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Abstract

In an effort to unify the various phase-field models that have been used to study

solidification, we have developed a class of phase-field models for crystallization of a

pure substance from its melt. These models are based on an entropy functional, as in

the treatment of Penrose and Fife, and are therefore thermodynamically consistent

inasmuch as they guarantee spatially local positive entropy production. General

conditions are developed to ensure that the phase field takes on constant values

in the bulk phases. Specific forms of a phase-field function are chosen to produce

two models that bear strong resemblances to the models proposed by Langer and

Kobayashi. Our models contain additional nonlinear functions of the phase field

that are necessary to guarantee thermodynamic consistency.
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1. Introduction

The classical approach to the modeling of first order phase transformations involves track-

ing of the free boundary that separates the growing phase from the parent phase. This

requires the solution of a formidable free boundary problem. For example, for crystal-

lization of a solid (crystal) from a pure liquid (melt), one must solve the equations for

the temperature fields in both solid and liquid subject to boundary conditions for the

temperature and its derivatives on the moving sohd-liquid interface, the free boundary.

The phase-field model provides an alternative approach, according to which a new

variable, the phase field
(f),

is introduced to keep track of the phase, taking on constant

values indicative of each of the bulk phases and making a transition between these values

over a thin transition layer that plays the role of the classically sharp interface. The phase

field
(f)

is governed by a partial differential equation that guarantees (in the asymptotic

limit of a suitably thin transition layer) that the appropriate boundary conditions at the

crystal-melt interface are satisfied. Moreover, the transport equations are modified, by

addition of terms that depend on the phase field, to apply in all of space and to embody the

conservation conditions at the interface. One then proceeds to solve the coupled equations

for the phase field and transport-related fields (e g., temperature and/or composition)

without the necessity of exphcit tracking of the free boundary.

Langer [1,2] adapted Model C of Halpern, Hohenberg, and Ma [3] to produce a phase-

field model that accounts for the Gibbs-Thomson equation at the sohd-liquid interface for

sohdification problems. Moreover, a similar phase-field model was introduced by Collins

and Levine [4]. Analytical properties of the phase-field equations resulting from hanger’s

model have been analyzed extensively by Caginalp et al. [5-13], Gurtin [14] and Fife and

GiU [15, 16]. In particular, Caginalp [11] has shown that certain distinguished limits of

the phase-field equations lead to various free boundary problems, including the classical

models of sohdification.

Numerical methods for computation using a phase-field model were introduced by

Fix [17] and early numerical computations in one dimension were performed by Lin [18].

-2-



Subsequently, there have been a number of computations in one dimension, including those

by Schofield and Oxtoby [19] for planar geometries and by Caginalp and Socolovsky [12]

for planar and spherically symmetric geometries. Success with numerical computations for

more complex shapes has been limited because of the considerable computational power

needed to resolve the diverse length and time scales intrinsic to the phase-field model.

Recently, Kobayashi [20] introduced a phase-field model that is particularly suitable for

numerical computations of the dendritic solidification of a pure material from a supercooled

melt, in two [21,22] and three [23] dimensions. Using the phase-field model described here,

numerical computations in two dimensions have been carried out for the dendritic growth

of nickel by Wheeler et al. [24].

A difficulty with phase-field models, as pointed out by Penrose and Fife [25], lies in

their derivation. In particular, the governing equation for the phase field is usually derived

from a free energy functional that is apphcable only to an isothermal situation; then the

classical equation for the temperature field is altered in an ad hoc manner to account for

the hberation of latent heat by addition of a term proportional to the time derivative of the

phase field. Penrose and Fife, however, provided a framework from which the equations

for the phase field and the temperature can be derived in a thermodynamically consistent

manner from a single entropy functional.

In the present paper, we employ the method of Penrose and Fife to derive a class of

phase-field models for the crystallization of a pure material from its melt that have the

following properties:

1. They are based on an entropy functional and guarantee local positive entropy pro-

duction,

2. The functions and parameters in the model can be chosen to agree with empirical

data, such as specific heats and surface tension, asymptotically in the classical limit,

3. They satisfy criteria to insure that the phase field will take on fixed values, which

we take to be 0 for the soHd and 1 for the liquid, for the bulk phases.
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4. They allow for specific choices of the phase-field function that lead to models, which

we call Model I and Model II, that bear a strong resemblance to the models of

Langer and Kobayashi, respectively, but that display specific nonhnearities necessary

to satisfy properties (T3). Thus, we provide a common basis for their models.

2. Thermodynamic Formulation

For purposes of deriving the partial differential equations for the phase-field model, we

consider a closed system of volume V in which a pure material undergoes a first-order

phase transition between sohd and liquid. We introduce an order parameter </»(x,t), called

the phase field, that indicates the phase of the material at (x, i). We assume that
(f)
equals

zero in the sohd phase and unity in the hquid phase. Thin regions, in which (j) takes

values between zero and unity, will be shown to correspond to crystal-melt interfaces.

For simphcity, we assume uniform density throughout the system and that there is no

convection in the hquid; this ensures mechanical equilibrium.

We assume that the internal energy of any subvolume V of F is represented by the

integral

^ — j (
1
)

According to the first law of thermodynamics, the time rate of change of S obeys

8 f q - nda = 0, (2)
JA

where A is the surface of V with outward normal n, and q is flux of internal energy.

Converting the surface integral in Eq. (2) to a volume integral by Gauss’ theorem and

equating the integrands, which is permissible since V is arbitrary, leads to the familiar

equation

e-|-V-q = 0. (3)

The entropy of any subvolume V of F is assumed to be represented by the functional

dv. (4)
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where 5(e, is an entropy density (an extension of classical thermodynamics) that would

apply to a uniform system of internal energy density e and phase field and e is a

constant. The second term in the integrand is a gradient entropy term analogous to the

Landau-Ginzburg or Cahn-Hilliard gradient energy term in the free energy, cf. Eq. (37).

Differentiation of Eq. (4) with respect to time gives

where we have substituted for e from Eq. (3) and used Gauss’ theorem to integrate by

parts.

The second law of thermodynamics requires the entropy production to be positive in

any subvolume V of V. This entropy production can be calculated by subtracting from S

the entropy flux through A, which leads to the relation

5 + J I y
• n| da > 0, (

6
)

where T is the absolute temperature. In Eq. (6), q/T is the familiar entropy flux due to

heat flow; the quantity is an entropy flux related to changes in the phase field at

the boundary of the subvolume V. The volumetric entropy production and the entropy

flux associated with 0 will be related to their counterparts for a sharp-interface model in

the discussion section.

Substitution of Eq. (5b) into Eq. (6) then leads to

(aqv - + -f ^ > dv > 0
(7 )

where we have used

de = Tds + f —
)
d0
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to identify {dsjde)^ = (1/T). We can therefore guarantee local positive entropy produc-

tion by choosing

q = MtV
^

, (
9

)

(10)

where Mt and r are positive. This choice allows the integrand in Eq. (7) to be reduced

to a sum of squares: Iq^/Mr + The governing equations therefore become

1

e = -V-

for the internal energy density, and

TJl (
11

)

(12)

for the phase field.

In order to identify the derivative in Eq. (12), it is convenient to work with the

Helmholtz free energy density

f = e-Ts,

whose differential, when combined with Eq. (8), yields

and

l d[SIT] \

V dT A
The latter can be integrated at constant

(f)
to give

f(T,4>) = T + G(4,)

(13)

(14)

(15)

(16)

where G{(f)) is an undetermined function of ^ and Tm is the melting point. To proceed

further, we assume that the internal energy density has the form

e = es{T) + p{ct>)L{T) = e^iT) -f
- l]T(r), (17)
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where es{T) and eL{T) are the classical internal energy densities of the solid and liquid

phases, respectively, and L{T) = gl^T) — es{T) is their difference. Here p{(f)) satisfies

p(0) = 0 and p(l) == 1. We note that Lq = L{Tm) is the latent heat of fusion; whereas

the variation of L{T) > 0 with temperature allows the specific heats of solid and liquid

to depend differently on temperature, as illustrated in Figure 1. From Eq. (16), the free

energy density corresponding to this internal energy density is

f(TA) = T\-j^
Tm C

where

Q[T) = /

- M*) - ilQ(r) + GW

T L{0
dC.

(18)

(19)
ITu 0

We note that Q(T) is monotonic increasing with respect to its argument, T, and Q{Tm) —

0. From Eq. (14) and Eq. (18) we have

= -TQiT)p'W + TG'W- (
20

)

Thus, the governing equations, Eq. (11) and Eq. (12), become

eL{T)+mL{T) + \p{<j>)
- l]L{T) = -V AfyV

(?)]> (21 )

and

= QiT)p’W - G'W + (
22 )

We have assumed that ^ = 0 and (j) = I correspond to bulk sofid and liquid states for

all values of the temperature. This consideration requires / to have, for all values of T,

local minima with respect to (/> ai ^ = 0 and
(f)
= 1. We also require / to be continuous

with respect to the temperature at the melting point; therefore

/(Tm,0) = /(^m,!), (23)

d(l>
<^=0,1

- 0, (24)

av

<f>=0,l

> 0. (25)



These conditions require that

G(0) = G(l). (26)

(27)

(28)

[G'W-v'iWinU^o,. = 0
.

[G"(.^)-p"(^)Q(T)l|^^„^ > 0.

Accordingly we choose G{(f)) to be a symmetric ‘double well’ potential with minima at

zero and unity of the form

G((» = (29)

where

9{4>) = <^^(1 - <?^)^ (30)

and a is a positive constant; this choice implies the convention /{Tm, 0) = /{Tm, 1) = 0. In

the next section we explore two possible choices for p(^) which lead to phase-field models

that may be compared to those of Langer and Kobayashi.

We continue with the general development of the phase-field equations by further

specifying the thermodynamic description of the system. For a pure material, one is

mostly interested in studying morphological instabilities and subsequent dendritic growth

that can occur in sohdification from an undercooled melt, where heat conduction takes

place mostly in the liquid. Therefore, in order to obtain a tractable problem, we assume

the energy density in the liquid to be a linear function of temperature of the form

eL{T) = eL{TM) + c{T-TM), (31)

where c is a constant specific heat, which will lead to the classical heat equation in the

bulk liquid. Eq. (21) and Eq. (22) therefore become

{c + (p(^) - 1)L'{T)}^ + L{TW)^ = W^T, (32)

and

= Q(T)p'(« - (33)

where we have set Mt = kT^. The thermal conductivity k is assumed to be constant.
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At this point in the development of the equations, the parameters a and e can be

related to the interface thickness and surface free energy by examining a one-dimensional

solution of Eq. (33) under equihbrium conditions, T = Tm, for which it becomes

2(P(t> 1 // /\
£ — - 7-S (^) = 0,

dx^ 4a‘

with boundary conditions >0asx—

>

— oo, and > 1 as x

found to be

tanh
X

+ 1

(34)

-}-oo. The solution is

(35)

where we have chosen a constant of integration to locate the interface at x == 0. From this

solution it is clear that the interface has characteristic thickness

S = \/ai (36)

To calculate the surface free energy associated with the one-dimensional solution, we

employ the Helmholtz free energy functional at temperature Tm, which from Eq. (4) and

Eq. (1) is given by

= S-TmS= fJv

p2'T>

dv. (37)

The corresponding surface free energy per unit area, which is a surface excess quantity

because /(Tm, ^) = 0 in the bulk, is

J— oo Y dx J

This may be evaluated to yield

y/26 TiM
12a

(38)

(39)

Hence, the constant a is related to the material parameters and the interface thickness 6.

In order to proceed further, it is advantageous to nondimensionahze the governing

equations. We introduce a length scale w representative of the size of the domain, and

use the thermal diffusion time w^jK, where k is the assumed constant thermal diffusivity

of the liquid, as the reference time scale. Employing these scales, we write

X = t =
t

w w'^fk'
and u =

T-Tm
Tm-To’

-9-



where To is an appropriate reference temperature. Here, a tilde is used to denote the

dimensionless equivalent of a dimensional quantity. The governing equations become

L'{u)'
1 + \p(ii>)

- 1]-

du L{u) ,, -2

+ eaSQ{u)p'{(j)) -
m ot 4

where

Q{'^) = I T-
Jo h

L{u) = L/Lo,

m
and

a =
v^u;[To]^

12caTM
S =

+ (

c{Tm - To)

A,

Lo

. 6
^ jw

m =
6V28a

tkTm

(40)

(41)

(42)

(43)

(44)

Below, we determine m explicitly in terms of the interface kinetic coefficient and known

material parameters. We shall proceed to discuss Eqns. (40-44) for two different choices

of p(0) given below.

3. Phase-Field Models I and II

In order to proceed in the development of the phase-field model, the function p(<^) which

appears in the energy density must be specified. We consider two different polynomial

forms for the function p{(f>) which result in different phase-field models.

Model I: We choose

= I Vw/ = (^5)
Jo ^(C)“C

which satisfies the required normalization that p(0) = 0 and p(l) = 1 as well as the

conditions Eq. (27) and Eq. (28), independent of Q{T), because = p"{<t>) = 0 at

^ = 0 and 1. This choice will lead to a phase-field model that we will compare with the

one proposed by Langer [2].

Model II: We choose

p{4,) = 4'\i - 24), (46)
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which satisfies the conditions that p(0) = 0 and p(l) = 1, and p'(O) = p'(l) = 0; however,

because G"(0) - p"(0)Q(r) = l/(2a) - 6Q(T) and G"{1) - p"(l)Q(T) = l/(2a) + 6g(T),

we must require the additional condition that \\2aQ{T)\ < 1 in order to satisfy Eq. (28).

This choice, as shown below, leads to a model similar to that proposed by Kobayashi [20].

3.1. Model I

Eq. (45) apphes and there are no restrictions on Q{T). Therefore, for simphcity, we choose

the specific heat of the sohd to equal the constant specific heat, c, of the liquid, in which

case L{T) = To, which results in L{u) = 1. We also assume that \Tm — To| << Tm and so

we make the approximation Q{u) = u. Thus, Eq. (40) and Eq. (41) become

du 30g{(l)) d<p

dl^ S di
= vx

—^ + ^0g{(j))eaSu - jg'{(f>).m ot 4

(47)

(48)

The dimensionless parameters S and a can be specified in terms of ly, {Tm — To), and the

material parameters. However, the parameters e and m are still undetermined because

they are related to the unknown quantities S and r. We expect the parameter 8 to be

much less than w. Hence, we fix the parameter m by conducting an asymptotic analysis of

the phase-field equations in the limit e —> 0 with 5, a, and m of order one. In this hmit, a

free boundary problem is recovered. The details are analogous to those given by Caginalp

[11] and so for brevity we just give the results. The free boundary problem satisfied by

the leading order temperature is

| = VV (49)

with interfacial boundary conditions

u

and

du

dn

1
Liquid

Sohd
5’

(50)

(51)
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where f = aTml[yjLo{TM —
^o)] is the dimensionless capillary length, vj is the dimen-

sionless normal velocity of the interface into the liquid and /C is the dimensionless interfa-

cial curvature (measured positive for convex projections into the liquid). The interfacial

boundary condition Eq. (50) reduces to the Gibbs-Thomson equation when vj = 0. The

additional term incorporates the effect of interface kinetics. The dimensionless interface

kinetic coefficient is therefore represented by m; it may be related to the corresponding

dimensional quantity by comparison of Eq. (50) with its usual dimensional form;

T = T„- - -V,, (52)
Lq

fj-

which gives

fiaTMm = —

—

kLq

In view of Eq. (44), this means that r is proportional to 6, which makes m independent

of e as implied by Eq. (41). The only remaining undetermined parameter is therefore e.

In practice, e should be chosen small enough to validate the asymptotics but large enough

to make computations practical. This completes the determination of the dimensionless

phase-field parameters in terms of the physical parameters.

The advantages of the phase-field model given by Eq. (47) and Eq. (48) are two-fold.

First, the model is consistent with the ideas of irreversible thermodynamics because it was

derived from an entropy functional, which is the appropriate thermodynamic potential in

this nonisothermal situation. Second, it is constructed so that the states ^ = 0 and
(f)
= 1

correspond to the bulk sohd and hquid phases, respectively, independent of the temper-

ature. This has the advantage that latent heat of the correct total amount is hberated

only in the interfacial region. The model proposed by Langer [1,2] can be obtained by

replacing the term 30p(^), which appears in both Eq. (47) and Eq. (48), by unity, which

is its average value over the range 0 < ^ < 1, while leaving the term in Eq. (48)

as calculated from Eq. (30). This “hneaxization” would violate Eq. (27) and Eq. (28).

Thus, in the Langer model, the bulk solid and liquid phases do not correspond to constant

values of
(f)
independent of the temperature. In a recent model developed by Caginalp and

Chen [13], a function /(0) was introduced in the free energy functional (their equation 1.6)

-12-



to identify the bulk phases precisely by
(f)
= ±1, which is equivalent to maintaining the

term 30^(^) in Eq. (48), but their model does not have the thermodynamically-consistent

30g{(l)) term in Eq. (47).

3.2. Model II

Eq. (46) apphes, but there is the restriction \12aQ{T)\ < 1. Substituting Eq. (46) for p(^)

and Eq. (30) for into Eq. (40) and Eq. (41) yields the following set of phase-field

equations:

d(t>

dL[u) 6L{u)

di
u. (54)

—^ + il>{i - <l>) (4 - ^
+ SeaSQ{u)^ . (55)

Recently, Kobayashi [20-23] proposed a phase-field model based on the following pair

of dimensionless equations:

fill 1 r)rh ~ .

(56)
du 1 dcj) -

,

~ (f}{l — (f))
9'rctan(i/u) (57)

where /3 and u are positive constants with /3 < 1. The phase- field equation in Model II,

Eq. (55), is identical to that suggested by Kobayashi provided that

/?
Q{u) =

direaS
arctan(i/u). (58)

Note that our restriction |12aQ(r)| < 1 is equivalent to Kobayashi’s condition /? < 1. The

derivative of the function Q(u) is related to the function L(u) by Eq. (43), which gives

l(u) =
[i + (^) u

(59)
1 4- (i/u)2

and ^ = 67rea5/i/. The function L{u) will have a strong dependence on u unless v is

chosen to be very small. This dependence on u requires the specific heat, C5, of the solid

to have a definite dependence on temperature, which, from the derivative of the expression

es{T) = ^l{T) — L(T), Eq. (31), and Eq. (42), is represented by

cs = c 1 - |i'(>') (60)

-13-



The quantity —L'{u) is plotted in Figure 2 for the case u = 10 (used by Kobayashi) and

(Tm — To)ITm = 0.2. We note that the corresponding specific heat will vary considerably,

even near the melting point, u = 0, and can possibly become negative. For sohdification

from a supercooled melt, the temperature in the solid will typically be close to the melting

point, with temperature gradients much less than those in the fiquid. Nevertheless, there

might be problems in using Kobayashi’s model for such large values of v.

Thus, in order to recover the same governing equation for the phase field as Kobayashi,

within a thermodynamically-consistent framework, it is necessary for the specific heat of

the solid to have the functional dependence on temperature given by Eq. (60). However,

the self-consistent equation for the temperature will then be Eq. (54) instead of Kobayashi’s

Eq. (56). We first compare the terms containing d(j)ldt\ they will only be important in the

interfacial region where u ~ 0 so L{u) ~ 1. Thus, replacing 60(1—0) by its average value of

1 over the range 0 < 0 < 1 reproduces Kobayashi’s corresponding term. This is similar to

the “linearization” required to recover hanger’s model from Model I. The term in Eq. (54)

containing dLjdt, however, is completely absent in Kobayashi’s Eq. (56). It vanishes in

the hquid where 0=1, but not in the solid where 0 = 0, and arises because of the variable

specific heat necessary to make Kobayashi’s model thermodynamically consistent. In fact,

for 0 == 0, Eq. (60) can be used to combine the first two terms on the left-hand side of

Eq. (54) to yield

C5 du -2

C Ot
(61)

which is in complete agreement with the classical equation in the solid phase.

An alternative approach to comparing our model to that of Kobayashi would be to

choose C5 ,
and p(0) to achieve the same equation for the temperature. This would require

cs = c and p(0) == 0, but then G'(0) — p'{(f))Q{T) = (j'(0) — Lq [(I/Tm) — (1/T)], and

Eq. (27) would require G(0) and G(l) to depend on temperature, which is a contradiction.

-14-



4. Discussion

We have employed the method of Penrose and Fife, based on an entropy functional, to

derive a class of phase-field models for the crystalhzation of a pure material from its melt.

This method provides a Lyapunov functional [25] which may facihtate the development

of numerical solution methods. The parameters of the model are selected by passing to

the asymptotic limit of a sharp interface and comparing with the classical model. Criteria

are developed to ensure that the phase field will take on fixed values, independent of

temperature, for bulk solid and hquid. Specific choices of the phase-field function are made

to yield models, which we call Model I and Model II, that bear strong resemblances to the

models of Langer and Kobayashi, respectively. However, Models I and II contain nonlinear

functions of the phase field that are absent in the models of Langer and Kobayashi, but

are necessary to guarantee thermodynamic consistency. Model I differs from Langer’s

model only in the interfacial region. Model II differs from Kobayashi’s model both in the

interfacial region and in the bulk sohd; in particular, the equation for the temperature

that is thermodynamically consistent with Kobayashi’s equation for the phase field has a

specific heat in the solid phase that is a rather strong function of temperature, even for

temperatures close to the melting point.

These models also guarantee positive entropy production locally va. space. The volumet-

ric entropy production due to heat flow, IqP/Mt, and the entropy flux, q/T, are classical

and require no further discussion. The corresponding quantities, t(^)^ and require

further clarification, which we proceed to give by relating them to analogous quantities for

a sharp-interface model. The volumetric entropy production will contribute only in

volume elements dv in which
(f>

differs appreciably from zero. These elements will corre-

spond to regions through which a solid-hquid interface is passing, and for which (j)
rKj vilv

and dv ~ 7/da/, where daj is an element of area on the interface. Here we have taken

T) = 6\/26 as a more precise representation of the interface thickness; from Eq. (35), rj

-15-



represents the distance over which
<f>

varies from roughly 0.05 to 0.95. Thus,

dv ~ —vj daj = da/,
(
62

)

V ' f^Tlj

where Eqs. (44) and (53) have been used. The quantity [LQ/{fj,T^)]vj turns out to be

the entropy production per unit area associated with the movement of a sharp interface

for a hnear kinetic law of the form represented by Eq. (52), as can be shown using the

methodology of Gurtin [26].

Similarly, the entropy flux, will only contribute to Eq. (6) over area elements da

of the control volume through which an interface passes and has a component of its normal

growth velocity vj along n. Identifying
(f)

as above and noting that -vi/(u/7/), we

see that

• n ~ -VI • n =
V^M

VI n. (63)

where Eq. (36) and (39) have been used to ehminate e. For an interface corresponding to

Eq. (35), one can show from Eq. (1) that there is no surface excess internal energy per

unit area relative to a sharp interface located at x = 0. Therefore, a = where

is the surface excess entropy per unit area relative to a sharp interface located at x = 0.

Thus we have

• n da ~ —vi • n da.

V
(64)

The area over which this term wiU contribute to Eq. (6) is a thin ribbon defined by the

intersection of the diffuse interface with the area A of the control volume. Hence the area

element da dir} csc0, where d£ is an element of length along the ribbon and 0 is the

angle between vi and n. This trigonometric factor arises because the diffuse boundary is

not necessarily perpendicular to the surface of the control volume. Thus Anally

J
• n da ~ ^

cot 0 dl, (65)

which is in complete agreement with the analysis of Gurtin for a sharp interface model

[27,28]. Eq. (65) represents the rate at which entropy exits the control volume by means of

the passage of portions of the interface out of the surface of the control volume. It makes

-16-



no contribution in regions of that surface at which the interface is moving in a direction

perpendicular to the normal of the control volume.

Penrose and Fife were able to obtain hanger’s model from a formahsm that guarantees

positive entropy production by making the following choices (in our notation, equivalent

to their Eqn. 3.11);

p(^) = <t>,
L{T) = io, es{T) = /I - B/T,

where A and B are constants. This choice of p{4>), in view of Eq. (27), would require G{^)

to depend on T, a contradiction. Therefore, for their model, the values of (j) corresponding

to the bulk phases will depend on temperature.

The methodology developed in the present paper can be extended to develop a phase-

field model for the non-isothermal sohdification of an alloy. For a binary alloy, for example,

it would be necessary to specify the internal energy as a function of T,
(f),

and the composi-

tion c. This would be a logical extension of the phase-field model for isothermal binary al-

loy solidification, developed for a lens-type phase diagram in Ref. [29]. Another extension,

which will be the subject of a forthcoming paper, is to incorporate arbitrary anisotropy of

surface tension and interface kinetics in a thermodynamically-consistent manner.
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Figure Captions

Figure 1 . Sketch of the internal energies e£,(r) and es{T) as functions of temperature. The

sohd curves correspond to the stable bulk phases, whereas the dashed curves correspond

to either supercooled liquid or superheated soHd. The difference between the curves at

any temperature is the function L{T), which is equal to the latent heat Lq = L[Tm) at

the melting point Tm-

Figure 2. Plot of the quantity —L'{u) versus u that illustrates (see Eq. (60)) the temperature-

dependence of the specific heat of the sohd, C5 ,
that is necessary to obtain a thermodynamically-

consistent equation for temperature corresponding to Kobayashi’s model. The plot is for

u = 10, used by Kobayashi in his computations, and {Tm — To)fTM = 0.2. For values of

the undercooling with 5 < 1
,
there will be a rather large variation of cs with temperature,

even for temperatures near the melting point.
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