.

This warning indicates that TSDATA may have data which you have not saved.
If you respond 'Y' to the question about checking this data file, you
are returned to the main menu where you can check and then save the file.
If you respond 'N', you will continue to exit the TSDATA program.

(3) batch file message.

A positive response will create a file RUN. BAT resembling:

TMPSUB2 <datafile.l
TMPSUB2 <datafile.2
TMPSUB2 <datafile.3
TMPSUB2 <datafile.4

This file can be used to run TMPSUB2 on computers using MS-DOS.

Notes:

Message (1) appears automatically.

Error message (2) may appear.

Message (3) appears after a Y to question (1).
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TSPLOT

The TSPLOT program will display contour plots of substrate temperatures on the screen. It is an

interactive program which uses the plot file from TMPSUB2 as input. Because it is interactive and

graphic, it uses certain commands which restrict its operation to IBM PC compatible computers. A plot

file contains the substrate surface (Z = 0 plane) and center-plane (Y = 0 plane, see fig B2) temperatures

at various times set in the input data file.

Three special files are used by TSPLOT. The CHRSET.VGA file contains the bit patterns for the

graphic display. This file is required. The help file, TSPLOT.HLP, contains the text of the interactive

help messages. Help is activated by pressing the FI function key. If the help file is not available in the

current working directory, no interactive help will be available. The configuration file, TSPLOT.CFG,
sets the colors of the display. The file included on the distribution diskette assumes that a standard VGA
monitor is being used. If the configuration is not in the current working directory, a set of default colors

will be used. These colors may not provide satisfactory contour plots. A new configuration file can be

made by using the MAKECFGG program. See the README file for instructions.

The operation of TSPLOT is briefly explained on the following page. Because the screen interface is

similar to TSDATA and relatively few options are available, a detailed description should not be

necessary. After reading this description, try using TSPLOT with the sample plot files. Begin the

program by typing TSPLOT. Abort the program by pressing CTRL and C.

Sample Run

At this point the following files should be available in the current working directory: TSPLOT.EXE,
CHRSET.VGA, TSPLOT.HLP, TSPLOT.CFG, TESTl.PLT, and TEST2.PLT. If they are not, use the

INSTALL procedure. If you ran TESTl or TEST2 and aborted before completion, use INSTALL to

replace the plot files with the original complete versions.

Type TSPLOT. Press ENTER until the main menu appears; press ENTER again to get the plot file.

Enter TESTl.PLT as the name of the plot file. After returning to the main menu, press ENTER to

display the next plot. Note that this plot is for t = 1 second, and the pattern is rather small. After

viewing this plot, press any key to return to the main menu. Move (use cursor keys) to the set display

parameters option and press ENTER. Change the Xmin value from "0" to "10", press ENTER, change

Xmax from "60" to "50", press ENTER, and press ESC. Now press ENTER to display the prior plot.

The limits of the display have been changed, and the heated area appears larger. Press ENTER to

alternate between the main menu and the next plot. In the later plots note the discontinuity in the profiles

in the padding caused by the air gap. After the last plot you will arrive at the exit option. Instead of

exiting, move to the get plot file option, press ENTER, and enter TEST2.PLT as the name of the plot

file. Return to the main menu and display the next plot which is the first plot from TEST2.PLT. Note

that the limits of the X-axis have not been reset for this new plot. As you continue by displaying

successive plots note how the point of peak temperature is moving along the X-axis. When you reach

the exit option, press ENTER, and respond Y to exit the program.
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TSPLOT Main Menu

This is the main menu screen. It directs you to the different options.

TSPLOT program:

Get plot file

Display next plot

Redisplay

Set display parameters

Exit

Use cursor keys to move between menu selections.
Press ENTER to activate the menu selection at the X.
Press ESC to return from a selection. Press FI for help.

The first option is "Get plot file". You must get a (enter the name of an existing) plot file before any

plots can be displayed.

The plot file is read sequentially. You may display the data at the next plot time (option two), or you

may redisplay the last plot shown (option three).

The graphic display consists of three parts: the temperature scale (in °C) to the right, the substrate

surface temperature contours in the upper left of the screen, and the center-plane temperatures in the

lower left. In other words, the temperature contours for the Z = 0 and Y = 0 planes are displayed together

as if they have been folded along the X-axis so as to both be flat on the screen. The display also shows

the time and the X-axis with coordinates at the left and right edges and tic marks every millimeter.

The fourth option lets you reset the display parameters. You may set the coordinates of the left and right

edges of the display. These values change both the position and the scale of the regions being displayed

thus enlarging or shrinking the plot. The initial limits of the X-axis are for the entire region simulated.

You may also change the temperature contours which are initially set at 25°C intervals. Changes must

be made so that each temperature is always less than the one above and more than the one below. You
will then probably want to redisplay the last plot.

After displaying one set of plots, you may get a new plot file without exiting this program. This is the

only way to go back in time on the plot file: get the plot file again and start at the beginning.

When you reach the end of the plot file, TSPLOT automatically takes you to the exit option.

82



APPENDIX C
Analysis of numerical errors produced by having a runaway reaction rate

We have made an effort to make a fine grid in the region where the fluxes and flux gradients are high.

Nevertheless, when the reaction rates become very high, the gradients will become so steep that the

approximation of constant temperature and constant reaction rate within a cell becomes questionable. In

this appendix, we examine the magnitude of the errors thus committed by discretization. This analysis

can also serve to make appropriate corrections in the program; this has not been done here, partly because

the analysis should first be generalized to the non-symmetric case (see the assumptions made just below

Eq.(Cl)).

Consider the heat diffusion equation, Eq.(12). Suppose we have the (correct) temperature distribution

T(x,y,z,t), with a peak at the reaction rate is given by an expression such as (20) or (22). Let

us simplify this form and assume that

Rp = Kcxp(-TJT(r)) (Cl)

where all the preexponential factors are lumped together as the factor and r s (x,y,z) is the position

vector. Consider the terms in Eq.(12); we simplify the analysis by assuming that the temperature peak

lies at the cell center (i.e., at Pq), and that the distribution is symmetric fore-and-aft. Then, since

calculating Rp in that cell means calculating it at the center, and therefore the peak, that means we
overestimate the reaction rate, since the rate falls off at the faces of the cell.

Symmetry implies that

V-(KVr) = K
' d^T ^ d'^T ^

dy^ dz^

= 3k
d^T

dx^

A second-order approximation to this derivative is

V(KVr) = 3 k
(Ax)2

Because of the assumed symmetry, Ti_, = Tj^.!, so that we finally have

V(KVr) = 6k
T -T
*i-l

(Ax)^

Inserting this into Eq.(12), that equation becomes

pc
T* T— = HR(r) - 2k - ...

(C2)

(C3)

(C4)

(C5)

minus similar terms in Ay and Az

(as indicated by the ellipsis). Suppose further, for the sake of simplicity, that the temperature profile is

Gaussian:

where

0(x,y,x,O = e„exp

0 ^ T - T,

(C6)
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and = ambient (reference) temperature.

If we redefine the origin to be at (Xo,yo,Zo), then

e(x,y,x,t) = e^expC-r^/o^)

where r^ = + z^.

Then ]f x^/tr^ < < 1 everywhere within the cell, we can expand (C7): at the center of the cell,

(C7)

01
= e('-o) = 00^ =

and

0.-1
= exp [-(Ax/ 0)2] = e„[l-(Ax/o)"].

Define 5 = (Ax/o)^ . Then

so that Eq.(C5) becomes

7’, - 7’,.! = e, - = 0.^

pc— = hr - ft

Af ^ (Ax)2

Assuming three-fold symmetry, the other two terms in (Cll) are the same, and thus

pc-^ = H^R -6k—

(C8)

(C9)

(CIO)

(Cll)

(C12)

Note that the dependence on Ax has dropped out. Indeed, the last term is the exact diffusive loss rate,

resulting from the distribution (C7).

Now let us examine the magnitude of the error made by using a finite value of Ax: from Eq.(C7),

AS . 6,-6,., = e„[l-exp(-?)] (C13)

Then expanding to the next higher order than was done in (C9),

Ae=e^ai-5/2) (C14)

and the second term in (C5) becomes

2KAe 2 k0„
(1-5/2) (C15)

(Ax)2 a2

Thus the numerical calculation underestimates the loss rate. Since the correct heat loss rate is

= 6K6Ja^ (C16)

and we have

6k0.
L =

(Ax)^

[l-exp(0]

,

(C17)
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we evidently must multiply L by the ratio

[l-exp(-5)] 1-5/2

in order to get the correct loss rate 5£.

(C18)

As the temperature "runs away," the distribution becomes increasingly peaked, and o declines. As it does

so, ^ increases, and so, therefore, does F; this helps to slow down, or moderate, the runaway. ^ is

readily found to be

5 = in(e,/e,.,) (C21)

Next, consider the source term in Eqs (C5) and (C12), again. Define

f(.x,y^) = exp[-r^/r(x,y,z)] (C22)

The correct power output in the elemental volume AV is, from Eq. (Cl),

Ajc/2 Ay/2 A2/2

RpAV = j
dx

I
dy

j f(x,y^)dz (^21)

0 0 0

where we have again translated (Xo,yo,Zo) to be at the origin, and have taken advantage of the 3-fold

reflection symmetry. Again assume Eq.(C7) to hold. If ^ < < 1, then within the cell we can Taylor

expand and write

f(x,yyZ) =
dx

.2fg2f\

/O /o

Since the peak is at the origin.

and dropping the higher-order terms.

plus similar terms in y and z.

dx

df]

dy
/o

. i|i

.

(C22)

(C23)

i! f

2 'ay faV]
2 iax^Jp 0

2
(C24)

We find that

Thus

W)o
IT, 0

^exp(-Vrj

fix,y,z) = exp(-r^/r^) 1

Tja^

and integration over the cell yields

(C25)

(C26)
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(C27)RAV = (Ax)3/?,/(0) 1 — ^ c2

472

This is only valid for Ax/a < < 1. In that limit, however, (C26) is well approximated by

Rp = -R.exp(-r^/r„)exp
r2

472
(C28)

which is a reasonable first approximation to the correct integral, even when Ax/a is not very small!

The numerical approximation is

^p = ^p(^o) = ^-exp(-r^/r„) (C29)

Thus (C28) shows that we must multiply this approximation by

better approximation to the source term.

exp
^A^jn

^2

47
in order to get a still
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APPENDIX D

Analysis of Ignition Experiment

Among the things we wish to extract from this experiment, is the heat transfer coefficient to the surface,

h. Fig. 16 shows the radiative and total heating fluxes to the gauge, as a function of the power input.

Thus, consider the 18 kW/m^ case. Without purge flow, 0^^* = 10 kW/m^; with the purge flow on,

= 18 kW/m^, suggesting that the convective flux is 0<,on
” ^tot

“
‘^rad

“ 18 - 10 = 8 kW/m-.

However, when the purge flow is turned on, it cools off the heating element somewhat. How much it

does so, however, is unknown. Assume that the purge flow reduces the hot-surface temperature such that

(^rad is reduced to some fraction F of the original. Then

4.^ = lOF (Dl)

and

= 18 - lOF (D2)

At the point P, on the heater axis but at the surface being heated (5.4 mm below), the heater subtends

a solid angle such that the view factor is fi. Hence the impinging radiative flux is

<l>™a = (1-0)07/ (D3)

where is the emissivity of the device surface. For the particular case that was carried out, the standoff

distance is 5.4 mm, while the diameter of the glowing filament is 13 mm. According to Siegel and

Howell (ref [25], Appendix C), the view factor for a disk of radius R, at a point a distance H along the

axis normal to the disk, is

Hence Q = 0.592. We also assume that T^ = 25°C = 298 K, and that = 0.85.

Eqs(Dl) and (D3) that

(D4)

It follows from

T4 _
(1-0)7/

(D5)

If F = 1, this yields T^j = 493 °C, while F = 0.9 yields T^ = 472.5 °C. The device surface cannot be

much colder than 500°C, since it is observed to glow red. If T^j = 472.5 °C, then

s 9 kWW.

We will assume that the factor F remains constant for all irradiations. Thus for the case = 25

kW/m“, <^rad*
“ kW/m", and Eq.(D5) implies that Tj = 840.3 K = 567. 1°C.

We proceed the same way for all four cases, and obtain the values in the first six columns of Table Dl
(with fluxes given in kW/m"). Column 6, marked <t>^, is the convective flux, found as the difference

between and These values of <t>^ are plotted ys and a smooth curve passed through these

points, including the point at the origin. That yields the smoothed convective fluxes (f)^, given in Col. 7.
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Table Dl. Measured and inferred quantities from the ignition experiments.

^lot </>rad/F Td(K) Td(°C) ^rad <i>c <f>c
hf Tg(K) h f

18 10 745.7 412.5 9.0 9.0 8.9 19.67 698 22.0 0.893

25 16 840.3 567.1 14.4 10.6 10.7 19.56 760 22.9 0.854

34.5 23 921.0 647.8 20.7 13.2 13.0 20.71 837 23.9 0.865

44 32 1000.9 727.7 28.8 15.2 15.2 21.48 907 24.8 0.866

The convective flux can be written in the form

(D6)

where Tg is the purge gas temperature, and T^. is the (cold) gauge temperature. In order to make
progress we make one further plausible assumption; the purging gas takes up a (constant) fraction of the

total energy delivered to the device. We can express this as

6, = /e. ff>7)

where 0 is the temperature, referred to the gauge temperature:

Thus, eqs (D6) and (D7) yield

e, = 7,-r,

4>, = hQ^ =fhe.

(D8)

(D9)

Since we have T^ (col. 4) and 0^ (col. 7), we readily infer the factor fh from Eq.(D9). This is given as

col. 8.

Next, we must find the heat transfer coefficient h for stagnant flow. The purge air comes down, strikes

the fabric, and must move away radially. This configuration is approximated by the standard problem

of stagnant flow. The heat transfer coefficient for this case is given in Kacag et al (ref. [26])

ref [26].

Their Eq.(2.176), on page 2-59, gives the Nusselt number:

' Nu '

0.767
V-cPe

\0.43

(DIO)

which was found by Cohen (ref [27]). The subscripts w and e, above, stand for "wall" and "edge" (of

the boundary layer), respectively. The second factor on the right-hand side is approximately one, in this

case. The Reynolds number is
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Re = (Dll)
u i.

•O f

where is the characteristic length. One might think that the characteristic length here is the diameter

of the opening. In fact, however, Cohen [27] gives Re in the form

Re = —^ —
dx V

(D12)

Since the (vertical) velocity goes from to zero in the distance 6, we may write

du^

'dx
^
'b'

(D13)

then Eq.(D12) indicates that the proper to use here is 6. u„ is readily inferred from the volumetric

flow, dV/dt = 0.5 liters/min. Thus

Ti r^uD^ lid^uT
(D14)

T~a g

which yields

= 6.28(7^/7^) cm/sec (D15)

The Nusselt number is given by

SI hb
Nu = — (D16)

K

where 6 is the stand-off distance between the heater and the substrate, 5.4 mm. Combining these, and

knowing jt(T) and ^(T) for air, we obtain h(T ), as shown in Fig. 17. Note that this is independent of any

estimates of F, the radiative and convective fluxes, etc.

We now proceed as follows: we guess a value for Tg; corresponding to this we have h(Tg), and we then

find h(Tg)(Tg - TJ s <^*. We must do this until </>* =
<l)^, as given in Table Dl. This procedure

converges quite rapidly, and we find the values of Tg and h(Tg) shown in columns 9 and 10. Finally,

dividing hf by the now-known values of h, we obtain the values of f shown in col. 11. There are two

things to be noted about f: it is almost as large as it can get (i.e., close to unity), and it is approximately

independent of
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APPENDIX E
Thermophysical Data for Cotton

The fabric is a weave of cotton fibers. Cotton itself is a flexible, hollow tube of cellulose; the central

channel is called the lumen, and occupies a fraction t] of the total volume. Thus we would expect that

the density of cotton is about

p(cotton) = ( 1 -t;)p
3 ,

where is the density of the solid (largely a-cellulose). Measurements yield rj = 0.2 - 0.4. However,

refllT] gives the following data on page V-122 (the references given there to the original authors are

omitted here for brevity):

Material Density (g/mf)

Cellulose I

Cellulose II

Cellulose III

Cotton

1.582-

1.630

1.583-

1.62

1.61

1.545-1.585

Thus, the density of cotton appears to be very nearly the same as that of the solid (cellulose) implying

that t; » 0. We will hereafter ignore the apparently small difference between a-cellulose and cotton, and

take the (mean) density to be p^ = 1.565 ± 0.02 g/mf.

For many polymers, there is only a weak dependence of the thermal conductivity on T, between 100 and

300 K (see Fig.68b, ref [25]). One can get an idea of the variability of the thermal conductivity of cotton

and of cotton fabrics from Figs.AA-AC, in ref [26].

Measurements at NIST by J.R. Lawson (private communication) have shown that the density of #10 duck

is p = 0.6 g/cm^, that of #6 duck is 0.72 g/cm^, and that of all the other cotton duck fabrics measured

is

Pf = p(fabric) = 0.62 g/cm^ = 620 kg/m^.

The "void fraction" of the fabric is With Pj = 1.565, Pf = 0.62, and with p^ = density of air at

STP = 1.774x10'^ g/cm^, the relationship

Pf = (1 - <J>)p3 -I- ^p^

yields $ = 0.6045.

Next, consider the specific heat. Again, the values given in ref [17] are:

Material Specific Heat (J/g-K)

Cellulose

Cotton

1.34

1.22

1.15-1.18 (0-34°C)

1.32 (0-100°C)

1.327-1.251

1.273-1.35
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Where the temperature range is not listed, it is assumed to be the ambient (20 or 25°C). We will thus

not be far wrong it we take

C3=1.3J/g-K,

where the subscript "s" stands for "solid" (cotton or a-cellulose). We expect that, just as was the case

for density,

Cf = c(fabric) = #0
^;^ + (1 - ^jc^.

Hence

Cf = 1.122 J/g-K, atT« 300K.

This author has not been able to find the temperature dependence Cs(T); we will defer that question for

the moment.

Finally, we come to the thermal conductivity, k. This is a quantity which is notoriously difficult to obtain

accurately. Figure 18, from ref [26], shows the large variations in thermal conductivity depending on

measuring conditions. Many of the low values (nos. 5, 6, and 8, for example) were measured in a

vacuum. Numbers 4 and 9, on the other hand, were similar specimens, measured in air at 25 °C;

however, #9 had over three times the density of #4 (and would therefore have been expected to have a

substantially higher thermal conductivity!).

We list here four sources for the thermal conductivity:

a. The apparently most consistent data from [26] -- curves 1, 2, and 3, and point 7, give

x = 0.0365 W/m-K at T = 306 K = 33‘’C

b. We have the following data for cotton paper , from ref. [17]:

T (°C) X (W/m-K)

30 0.049

40 0.071

50 0.084

60 0.090

A curve-fit to these points, if extrapolated, would predict that x vanishes at (and below) T = 10°C,

which is nonsense.

c. Ref [27] gives:

T (°C) X (W/m-K)— The density of the material for these

0 0.056 measurements is listed as 81 kg/m^; hence

20 0.058 $ = 0.9493. Then Eq.(50) gives

100 0.067

X = 0.03408X, -b 0.9828X P)
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while the tabular data are reasonably well fitted by

/c(T) = 0.056 + l.lxia^T, with T in °C (f2)

We have k^^(25°C) = 0.02624 W/m-K; now if the data in the table are the conductivities for the light

cotton/air mixture, then at 20°C, with Eq.(El) yields = 0.945, which is an unreasonably

large value. According to Kunii (ref [4]), the value for the gas-phase thermal conductivity to be used in

Eq.(50) is 1.7 times what it is in the ambient. If we use = 1.7x0.02624 = 0.04461, the resulting

value of is = 0.415 W/m-K, still very large. If, on the other hand, the listed values are for k^, then

Xg = 0.058 and k„ = imply that k = 0.0278, while for = 1.7>c^, k = 0.0458. Thus none of the

combinations is plausible.

d. T.J. Ohlemiller has made measurements of the thermal conductivity of the (#12) cotton duck; the

apparatus only works properly when the sample is thermally thick, however. Therefore he carried out

a series of measurements, with an increasing number of layers of the fabric. It was then possible to infer

the asymptotic value which would be reached if the number of layers had been increased to a very large

number: It was assumed that

x(n) = x„[l - exp(-ne)],

where 0 = dimensionless thickness of one layer, and n = number of layers. The data were

n K

0 0

6 0.346

12 0.533

18 0.683

The thermal conductivity is given here

in units of BTU-in/ft”-hr-°F. The

asymptotic value of the series at the

left is 0.9. Converted to units of

J/m-K, that is = 0.13 J/m-K.

X = 0.13 is about twice the value (0.056) found in the Handbook, as quoted in c., just above. Recall

that for this fabric, the void fraction is 0.6045. With $ = 0.6045, Eq.(50) gives

X = 0.28505/Cg -h 0.84554xg^

If we use /Cg^ = x^jr, we would then infer that Xg = 0.378, which is an order of magnitude greater than

the earlier estimates. If we use =
1.7xair, then x = 0.13 implies Xg = 0.324, only a little smaller.

The latter value is not too different from the 0.415 found in section c., above.

We thus take x^, = XgCT^ = 25 °C) « 0.324 W/m-K
and x(TJ = 0.13 W/m-K

Assuming that the temperature dependence is like that given by Eq.(E2), we find that

x(T) = 0.125 -1- 2.457x10-^ T, (E3)

with T in "C. Alternatively, we might use Eq.(50) in its more general form (that is, include the

temperature dependence):

x(T) = 0.28505xg(T) -I- 0.84554(1.7)Xairn') (E4)
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For air, it(T) is given by Eq(52) (see ref [28]). For the solid, a reasonable assumption is that the

conductivity is proportional to the absolute temperature, and that it is also proportional to the density.

Thus Ks(T) is given by

K,(J) = pT/pJ, = 0.3237 pT/pJ, (E5)

We now turn to the question of the temperature dependence of Cf. For a number of materials, the

thermal diffusivity is relatively insensitive to T. This is, in particular, the case for wood (see [15], [16])

which consists, to a significant extent, of cellulose and related compounds. If we assume that to be the

case for cotton, then we could write

ic(T) = apcCT); (E6)

c(T) is generally much easier to measure than /<(T), and this would be a relatively good way to obtain

ic(T); the irony is that we do not have c(T) for cotton or cellulose.

If we take Kf = 0.13 for the fabric at ambient temperature, we now find that

a = K/pc * 0.13/(620)(1122) = 1.87x10“^ m^/s

We therefore have, finally,

c(T) = K/pa * x(T)/620( 1.87x10-'^) = 8630/t(T) J/kg-K

where x(T) is given by Eq(E3) (or by (E4), if preferred).
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