
NAT l INST. OF STAND & TECH R.I.C.

A 1 1 1 0 3 fl‘i7707

N,ST

I PUBLICATIONS

;d and

i itatinnal

Applied and

Computational

Mathematics

Division

NISTIR 4971

Computing and Applied Mathematics Laboratory

Asymptotic Behavior of Modulated

Taylor-Couette Flows with a Crystalline

Inner Cylinder

R. J. Braun, G. B. McFadden, B. T. Murray,

S. R. Coriell, M. E. Glicksman,

and M. E. Selleck

November 1992

Technology Administration

U.S. DEPARTMENT OF COMMERCE
National Institute of Standards and Technology

Gaithersburg, MD 20899

QC
100

. U56
4971
1992





N I STIR 4971

Asymptotic Behavior of
Modulated Taylor-Couette
Flows with a Crystalline
Inner Cylinder

R. J. Braun
G. B. McFadden
B. T. Murray
S. R. Coriell

M. E. Glicksman
M. E. Selleck

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Applied and Computational Mathematics Division

Computing and Applied Mathematics Laboratory

Gaithersburg, MD 20899

November 1992

U.S. DEPARTMENT OF COMMERCE
Barbara Hackman Franklin, Secretary

TECHNOLOGY ADMINISTRATION
Robert M. White, Under Secretary for Technology

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
John W. Lyons, Director





Asymptotic Behavior of Modulated

Taylor-Couette Flows with a Crystalline Inner

Cylinder

R. J. Braun, G. B. McFadden, B. T. Murray, and S. R. Coriell

National Institute of Standards and Technology*

Gaithersburg, MD 20899

and

M. E. Glicksman and M. E. Selleck

Department of Materials Engineering

Rensselaer Polytechnic Institute

Troy, NY 12181

November 4, 1992

Abstract

We consider the linear stability of a modulated Taylor-Couette system when

the inner cylindrical boundary consists of a crystalline solid-liquid interface. Both

experimentally and in numerical calculations it is found that the two-phase system

is significantly less stable than the analogous rigid-walled system for materials

with moderately large Prandtl numbers. A numerical treatment based on Floquet

theory is described, which gives results that are in good agreement with preliminary

experimental findings. In addition, this instability is further examined by carrying

out a formal asymptotic expansion of the solution in the limit of large Prandtl

number. In this limit the Floquet analysis is considerably simplified, and the linear

stability of the modulated system can be determined to leading order through a

conventional stability analysis, without recourse to Floquet theory. The resulting

simplified problem is then studied for both the narrow gap geometry and for the

case of a finite gap. It is surprising that the determination of the linear stability of

the two-phase system is considerably simpler than that of the rigid-walled system,

despite the complications introduced by the presence of the crystal-melt interface.

PACS: 47.30. +s,47.20.-k, 81.10.Fq,81.30.Fb

‘Technology Administration, U.S. Department of Commerce, Washington, D.C.
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1. Introduction

An important consideration in the growth of multicomponent single crystals from the

melt is the spatial distribution of solute. In many instances, inhomogeneities in the

solute distribution result in inferior electrical and mechanical properties. It is therefore

desirable to understand the physical mechanisms that lead to solute segregation in melt-

grown crystals.

Since solid state diffusion normally occurs at rates several orders of magnitude lower

than in the melt phase, the distribution of solute in the crystal is primarily determined

by the solute profile in the liquid immediately ahead of the advancing crystal-melt inter-

face; as the liquid transforms into solid, little rearrangement of the solute distribution

takes place. Thus the prediction of the solute distribution in the crystal requires the

understanding of solute transport in the melt adjacent to the crystal-melt interface [1, 2];

in particular, mechanisms that produce lateral segregation of solute along the interface

play a major role.

During directional solidification (see, e.g., [3]) under ideal processing conditions, a pla-

nar crystal-melt interface advances at constant velocity into a quiescent melt, in which

case the crystal that is produced is spatially homogeneous. Loss of ideality can arise in

many ways; two of the more extensively studied mechanisms are morphological instabil-

ity of the crystal- melt interface [4, 5], which causes a planar crystal-melt to develop a

corrugated lateral structure with accompanying solute redistribution, and hydrodynamic

instabilities in the melt [6, 7, 8], in which solute inhomogeneities are associated with the

features of the secondary flow fields.

Although these two mechanisms can be studied separately, it is important to un-

derstand how the two are related. Hydrodynamic flows occur frequently during crystal

growth from the melt, either naturally or by design. It is desirable to be able to predict

whether a particular flow will generate a strong coupling with the crystal-melt interface,

possibly enhancing morphological instability. It is similarly important to know whether

the presence of the crystal-melt interface will cause significant changes in the hydrody-
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namic instabilities that occur in classical, fixed-boundary systems. If the flow/interface

interaction is particularly strong, of course, then the classification of the underlying insta-

bility as being either morphological or hydrodynamic in nature may be overly simplistic.

A number of authors have considered the morphological stability of the crystal-melt

interface in the presence of various types of flow fields. Examples include plane Couette

flow [9, 10], thermosolutal convection [11, 12], plane stagnation flow [13, 14], rotating disk

flow [15], and the asymptotic suction profile [16]. The effect of a crystal-melt interface

on the hydrodynamic stability of the melt has also been considered for a variety of

flows, including Rayleigh-Benard convection [17], thermosolutal convection [7, 18, 19],

plane Poiseuille flow [20], the asymptotic suction profile [16], thermally-driven flow in an

annulus [21, 20], and steady Taylor- Couette flow [22, 23].

Particularly strong flow/interface interactions were observed in two of these cases.

For flow in a vertical annulus with radial heating, with the outer annular boundary

consisting of a cylindrical crystal-melt interface, Fang et al. [21, 20] found that the

two-phase system is destabilized by an order of magnitude compared to the rigid-walled

system. The material studied was succinonitrile (SCN), which has a moderately large

Prandtl number of about 23. In the rigid-walled system, the most dangerous mode

under these conditions is an axisymmetric buoyant instability. The most dangerous

mode for the two-phase system is given by a non-axisymmetric, helical instability which

ensues at much lower radial temperature differences; moreover, this mode appears as a

destabilization of a shear mode which, in the rigid-walled system, is considerably more

stable than the buoyant mode. Numerical parameter studies of the linear stability of the

two-phase system show that the helical instability is dominant for crystals with melts

that have large Prandtl numbers. In steady Taylor-Couette flow [24], another strong

coupling occurs if one of the cylindrical boundaries again consists of the crystalline phase

of the melt contained in the annular region [22, 23]; this effect is also found to provide

significant destabilization of the flow for melts with high Prandtl numbers.

In this paper we consider an unsteady version of the Taylor-Couette experiment, in
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which strong destabilization of the hydrodynamic instability is observed for the two-

phase system. We consider the linear stability of a Taylor-Couette geometry in which

the entire system undergoes a torsional oscillation about the cylindrical axis. Preliminary

experiments for this problem have been performed using SCN, and show a marked desta-

bilization of the system over a range of frequencies [25]. Numerical studies have also been

performed using Floquet theory to describe the linear stability of the system; the numer-

ical results show similar behavior with qualitative agreement between the theory and the

preliminary experiments. Since the strong flow/interface coupling is found to be most

significant for moderately large Prandtl numbers, we examine here the asymptotic limit

Pr 1 . Somewhat surprisingly, we find that in this limit we are able to obtain a quite

tractable description of the linear stability of the two-phases system without recourse

to Floquet theory. The strong destabilization provided by the crystal-melt interface for

Pr 1 actually results in a much simpler analysis for the two-phase system than that

obtained for the single-phase system with rigid walls [26, 27].

In the following section we describe briefly preliminary experiments which have been

performed for this problem. This is followed by a description of a numerical treatment

of the linear stability problem based on a pseudospectral spatial discretization of the

linearized governing equations with a Floquet analysis in the time variable. The approach

is described both in the simpler narrow gap limit of the governing equations [28], and for

the more general case of a finite gap. The asymptotic analysis for large Prandtl number

is described for both the narrow and finite gap, and the numerical and asymptotic results

are compared with the experimental results. Some remarks concerning the relevance of

the findings to the more general problem of predicting the strength of flow/interface

interaction are given in the conclusion.

2. Modulated Taylor-Couette Flow

The experiment is performed using succinonitrile; the relevant material properties are

given in Ref. [21]. The apparatus consists of two coaxial cylinders which are sealed
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together at both ends to provide a single, rigid unit; the succinonitrile occupies the

space between the cylinders. A radial temperature difference is maintained across the

sample by circulating a cooling fluid with temperature T0 inside the inner cylinder, while

the whole apparatus is situated in a bath held at a uniform temperature T2 > T0 . If

these temperatures are chosen on either side of the melting point Tm of SCN, so that

To < TM < T2 ,
then a cylindrical crystal-melt interface forms at an intermediate radius

R1 . A schematic diagram with a corrugated crystal-melt interface is shown in Figure 1.

To produce a modulated Taylor-Couette flow, the entire apparatus is oscillated about the

cylindrical axis of the system. Accurate control of the oscillation was devised by using a

mechanical linkage to the servo-motor of a chart recorder to drive the system, with the

input to the chart recorder provided by a signal generator to allow a wide variation in

the waveform and frequency of the modulation.

The outer diameter of the smaller cylinder is 1.2 cm, and the inner diameter of the

larger cylinder is 3.3 cm. The length of the straight portion of the apparatus is 24.1 cm,

with a further 2 cm of tapering on each end where the walls are joined together. The

choice to perform the rigid-body rotation of the coaxial cylinders without differential

rotation was made to avoid complications with seals that allow slip at the endwalls.

The design of the drive allows variation in both the frequency and amplitude of the

torsional oscillation of the system. In the preliminary experiments performed thus far, the

stability boundaries were determined by fixing the frequency and varying the amplitude

of the oscillation, using a pure sinusoidal waveform from the signal generator. Oscillation

frequencies up to a few Hertz can be produced reliably with this design.

In a typical experimental run, a crystal-melt interface is established within the glass-

walled annulus by maintaining a temperature difference of a few degrees Kelvin across

the gap, with the mean temperature near the melting point. For small amplitudes of

modulation, the interface is cylindrical in shape except near the tapered endwalls of

the container. At larger amplitudes, the interface is observed to develop well-defined

oscillations along the axial direction. The resulting deformation of the interface appears
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axisymmetric, and the amplitude of the interface deformation appears steady in time. By

performing a series of runs, stability limits for the modulation amplitude associated with

the breakdown of the cylindrical crystal-melt interface could be determined as a function

of the oscillation frequency. As described below, the two-phase system is found to become

unstable at amplitudes that are an order of magnitude lower than those required for the

instability of the analogous single-phase, rigid-walled coaxial system.

Rudimentary flow visualization is possible by using a video camera to provide images

of the system from a side view. By examining the motion of a particle in the melt, it is

possible to determine the nature of the flow field associated with the instability of the

crystal-melt interface. At a given instant of time, the flow consists of Taylor vortices

stacked al&ig the apparatus in the axial direction, with the wavelength of the interface

deformation given by the extent of a pair of the counter-rotating cells. In Figure 2

we show a multiple exposure photograph that shows the motion of an irregularly-shaped

particle in a single cell. The multiple exposure was taken in two steps. First, a continuous

recording of the video tape was edited to give a sequence of individual frames that are

each separated in time by one period of the oscillation frequency. In the resulting film

the particle is observed to circulate along a closed path in the same azimuthal plane. The

multiple exposure photo was then assembled from several of these frames to illustrate the

path of the particle; the positions of the particle in Figure 2, however, are not sequential,

and were chosen to give a rough indication of the particle trajectory.

The particle moves radially inward from the hot outer cylinder towards the minimum

in the interface deformation (largest liquid gap), where hot fluid flows towards the crystal-

melt interface, and returns toward the outer cylinder near the maximum in the interface

deformation. The deformation is consistent with the average temperature of the fluid,

since the heating provided by the outer cylinder relative to the relatively-cooler crystal-

melt interface implies that the interface melts back under the impingement of warmer

fluid, and bulges out under the influence of the cooler fluid. The wavelength of the Taylor

vortices is significantly longer than that observed for the single-phase system; quantitative
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comparisons will be provided below, together with the discussion of theoretical results.

3. Theory

The determination of linear stability for rigid-walled systems undergoing modulated os-

cillations has been performed by a number of authors, including Riley and Lawrence [29],

Carmi and Tustaniwskyj [30], Barenghi and Jones [31], Kuhlmann et al. [32], Wu and

Swift [33], and Murray et al. [34]. Here we consider the pure torsional oscillation of a

Taylor- Couette apparatus for the case of a two-phase system with a crystal-melt interface

providing one of the bounding surfaces of the flow. The analysis assumes an axisymmet-

ric geometry, which is consistent with the experimental observations for the two-phase

system. Both narrow and wide gap formulations are considered. For simplicity, gravity-

induced buoyancy effects and similar effects related to the radial density stratification

are ignored; these effects were considered for the unmodulated case in Ref. [35], and were

found to provide only minor corrections to the stability results.

3.1. Wide Gap

The rigid-body torsional oscillation for sufficiently large angular speeds will produce a

centrifugal instability in the base flow [26, 27]. As depicted in Figure 1, we employ a

cylindrical coordinate system (r
1

,(/)', z'), and consider the linear stability of an idealized

base state that extends to infinity in the axial direction (primed quantities will be dimen-

sional). The rigid inner wall is at r' = Ro, and the outer rigid wall is at r' = R2 . The

axisymmetric crystal-melt interface is given by r ' — R\{z'
,
t')\ in the base state the inter-

face is cylindrical, with a constant radius Ri(z',t') = R^. The gap Ri(z',t') < r' < R2

contains the incompressible melt or liquid phase, and the crystal or solid phase occupies

the remainder of the domain. The entire apparatus is oscillated torsionally, so that at

the undisturbed crystal- melt interface the azimuthal velocity is given by v' =

and at the outer wall, v' = R2 tti(t)] here f)i(t) = Q cos(u/i') and is the amplitude

of the oscillations. The radial and axial velocities at the melt boundaries are given by
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u' = w' — 0
,
respectively. In the gap, the melt velocity is divergence-free and satisfies

the Navier-Stokes equations in cylindrical coordinates. We assume that the flow is ax-

isymmetric, as observed in the experiment. We scale the radial and axial velocities with

v/L where L = R2 — R\ is the gap width, and v is the kinematic viscosity, and scale the

azimuthal velocity with RiQ. We scale the spatial coordinates as r' = Lr
,
z' — Lz, scale

the time as w't' = r, and scale the pressure as pv 2
/L

2
. The deviations of the temperature

fields in the melt and solid from the equilibrium value established by the crystal-melt

interface are scaled with the temperature difference AT across the gap, for example,

Tl
T'l -Tm (

1 -TIRi)
AT (i)

where

at = t2 - tm{i - r/Ri), (2 )

and T is a capillary constant related to the depression of the melting point by interface

curvature (the Gibbs-Thomson effect). The crystal-melt interface (at R in the base

state) is located at

r' = Rx + Lh(z,t
) (

3
)

when disturbed. In dimensionless form, the domain is r 0 < r < r 2 ,
where r0 = 7/s/(l —77)

and r2 = 1/(1 — 77), with 77 = R1/R2 and 775 = R0/R2 . The melt occupies the region

r\ -f h(z,t) < r < r 2 ,
where r\ = 77/(1 — 77). In the linearized theory, the disturbance

of the crystal-melt interface location h will be taken close to zero, and the interfacial

conditions will be referred to in the usual way. Neglecting all derivatives in the

azimuthal direction, we obtain the governing equations on T\ < r < r 2 ,

du du du—1- u——b vj— ,

dr dr dz 2(1—77)

du dw

dr dz

’ Ta—
r

= 0,

dv dv dv uv
CU— + u— + w— H
dr dr dz r

dw dw dwu— + u— +w—
dr dr dz

dp
^

du
+

l du u
^

d2u

dr

dv

dr2

dr2 r dr

1 dv v d2v
+ +

dz 2 ’

dz2’
r dr

dp dw 1 dw d2w
dz dr2 ^ r dr ^ dz 2 ’

(
4

)

(
5

)

(
6

)

(
7

)
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where the Taylor number is given by Ta = 2Ri$l
2L3

/v
2

,
and uj — uj'L

2
jv\ here v in the

kinematic viscosity of the melt. In addition to the equations of fluid motion, there will

be energy equations in the melt and solid. In the melt,

1 F)Tr WTt \

( 8 )

otl dTL arL
uj— b U— b W-

dr dr dz

}_(dTi \_dn PTl
Pr 1 dr 2 ^ r dr dz 2

and in the solid

dTs = 1 fdTs 1 dTs d2Ts
dr Ps 1 dr2 r dr dz 2

(9)

where Pr = v /kl is the Prandtl number of the melt, and Ps = v

/

k s', here kl, k,s are the

thermal diffusivities of the liquid and solid phases respectively.

The solid temperature is prescribed on the inner rigid wall, r = r o, and on the outer

rigid wall, r = r 2 ,
we have

u = w = 0, Tl = 1, v = (I/ 77 )
COST.

On the interface r = 77 /

(

1 — 77 ) -f h, we have

u = w = 0
,

v =
\
1 H —h) cos r,

V V J

Tl = Ts = 7/C,

(
10

)

(
11

)

( 12 )

(13)

and

dh _dTL_dhdTL_
(
9TS dhdTs \

dr dr dz dz
^
^ dr dz dz )

(14)

Here K is twice the mean curvature in cylindrical coordinates, 7 = TmF/(LAT) is

proportional to the surface energy, q = ks/ki, is the ratio of the thermal conductivities in

the crystal and the melt respectively, and C — uL v/(ki,AT )
is proportional to the latent

heat Lv released upon solidification.

The Taylor number may be related to the Reynolds number Re used in previous work

[25] by
9n

(15)Ta = -r——Re2
,

1 -77
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where Re = SIL 2
/v. This definition of the Taylor number is identical to that used by

Hall et al [26, 27].

3.1.1. Base State

We seek a base state that is only dependent on r and t. The base state flow field is given

by — u/°) = 0 and = Real[Vo(^)eIT
],
and where Vo(r) satisfies

dV0 l dV0
dr2 ^ r dr

-
(p

+ iu
)
v° - °> (16)

subject to Vo(7T) = 1 and Vo(r2 )
= 1/rj. Though the solution may be written in terms of

Kelvin functions, we choose to integrate it numerically at the collocation points used in

the subsequent discretization. The thermal fields satisfy ordinary differential equations

in r; the time-independent base states for the temperature fields are given by

and

ln[r(l -7})/ri\

In 7]

(17)

In Hi -’?)/’>]

gin 77

The base state interface shape is given by — 0. The base state pressure gradient may

be determined from the radial momentum equation.

-10-
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3.1.2. Linearized Equations

We perturb the base state and denote the disturbance quantities by a superscript (1).

Assuming normal-mode, small-amplitude disturbances, we write

0
1

V ?/
0
)(r, r) u(

1
)(r, r)

w 0 w^\r, r)

p
—

P
IO, (r,T) + p

(1) (r, r

)

Tl 1fV) ^L
)

(
r

.
r

)

Ts 1f\r) ^1}
(r, T

)

V
h

) i 0 / 1
k(1)M j

exp(iaz), (19)

where a is the axial wavenumber. Eliminating the pressure and axial velocity w^\

the linearized equations become

a, {DD. - a
2

)^ + a
2^Ta^V) - {D2D] - 2a

2DD. + a
4 )u^\ (20)

dvM
a f = (DD* — a

2

)

dr

on ri < r < r 2 ,
and in the solid r0 < r < r\,

dT {

s
]

dr

+ Z)(7l°))uW = ±-(D,D-a1)Tf\

(21)

(22 )

UJ- = rs {
D’D -“2

)
Tp - (23)

Here D = d/dr and Z)* = d/dr -f 1/r.

At the inner solid wall r0 = t?s/(1 — v), we set — 0, and at the outer wall

r = r2 = 1/(1 —
77), we require

= DuW = T™ = 0.

At r —r 1 = 77 /

(

1 — T]) the crystal-melt interface boundary conditions are

v,M = DuW = 0 ,

(24)

(25)
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v™ +
i - V

V
cos r + DvW h(1) = 0,

+ DT^ - qDT^ = 0
,

+ (Dlf > )h i ''> = T l

s
l)
+ (Blf>)h

(l
'>/q = 7 (l/rj - a2

)
hll

>.

(26)

(27)

(28)

The above set of equations have temporally-periodic coefficients that vary spatially

as well; the solutions may be determined from an application of Floquet theory.

3.2. Narrow Gap

3.2.1. Scalings and Base State

We shall also study the simplified system of equations that results in the narrow gap

limit. All scales remain the same except that we now scale the radial coordinate as

r' — Ri + Lx
;
in nondimensional form, r = r\ + x. The melt/solid interface that is at

ri = 77/(1 — 77 )
in the base state will be located at

r = ri + h, (29)

where the nondimensional interface amplitude h is scaled with the gap width. In nondi-

mensional form, the domain becomes Xo < x < 1, where

£0 = (77s — 77 )/(l —
77) (

30
)

with the melt occupying h < x < 1. In the linearized theory, the melt /solid interface

location h will be taken close to zero.

In this limit, we assume 1 — rj = e <C 1, and that the Taylor number and the dependent

variables remain 0(1). We then have = x + 0(e), T^ = x/q + O(e), and the base

state velocity profile now satisfies u — u/°) = 0 and

v(°\ 0 , r) = i/°)(1,t) = cost

The solution for the azimuthal component is

.
cosh [\/iw(i — l/2)j 1

= Real { e*
T

-

cosh(%/iu>/2)

(31)

(32)
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The pressure p may be again determined from the radial momentum equation.

3.2.2. Linearized Equations

We may disturb the basic state as in Eq. (19), and eliminating the pressure and axial
\

velocity w^\ the linearized equations become

( d2

LJ

dx 2
— a 2 ^

^U ^ ^

i 2m (0) (1)1 +o larV^
dr

u-
dv^ dv^
dr + dx

dT {

r

l)

V 1
) =

UJ-

dr

on 0 < x < 1
,
and in the solid x0 < x < 0

,

d2

dx 2

' d2

dx 2

— a \ u K

- a
2

1 «<».

+ «W = 1 (£. _ aA T«
Pr l dx 2 L ’

(33)

(34)

(35)

UJ-

dT {

s
1]

dr

At the inner solid wall x 0 = (775 — 77 )/(

1

— 77 ),

TM = 0 .

At the outer wall x = 1 ,

_L (£. _ T«
Ps Uz 2 s ' (36)

(37)

v<» = „(') =^ = I'M = 0.
dx

At the crystal-melt interface referred to x = 0,

(38)

ID du(1) „U(1) = -T— = 0
,

ox
(39)

+
afV> = o,
dx

(40)

r
dhM dT^ ] dT {

s
1]

U
dr dx

q
dx ’

(41)

+ A (1) = + -h™ = -ia2hW.
q

(42)

Because of the spatial and temporal variation in we must solve this problem

numerically for most values of the parameters.
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4. Numerical Formulations

In general, the above set of equations must be solved numerically. We have carried out

a pseudospectral discretization in the spatial variable r; the resulting system of ordinary

differential equations subject to algebraic constraints may be integrated over one period

in time, and the Floquet exponents computed; we may then determine the stability of the

base state. We may also Fourier expand the solutions in time and find the growth rate

of each mode by solving the resulting two-point boundary value problems as described

elsewhere [25]. We have employed both procedures as a check on our numerics.

4.1. Wide Gap

We discretize the derivatives in the radial direction using the standard Chebyshev pseu-

dospectral method (see, e.g., [37, 38]). It is convenient for this method to rescale the

radial variable. In the liquid we set r = r i + |(£ + 1) for — 1 < £ < 1, and in the solid

we set r = r0 -f |(£ + l)x0 . Then in the liquid we have d/dr = 2d/d£ and in the solid

we have d/dr = —(2/x0 )d/d£i

.

We use the points = cos jir/n for j = 0, 1, . .
.

,

n, so that the interface is located at

£o = 1- At the collocation points we use the Chebyshev derivative matrix D [38], which

has the property that at the collocation points (j the derivative g'- of an n-th degree

polynomial g { £) is given exactly in terms of its collocation values g

k

by the expression

DjkQk-

k—0
(43)

Higher derivatives are represented by powers Dm of the matrix D. We write g' = Dj^gk

and thereby let the sum over the repeated index k be implied. Dij is the differentiation

matrix in the melt, and Dtj
is the differentiation matrix in the solid.

For convenience, we drop the superscript on the disturbance quantities; at the interior

points in the melt (j, j — 1, . .
.

,

n — 1, we have the discretized equations

^§7 + ^ Dtj + ^7r*K'
0)

] Dij + Dij/n - Sij(a
2 + l/r

t

2

)
J31 (44)
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a;[^ + AJ
/r1 -^(a2 + l/r

t

2

)j-^ +
duj a 2

r]
,(o)

(
i _ „)

Ta7-Mj = W + 2D
'’
,r'~

LO-

(3/r
2 + 2a

2 )D2

tj + (3/rf - 2a
2/r,)D„ - (3/r

4 - 2a
2
/r

2 - a4
)S,

j

dTu dT(!>

u31

dr dr

and in the sohd, we have

r)
rTvJ ) 1

+ = — {D% + Dij/ti - Saa
1

)
TLj]

(45)

(46)

"fr = i (4 + 6.,/r. - «,,a
2

)
TS,

Here 8tJ is the Kronecker delta, and we sum over the repeated index j.

In both phases, the subscript 0 indicates the rigid boundary and the subscript n

indicates the interface. We also have a differential equation for the interface amplitude

given by
dh

~ ~DnjTLj + qDnjTsj. (47)

Instead of satisfying the differential equation for u at X\ and xn_i, we apply the algebraic

conditions

DijUj — 0 and Dnjiij = 0. (48)

The boundary condition on the azimuthal velocity becomes the algebraic equation

^
DnjVj —— cos t

^
= 0. (49)

From continuity of the temperature field at the interface we have the final two algebraic

conditions

and

1/r
2

J

h^ 0, (50)

1/r2

J
0. (51)

There are then An — 5 differential equations and 5 algebraic equations to determine the

An unknowns. The computer code DASSL [36] is used to solve the differential-algebraic
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system in time, in a manner similar to that described by Murray et al. [34]. The Floquet

analysis is performed by writing the solution vector F in the form

F{r,t) = f(r,t)e
at

,

where the amplitude /(r, t
)
is periodic in time, and the complex growth rate a determines

the linear stability of the system. The numerical determination of a is implemented by

constructing the K x K fundamental solution matrix, where K = 4n — 5 is the number

of differential equations. The eigenvalues of this matrix are the Floquet multipliers from

which a is obtained.

4.2. Narrow Gap

We also solve the narrow gap problem by using a pseudospectral discretization in the

spatial variables, and this reduces the problem to ordinary differential equations in time

coupled to algebraic conditions at the boundary. The discretized equations for the ve-

locity components become

"K - °2

^) fr
= (D% - 2a2

Dl + a
4

5„) u, - a'Tavj
0’^, (52)

dvl

UJ =
dr (

D
ij
~ sija2

)
v
j
- DikV^SijUj, (53)

The equation for the temperature in the melt becomes

8TQ
“ dr s [d2

,
- a

2
StJ )

tW - u„ (54)

and in the solid,

dTf>
U

dr

1

Ps
—D2 — a2

tia otJ i Sj .

x0
(55)

In both phases, the subscript 0 indicates the rigid boundary and the subscript n indicates

the interface. The final differential equation determines the interface location

+ Dn,T$ -
9
i-0n,T$ = 0. (56)
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Instead of satisfying the differential equation for u at Xi and xn_i, we apply the algebraic

conditions

Di

j

u
j
= 0 and DnjUj = 0. (57)

The boundary condition on the azimuthal velocity becomes the algebraic equation

dW + DnjvfhW = 0. (58)

From continuity of the temperature field at the interface we have the final two algebraic

equations

T&> + /i
(1) = t£> + q-'h^ = -7a

2
fc<

l
>. (59)

We again have 4n — 5 coupled differential equations and 5 algebraic conditions to deter-

mine the 4n unknowns.

5. Numerical Results

First, convergence of the results for the wide gap model to those for the narrow gap

Wide Gap

V Ta

0.69 991.23

0.9469 901.26

0.9832 899.02

0.9917 897.06

Table 1: Linear theory results verifying convergence of wide and narrow gap codes

for uj = 28.9 and a = 1.866. Note that the result in the first row is in very good

agreement with previous results [25]; there, Ta = 991.21 for the same parameters

except 7 = 0 . The narrow gap result (rj — 1) is Ta = 895.07. Here the crystal

width is fixed at r x — r0 = 1.33 and rjs — 7 — (77 — r0 )(l — 77).

model can be demonstrated, as is illustrated in Table 1.

Neutral curves for several values of the Prandtl number for the wide gap model are

shown in Figure 3. For small Prandtl numbers, the neutral curve approaches that of
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the rigid-walled case, while for increasing Pr, we see a destabilization of the purely

hydrodynamic mode and an accompanying decrease in the critical wave number. The

critical Taylor number becomes approximately proportional to Pr
-1

as is shown in Figure

4 and Table 2. As the Prandtl number increases through unity, the neutral curve rapidly

approaches the limiting shape denoted by Pr = oo. This limiting neutral curve is the

result of an asymptotic analysis for large Prandtl number which is discussed in the

following section.

The destabilization of the centrifugal instability occurs precipitously as the Prandtl

number is increased. This destabilization is apparently caused by the strong coupling of

the temperature field with the flow in the melt and the subsequent transport of heat from

the interface. When Pr 1, the dominant mode of heat transfer is from convection,

and the temperature field is strongly affected by the disturbance flow. For Pr *C 1, heat

transfer is dominated by conduction, and the flow disturbance discussed here has little

effect on the interface shape [22].

Examination of the Fourier coefficients of the unstable modes shows that the response

is such that the azimuthal velocity consists of only odd temporal harmonics and the

remaining dependent variables consist of only even temporal harmonics; this type of

response was termed “Type I” in [25], where modes having a different symmetry were

also obtained in the rigid-walled system. It may further be seen that the solutions are

dominated by the mean (time independent) and fundamental components (the lowest

frequency terms from the Type I solutions).

6. Asymptotic theory for Pr 1

We next describe an asymptotic analysis in the limit Pr —> oo for the destabilization of

the centrifugal instability in the two-phase system. We describe the narrow gap results

in detail for ease of discussion, and simply report the results for the wide gap case.
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6.1. Narrow Gap

If the Prandtl number is large enough, limiting behavior occurs in the solutions to the

linear problem. Some numerical results for several values of the Prandtl number with

all other parameter values fixed are given in Table 2. The other parameters are fixed

at values appropriate for the experiments with SCN. We note that the simpler problem

with steady rotation was also amenable to large Prandtl number asymptotics [22]. We

Pr = Ps Ta T =PrTa

1.0 17315. 17315.

22.8 899.79 20515.

100. 206.44 20644.

1000. 20.678 20678.

Table 2: Results of Floquet theory with pseudospectral spatial discretization for

the narrow gap limit for increasing Pr number. For all of the values in the table,

uj = 28.9, a = 1.75,7 — 6.2 x 10~ 6
,
C = 409, and q = 1.009. Note that the

product PrTa tends to a constant as the Prandtl number increases.

now carry out an asymptotic analysis for the modulated problem in the large Prandtl

number limit.

One approach to use at this point is Floquet theory with Fourier analysis, as discussed

in [25]. This is suggested by an examination of the equations, with due regard to the

occurrence of harmonics. As in Hall et al. [26, 27], one expects the Fourier coefficients to

depend on Pr. The Fourier decomposition approach shows, and it is confirmed by exam-

ination of the numerically-determined Fourier coefficients of the pseudospectral solution,

that the following expansions should be used:

j/ 1
) ^ u1 (x)e

tT + ^^e3lT + ... + c.c.

Pr

1

u(1) ~ ju0(x) + H*V'r + -4,Te™T + . . . + c.c.

if
1
’ ~ f0(x) +

Pr

(60)

(
61 )

(62)
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if> ~ fso(x) +

h ~ h0 +

?S2(*) 2*t

Pr
e + . . . + c.c.

^-e2lT + . . . + c.c.

Pr

(63)

(64)

and that the Taylor number should be scaled as Ta = T/Pr. Here we have assumed

scalings for the first harmonics of the temperature in the solid and the interface suggested

by the interfacial temperature condition; we defer to the appendix further discussion of

the scaling behavior.

The problem for the mean and fundamental coefficients becomes

iouvi = (
D 2 — a

2
)vi, (65)

(.D 2 — a
2

)

2u0 = ±a2T{V0vl + c.c.), (66)

uq = (
D 2 — a

2)T0 , (67)

on 0 < x < 1 and on x0 < x < 1 we have

(.D 2 - a
2)TS0 = 0 . (

68
)

At the rigid boundaries all of the dependent variables are zero, and at the interface we

must have

Uq - Duq = v1 + \DV0h0 — 0, (69)

To + ho = Tso + Q % — (70)

DTq — qDTso — 0. (71)

Here D = d/dx. This time-independent system was solved for numerically using SU-

PORT [39] from the SLATEC Common Math Library [40]; this leading-order boundary

value problem represents a drastic simplification from the numerical implementations of

Floquet theory described earlier in this paper. The problem may also be solved analyt-

ically to obtain a complete closed form solution. However, this closed form solution is

rather complicated and no advantage is gained in interpreting results. The solution can
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be expressed as the sum of a complementary part, which is independent of the Taylor

number, and a particular solution which is proportional to the Taylor number.

We choose to solve the complementary part of the problem in closed form, and then

determine numerically the remaining particular part to determine T — PrTa. We find

--DVo(O) sinh \fa? + zu;(l — x

)

2 sinh \/a 2 + iu>

u0(x) = Tu0(x), (73)

- . . . sinh a(l — x) _ ~ .

r„(a0 = -(l+ 7<i
2
) At >

- + TT0{x), (74)
smn a

and

Ui(x) =

TSo{x )
= - Q + 7a

2
sinh a(xo — x)

sinh axo

For the particular solutions (denoted by a ~), we then have

(
D 2 - a

2

)

2u0 = \a
2
(VoV*x + c.c.),

u0 = (
D 2 - a

2
)T0 ,

subject to

(75)

(76)

(77)

uo (0) = Duo(0) = 7o(0) = tio(l) = Biio(l) = T0(l) = 0. (78)

Once these solutions are known, we may then determine the Taylor number via Eq. (71).

In the next section we present the corresponding simplified problem for the wide gap

case, and then provide a discussion of the asymptotic results for both the narrow and

wide gap cases.

6.1.1. Wide Gap

We employ the same scales as in the narrow gap case to obtain equations for the wide gap

case that are valid for large Pr. The problem for the mean and fundamental coefficients

becomes

iujv i = (
DD *

— a
2
)vi, (79)

-21-



MODULATED TAYLOR-COUETTE FLOWS November 4, 1992

(D2D2 - 2a
2DD, + a

4
)i0 = ^T-(V0v\ + c.c.),

2 r

(°)— = (D.D - a
2

)%,
or

on 0 < x < 1, and on Xq < x < 1 we have

(80)

(81)

(
D.D - a

2
)Tso = 0. (82)

At the rigid boundaries all of the variables are zero, and at the interface we must have

u0 = Duq = Vi + \ (
DV0 - l/n) h0 = 0, (83)

qji(o)
_ _ dT^ -

To ~\ rr—ho = Tso~\ rr—ho/q= l/r\ — a
2

'yho, (84)
or Or 1 *

DTo - gDTso = 0. (85)

Note that dT^/dr = — l/(rln77). This system is again solved as a boundary value

problem with SUPORT; the asymptotics have eliminated the need for Floquet theory.

From the standpoint of the design of the experiment, this is a big advantage, as we shall

see.

Part of the wide gap problem may be solved in closed form in terms of modified

Bessel functions; however, for convenience we choose to find the solutions numerically

using SUPORT. We discuss the results of the asymptotic analysis in the following section.

7. Results and Discussion

Numerical results from the asymptotic approximations Eq. (65)-(68) and Eq. (69)-(71)

for the narrow gap equations and from Eq. (79)-(82) and Eq. (83)-(85) for the wide gap

equations are displayed as curves labeled “Pr = oo” in Figures 4 and 5. These results are

for a fixed frequency of uj = 28.9. The neutral curves from the full Floquet theory rapidly

approach these limiting results for Pr > U particularly for smaller wavenumbers in the

neutral curve. The entire neutral curve from the asymptotic analysis can be obtained in

two orders of magnitude less processing time than that required to compute a single data
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point by using the full Floquet theory implementation. The limiting behavior where

critical wavenumber is decreased and the Taylor number scales like the inverse of the

Prandtl number[25] occurs even as the Prandtl number is near unity, and it is a good

approximation to the experimental case of Pr = 22.8 for SCN.

Figure 5 displays the limiting behavior for the narrow gap approximation. The smaller

wavenumber side of the curve is virtually unaffected by the Prandtl number variation, and

as the Prandtl number increases, the higher wavenumber side approaches the asymptotic

limit (Pr = oo).

The wide gap and narrow gap results are compared in Figure 6
;
the results become

insensitive to the gap width once 77 is larger than about 0.69. As was found in the

steadily-rotating case [23], the narrow gap results bound the wide gap results from below.

It appears reasonable then to use the narrow gap results to design experiments in the

large Pr regime.

Table 3 displays asymptotic and numerical results for the wide gap model; in this

table, the critical wave number is found as a function of the frequency for each method.

It is clear from the table that as long as the frequency is not too low, the asymptotic

results do a good job of approximating the Floquet theory results. The numerical results

are in qualitative agreement with the preliminary experimental results. For example,

the wavenumber of the instability from the experiment is about 1.7 for the conditions

uj = 28.9, rj = 0.69, and 775 = 0.286. This is in good agreement with the theoretically

determined value of a — 1.87. The critical Taylor number from the asymptotic theory

is Ta = 987, while the system is observed to be unstable in the preliminary experiments

for this frequency at Ta = 2038. This instability is still much lower than the marginal

theoretical value of Ta = 93857 at a critical wavenumber of a = 5.059 for the rigid-

walled system in which there is no crystal-melt interface[25]; there is no experimental

data available for the rigid-walled system to our knowledge.

The asymptotic results above have been found for a nondimensional frequency that

is 0( 1) with respect to the Prandtl number. We find, however, that agreement with
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Asymptotic Floquet

u> ac PrTa ac PrTa

5.0 1.449 23193.9 1.241 30442.0

7.07 1.491 15868.9 1.387 17993.5

10.0 1.557 13075.9 1.502 13880.8

15.0 1.662 13616.7 1.637 13961.4

21.0 1.765 16915.9 1.757 17110.5

28.9 1.868 22511.4 1.866 22599.6

40.0 1.969 30032.3 1.978 30001.0

50.0 2.032 35529.0 2.043 35425.6

60.0 2.078 39996.4 2.086 39854.8

70.0 2.111 43846.2 2.120 43687.9

80.0 2.137 47385.1 2.145 47220.2

90.0 2.158 50790.7 2.166 50624.5

100.0 2.175 54152.8 2.182 53985.7

110.0 2.190 57510.5 2.197 57343.7

Table 3: Results of Floquet theory and asymptotic theory for the wide gap case.

In this case, the critical wave number is found to the nearest 10
-3

for a fixed

frequency. The parameters used for this table are C = q = 1.0, Pr = Ps =
22.8, 7 = 0, 77 = 0.69, 775 = 0.286.
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high frequency results from the full implementation of Floquet theory is remarkably

good. Table 3 and Figure 7 illustrate these results. Although the high frequency results

agree rather well, the agreement in the low frequency cases is not so good. We believe

that this occurs because in the high frequency limit the time-independent modes of the

solution again dominate[34], in a manner similar to that just demonstrated for the high

Prandtl number regime. Though we have not carried out such an analysis, the results

are reminiscent of those that would occur in an averaging analysis at high frequency.

In the low frequency regime, on the other hand, the temporal behavior is complicated

and cannot be described by a single mode in time[34]. The computation at the lowest

frequencies is difficult for the pseudospectral approach with Floquet theory, and the

computations are best performed there with the Fourier approach of [25].

Although the Floquet theory and asymptotic approximations agree closely, prelim-

inary experimental results are only in qualitative agreement with either theory. The

instability has been observed only above the neutral curves given by either theory (see

Figure 4 in [25]). The effect of the deformable crystal-melt interface is pronounced; both

the theoretical and experimental results show that the two-phase system is significantly

less stable than the rigid- walled system.

8. Conclusion

We have modeled the destabilization of the purely azimuthal base flow in the Taylor-

Couette geometry with a crystalline inner cylinder under pure torsional modulation.

We have developed a pseudospectral discretization in the spatial variables and found

the eigenvalues of the fundamental solution matrix of the resulting differential/algebraic

system in order to determine stability or instability [34].

In addition, we have been able to carry out asymptotic analyses in the limiting case

of large Prandtl number in the Taylor-Couette geometry with a crystalline inner cylinder

under pure torsional modulation. In an analysis similar to the work of Hall et aZ. [26
,
27]

we have carried out a Fourier analysis with the amplitude of each mode depending on
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the large parameter, in this case the Prandtl number. Because the leading-order mode

is primarily time-independent, the “full” numerical analysis of the problem involving

Floquet theory is simplified to a single boundary value problem at leading order. This

results in a great reduction in computational effort. Because the coefficients of the higher-

order modes also display boundary-layer structure in space (see appendix), they appear

to be even smaller than the expected scalings; this helps make the analysis a particularly

effective approximation. The approximation remains good in the high-frequency regime

where a time-independent (or steady-streaming) mode of the solution components is

dominant.

Given the preliminary nature of the experiments performed with succinonitrile, the

agreement in the onset of the instability seems good. The wavenumber is reasonably

approximated by the linear theory value. It appears that in the large Prandtl number

regime, the transport of heat is strongly affected by the disturbance flow of the melt

and that the flow in the melt is destabilized by the deformable interface. More extensive

experiments would serve to clarify the correspondence between the experimental and

theoretical results.

The general question of predicting whether a given hydrodynamic instability will be

strongly modified if a rigid boundary is replaced by a deformable crystal-melt interface

is still poorly understood. Several studies have shown that instabilities associated with

critical layers in the interior of the fluid are not affected strongly by the presence of the

crystal-melt interface. This is not unexpected, since for these instabilities the perturba-

tions to the flow are generally confined to the immediate vicinity of the critical layer, and

influence of the boundary conditions of the perturbed flow is not large. Examples of this

type include the instabilities associated with Poiseille flow [20], the asymptotic suction

profile [16], and the buoyant instability of the parallel flow inside a vertical annulus with

lateral heating [21, 20].

For instabilities of a less local nature, for which the relevant length scale of the instabil-

ity is the container width, the possibility of flow/interface interaction is correspondingly
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greater. Examples of this type include the shear instability of the parallel flow inside a

vertical annulus with lateral heating [21, 20], Rayleigh-Benard convection [17], steady

Taylor- Couette flow [22, 23], and the modulated Taylor- Couette flow considered here.

For these flows, strong couplings are observed for large Prandtl numbers, except in the

case of Rayleigh-Benard convection, where the modification of the linear stability of the

system is not found to be large [17]. A common feature of the instabilities which are

strongly affected by the crystal-melt interface is the presence of shear in the base state.

With shear, the linearized no-slip boundary condition for the perturbed velocity pro-

duces a direct coupling between the tangential perturbation velocity and the interface

deformation; this coupling is absent for a quiescent base state, as in Rayleigh-Benard

convection.
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Appendix A. Higher Order Modes

We now discuss why the lowest-order terms dominate for Pr = Ps>>lby examining the

problem for the next-order nonzero harmonics. As mentioned previously, the scalings for

the harmonics is assumed from the form of the boundary conditions. From the numerical

results, however, it can be seen that the scales for the coefficients of the harmonics for

the interface position and the solid temperature field are of higher order than expected.

The problem for the next-order harmonic Fourier coefficients is

3ivv3 = (D 2 — a
2
)v3 - ±(DV0u2 + ^DVqU4 ), (Al)
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2iw(D2 - a2

)
u2 = (

D2 - a
2

)

252 - \a
2T{V0v^ + (A2)

2iu>T2 + U 2 = — (-D
2 — a2 )-^2) (A3)

on 0 < x < 1 and on xq < x < 1 we have

2iwfS2 - A(D2 - a
2)fS2 = o. (A4)

Ps

At the rigid boundaries similar homogeneous conditions hold, and at the interface we

have

u 2 — Du2 — u3 + 2
DV0 h 2 + 2p r

^^o ^4 — 0, (A5)

T2 + h2 = Ts2 + gsh 2 — —7 fl2 ^2) (A6)

2iu)C,h2 T DT2 — gDTs2 — 0. (A7)

Here the asterisk denotes complex conjugation. In order to write these equations we have

assumed that the first harmonic coefficient for the interface shape and the temperature

in the solid scale hke 1/Pr; this is suggested by the interfacial temperature conditions.

Now to leading order for Pr 1 in these Fourier coefficients some of the terms in the

equations drop out. In particular, the heat equation in the melt yields

T2 — -zr—u2 ]
(A8)

zzu;

since u2 = Du2 — 0 at both the rigid wall and the interface, then T2 = DT2 — 0 there as

well. There will be an 0(1/Pr) correction to T2 . The heat equation in the solid yields

that Ts2 — 0. The interfacial temperature conditions then imply that h2 = 0 to leading

order. Because DT2 = 0, the heat flux at the interface vanishes to leading order as well.

The Fourier coefficients for the leading order temperature in the solid Ts2 appears to

be zero by a similar process. The velocity components u 2 and u3 must come from the

numerical solution of the coupled boundary value problem given by Eq. (A1)-(A4) with

boundary conditions Eq. (A5)-(A7).

The problem for the correction to the leading-order Fourier coefficients may be written
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down; for the next-order coefficients, let

u 2 ~ u

^

(A9)

and similarly for the other variables. Substitution into Eq. (A4) results in

SiwvJ
1
* = (

D 2 - a
2
)ui

1} - \{DVou^ + DV0*u[0) ), (A10)

2iu(D 2 - a
2

)4
1} =

(
D 2 - a

2
)

2uP - a
2T ^Vov^ + V*vi

0)
), (All)

2 + u{

2
] = (D 2 - a

2)T2
(0)

,
(A12)

on 0 < x < 1 and on x0 < x < 1 we have

2iufg - L(Z)2 - a
2
)Tg2 = o. (A13)

At the rigid boundaries all of the variables are zero, and at the interface we must have

41} = Du {

2

1] = v {

3
l)
+ DV0h {

2
] + DV'h^ = 0, (A14)

f2
(1) + h,P = fjg + gshP = (A15)

2iu£h {

2

l)
+ OT2

(1) - qDT$ = 0. (A16)

The term h^ is identically zero; this is shown by a similar procedure to that for h 2̂ \

It appears from this problem that the interfacial temperature coefficient T2
^ will be

nonzero at the interface and numerical results show that the h2 = 0(Pr
-2

)
and thus that

h 2
^ ^ 0. These two observations suggest that there is a boundary layer of width Pr1,/2

in

the coefficient for the solid temperature coefficient T^. If we rescale that equation with

x = Pr1,/2 x the equation for the inner part of the solid temperature coefficient is

2iut® - D2T = 0. (A1Y)

which has a solution of the form

T$ = Ci exP[(! ~ i)Vux/PT1/2
}. (A18)

There is no boundary layer at the rigid wall, and this inner solution matches automat-

ically with the trivial interior solution. The rest of the solution at this order can be
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found though the solution may no longer be found sequentially. This boundary layer is

compatible with ^ 0 and h^ ^ 0.

We believe that the small or non-existent numerical amplitudes of the higher harmonic

modes contributes to the success of the asymptotic approximation.
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Figure Captions

Figure 1 Schematic diagram of the crystalline inner annulus (labeled “S”) surrounded

by the liquid phase (labeled “L”). In the base state the unperturbed crystal-melt

interface is cylindrical, with Ri(z',t') = R^.

Figure 2 Multiple-exposure profile of the instability of a temporally-modulated crystal-

melt interface, with a heated outer cylinder and a cooled inner cylinder. The

material is succinonitrile with Prandtl number Pr = 22.8. An elongated, flexible

particle circulates in the fluid and delineates the structure of the flow field in half of

a Taylor vortex cell. The half-cell containing the particle is about 14 mm from crest

to trough in the axial direction, corresponding to a wavenumber of about a = 1.1 .

Figure 3 Neutral curves in the (Ta, a)-plane for several values of the Prandtl number

are displayed. The other parameter values are u = 28.9, C — 409, q — 1.009, Pr =

Ps = 22.8, 7 = 6.2 x 10~6
,

rj = 0.69, rjs — 0.286. The uppermost curve
(
Pr = 0.1)

approaches the rigid-walled neutral curve displayed in [25]. The base state described

in Section 3.1.1 is stable below the curves and unstable above them.

Figure 4 Neutral curves in the (T,a)-plane, where T = PrTa. The parameter values

are the same as for Figure 3. The case Pr = oo is the result of the asymptotic

analysis described in Section 6.1.1. The base state described in Section 3.1.1 is

stable below the curves and unstable above them.

Figure 5 Neutral curves in the (T,a)-plane, where T = PrTa. The parameter values

are the same as for Figure 3, except that rj is no longer a parameter in the problem.

The case Pr = oo is the result of the asymptotic analysis described in Section 6.1.

The base state described in Section 3.2.1 is stable below the curves and unstable

above them.

Figure 6 Neutral curves in the (T,a)-plane, where T = PrTa, for several gap widths 77 .

All other parameters are the same as Figure 4, and Pr = Ps = 22.8. The lowermost
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curve is the narrow gap limit; the other curves are wide gap results.

Figure 7 Neutral curves in the (T,u;)-plane, where T = PrTa, displaying the wide gap

results in Table 3. The upper curve is the result of Floquet theory data while the

lower curve is the result of the asymptotic theory. The base state described in

Section 3.1.1 is unstable above the curves and stable below them.

-36-



i?2

FIGURE 1



FIGURE 2



FIGURE 3



o

FIGURE 4



Pr

Ta

*
10

Stable

o.o 1.0 2.0 3.0

a

4.0 5.0 6.0

FIGURE 5



Pr

Ta

*
10

O

FIGURE 6



Pr

Ta

*
10

O

CJ

FIGURE 7





NIST-1 14A

(REV. 3-90)

U.S. DEPARTMENT OF COMMERCE
NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY

i. PUBLICATION OR REPORT NUMBER

NISTJR 4971

BIBLIOGRAPHIC DATA SHEET
2. PERFORMING ORGANIZATION REPORT NUMBER

3. PUBLICATION DATE

NOVEMBER 1992
4. TITLE AND SUBTITLE

Asymptotic Behavior of Modulated Taylor-Couette Flows with a Cirystalline Inner Cylinder

5. AUTHOR(S)

R.J. Braun, G.B. McFadden, B.T. Murray, S.R. Coriell, M.E. Glicksman, and M.E. Selleck

6. PERFORMING ORGANIZATION (IF JOINT OR OTHER THAN NIST, SEE INSTRUCTIONS)

U.S. DEPARTMENT OF COMMERCE
NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY
GAITHERSBURG, MD 20899

7. CONTRACT/GRANT NUMBER

8. TYPE OF REPORT AND PERIOD COVERED

9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (STREET, CITY, STATE, ZIP)

10.

SUPPLEMENTARY NOTES

11.

ABSTRACT (A 200-WORD OR LESS FACTUAL SUMMARY OF MOST SIGNIFICANT INFORMATION. IF DOCUMENT INCLUDES A SIGNIFICANT BIBLIOGRAPHY OR
LITERATURE SURVEY, MENTION IT HERE)

We consider the linear stability of a modulated Taylor-Couette system when the inner
cylindrical boundary consists of a crystalline solid-liquid interface. Both experimentally
and in numerical calculations it is found that the two-phase system is significantly less
stable than the analogous rigid-walled system for materials with moderately large Prandtl
numbers. A numerical treatment based on Floquet theory is described, which gives results
that are in good agreement with preliminary experimental findings. In addition, this
instability is further examined by carrying out a formal asymptotic expansion of the solu-
tion In the limit of large Pradtl number. In this limit the Floquet analysis is consider-
ably simplified, and the linear stability of the modulated system can be determined to

leading order through a conventional stability analysis, without recourse to Floquet theory.
The resulting simplified problem is then studied for both the narrow gap geometry and for
the case of a finite gap. It is surprising that the determination of the linear stability
of the two-phase system is considerably simpler than that of the rigid-walled system,
despite the complications introduced by the presence of the crystal-melt interface.

12.

KEY WORDS (6 TO 12 ENTRIES; ALPHABETICAL ORDER; CAPITALIZE ONLY PROPER NAMES; AND SEPARATE KEY WORDS BY SEMICOLONS)

crystal-melt interface; flow-interface interaction; hydrodynamic instability; morphological
instability; solidification; and Taylor-Couette flow.

13. AVAILABILITY 14. NUMBER OF PRINTED PAGES

X UNLIMITED 46
FOR OFFICIAL DISTRIBUTION. DO NOT RELEASE TO NATIONAL TECHNICAL INFORMATION SERVICE (NTIS).

ORDER FROM SUPERINTENDENT OF DOCUMENTS, U.S. GOVERNMENT PRINTING OFFICE,

WASHINGTON, DC 20402.

15. PRICE

AO 3

X ORDER FROM NATIONAL TECHNICAL INFORMATION SERVICE (NTIS), SPRINGFIELD,VA 22161.

ELECTRONIC FORM



)






