

REFERENCE

## NISTIR 4949

# Chromatographic Examination of Intaglio Inks, Resins and Varnishes

Barry J. Bauer Brian Dickens William R. Blair

U.S. DEPARTMENT OF COMMERCE Technology Administration National Institute of Standards and Technology Materials Science and Engineering Laboratory Polymers Division Gaithersburg, MD 20899

Prepared for: The Office of Research and Technical Services Bureau of Engraving and Printing Department of the Treasury Washington, D.C. 20226

QC 100 . U56 4949 1992







# Chromatographic Examination of Intaglio Inks, Resins and Varnishes

Barry J. Bauer Brian Dickens William R. Blair

U.S. DEPARTMENT OF COMMERCE Technology Administration National Institute of Standards and Technology Materials Science and Engineering Laboratory Polymers Division Gaithersburg, MD 20899

Prepared for: The Office of Research and Technical Services Bureau of Engraving and Printing Department of the Treasury Washington, D.C. 20226

Annual Report of November 30, 1991

Issued October 1992



U.S. DEPARTMENT OF COMMERCE Barbara Hackman Franklin, Secretary

TECHNOLOGY ADMINISTRATION Robert M. White, Under Secretary for Technology

NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY John W. Lyons, Director



Executive Summary

More than eight hundred chromatograms were taken of over one hundred and thirty BEP inks using five means of detection. While hardware problems forced some of the samples to be rerun, there were enough successful runs to investigate correlations of the resultant chromatograms with BEP measured crumple and laundry results.

Old and new formulations of black and green cylinder wipe currency inks, gave different chromatographic results. GPC should be able to distinguish different formulations if the differences are as large as was true for the ones supplied.

Extracts from the retain samples supplied by the ink manufacturer have a high correlation to extracts from the same ink batches taken from the drums. It seems likely that there will be no need to obtain ink samples from the drums for testing; samples of retains would be adequate for the testing. Chromatography could therefore be done on representative samples before a drum is used for printing.

Different batches of the same ink formulation can have a large variation on GPC results, demonstrating that batch-to-batch variations exist. Match factors have been calculated for a series of black and green cylinder wipe currency inks, and average chromatograms of many inks of the same type. A correlation may exist between extracts with low match factors and inks with low crumple numbers. A scarcity of samples with low crumple numbers hampers the determination of the exact nature of the correlation. No correlations of chromatographic results with laundry numbers were found, but no samples were tested that had poor laundry results.

To properly correlate the BEP measured properties with chromatographic results, many samples with a wide range of properties must be collected. It is proposed that retain samples are set aside each time poor results in BEP tests are found. These, along with a number of inks giving good results would provide a statistically significant sampling.

## Table of Contents

| Executive Summary                                        | Lii |
|----------------------------------------------------------|-----|
| 1: Introduction                                          | 1   |
| 2: Background                                            | 1   |
| 2.1: BEP Requirements                                    | 1   |
| 2.2: Gel Permeation Chromatography                       | 2   |
| 2.3: Detectors Used                                      | 2   |
| 2.4: Review of Previous Results                          | 3   |
| 3: Gel Permeation Chromatography of BEP Inks             | 4   |
| 3.1: Instrumental Problems and Changes                   | 4   |
| 3.1.1: Mass Evaporative Detector Upgrade                 | 4   |
| 3.1.2: Stability of Flow Rates                           | 4   |
| 3.1.3: Changes in the Columns and Inks                   | 5   |
| 3.2: Comparisons of Ink Extracts                         | 6   |
| 3.2.1: Description of BEP Inks and Chromatograms         | 6   |
| 3.2.2: Differences in Green and Black Formulations       | 7   |
| 3.2.3: Comparisons of Press and Retain Inks              | 8   |
| 3.3: Correlations Between BEP Tests and GPC              | 9   |
| 3.3.1: Correlation Between Crumple and Laundry Numbers   | 9   |
| 3.3.2: Comparisons of Detectors for Black Inks           | 10  |
| 3.3.3: Comparisons of Extraction Solvents for Black Inks | 11  |
| 3.3.4: Comparisons of Green Inks                         | 12  |
| 4: Conclusions                                           | 12  |
| References                                               | 14  |
| Captions of Figures                                      | 15  |

/

#### 1: Introduction

Quality assurance tests on incoming intaglio inks used in the printing of currency are limited to measurements such as rheology and volatile organic content. The most revealing tests, crumple and laundry resistance tests, are carried out only after full press runs. These tests determine whether a whole batch of currency is acceptable or not. A screening test is desirable to find unacceptable ink batches before the printing has begun. Such batches might be set aside and reformulated into acceptable inks.

Intaglio inks are complex mixtures of many components such as polymerizable compounds, solvents, surfactants, driers, pigments, fillers, etc. The components effect the final properties of the printed currency in various ways. Gel permeation chromatography (GPC) can be used to characterize the molecular size of the large, polymeric components present in the ink. Since these compounds are responsible for the crosslinking that takes place in the air drying process, variations in their chemical composition and molecular size are expected to have important effects on the properties of the printed currency.

It has been demonstrated [1] that the soluble components of intaglio cylinder wipe currency inks can be distinguished by GPC. Two samples that are supposed to be the same, actually are not because they exhibit quite different chromatograms. When the inks are used in printing the resulting currency can have very different durabilities. A much larger body of data is necessary to correlate features of these chromatograms with durability of the printed matter.

#### 2: Background

### 2.1: BEP Requirements

Currency inks are made in batches and are shipped in two drum lots. Each batch is made to the same specifications, but some batch to batch variations must exist. A small sample of each batch known as a "retain" is sent to BEP for testing. If the retain samples are truly representative of the material in the drums, then the incoming inks could be easily studied by GPC through use of the retains. If the contents of the retain container have changed in some way, then the samples would have to be taken from the drums for the GPC work. The added effort required to gather the samples would probably make routine analysis of the inks impractical.

This technique is not an attempt to identify the contents of an ink, but rather it is an empirical method of monitoring the size distribution of compounds extracted from the inks using solvents. Differences in the chromatograms prove that different batches are not exactly alike, but unless some features of the chromatograms can be correlated to important properties such as durability, the differences in the GPC chromatograms will not result in a useful screening process.

If a correlation is found between GPC results and unacceptable ink batches, the drums can be set aside. Due to the empirical nature of the results, it is unlikely that batches could be rejected and returned. Rather, attempts could be made to reformulate suspect batches into acceptable inks by addition of appropriate ingredients. A procedure similar to this is already in place to reconstitute inks recovered in the printing process.

#### 2.2: Gel Permeation Chromatography

Gel permeation chromatography separates soluble compounds by molecular size. The chromatographic column is packed with a porous material (gel) that contains cavities with sizes in the same range as the hydrodynamic volume of the molecules studied [2]. This ranges from 10 nm to 1000 nm for most polymeric molecules. As the molecules in the carrier solvent move through the column they diffuse into the pores, and while in the pores, remain stationary while the carrier solvent flows past. This causes the molecules to elute later than if they had not entered the pores. The larger the molecule the fewer the pores it can enter and the less its flow through the column is retarded. Therefore large molecules elute faster from the column than do the smaller ones.

The hydrodynamic volume of a polymer is the parameter that controls when it appears in the eluted volume. The relationship between hydrodynamic volume and molecular weight depends on the polymer and solvent type and on such polymer structure as branching content. The exact nature of the polymeric material in the inks is unknown but probably includes complex branching. Therefore it is not possible to express the distribution of molecular sizes in the ink extract in terms of molecular weight. Whenever ink extracts are run, polymer standards are also run. The standards are polystyrenes with narrow molecular weight distributions with molecular weights from a few hundred to a few The calibrant used most often in this work was million daltons. a commercial sample made by Polymer Laboratories known as Easical It is a mixture of polystyrenes with molecular weights of [3]. 3,040,000; 333,000; 66,000; 9,200; and 580 daltons. This information can be used to express the size distributions of the ink extracts in terms of hydrodynamic volume.

#### 2.3: Detectors Used

After the polymeric components of the ink extracted by solvent have passed through the columns, they flow through a

series of detectors. The response of the detector depends on the amount of the material and the physical characteristics of the material. Since it appears that ink extracts are mixtures of components with different physical characteristics [2], the response from a detector is typically not proportional to concentration of a single material, but is a composite response from all materials. It has been shown previously [1] that UV absorption at different fixed wavelengths give different shaped chromatograms.

A Spectra Physics Spectra Focus [3] detector was used, with 230, 240, 254, and 275 nm wavelengths being monitored. Each response was compared with average responses compiled from many extracts. For the runs listed in Table II with a + in the column at the far right, a second single wavelength detector set at 254 nm was used to check the stability of the multiple wavelength detector.

A mass evaporative detector (MED) was used in all runs. The run stream is nebulized, and the solvent in the dispersed droplets is evaporated. The nonvolatile high molecular weight components remain behind and a beam of light is scattered from the resultant particles. The response from such a detector is a non linear function of concentration in most cases. Theory predicts [4] that the response goes as the square of the concentration in the limit of extreme dilution and follows the power law C  $\alpha$  R<sup>a</sup> where the concentration, C, is proportional to the detector response, R, raised to a power a. Polystyrene calibrants were found to have a value of the power equal to 0.53 in this concentration range [5]. This number was used to convert the detector response to concentration for the ink extracts also. Since the MED results were not as useful in correlating the properties of the printed inks, no attempt was made to calibrate the MED for the ink extracts.

### 2.4: Review of Previous Results

Work done for BEP in FY90 proved that GPC is a useful technique for distinguishing inks. Different ink types such as heat set, air dry paperwipe, air dry water wipe, and reconstituted inks, yield very different chromatograms. Thus, different ink classes can easily be distinguished.

Two inks that were nominally the same ink type and formulation were run repeatedly. Currency printed with these inks was tested at BEP and found to have extremely different durability as measured by crumple numbers. Chromatography of these two ink extracts in tetrahydrofuran (THF) containing the stabilizer butylated hydroxy toluene (BHT) easily identified each sample. It could not be determined whether these differences correlated with the crumple results, but it was obvious from the GPC results that batch-to-batch variations in the resin existed.

The objective of the work done in FY91 was to run more samples with a range of crumple and laundry numbers to see if correlations existed with the chromatograms. The method used was to run many ink extracts from different ink samples, all manufactured according the same formulation. For each detector's response, an average of all of the ink extracts was made. Match factors [1] were calculated between each ink and the average of all inks. Correlations were then checked between the match factors and the crumple and laundry numbers supplied by BEP.

3: Gel Permeation Chromatography of BEP Inks

3.1: Instrumental Problems and Changes

3.1.1: Mass Evaporative Detector Upgrade

Previous work done with ink extracts proved that 254 nm UV detection was better than MED detection. An important factor was the lack of sensitivity of the MED. In the Summer of 1991 the MED was returned to the manufacturer for hardware modifications that greatly increased the sensitivity. Figure 1 shows the MED response of an ink extract before and after this change. Before the upgrade the response was very low, resulting in the jagged line shown in figure 1. The smooth line is the response of the upgraded detector. Outputs containing erratic, noisy signals will give poor match factors even if the samples are identical.

#### 3.1.2: Stability of Flow Rates

Shortly after the beginning of this work, the polystyrene marker peak began to shift in elution time. This is often an indication of leaks in the flow system, or leaks in the valves of the pump. The pump was disassembled and components were replaced several times. Temporary improvements were sometimes achieved, but the problem seemed to reoccur after a short period. A new pump manufactured by Isco [3] was installed. It proved to give a much more stable response, going for long periods of time with reproducible marker peak positions.

Clearly, marker peaks must be used in work of this nature. Some slight movement of the chromatograph peaks with time is unavoidable. In that case, the use of marker peaks allows for an internal set of standards to calibrate each chromatogram. Figure 2 shows 254 nm UV response of inks run on three separate days. In figure 2a the raw data is shown. The sharp peak to the left is the polystyrene marker peak and should appear at the same place each time if there are no flow rate problems. The sharp peak to the right is the stabilizer, BHT, in each case. Figure 2b is a plot of the same data shifted so that the two marker peaks coincide. The plots are now much more uniform. The slight differences in the chromatograms in the middle are the variations in batch-to- batch formulations that are sought.

The chromatograms were broken into 500 data points by interpolation of the original data. Match factors were calculated for the points numbered 80 to 421 when THF was the extraction solvent and between 40 and 370 when methyl ethyl ketone (MEK) was the extraction solvent. This eliminates any data that were influenced by the polystyrene marker or low molecular weight material such as BHT. In the case of the MEK extracts, MEK itself was used as a marker instead of BHT.

#### 3.1.3: Changes in the Columns and Inks

Other problems of reproducability occurred throughout this Figure 3 demonstrates a baseline instability that occurred work. quite often. To the left of the sharp polystyrene marker peak, the baseline should be flat with no material eluting. Manv attempts were made to improve the stability. An additional UV detector also recorded the baseline drift, proving that it was There are several possible sources of not a detector problem. this variation. It is known that polar material, which is probably present in the ink extracts, can cause problems in polystyrene-divinyl benzene GPC column fillings [2,6]. Absorption of the polar compounds extracted from inks onto the chromatographic column can cause it to act similar to a liquid chromatography column. Retention of the polar compounds can be delayed, and they may actually elute during the next run. The best performance was obtained when a column was new or when it had been flushed with solvent for an extended time. While the exact cause of this problem is unproven, it seems necessary to study it in detail. It may be necessary to flush a column periodically to renew its original condition.

The work done in FY90 used THF stabilized with BHT for both the extraction and the flow stream. At the beginning of this year's work, a switch was made to unstabilized THF in an effort to improve the UV detectors response. It was noticed that over periods of several hours, slight changes in chromatograms Figure 4 is a plot of five sequential chromatographic resulted. runs from the same vial of an unstabilized ink extract. Over a period of several hours the region in the high molecular weight region of the chromatograms increases regularly. It appears that the extract is changing during the period of time required for the chromatography. This would lead to match factors that would change with time. Shortly afterwards, we reverted to THF stabilized with BHT for the extraction and the solvent flow. The 230 nm UV response was severely degraded because of the UV absorption of BHT present in the GPC solvent but the procedure appeared necessary to prevent changes in the extract.

Another puzzling feature appearing in some chromatograms is shown in figure 5. A sharp peak eluted before the one million molecular weight polystyrene marker peak. In another run this feature elutes before a polystyrene of ten million molecular weight. It is possible that it is ink extract that has begun to gel, but it occurred even in THF containing larger levels of BHT than previous runs that did not have this feature. The last GPCs taken used MEK as an extraction solvent. MEK does not form peroxides as THF does and may allow for longer stability. The runs made with this extraction solvent did not show the anomalous peak at the beginning of the chromatograms.

There are many unanswered questions about the irreproducibility of the chromatography that must be answered before GPC can be used to reliably screen incoming inks. Different columns, column conditioning, or solvents may be necessary to achieve this. In spite of these problems, there were sufficient runs without anomalies to allow us to test for correlations between GPC results and BEP durability tests.

3.2: Comparisons of Ink Extracts

3.2.1: Description of BEP Inks and Chromatograms

Table I presents a list of the BEP printing inks used in this study. Each ink was given a NIST identification number ranging from 1 to 139. The BEP identification numbers are also listed along with each formulation number, color and ink type.

Upon request of BEP personnel, a few paperwipe and postage inks were run at the start of the project and the resulting chromatograms were delivered to them. The chromatograms closely resembled those shown in the annual report for FY90 [1]. Since these inks have no correlation with conventional cylinder wipe currency inks, they will not be discussed here.

A large majority of the inks listed in Table I were from two current formulations. Over one hundred samples of present black, cylinder wipe ink (designated 374017K) and the present green cylinder wipe ink (designated 354033A) were run. Two other similar ink formulations were also run. An old formulation of the black ink (designated 374017A) and an old formulation of the green ink which was replaced only very recently (designated 354100J) were studied to determine if GPC was capable of detecting formulation changes.

Table I also lists crumple numbers and laundry numbers for many of these inks, as measured by BEP. These were the primary parameters to be correlated with the chromatograms. Both crumple and laundry numbers range from 6 to 0, with 6 being the best.

Table II lists the GPC chromatograms taken of the extracts of the inks listed in Table I plus chromatograms of polymer More than 800 chromatograms were taken standards and blanks. under a variety of chromatographic conditions. The first column in Table II, SEC #, is a unique identification number that is assigned to each chromatographic run by the GPC software. The column labelled "Sample" refers to the NIST ID number that was assigned in Table I. The seven columns to the right in the table identify the major chromatographic changes that took place during this project. The "BHT/flow" column indicates when BHT stabilizer was in the solvent (THF) flowing in the column. The "BHT/ext" column gives the extraction solvent, a - being THF without BHT, a + being THF with BHT, and MEK being methyl ethyl "Rerun of old samp" indicates that a previously ketone. prepared, old sample was run to judge aging effects. The "Isco" column has a + when the original solvent pump was replaced with the ISCO solvent pump [3]. Similarly, a + in the "MED upg" column shows when the upgraded mass evaporative detector was The "2nd UV" column has a + to indicate when an additional used. 254nm UV detector was used to check the original detector.

#### 3.2.2: Differences in Green and Black Formulations

Figure 6 is a plot of the 254 nm UV detector response of four ink formulations. The solid line is the current black ink, 374017K; the short dashes are an old black ink formulation, 374100J; the dots are the current green formulation, 354033A; and the long dashes are an old green formulation 374017A. In all cases the narrow peak to the left of the chromatogram is the polystyrene marker. The same weight of ink was subjected to solvent extraction with the same volume of solvent in each case.

All four of the chromatograms have very different features. The old black formulation has a weak peak at 22 mL compared to the others. This represents the higher molecular weight components of the ink. Since this ink was more than two years old, it is possible that the original high MW components have crosslinked, and were not extracted by the solvent, or that perhaps the original formulation was different. The old green ink had a large amount of material eluting at 22 mL. The new green formulation appears to be more similar to the new black formula than to the old green formulation.

The differences between formulations of an ink appear to be large enough to easily distinguish among the inks. These variations seem to be greater than the batch to batch variations of a given ink formulation. It is likely that GPC can determine the formulation of an incoming ink.

### 3.2.3: Comparisons of Press and Retain Inks

The most practical way of testing incoming batches of ink is to test the contents of the retain samples that are sent with each batch of ink delivered. In this way the drums never need to be opened before the actual printing operation. For this to be successful, the contents of the retain containers need to be very similar to the drum contents. If significant differences exist between these two samples, any testing of retain samples, including those currently being done at BEP, may not be truly representative of the ink that is actually used in printing currency.

Eleven pairs of black retain and press samples were supplied to NIST by BEP personnel. The eleven pairs were examined under two chromatographic conditions, THF with BHT as the extraction solvent with unstabilized THF as the flow solvent, and MEK as the extraction solvent with stabilized THF as the flow solvent. Figure 7 shows the 254 nm UV detector response for three ink pairs under the first chromatographic conditions. The pairs of solid lines, long dashes, and short dashes are for retain and press samples of the same ink batches. Ink extracts from the two sources give chromatograms that are very similar, with differences between two ink batches being much greater than between two sources of the same ink batch.

Match factors were calculated for all combinations of chromatograms for both the THF extracts and the MEK extracts. Four averages were taken for the match factors from each of the five detectors. Figure 8 is a plot of these averages for each detector. The triangles are average match factors for all retain-press ink pairs extracted with THF. The square symbols are average match factors for all combinations of THF extracts. The diamond symbols and circles are for retain-press pairs and all combinations of MEK extracts, respectively.

In every case, there is a higher average match factor for retain-press pairs than for other combinations, for any set of chromatographic conditions. For the mass evaporative detector, the differences are not great. The greatest differences in the responses occur for the larger molecular components (those to the left in a chromatogram). The MED does not give a strong signal at the concentration present in this range and hence there are smaller differences. Similarly, 270 nm UV is not sensitive to these components, and the match factors are not well separated. Although the MEK extracts show poor match factors in all cases at 230 nm, this is not due to the MEK. The MEK extracts were eluted from the column with THF containing BHT which has strong absorption at 230 nm. This makes the signal weak and noisy. If stabilized THF needs to be used in the flowing solvent to prevent changes in the ink extract, then 230 nm will not be a useful wavelength to use.

The best results for both THF and MEK extracts were found using the chromatographic responses measured at 254 nm. The retain-press pairs have match factors near 1000 indicating that they are very similar, while random combinations show considerable differences. <u>It appears that these retain samples</u> <u>are very representative of the contents of the drums. Testing of</u> <u>retain samples should give results that accurately describe the</u> <u>printed ink, and therefore there is no need to collect samples at</u> <u>the time of printing.</u>

While match factors of various inks can provide important information on the batch to batch uniformity, match factors of any ink extracts obtained using different solvents will be poor. Figure 9a shows chromatograms of a retain-press pair (NIST #67 and 68) extracted into THF (solid line) and MEK (dashed line). The elution volume scale is usually established by matching the peaks due to the polystyrene marker at low elution volume and the BHT stabilizer at high elution volume. When MEK is the solvent, the strong absorption of MEK at 254 nm interferes with detecting Therefore, the curves in Figure 9a were scaled so that the BHT. the MEK signal at high elution volume was matched to that from the BHT in the THF solvent. Chromatograms from a given retainpress pair are similar in a particular extracting solvent but there are large differences for the same ink extracted with different solvents. If one uses the strongest peak from each ink extract to establish the elution volume scale at high elution volume, as shown in Figure 9b, peaks generally occur at similar elution volumes, but the intensities from the two solvents are different and match factors are correspondingly low. Therefore it is not possible to build up a data base unless a single extracting solvent is chosen.

3.3: Correlations Between BEP Tests and GPC

3.3.1: Correlation Between Crumple and Laundry Numbers^

Table I lists results of BEP tests for crumple and laundry numbers for many black and green inks. It is of interest to check for a correlation between these two parameters. If both properties are dependent on the same characteristic of a particular ink, there should be a strong correlation between these two properties. Figure 10 contains plots of crumple number versus laundry numbers. Figure 10a contains data for black inks and 10b for green inks. There is no obvious pattern displayed, and the two properties seem uncorrelated.

More definite conclusions cannot be drawn due to a lack of a wide range of data. For black inks, only one sample has an exceptionally low crumple number, 2.8, and only three are between 4.0 and 5.0. The laundry numbers range from 4.0 to 5.6, and none is exceptionally low. There is even less of a range of values for the green inks. All crumple numbers are greater than 5.4 and all laundry numbers are greater than 4.9. There is little chance of finding any correlations in the green inks because of this. The black inks have a wide enough range for study of correlations with the crumple numbers, but due to the scarcity of samples with low numbers, the statistics will be poor.

If there is no correlation between crumple number and laundry number, then any single feature of the chromatography could at best be correlated to only one of these numbers. It is possible that different areas of a chromatogram or different detector responses may have correlations with crumple and laundry. To check this, match factors of all of the detectors were examined.

#### 3.3.2: Comparisons of Detectors for Black Inks

The chromatograms were characterized by first averaging each detector response for all inks of a given class: black inks extracted with THF, black inks extracted with MEK, and green inks extracted with MEK. Each individual ink extract was then rated by measuring the deviation of its chromatogram from the average. The method used was the "match factor" method as was previously described [1]. It is a least squares type of fit that is sensitive to the shape of the chromatogram. A value of 1000 is a perfect match and lower values represent increasingly poorer fits.

Figures 11 through 15 plot crumple numbers and laundry numbers versus match factors calculated from chromatograms obtained by using the mass evaporative detector and 230 nm UV, 240 nm UV, 254 nm UV, and 270 nm UV wavelength. All of the inks were the current black formulation and extractions were made with THF stabilized with BHT. The chromatography was performed with unstabilized THF as the flow solvent.

Figure 11 plots the crumple and laundry results against the match factors from the mass evaporative detector. The lines in Figure 11 are least squares fits to the points. The points are spread out with no real correlation. Figure 12 is a similar plot for match factors calculated from the 230 nm UV detector. In figure 12a the points still have some scatter, but a correlation seems to be present between the crumple number and the match factor. The inks that differ the most from the average tend to have lower crumple numbers. The laundry numbers have poor correlation.

The match factors from the 240 nm UV detector (Figure 13) exhibit correlations similar to those of the 230 nm UV detector. The most strongly correlated results are for the match factor from the 254 nm UV detector and the crumple numbers as seen in figure 14. Figure 15 shows that at 270 nm, the correlations are absent. While it is necessary to test a larger number of samples with a greater range of crumple numbers to insure a reliable data base, the results shown in figure 14a are very promising. No correlations can be made with the laundry numbers, but the range of test results was a very narrow range. If many more samples with a wide range of laundry numbers could be tested, a correlation could possibly be found with the response of one of the detectors.

3.3.3: Comparisons of Extraction Solvents for Black Inks

Near the end of the present study, several inks were rerun with MEK as an extraction solvent. It proved to be a good solvent for the ink components, extracting a large quantity of material. THF is known to form peroxides which could decompose by reacting with metal driers in the ink and subsequently alter the resin component of the ink. Such changes would change the molecular size distribution of the ink extracts and would introduce errors in the data analysis. MEK has no tendency to form such peroxides and may be a more desirable extraction solvent. The few samples that were run with MEK as an extraction solvent had flat baselines and no sign of buildup of higher molecular weight components.

Figures 16 through 20 are analogous to figures 11 through 15 except that MEK was used for the extraction instead of THF. The only other major change was that THF containing the stabilizer BHT was used as the flow solvent, since by the time the MEK extracts were done, we had become convinced that unstabilized THF in the flow could cause problems. Figure 16 shows the match factors as calculated from the mass evaporative detector plotted against crumple and laundry numbers. As was seen in figure 11, there is no strong correlation of the detector with either crumple or laundry numbers. Figure 17 shows the results for the 230 nm UV detector. The correlations are poorer than shown in figure 12, the 230 nm UV results for THF extracts. This is due to the differences in the flow solvent in the two cases. The MEK extracts were run in THF stabilized with BHT. This has significant absorbance at 230 nm, making the resulting signal noisy.

Figures 18 and 19 are for 240 nm and 254 nm respectively. The correlations here are strong for the crumple number, as was the case with the THF extracts. Figure 20 shows the results for the 270 nm detector, and as with the THF extracts, the correlations are poor. In all cases there are no strong correlations of the laundry number with match factors.

The correlations of match factors with crumple numbers seem to be the best when a 254 nm UV detector is used. Many more inks need to be studied representing a wide range of crumple numbers to accurately determine the relationship, but there seems to be real relationship between the size distribution of ink components and the crumple resistance of the printed currency.

#### 3.3.4: Comparisons of Green Inks

A series of green inks of the current formulation were also tested. They were run in the same manner as the black inks extracted with MEK, as described in the previous section. Figures 21 through 25 plot crumple numbers and laundry numbers versus match factors calculated from chromatograms obtained using the mass evaporative detector and 230 nm UV, 240 nm UV, 254 nm UV, and 270 nm UV wavelengths. No correlations seem to be present in these data. As was shown previously in figure 10b, there is simply not a wide enough range of crumple and range of laundry numbers to develop any correlations. All of the inks are virtually the same.

#### 4: Conclusions

Gel permeation chromatography is prone to a variety of hardware problems that effect the results significantly enough to render it impossible to analyze inks from time to time. Replacement pumps, columns, detectors, etc may be necessary to insure continuous operation. More study is necessary of the basic extraction and chromatographic conditions to identify and eliminate any problem areas.

When the chromatographic conditions are optimum, GPC can easily measure batch-to-batch variations in production inks. Changes in the extractible ink components from ink type to ink type and formulation to formulation are significant enough for easy detection. A well maintained GPC would be an important tool in tracking changes when new formulations are introduced.

The retain samples are good representative samples of the materials in the drums. It is unlikely that taking samples from the press during printing would be necessary in any chromatographic quality assurance operation. Similarly, any other tests done at BEP in a timely fashion on the retain samples probably give results closely correlated to those of the drum material.

While there seems to be a correlation between chromatographic results of black inks and crumple numbers, the lack of a large number of ink samples with a wide range of crumple numbers reduces the degree of confidence in such a correlation. Figures 14 and 19 show that 254 nm UV detection yields the most sensitivity. Match factors from green inks show no correlations with crumple or laundry, but the lack of a wide range of crumple and laundry results makes such correlations virtually impossible. It is recommended that investigations in this area be continued. Gel permeation chromatography can be an extremely sensitive method of detecting differences in the resin base of ink formulations. However, before it can be used on a routine basis, the solvent and column packing must be optimized and techniques for stabilizing the resin in solution and on the column must be developed. Once these variables are optimized, additional ink samples should be tested. Retain samples from inks which exhibit poor crumple or laundry resistance should be set aside for such a study because these are of greatest interest. A wide range of such numbers is essential to the success of such a study. References

1. B. J. Bauer, B. Dickens, W. B. Blair; "Chromatographic Examination of Intaglio Inks, Resins and Varnishes", Annual Report FY90, September 30, 1990.

2. for example see J. V. Dawkins, "Size Exclusion Chromatography" in Comprehensive Polymer Science, Colin Booth and Colin Price Eds., Pergamon Press, New York, Volume 1, pages 231-256, 1989.

3. Certain equipment, instrument, or materials are identified in this paper in order to adequately specify the experimental details. Such identification does not imply recommendation by the National Institute of Standards and Technology nor does it imply the materials are necessarily the best available for the purpose.

4. M. Augenstein and M. Stickler, Makromol, Chem., 191, 415-428, 1990.

5. B. J. Bauer, unpublished results.

6. Howard C. Jordi, personal communications.

#### Captions of Figures

1. Normalized MED detector response vs. elution volume (mL) for a black cylinder wipe currency ink extract; jagged line, before upgrade; smooth line, after upgrade.

2. 254 nm UV detector response versus elution volume for three black cylinder wipe currency ink extracts; figure a, unshifted results; figure b, shifted so that polystyrene marker and BHT beaks coincide.

3. 254 nm UV detector response versus elution volume for six black cylinder wipe currency ink extracts; demonstration of unstable baseline.

4. 254 nm UV detector response versus elution volume for a black cylinder wipe currency ink extract injected four times; demonstration of ink extract aging in unstabilized THF.

5. Detector response vs. elution volume for a black cylinder wipe currency ink extract; solid line, 254 nm UV; dashed line, MED; demonstration of occurrence of anomalous early peak.

6. 254 nm UV detector response for four cylinder wipe currency inks; solid line, current black formula 374017K; short dashes, old black formulation 374100J; dots, current green formulation 354033A; long dashes, old green formulation 374017A.

7. 254 nm UV detector response versus elution volume for six black cylinder wipe currency ink extracts; the three pairs of identical are for three different Press-Retain samples.

8. Average match factors between retain-press pairs and all combinations of different black cylinder wipe ink extracts; triangles, retain-press pairs extracted in THF; squares, all combinations extracted in THF; diamonds, retain-press pairs extracted in MEK; circles, all combinations extracted in MEK.

9. 254 nm UV detector response vs. elution volume for cylinder wipe currency ink 67 and 68 extracts; solid lines, THF extracts, dashed lines, MEK extracts; figure a, elution volumes matched at polystyrene marker and matched at BHT/MEK peaks; figure b elution volumes matched at polystyrene marker and matched at main extract peak.

10. Laundry numbers versus crumple numbers for cylinder wipe currency inks; figure a, black inks; figure b, green inks.

11. Crumple or Laundry numbers vs. MED match factors for THF extracts of black cylinder wipe currency ink extracts; figure a, crumple numbers; figure b, laundry numbers.

12. Crumple or Laundry numbers vs. 230 nm UV match factors for THF extracts of black cylinder wipe currency ink extracts; figure a, crumple numbers; figure b, laundry numbers.

13. Crumple or Laundry numbers vs. 240 nm UV match factors for THF extracts of black cylinder wipe currency ink extracts; figure a, crumple numbers; figure b, laundry numbers.

14. Crumple or Laundry numbers vs. 254 nm UV match factors for THF extracts of black cylinder wipe currency ink extracts; figure a, crumple numbers; figure b, laundry numbers.

15. Crumple or Laundry numbers vs. 275 nm UV match factors for THF extracts of black cylinder wipe currency ink extracts; figure a, crumple numbers; figure b, laundry numbers.

16. Crumple or Laundry numbers vs. MED match factors for MEK extracts of black cylinder wipe currency ink extracts; figure a, crumple numbers; figure b, laundry numbers.

17. Crumple or Laundry numbers vs. 230 nm UV match factors for MEK extracts of black cylinder wipe currency ink extracts; figure a, crumple numbers; figure b, laundry numbers.

18. Crumple or Laundry numbers vs. 240 nm UV match factors for MEK extracts of black cylinder wipe currency ink extracts; figure a, crumple numbers; figure b, laundry numbers.

19. Crumple or Laundry numbers vs. 254 nm UV match factors for MEK extracts of black cylinder wipe currency ink extracts; figure a, crumple numbers; figure b, laundry numbers.

20. Crumple or Laundry numbers vs. 275 nm UV match factors for MEK extracts of black cylinder wipe currency ink extracts; figure a, crumple numbers; figure b, laundry numbers.

21. Crumple or Laundry numbers vs. MED match factors for MEK extracts of green cylinder wipe currency ink extracts; figure a, crumple numbers; figure b, laundry numbers.

22. Crumple or Laundry numbers vs. 230 nm UV match factors for MEK extracts of green cylinder wipe currency ink extracts; figure a, crumple numbers; figure b, laundry numbers.

23. Crumple or Laundry numbers vs. 240 nm UV match factors for MEK extracts of green cylinder wipe currency ink extracts; figure a, crumple numbers; figure b, laundry numbers.

24. Crumple or Laundry numbers vs. 254 nm UV match factors for MEK extracts of green cylinder wipe currency ink extracts; figure a, crumple numbers; figure b, laundry numbers.

25. Crumple or Laundry numbers vs. 275 nm UV match factors for MEK extracts of green cylinder wipe currency ink extracts; figure a, crumple numbers; figure b, laundry numbers.

Table I. Description of inks run. Ink#, NIST assigned, ink #.

| Ink# | Formulation        | BEP ID#          | color  | Ink Type | Crump | le/Laundry |
|------|--------------------|------------------|--------|----------|-------|------------|
| 1    | BK - 62 - RCA      |                  | black  | paperwip | e     |            |
| 2    | 374017K            | 2-009-4749       | black  | currency |       |            |
| 3    | 374017K            | 2 - 009 - 4750   | black  | currency |       |            |
| 4    | 374017A            | 2-006-3749       | black  | currency |       |            |
| 5    | 374 <b>01</b> 7K   | 2-009-4750       | blačk  | currency |       |            |
| 6    | G-4717-RCA         |                  | green  |          |       |            |
| 7    | 354033A ·          | 2-009-9262       | green  | currency |       |            |
| 8    | 354100J            | 2-009-8003       | green  | currency |       |            |
| 9    | 354033A            | 2-009-9267       | green  | currency |       |            |
| 10   | 354100J            | 2-009-8006       | green  | currency |       |            |
| 11   | BK3795-3           |                  | black  | paperwip | e     |            |
| 12   | 343186A            |                  | purple | postage  |       |            |
| 13   | 363388A            |                  | brown  | postage  |       |            |
| 14   | 353377A            |                  | green  | nostage  |       |            |
| 15   | 374017K            | 2-008-8007       | black  | currency |       |            |
| 16   | 3740178            | 2 - 0.09 - 0.679 | black  | currency |       |            |
| 17   | 3541001            | 2-009-3505       | green  | currency |       |            |
| 1 8  | 35/1001            | 2-009-3956       | green  | currency |       |            |
| 10   | 37/017             | 2 = 0.09 = 5.000 | black  | currency | / 5   | 5 /        |
| 20   | 374017K            | 2 009 6304       | black  | currency | 4.9   | 5.4        |
| 21   | 3740178            | 2 - 009 - 0094   | black  | currency |       |            |
| 2 2  | 374017K            | 2 - 009 - 0122   | black  | currency |       |            |
| 22   | 3740178            | 2-009-6403       | black  | currency |       |            |
| 2.5  | 3740178            | 2 - 009 - 6409   | black  | currency |       |            |
| 24   | 374017K            | 2 - 009 - 6412   | black  | currency |       |            |
| 25   | 3/401/K<br>27/017K | 2-009-6417       | DIACK  | currency |       |            |
| 20   | 5/401/K            | 2-009-6399       | DIACK  | currency |       |            |
| 27   | SVD-1/81           | 0 0 0 0 2 7 7 2  |        | resin    |       |            |
| 20   |                    | 2-009-3773       |        | postage  |       |            |
| 29   |                    | 2-010-0210       |        | postage  |       |            |
| 30   | 27/0178            | 2-009-7465       |        | postage  | ( )   | 5 0        |
| 31   | 374017K            | 2-009-6435       | black  | currency | 6.0   | 5.0        |
| 32   | 3/401/K            | 2-009-6613       | black  | currency | 6.0   | 5.3        |
| 33   | 374017K            | 2-009-6617       | black  | currency | 6.0   | 4.3        |
| 34   | 374017K            | 2-009-6612       | black  | currency | 6.0   | 4.8        |
| 35   | 374017K            | 2-009-6610       | black  | currency | 5.9   | 5.1        |
| 36   | 374 <b>01</b> 7K   | 2-009-6624       | black  | currency | 6.0   | 4.4        |
| 37   | 374017K            | 2 - 009 - 6628   | black  | currency | 5.3   | 5.0        |
| 38   | 374017K            | 2 - 009 - 6634   | black  | currency | 6.0   | 4.7        |
| 39   | 374017K            | 2 - 009 - 6620   | black  | currency | 6.0   | 4.0        |
| 40   | 374017K            | 2 - 009 - 6638   | black  | currency |       |            |
| 41   | 374017K            | 2 - 009 - 6635   | black  | currency | 6.0   | 5.2        |
| 42   | 374017K            | 2-009-6912       | black  | currency | 6.0   | 5.0        |
| 43   | 374017K            | 2-009-6926       | black  | currency | 5.5   | 4.3        |
| 44   | 374017K            | 2-009-7010       | black  | currency | 6.0   | 5.3        |
| 45   | 354033A            | 2 - 009 - 9253   | green  | currency | 5.8   | 5.9        |
| 46   | 354033A            | 2-009-9265       | green  | currency |       |            |
| 47   | 354033A            | 2-009-9327       | green  | currency | 6.0   | 5.3        |
| 48   | 354033A            | 2-009-9329       | green  | currency | 6.0   | 5.6        |
| 49   | 354033A            | 2-009-9330       | green  | currency | 6.0   | 5.5        |
| 50   | 354033A            | 2-009-9952       | green  | currency |       |            |

| 51       | 374017K          | 2-009-6994          | black | currency  | 6.0         | 4.6 |
|----------|------------------|---------------------|-------|-----------|-------------|-----|
| 52       | 374017K          | 2 - 009 - 6995      | black | currency  | 6.0         | 4.6 |
| 53       | 374017K          | 2-009-7032          | black | currency  | 5.8         | 5.0 |
| 54       | 374017K          | 2-009-6124          | black | currency  |             |     |
| 5 5      | 374017K          | 2-009-6401          | black | currency  | 5.3         | 5.4 |
| 56       | 374017K          | 2-009-6433          | black | currency  | 6.0         | 5.2 |
| 57       | 374017K          | 2-009-7015          | black | currency  | 6.0         | 4.9 |
| 58       | 374017K          | 2-009-7526          | black | currency  | 6.0         | 4.3 |
| 59       | 374017K          | 2-009-7525          | black | currency  | 4.8         | 4.6 |
| 60       | 374017K          | 2-009-7723          | black | currency  | 6.0         | 4.5 |
| 61       | 374017K          | 2-009-7366          | black | cur-press | 5.4         | 4.0 |
| 62       | 374017K          | 2-009-7366          | black | currency  | 5.4         | 4.0 |
| 63       | 374017K          | 2-009-7739          | black | cur-press |             |     |
| 64       | 374017K          | 2 - 009 - 7739      | black | currency  |             |     |
| 65       | 374017K          | 2 - 009 - 7741      | black | cur-press |             |     |
| 66       | 374017K          | 2 - 009 - 7741      | black | currency  |             |     |
| 67       | 374017K          | 2-009-7754          | black | cur-press | 28          | 5 1 |
| 68       | 374017K          | 2-009-7754          | black | currency  | 2 8         | 5 1 |
| 69       | 3740178          | 2 - 0.09 - 7.842    | black | cur-press | 55          | 5 4 |
| 70       | 3740178          | 2 - 0.09 - 7.842    | black | currency  | 5 5         | 5 4 |
| 71       | 3740178          | 2 - 0.09 - 7.846    | black | cur-press | 5.5         | 2.4 |
| 72       | 374017K          | 2 - 0.09 - 7.846    | black | currency  |             |     |
| 73       | 3740178          | 2 = 0.09 = 81.47    | black | cur-press |             |     |
| 7.5      | 3740178          | 2 - 0.09 - 81.47    | black | cur-press |             |     |
| 75       | 3740178          | 2 - 009 - 3147      | black | currency  | 6 0         | 5 / |
| 76       | 3740178          | 2 - 009 - 7748      | black | cur-press | 6.0         | 5 / |
| 70       | 3740178          | 2-009-7748          | black | currency  | 0.0<br>1. C | 7.4 |
| 79       | 3740178          | 2 0 0 9 7 8 7 7     | black | cur-press | 4.0         | 4.5 |
| 70       | 3740178          | 2 009 7877          | black | currency  | 4.0         | 4.5 |
| 80       | 3740178          | 2-009-8128          | black | cur-press | 6.0         | 4.5 |
| 80       | 3740178          | 2 000 8120          | black | currency  | 0.0         | 4.5 |
| 01       | 2740178          | 2-009-8133          | black | cur-press |             |     |
| 02       | 3740176          | 2-009-8133          | black | currency  |             |     |
| 0.0      | 3740178          | 2-009-6124          | black | currency  |             |     |
| 04<br>05 | 374017K          | 2-009-6401          | DIACK | currency  |             |     |
| 85       | 3/401/K          | 2-009-6433          | black | currency  |             |     |
| 80       | 374017K          | 2-009-6994          | black | currency  |             |     |
| 87       | 3/401/K          | 2-009-6995          | black | currency  |             |     |
| 88       | 3/401/K          | 2-009-7015          | black | currency  |             |     |
| 89       | 3/401/K          | 2-009-7032          | black | currency  |             |     |
| 90       | 3/401/K          | 2-009-7525          | black | currency  |             |     |
| 91       | 3/401/K          | 2-009-7526          | black | currency  |             |     |
| 92       | 3/401/K          | 2-009-7723          | black | currency  |             |     |
| 93       | 374017K          | 2 - 009 - 8162      | black | cur-press | 6.0         | 5.0 |
| 94       | 374017K          | 2 - 009 - 8500      | black | cur-press | 5.8         | 4.7 |
| 95       | 374 <b>0</b> 17K | 2 - 009 - 8517      | black | cur-press | 6.0         | 4.7 |
| 96       | 354033A          | 2 - 009 - 9256      | green | currency  |             |     |
| 97       | 354033A          | 2 - 0 0 9 - 9 2 4 8 | green | currency  | 5.8         | 5.5 |
| 98       | 354033A          | 2-009-9361          | green | currency  | 6.0         | 6.0 |
| 99       | 354033A          | 2 - 009 - 9412      | green | currency  | 6.0         | 5.9 |
| 100      | 354033A          | 2-009-9440          | green | currency  | 6.0         | 6.0 |
| 101      | 354033A          | 2 - 009 - 9559      | green | currency  | 6.0         | 5.8 |
| 102      | 354033A          | 2 - 009 - 9835      | green | currency  | 6.0         | 5.8 |
| 103      | 354033A          | 2 - 009 - 9847      | green | currency  | 6.0         | 5.9 |
| 104      | 354033A          | 2-009-9954          | green | currency  | 5.9         | 5.6 |

| 105   | 354033A          | 2-009-9979          | green   | currency | 6.0 | 5.7 |
|-------|------------------|---------------------|---------|----------|-----|-----|
| 106   | 354033A          | 2-010-1137          | green   | currency |     |     |
| 107   | 354033A          | 2-010-1138          | green   | currency |     |     |
| 108   | 354033A          | 2-010-1293          | green ' | currency |     |     |
| 109   | 374017K          | 2-009-6599          | black   | currency | 5.4 | 5.2 |
| 110   | 374017K          | 2-009-6600          | black   | currency | 6.0 | 5.6 |
| 111   | 374017K          | 2-009-7004          | black   | currency | 5.8 | 4.8 |
| 112   | 374017K          | 2-009-7375          | black   | currency | 5.8 | 4.1 |
| 113   | 374017K          | 2-009-7385          | black   | currency | 6.0 | 4.4 |
| 114   | 374017K          | 2 - 0 0 9 - 7 7 5 8 | black   | currency | 6.0 | 4.3 |
| 115   | 374017K          | 2 - 0 0 9 - 7 8 4 7 | black   | currency | 5.8 | 5.0 |
| 116   | 374017K          | 2-009-8144          | black   | currency |     |     |
| 117 . | 374017K          | 2-009-8165          | black   | currency |     |     |
| 118   | 374017K          | 2-009-6433          | black   | currency |     |     |
| 119   | 374017K          | 2-009-6994          | black   | currency |     |     |
| 120   | 374017K          | 2-009-6995          | black   | currency |     |     |
| 121   | 374017K          | 2-009-7015          | black   | currency |     |     |
| 122   | 374017K          | 2-009-7366          | black   | currency |     |     |
| 123   | 374017K          | 2-009-8147          | black   | currency | 6.0 | 5.2 |
| 124   | 354033A          | 2-009-0690          | green   | currency | 5.8 | 5.7 |
| 125   | 354033A          | 2-010-0733          | green   | currency | 6.0 | 5.6 |
| 126   | 3540 <b>33</b> A | 2-010-0907          | green   | currency | 5.8 | 4.9 |
| 127   | 354033A          | 2 - 0 1 0 - 0 9 1 3 | green   | currency | 6.0 | 5.0 |
| 128   | 354033A          | 2 - 0 1 0 - 1 2 9 4 | green   | currency | 5.5 | 5.6 |
| 129   | 354033A          | 2 - 010 - 1406      | green   | currency | 5.5 | 5.0 |
| 130   | 354033A          | 2 - 010 - 1427      | green   | currency | 5.8 | 5.2 |
| 131   | 354033A          | 2 - 0 1 0 - 1 6 8 2 | green   | currency | 5.5 | 5.8 |
| 132   | 354033A .        | 2 - 0 1 0 - 3 4 0 4 | green   | currency | 6.0 | 5.2 |
| 133   | 354033A ·        | 2-010-4155          | green   | currency | 6.0 | 5.4 |
| 134   | 354033A          | 2 - 0 1 0 - 4 1 6 8 | green   | currency | 5.4 | 5.5 |
| 135   | 354033A          | 2-009-9361          | green   | currency |     |     |
| 136   | 354033A          | 2-009-9424          | green   | currency | 5.5 | 5.9 |
| 137   | 354033A          | 2 - 009 - 9440      | green   | currency |     |     |
| 138   | 3540 <b>33</b> A | 2 - 009 - 9585      | green   | currency | 5.8 | 5.6 |
| 139   | 354033A          | 2-009-9550          | green   | currency | 6.0 | 5.8 |

Table II. Chromatographic conditions of ink extract runs. SEC#, NIST GPC identification; Sample, NIST ink # or description; Column, 1 for old column or 2 for replacement column; BHT/flow, flow solvent; BHT/ext, extraction solvent; Rerun of/ old samp, rerun of aged sample; Isco, replacement pump, MED/upg, upgrade of MED detector; 2nd UV, use of a second UV detector at 254 nm.

| SEC#  | Sample           | Column | BHT<br>flow | BHT<br>ext | Rerun of<br>old samp | Isco | MED<br>upg | 2nd U |
|-------|------------------|--------|-------------|------------|----------------------|------|------------|-------|
| 4670  | blank            | - 1    | _ ·         | -          | -                    | -    | • _        | -     |
| 4671  | 1                | 1      | -           | -          | -                    | -    | -          | -     |
| 4672  | 1                | 1      | -           | -          | -                    | -    | -          | -     |
| 4673  | 1                | 1      | -           | -          | -                    | -    | -          | -     |
| 4674  | 1                | 1      | -           | -          | -                    | -    | -          | -     |
| 4675  | 2                | 1      | -           | -          | -                    | -    | -          |       |
| 4676  | 2                | 1      | -           | -          | -                    | -    | -          | -     |
| 4677  | 2                | 1      | -           | -          | -                    | -    | -          | -     |
| 4678  | 2                | 1      | -           | -          | -                    | -    | -          | -     |
| 4679  | 3                | 1      | -           | -          | -                    | -    | -          | _     |
| 4680  | 3                | 1      | -           | -          | -                    | -    | -          | -     |
| 4681  | 3                | 1      | -           | -          | -                    | -    | -          | -     |
| 4682  | 3                | 1      | -           | -          | -                    | -    | -          | -     |
| 4683  | 4                | 1      | -           | -          | -                    | -    | -          | -     |
| 4684  | 4                | 1      | -           | -          | -                    | -    | -          | -     |
| 4685  | 4                | 1      | -           | -          | -                    | -    | -          | -     |
| 4686  | 4                | 1      | -           | -          | -                    | -    | -          | -     |
| 4687. | 5.               | 1      | -           | - '        | 8                    | -    | -          | -     |
| 4688  | 5                | 1      |             | -          | -                    | -    | -          | -     |
| 4689  | 5                | 1      | -           | -          | -                    | -    | -          | -     |
| 4690  | 5                | 1      | -           | -          | -                    | -    | -          | -     |
| 4691  | 6                | 1      | -           | -          | -                    | -    | -          | -     |
| 4692  | 6                | 1      | -           | -          | -                    | -    | -          | -     |
| 4693  | 6                | 1      | -           | -          | -                    | -    | -          | -     |
| 4694  | 6                | 1      | -           | -          | -                    | -    | -          | -     |
| 4695  | /                | 1      | -           | •          | -                    | -    | -          | -     |
| 4696  | /                | 1      | -           | -          | -                    | -    | -          | -     |
| 4697  | /                | 1      | -           |            | -                    | -    | -          | •     |
| 4090  | /<br>DC strandau | 1<br>1 | ~           | -          | -                    | -    | -          | -     |
| 4099  | o standar        |        | -           | -          | -                    | -    | -          | -     |
| 4700  | 8                | 1      | -           | -          | -                    | -    | -          | -     |
| 4701  | 8                | 1      | -           | -          | -                    | -    | -          | -     |
| 4702  | 8                | 1      | -           | -          | -                    | -    | -          | -     |
| 4705  | 9                | 1      | -           | -          | -                    | -    | -          | -     |
| 4705  | 9                | 1      | -           | _          | -                    | -    | -          | -     |
| 4706  | 9                | 1      | -           | _          | -                    | -    | -          | -     |
| 4700  | 9                | 1      | -           | -          | -                    | -    | -          | -     |
| 4708  | 10               | 1      | -           | -          | -                    | -    | -          | _     |
| 4709  | 10               | 1      | -           | -          | _                    | -    | _          | _     |
| 4710  | 10               | 1      | -           | -          | -                    | -    | _          | -     |
| 4711  | 10               | 1      | -           | -          | -                    | -    | _          | -     |
| 4712  | 11               | 1      | -           | -          | -                    | -    | -          | -     |
| 4713  | 11               | 1      | -           | -          | -                    | -    | -          | -     |
|       |                  |        |             |            |                      |      |            |       |

| 4714   | 11           | 1 | - | -   | - | - | - | - |
|--------|--------------|---|---|-----|---|---|---|---|
| 4715   | 11           | 1 | - | -   | - | - | - | - |
| 4716   | 12           | 1 | - | -   | - | - | - | - |
| 4717   | 12           | 1 | - | -   | - | - | - | - |
| 4718   | 12           | 1 | - |     | - | - | - | - |
| 4719   | 12           | 1 | - | -   | - | - | - | - |
| 4720   | 13           | 1 | - | -   | - | - | - |   |
| 4720   | 13           | 1 | - | -   | - | _ | _ |   |
| 4721   | 13           | 1 | _ | _   | _ | _ | _ |   |
| 4722   | 12           | 1 |   | -   | _ | - | - | - |
| 4725   | 1.5          | 1 | _ | -   | _ | - |   | - |
| 4/24 . | 14           | 1 |   | -   | - | - | - | - |
| 4725   | 14           | 1 | - | -   | - | - | - | - |
| 4/26 - | 14           | 1 | - | -   | - | - | - | - |
| 4/2/   | 14           | 1 | - | -   | - | - | - | - |
| 4/34   | blank        | 1 | - | -   | - | - | - | - |
| 4735   | 1            | 1 | - | -   | - | - | - | - |
| 4736   | 2            | 1 | - | -   | - | - | - | - |
| 4737   | 3            | 1 | - | -   | - | - | - | - |
| 4738   | 4            | 1 | - | -   | - | - | - | - |
| 4739   | 5            | 1 | - | -   | - | - | - | - |
| 4740   | 6            | 1 | - | -   | - | - | - | - |
| 4741   | 7            | 1 | - | -   | - | - | - | - |
| 4742   | PS standards | 1 | - | -   | - | - | - | - |
| 4743   | 8            | 1 | - | -   | - | - | - | - |
| 4744   | 9            | 1 | - | -   | - | - | - | - |
| 4745   | 10           | 1 | - | -   | - | - | - | - |
| 4746   | 11           | 1 | - | -   | - | - | - | - |
| 4747   | 12           | 1 | - | -   | - | _ | - | - |
| 4748   | 13           | 1 | - | _   | _ | _ | _ | - |
| 4749   | 14           | 1 | - | -   | _ | _ | - | _ |
| 4750   | hlank        | 1 |   | _   | _ | _ | _ | - |
| 4751   |              | 1 | _ | _   | _ | _ | _ | - |
| 4752   | 2            | 1 | _ | _   | _ | _ | _ |   |
| 4752   | 2            | 1 | - | -   | - | - | - | _ |
| 4755   | 3            | 1 | - | -   | - | - | - | - |
| 4/)4   | 4            | 1 | - | - 、 | - | ~ | - | - |
| 4/35   | 5            | 1 | - | -   | - | - | - | - |
| 4/50   | 6            | 1 | - | -   | - | - | - | - |
| 4/5/   | /            | 1 | - | -   | - | - | - | - |
| 4/58   | PS standards | 1 | - | -   | - | - | - | - |
| 4/59   | 8            | 1 | - | -   | - | - | - | - |
| 4760   | 9            | 1 | - | -   | - | - | - | - |
| 4761   | 10           | 1 | - | -   | - | - | - | - |
| 4762   | 11           | 1 | - | -   | - | - | - | - |
| 4763   | 12           | 1 | - | -   | - | - | - | - |
| 4764   | 13           | 1 | - | -   | - | - | - | - |
| 4765   | 14           | 1 | - | -   | - | - | - | - |
| 4795   | blank        | 1 | - | -   | - | - | - | - |
| 4796   | 15           | 1 | - | -   | - | - | - | - |
| 4797   | 15           | 1 | - | -   | - | - | - | - |
| 4798   | 15           | 1 | - | -   | - | - | - | - |
| 4799   | 15           | 1 | - | -   | - |   | - |   |
| 4800   | 15           | 1 | - | -   |   | - | - | - |
| 4801   | 16           | 1 | - | _   | - | - |   | - |
| 4802   | 16           | 1 | - | -   | - | - | - | - |

| 4803         | 16  |           | 1 | -   | -    | - | - | - | -   |
|--------------|-----|-----------|---|-----|------|---|---|---|-----|
| 4804         | 16  |           | 1 | -   | -    | - | - | - | -   |
| 4805         | 16  |           | 1 | -   | -    | - | - | - | -   |
| 4806         | 17  |           | 1 | **  | -    | - | - | - | -   |
| 4807         | 17  |           | 1 | -   | - '- | - | - | - | -   |
| 4808         | 17  |           | 1 | -   | -    | - | - | - | -   |
| 4809         | 17  |           | 1 | -   | -    | - | - | - | -   |
| 4810         | 17  |           | 1 | -   | -    | - | - | - | -   |
| 4811         | 18  |           | 1 | -   | -    | - | - | - | -   |
| 4812         | 18  |           | 1 | -   | -    |   | - | - | -   |
| 4813         | 18  |           | 1 | • · | _    | - |   | - | -   |
| 4814         | 1.8 |           | 1 | -   | -    | - | - | _ | -   |
| 4815         | 18  |           | 1 | -   | -    | - | - | - | -   |
| 4816         | 19  |           | 1 | -   | -    | - | - | - | -   |
| 4817         | 19  |           | 1 | -   | -    | - | - | - | -   |
| 4818         | 19  |           | 1 | -   | -    | - | - | - | -   |
| 4819         | 19  |           | 1 | -   | -    | - | - | - | -   |
| 4820         | 19  |           | 1 | -   | -    | - | - | - | -   |
| 4821         | 20  |           | 1 | -   | -    | - | - | - | -   |
| 4822         | 20  |           | 1 | -   | -    | - | - | - | -   |
| 4823         | 20  |           | 1 | -   | -    | - | - | - | -   |
| 4824         | 20  |           | 1 | -   | -    | - | - | - | -   |
| 4825         | 20  |           | 1 | -   | -    | - | - | - | -   |
| 4826         | ΡS  | standards | 1 | -   | -    | - | - | - | -   |
| 4827         | 21  |           | 1 | -   | -    | - | - | - | -   |
| 4828         | 21  |           | 1 | -   | -    | - | - | - | -   |
| 482 <b>9</b> | 21  |           | 1 | -   | -    | - | - | - | -   |
| 4830         | 21  |           | 1 | -   | -    | - | - | - | -   |
| 4831         | 21  |           | 1 | -   | -    | - | - | - | -   |
| 4832         | 22  |           | 1 | -   | -    | - | - | - | -   |
| 4833         | 22  |           | 1 | -   |      | - | - | - | -   |
| 4834         | 22  |           | 1 | -   | -    | - | - | - | -   |
| 4835         | 22  |           | 1 | -   | -    | - | - | - | -   |
| 4836         | 2 2 |           | 1 | -   | -    | - | - | - | -   |
| 4837         | 23  |           | 1 | -   | -    | - | - | - | -   |
| 4838         | 23  |           | 1 | -   | -    | - | - | - | -   |
| 4839         | 23  |           | 1 | -   | -    | - | - | - | -   |
| 4840         | 23  |           | 1 | -   | -    | - | - | - | -   |
| 4841         | 23  |           | 1 | -   | -    | - | - | - | -   |
| 4842         | 24  |           | 1 | -   | -    | - | • | - | -   |
| 4843         | 24  |           | 1 | -   | -    | - | - | - | -   |
| 4844         | 24  |           | 1 | -   | -    | - | - | - | -   |
| 4845         | 24  |           | 1 | -   | -    | - | - | - | -   |
| 4846         | 24  |           | 1 | -   | -    | - | - | - | -   |
| 4847         | 25  |           | 1 | -   | -    | - | - | - | -   |
| 4848         | 2 5 |           | 1 | -   | -    | - | - | - | -   |
| 484 <b>9</b> | 25  |           | 1 | -   | -    | - | - | - | , – |
| 4850         | 25  |           | 1 | -   | -    | - | - | - | -   |
| 4851         | 2 5 |           | 1 | -   | -    | - | - | - | -   |
| 4852         | 26  |           | 1 | -   |      | - | - | - | -   |
| 4853         | 26  |           | 1 | -   | -    | - | - | - | -   |
| 4854         | 26  |           | 1 | -   | -    | - | - | - | -   |
| 4855         | 26  |           | 1 | -   | -    | - | - | - | -   |
| 4856         | 26  |           | 1 | -   |      | - | - | - | -   |

| 4857               | 27           | 1   | - | - | - | - | - |
|--------------------|--------------|-----|---|---|---|---|---|
| 4858               | PS standards | 1   | - | - | - | - | - |
| 4859               | blank        | 1   | - | - | - | - | - |
| 4860               | 15           | 1   | - |   | - | - | - |
| 4861               | 16           | 1   | - | ÷ | - | - | - |
| 4862               | 17           | 1   | - | - | - | - | - |
| 4863               | 18           | 1   | - | - | - | - | - |
| 4864               | 19           | 1   | - | - | - | - | - |
| 4865               | 20           | 1   | - | - | - | - | - |
| 4866               | PS standards | 1   | - | - | - | - | - |
| 4867               | 21           | 1 · |   | - | - | - |   |
| 4868               | 22           | 1   | - | - | - | - | - |
| 4869               | 2 3          | 1   | - | - | - | - | - |
| 4870               | 24           | 1   | - | - | - | - | - |
| 4871               | 2 5          | 1   | - | - | - | - | - |
| 4872               | 26           | 1   | - | - | - | - | - |
| 4873               | 27           | 1   | - | - | - | - | - |
| 4874               | PS standards | 1   | - | - | - | - | - |
| 4876               | blank        | 1   | - | - | - | - | - |
| 4877               | 28           | 1   | - | - | - | - | - |
| 4878               | 28           | 1   | - | - | - | - | - |
| 4879               | 28           | 1   | - | - | - | - | - |
| 4880               | 28           | 1   | - | - | - | - | - |
| 4881               | 28           | 1   | - | - | - | - | - |
| 4882               | 29           | 1   | - | - | - | - | - |
| 4883               | 29           | 1   | - | - | - | - | - |
| 4884               | 29           | 1   | - | - | - | - | - |
| 4885               | 29           | 1   | - | - | - | - | - |
| 4886               | 29           | 1   | - | - | - | - | - |
| 4887               | 30           | 1   | - | - | - | - | - |
| 4888               | 30           | 1   | - | - | - | - | - |
| 4889               | 30           | 1   | - | - | - | - | - |
| 4890               | 30           | 1   | - | - | - | - | - |
| 4891               | 30           | 1   | - | - | - | - | - |
| 4892               | PS standards | 1   | - | - | - | - | - |
| 4978               | blank        | 1   | - | - | - | - | - |
| 4979               | 31           | 1   | - | - | - | - | - |
| 4980               | 31           | 1   | - | - | - | - | - |
| 4981               | 31           | 1   | - | - | - | - | - |
| 4982               | 31           | 1   | - | - | - | - | - |
| 4983               | 32           | 1   | - | - | - | - | - |
| 4984               | 32           | 1 . | - | - | - | - | - |
| 4985               | 32           | 1   | - | - | - | - | - |
| 4986               | 32           | 1   | - | - | - | - | - |
| 4987               | 33           | 1   | - | - | - | - | - |
| 4988               | 22           | 1   | - | - | - | - | - |
| 4707               | 23           | 1   | - | _ |   |   | - |
| 4990               | 37           | 1   | _ | _ | _ |   | - |
| 4771<br>/ 000      | 34           | 1   |   |   | _ |   |   |
| → > > ∠<br>/ Q Q 3 | 34           | 1   | _ | _ |   |   |   |
| 4994               | 3/1          | 1   | _ | - |   |   | - |
| 4995               | 35           | 1   | _ | - | - | _ |   |
| 4996               | 35           | 1   | - | - | - | - | - |

,

| 4997 | 3 5          | 1 | - | - | -   | - | - | -              |
|------|--------------|---|---|---|-----|---|---|----------------|
| 4998 | 3 5          | 1 | - | - | -   | - | - | -              |
| 4999 | 36           | 1 | - | - | -   | - | - | -              |
| 5000 | 36           | 1 | - | - | -   | - | - | -              |
| 5001 | 36           | 1 | - | - | -   | - | - | -              |
| 5002 | 36           | 1 | - | - | -   | - | - | -              |
| 5003 | 37           | 1 | - | - | -   | - | - | -              |
| 5004 | 37           | 1 | - | - | -   | - | - | -              |
| 5005 | 37           | 1 | - | - | -   | - | - | -              |
| 5006 | 37           | 1 | - | - | -   | - | - | -              |
| 5007 | 38           | 1 | - | - | - 1 | - | - | <del>.</del> . |
| 5008 | 38           | 1 | - | - | -   | - | - | -              |
| 5009 | 38           | 1 | - | - | -   | - | - | -              |
| 5010 | 38           | 1 | - | - | -   | - | - | -              |
| 5011 | 39           | 1 | - | - | -   | - | - | -              |
| 5012 | 39           | 1 | - | - | -   | - | - | -              |
| 5013 | 39           | 1 | - | - | -   | - | - | -              |
| 5014 | 39           | 1 | - | - | -   | - | - | -              |
| 5015 | 40           | 1 | - | - | -   | - | - | -              |
| 5016 | 40           | 1 | - | - | -   | - | - | -              |
| 5017 | 40           | 1 | - | - | -   | - | - | -              |
| 5018 | 40           | 1 | - | - | -   | - | - | -              |
| 5019 | 41           | 1 | _ | _ | -   | - | - | -              |
| 5020 | 41<br>/ 1    | 1 | _ | - | -   | - | - | -              |
| 5020 | 41           | 1 | - | - | -   | - | - | -              |
| 5021 | 41           | 1 | _ | - | _   | _ | _ | -              |
| 5022 | 41           | 1 | - | - | -   | - | - | _              |
| 5025 | 42           | 1 | - | - | -   | - | - | -              |
| 5025 | 42           | 1 | - | - | -   | - | - | -              |
| 5025 | 42           | 1 | - | - | -   | - | - | -              |
| 5020 | 42           | 1 | - | - | -   | - | - | -              |
| 5027 | 43           | 1 | - | - | -   | - | - | -              |
| 5028 | 43           | 1 | - | - | -   | - | - | -              |
| 5029 | 43           | 1 | - | - | -   | - | - | -              |
| 5030 | 43           | 1 | - | - | -   | - | - | -              |
| 5031 | 44           | 1 | - | - | -   | - | - | -              |
| 5032 | 44           | 1 | - | - | -   | - | - | -              |
| 5033 | 44           | 1 | - | - | -   | - | - | -              |
| 5034 | 44           | 1 | - | - | -   | - | - | -              |
| 5035 | PS standards | 1 | - | - | -   | - | - |                |
| 5036 | blank        | 1 | - | - | -   | - | - | -              |
| 5037 | 31           | 1 | - | - | -   | - | - | -              |
| 5038 | 32           | 1 | - | - | -   | - | - | *              |
| 5039 | 33           | 1 | - | - | -   | - | - | -              |
| 5040 | 34           | 1 | - | - | -   |   | - | -              |
| 5041 | 3 5          | 1 | - | - | -   | - | - | -              |
| 5042 | 36           | 1 | - | - | -   | - | - | -              |
| 5043 | 37           | 1 | - | - | -   | - | - | -              |
| 5044 | 38           | 1 | - | - | -   | - | - | -              |
| 5045 | 39           | 1 | - | - | -   | - | - | -              |
| 5046 | 40           | 1 | - | - | -   | - | - | -              |
| 5047 | 41           | 1 | - | - | -   | - | - | -              |
| 5048 | 42           | 1 | - | - | -   | - | - | -              |
| 5049 | 43           | 1 | - | - | -   | - | - | -              |
| 5050 | 44           | 1 | - | - | -   | - | - | -              |

| 5051 | PS standards | 1 | - | - | - | - | -   |
|------|--------------|---|---|---|---|---|-----|
| 5121 | PS standards | 1 | - | - | - | - | +   |
| 5122 | 31           | 1 | - | - | - | - | +   |
| 5123 | 32           | 1 | - | - | - | - | +   |
| 5124 | 33           | 1 | - | - | - | - | +   |
| 5125 | 34           | 1 | - | - | - | - | +   |
| 5126 | 3 5          | 1 | - | - | - | - | +   |
| 5127 | 36           | 1 | - | - | - | - | +   |
| 5128 | 37           | 1 | - | - | - | - | +   |
| 5129 | 38           | 1 | - | - | - | - | +   |
| 5130 | 39 .         | 1 | - |   | - | - | - + |
| 5131 | 40           | 1 | - | - | - | - | +   |
| 5132 | 41           | 1 | - | - | - | - | +   |
| 5133 | 42           | 1 | - | - | - | - | +   |
| 5134 | 43           | 1 | - | - | - | - | +   |
| 5135 | 44           | 1 | - | - | - | - | +   |
| 5136 | blank        | 1 | - | - | - | - | +   |
| 5038 | PS standards | 1 | - | - | - | - | +   |
| 5039 | 31           | 1 | - | - | - | - | +   |
| 5040 | 31           | 1 | - | - | - | - | +   |
| 5041 | 32           | 1 | - | - | - | - | +   |
| 5042 | 32           | 1 | - | - | - | - | +   |
| 5043 | 33           | 1 | - | - | - | - | +   |
| 5044 | 33           | 1 | - | - | - | - | +   |
| 5045 | 34           | 1 | - | - | - | - | +   |
| 5046 | 34           | 1 | - | - | - | - | +   |
| 5047 | 3 5          | 1 | - | - | - | - | +   |
| 5048 | 35           | 1 | - | - | - | - | +   |
| 5049 | 36           | 1 | - | - | - | - | +   |
| 5050 | 36           | 1 | - | - | - | - | +   |
| 5051 | 37           | 1 | - | - | - | - | +   |
| 5052 | 37           | 1 | - | - | - | - | +   |
| 5053 | 38           | 1 | - | - | - | - | +   |
| 5054 | 38           | 1 | - | - | - | - | +   |
| 5055 | 39           | 1 | - | - | - | - | +   |
| 5056 | 39           | 1 | - | - | - | - | +   |
| 5057 | 40           | 1 | - | - | - | - | +   |
| 5058 | 40           | 1 | - | - | - | - | +   |
| 5059 | 41           | 1 | - | - | - | - | +   |
| 5060 | 41           | 1 | - | - | - | - | +   |
| 5061 | 42           | 1 | - | - | - | - | +   |
| 5062 | 42           | 1 | - | - | - | - | +   |
| 5063 | 43           | 1 | - | 4 | _ | · | +   |
| 5064 | 43           | 1 | - | - | - | - | +   |
| 5065 | 44           | 1 | - | - | _ | - | +   |
| 5066 | 44           | 1 | - | - | - | _ | +   |
| 5067 | 45           | 1 | _ | - | _ | _ | +   |
| 5068 | 45           | 1 | _ | - | _ | - | +   |
| 5069 | 46           | 1 | - | - | - | - | +   |
| 5070 | 46           | 1 | - | - | - | - | +   |
| 5071 | 47           | 1 | - | - |   | - | +   |
| 5072 | 47           | 1 | _ | - | _ |   | +   |
| 5073 | 48           | 1 |   | - | _ | _ | +   |
| 5074 | 4.8          | 1 |   |   |   | - |     |

| 5075<br>5076<br>5077<br>5078<br>5079<br>5080<br>5081 | 4 9<br>4 9<br>5 0<br>5 1<br>5 1<br>5 2<br>5 2<br>5 2 | 1<br>1<br>1<br>1<br>1 | -<br>-<br>-<br>- | -<br>-<br>- | -      | - | +<br>+<br>+ | -   |
|------------------------------------------------------|------------------------------------------------------|-----------------------|------------------|-------------|--------|---|-------------|-----|
| 5076<br>5077<br>5078<br>5079<br>5080<br>5081         | 4 9<br>5 0<br>5 1<br>5 1<br>5 2<br>5 2               | 1<br>1<br>1<br>1      | -<br>-<br>-      | -<br>-      | -<br>- | - | ++          | -   |
| 5077<br>5078<br>5079<br>5080<br>5081                 | 50<br>50<br>51<br>51<br>52<br>52                     | 1<br>1<br>1<br>1      | -<br>-           | -           | -      | - | +           | -   |
| 5078<br>5079<br>5080<br>5081                         | 50<br>51<br>51<br>52<br>52                           | 1<br>1<br>1           | -                | -           | -      | _ |             |     |
| 5079<br>5080<br>5081                                 | 51<br>51<br>52<br>52                                 | 1                     | -                |             |        | - | +           | -   |
| 5080<br>5081                                         | 5 1<br>5 2<br>5 2                                    | 1                     |                  | -           | · _    | - | +           | -   |
| 5081                                                 | 5 2<br>5 2                                           |                       | -                | -           | -      | - | +           | _   |
| 6000                                                 | 52                                                   | 1                     | -                | -           | -      | - | +           | _   |
| 5082                                                 |                                                      | 1                     | -                |             | _      | _ | +           | -   |
| 5083                                                 | 53                                                   | 1                     | -                | -           | _      | - | +           | -   |
| 5084                                                 | 53                                                   | 1                     | _                | -           | ÷ _    | _ | +           | -   |
| 5085                                                 | 54                                                   | 1                     | -                | -           | -      | _ |             | -   |
| 5086                                                 | 54                                                   | 1                     | _                | _           | -      | - | +           | -   |
| 5087                                                 | 55                                                   | 1                     | _                | _           | _      | _ | ,<br>+      | -   |
| 15088                                                | 55                                                   | 1                     | _                | _           |        | _ |             | -   |
| 5089                                                 | 56                                                   | 1                     | -                | -           | -      | - | +           | -   |
| 5090                                                 | 56                                                   | 1                     | -                | -           | -      | - | +           | -   |
| 5091                                                 | 57                                                   | 1                     | -                | -           | -      | - | +           | -   |
| 5092                                                 | 57                                                   | 1                     | -                | -           | -      | - | +           | -   |
| 5092                                                 | 50                                                   | 1                     | -                | -           | -      | - | +           | -   |
| 5095                                                 | 20                                                   | 1                     | -                | -           | -      | - | +           | -   |
| 5005                                                 | 20                                                   | 1                     | -                | -           | -      | - | +           | -   |
| 5095                                                 | 59                                                   | 1                     | -                | -           | -      | - | +           | -   |
| 5096                                                 | 59                                                   | 1                     | -                | -           | -      | - | +           | -   |
| 5097                                                 | 60                                                   | 1                     |                  | -           | -      | - | +           | -   |
| 5098                                                 | 60                                                   | 1                     | -                | -           | -      | - | +           | -   |
| 5099                                                 | 61                                                   | 1                     | -                | -           | -      |   | +           | -   |
| 5100                                                 | 61                                                   | 1                     | -                | -           | -      | - | +           | -   |
| 5101                                                 | 62                                                   | 1                     | -                | -           | -      | - | +           | *** |
| 5102                                                 | 62                                                   | 1                     | -                | -           | -      | - | +           | -   |
| 5103                                                 | 63                                                   | 1                     | -                | -           | -      | - | +           | -   |
| 5104                                                 | 63                                                   | 1                     | -                | -           | -      | - | +           | -   |
| 5105                                                 | 64                                                   | 1                     | -                | -           | -      | - | +           | -   |
| 5106                                                 | 64                                                   | 1                     | -                | -           | -      | - | +           | -   |
| 5107                                                 | 65                                                   | 1                     | -                | -           | -      | - | +           | -   |
| 5108                                                 | 65                                                   | 1                     | -                | -           | -      | - | +           | -   |
| 5109                                                 | 66                                                   | 1                     |                  | -           | -      | - | +           | -   |
| 5110                                                 | 66                                                   | 1                     | -                | -           | -      | - | +           | -   |
| 5111                                                 | 67                                                   | 1                     | -                | -           | -      | - | +           | -   |
| 5112                                                 | 67                                                   | 1                     | -                | -           | -      | - | +           | -   |
| 5113                                                 | 68                                                   | 1                     | -                | -           | -      | - | +           | -   |
| 5114                                                 | 68                                                   | 1                     | -                | -           | -      | - | +           | -   |
| 5115                                                 | 69                                                   | 1                     | -                | -           | -      | - | +           | -   |
| 5116                                                 | 69                                                   | 1                     | -                | -           | -      | - | +           | -   |
| 5117                                                 | 70                                                   | 1                     | -                | -           | -      | - | +           | -   |
| 5118                                                 | 70                                                   | 1                     | -                | -           | -      | - | +           | -   |
| 5119                                                 | 71                                                   | 1                     | -                | -           | -      | - | +           | -   |
| 5120                                                 | 71                                                   | 1                     | -                | -           | -      | - | +           | -   |
| 5121                                                 | 72                                                   | 1                     | -                | -           | -      | - | +           | -   |
| 5122                                                 | 72                                                   | 1                     | -                | -           | -      | - | +           | -   |
| 5123                                                 | 73                                                   | 1                     | -                | -           | -      | - | +           | _   |
| 5124                                                 | 73                                                   | 1                     | -                | -           | _      | _ | _           | _   |
| 5125                                                 | 74                                                   | 1                     | -                | -           | _      | _ | 1<br>1      | -   |
| 5126                                                 | 74                                                   | 1                     | -                | -           | -      | - | +<br>_      | -   |
| 5127                                                 | 75                                                   | 1                     | -                | -           | _      | - | T<br>_L     |     |
| 5128                                                 | 75                                                   | 1                     |                  | -           | -      | - | T<br>-      | _   |

| 5129          | 76           | 1 | - | -        | - | -          | + | - |
|---------------|--------------|---|---|----------|---|------------|---|---|
| 5130          | 76           | 1 | - | -        | - | -          | + | - |
| 5131          | 77           | 1 | - | -        | - | -          | + | - |
| 5132          | 77           | 1 | - | -        | - | -          | + | - |
| 5133          | 78           | 1 | - | -        | - | -          | + | - |
| 5134          | 78           | 1 | - | -        | - | -          | + | - |
| 5135          | 79           | 1 | - | -        | - | -          | + | - |
| 5136          | 79           | 1 | - | -        | - | -          | + | - |
| 5137          | 80           | 1 | - | -        | - | -          | + | - |
| 5138          | 80           | 1 | - | -        | - | -          | + | - |
| 51 <b>3</b> 9 | 81           | 1 | - | -        | - | -          | + | - |
| 5140          | 81           | 1 | - | -        | - | -          | + | - |
| 5141          | 8 2          | 1 | - | -        | - | -          | + | - |
| 5142          | 82           | 1 | - | -        | - | -          | + | - |
| 5143          | 83           | 1 | - | -        | - | -          | + | - |
| 5144          | 83           | 1 | - | -        | - | -          | + | - |
| 5145          | 84           | 1 | - | -        | - | -          | + | - |
| 5146          | 84           | 1 | - | -        | - | -          | + | - |
| 5147          | 8 5          | 1 | - | -        | - | -          | + | - |
| 5148          | 8 5          | 1 | - | -        | - | -          | + | - |
| 5149          | 86           | 1 | - | -        | - | -          | + | - |
| 5150          | 86           | 1 | - | -        | - | -          | + | - |
| 5151          | 87           | 1 | - | -        | - | -          | + | - |
| 5152          | 87           | 1 | - | -        | - | -          | + | - |
| 5153          | 88           | 1 | - | -        | - | 1 <u>-</u> | + | - |
| 5154          | 88           | 1 | - | -        | - | -          | + | - |
| 5155          | 89           | 1 | - | -        | - | -          | + | - |
| 5156          | 89           | 1 | - | -        | - | -          | + | - |
| 5157          | 90           | 1 | - | -        | - | -          | + | - |
| 5158          | 90           | 1 | - | -        | - | -          | + | - |
| 5159          | 91           | 1 | - | -        | - | -          | + | - |
| 5160          | 91           | 1 | - | -        | - | -          | + | - |
| 5161          | 92           | 1 | - | -        | - | -          | + | - |
| 5162          | 92           | 1 | - | -        | - | -          | + | - |
| 5163          | 93           | 1 | - | -        | - | -          | + | - |
| 5164          | 93           | 1 | - | -        | - | -          | + | - |
| 5165          | 94           | 1 | - | -        | - | -          | + | - |
| 5166          | 94           | 1 | - | -        | - | -          | + | - |
| 5167          | blank        | 1 | - | -        | - | -          | + | - |
| 5168          | PS standards | 1 | - | -        | - | -          | + | - |
| 5170          | PS standards | 1 | _ | -        | - | -          | + | - |
| 5171          | 45           | 1 | - | -        | - | -          | + | - |
| 5172          | 45           | 1 | - | <u>_</u> | - | -          | + | - |
| 5173          | 46           | 1 | _ | _        | - | -          | + | - |
| 5174          | 46           | 1 | - | -        | - | -          | + | - |
| 5175          | 47           | 1 | - | -        | - | +          | + | - |
| 5176          | 47           | 1 | - | -        | - | -          | + | - |
| 5177          | 48           | 1 | - | -        | - | -          | + | - |
| 5178          | 48           | 1 | - | -        | - | -          | + |   |
| 5179          | 49           | 1 | - | -        | - | -          | + | - |
| 5180          | 49           | 1 | - | -        | - | -          | + | _ |
| 5181          | 50           | 1 | - | -        | - | -          | + | - |
| 5182          | 50           | 1 | - | -        | - | -          | + |   |
| 5183          | blank        | 1 | _ | _        | - | -          | + | - |
|               |              |   |   |          |   |            |   |   |

ŧ,

| 5184 | blank                  | 1      | - | - | -                                         | - | +      | - |
|------|------------------------|--------|---|---|-------------------------------------------|---|--------|---|
| 5185 | PS standards           | 1      | - | - | -                                         | - | +      | - |
| 5186 | 45                     | 1      | - | - | -                                         | - | +      | - |
| 5187 | 45                     | 1      | - |   | -                                         | - | +      | - |
| 5188 | 46                     | 1      | - |   | -                                         | - | +      | - |
| 5189 | 46                     | 1      | - | - | -                                         | - | +      | - |
| 5190 | 47                     | 1      | - | - | -                                         | - | +      | - |
| 5191 | 47                     | 1      | - | - | -                                         | - | +      | - |
| 5192 | 48                     | 1      | - | - | -                                         | - | +      | - |
| 5193 | 48                     | 1      | - | - | -                                         | - | +      | - |
| 5194 | 49                     | 1      | - | - | -                                         | - | +      | - |
| 5195 | 49                     | 1      | - | - | -                                         | - | +      | - |
| 5196 | 50                     | 1      | - | - | -                                         | - | +      | - |
| 5197 | 50                     | 1      | - | - | -                                         | - | +      | - |
| 5198 | 51                     | 1      | - | - | -                                         | - | +      | - |
| 5100 | 51                     | 1      | - | - | -                                         | - | +      | - |
| 5200 | 52                     | 1      | - | - | -                                         | - | +      | - |
| 5200 | 52                     | 1      | - | - | -                                         | - | +      | - |
| 5201 | 53                     | 1      | - |   | -                                         | - | +      | - |
| 5202 | 53                     | 1      |   | _ | -                                         | - | +      | - |
| 5205 | blank                  | 1      | _ | - | -                                         | _ | +      | - |
| 5204 | Dialik<br>PS standards | 1      |   | _ | -                                         | _ | +      | - |
| 5205 | rs scandards           | ⊥<br>1 | - | _ | +                                         | _ | +      | - |
| 5200 | 5                      | 1      | - | - | ،<br>ــــ                                 | - | +      |   |
| 5207 | 2<br>1 Q               | 1      | - | - | ۰<br>ــــــــــــــــــــــــــــــــــــ | - | +      | - |
| 5200 | 10                     | 1      | - | - | т<br>                                     |   | ،<br>ب |   |
| 5209 | 27                     | 1      | - | - | т<br>,                                    | - | T<br>- | _ |
| 5210 | 50                     | 1      | - | - | т<br>,                                    | - | ۰<br>۲ |   |
| 5211 | 50                     | 1      | - | - | +                                         | - |        |   |
| 5227 |                        | 1      | - | - | +                                         | - | +      | - |
| 5228 | PS standards           | 1      | - | - | +                                         | - | +      | - |
| 5229 | 3                      | 1      | - | ~ | +                                         | - | +<br>+ | _ |
| 5230 | 22                     | 1      | - | - | +                                         | - | +      | - |
| 5231 | 30                     | 1      | - | - | +                                         | - | +      | - |
| 5232 | 4 /                    | 1      | - | - | +                                         | - | +      | - |
| 5233 | 38                     | 1      | - | - | +                                         | - | +      | - |
| 5234 | blank                  | 2      | - | - | +                                         | - | +      | - |
| 5235 | PS standards           | 2      | - | - | +                                         | - | +      | - |
| 5236 | 3                      | 2      | - | - | +                                         | - | +      | - |
| 5237 | 22                     | 2      | - | - | +                                         | - | +      | - |
| 5238 | 38                     | 2      | - | - | +                                         | - | +      | - |
| 5239 | 4 /                    | 2      | - | - | +                                         | - | +      | ~ |
| 5240 | 38                     | 2      | • | - | +                                         | - | +      | - |
| 5241 | blank                  | 2      | - | - | +                                         | - | +      | - |
| 5242 | PS standards           | 2      | - | - | +                                         | - | +      | - |
| 5243 | 3                      | 2      | - | - | +                                         | - | +      | - |
| 5244 | 22                     | 2      | - | - | +                                         | - | +      | - |
| 5245 | 38                     | 2      | - |   | +                                         | - | +      | - |
| 5246 | 47                     | 2      | - | - | +                                         | - | +      | - |
| 5247 | 38                     | 2      | - | - | +                                         | - | +      | - |
| 5248 | blank                  | 2      | - | - | +                                         | - | +      | - |
| 5249 | PS standards           | 2      | - | - | +                                         | - | +      | - |
| 5250 | 3                      | 2      | - | - | +                                         | - | +      | - |
| 5251 | 22                     | 2      | - | - | +                                         | - | +      | - |
| 5252 | 38                     | 2      | - | - | +                                         | - | +      | - |

| 5253 | 47           | 2 | - | - | + | - | +      |
|------|--------------|---|---|---|---|---|--------|
| 5254 | 38           | 2 | - | - | + | - | +      |
| 5255 | blank        | 2 | - | - | - | - | +      |
| 5256 | PS standards | 2 | - | - | - | - | +      |
| 5257 | 51           | 2 | - | - | - | - | +      |
| 5258 | 52           | 2 | - | - | - | - | +      |
| 5259 |              | 2 | - | - | - | - | +      |
| 5260 | 54           | 2 | - | - | - | - | +      |
| 5260 | 5 4          | 2 | _ | - | - | - | +      |
| 5969 | 55           | 2 | - |   | - | - | +      |
| 5262 | 50           | 2 | _ | _ | _ | - | +      |
| 5205 |              | 2 | _ | _ | _ | - | +      |
| 5204 | 50           | 2 |   | _ | _ | _ | +      |
| 5265 | 59           | 2 | - | - |   | _ | -<br>- |
| 5266 | 60           | 2 | - | - | - | - | т<br>_ |
| 52/3 | PS standards | 2 | - | - | - | - | +      |
| 5274 | 51           | 2 | - | - | - | - | +      |
| 5275 | 52           | 2 | - | - | - | - | +      |
| 5276 | 5 3          | 2 | - | - | - | - | +      |
| 5277 | 54           | 2 | - | - | - | - | +      |
| 5278 | 5 5          | 2 | - | - | - | - | +      |
| 5279 | 5 6          | 2 | - | - | - | - | +      |
| 5280 | 57           | 2 | - | - | - | - | +      |
| 5281 | 58           | 2 | - | - | - | - | +      |
| 5282 | 59           | 2 | - | - | - | - | +      |
| 5283 | 60           | 2 | - | - | - | - | +      |
| 5290 | blank        | 2 | - | - | - | - | +      |
| 5291 | PS standards | 2 | - | - | - | - | +      |
| 5292 | 51           | 2 | - | - | - | - | +      |
| 5293 | 52           | 2 | - | - | - | - | +      |
| 5294 | 53           | 2 | - | - | - | - | +      |
| 5295 | 54           | 2 | - | - | - | - | +      |
| 5296 | 5.5          | 2 | - | - | - | - | +      |
| 5297 | 56           | 2 | - | - | - | - | +      |
| 5298 | 57           | 2 | - | - | - | _ | +      |
| 5299 | 5.8          | 2 | - | - | _ | - | +      |
| 5300 | 50           | 2 | _ |   | - | - | +      |
| 5301 | 60           | 2 | - | _ |   | _ | +      |
| 5202 |              | 2 | - | - | - |   | -<br>- |
| 5302 |              | 2 | - | - | - | - | т<br>  |
| 5303 | rs standards | 2 | - | - | - | - | т<br>1 |
| 5304 | 51           | 2 | - | - | - | - | -      |
| 5305 | 52           | 2 | - | - | - | - | +      |
| 5306 | 53           | 2 | - | - | - | - | +      |
| 5307 | 54           | 2 | - | - | - | - | +      |
| 5308 | 55           | 2 | - | - | - | - | +      |
| 5309 | 56           | 2 | - | - | - | - | +      |
| 5310 | 57           | 2 | - | - | - | - | +      |
| 5311 | 58           | 2 | - | - | - | - | +      |
| 5312 | 59           | 2 | - | - | - | - | +      |
| 5313 | 60           | 2 | - | - | - | - | +      |
| 5314 | PS standards | 2 | - | - | - | - | +      |
| 5315 | PS standards | 2 | - | - | - | - | +      |
| 5316 | blank        | 2 | - | - | - | - | +      |
| 5317 | 5 5          | 2 | - | - | - | - | +      |
| 5318 | 55           | 2 | _ | - |   |   | +      |

30

•
| 5319 | 5 5          | 2   | - | -       | -   | - | +      | - |
|------|--------------|-----|---|---------|-----|---|--------|---|
| 5320 | 5 5          | 2   | - | -       | -   | - | +      | - |
| 5321 | 55           | 2   | - | -       | -   | - | +      | - |
| 5322 | 5.5          | 2   | - |         | -   | - | +      | - |
| 5323 | 55           | 2   | - | -       | -   | - | +      | - |
| 5324 | 55           | 2   | - | -       | -   | - | +      | - |
| 5325 | 55           | 2   | - | -       | -   | - | +      | - |
| 5306 | 55           | 2   | - | -       | -   | - | +      |   |
| 5320 | 22           | 2   | _ | _       | -   | - | +      | _ |
| 5327 |              | 2   | - | _       | _   | - | ,<br>  | _ |
| 5328 | 22           | 2   | - | -       | -00 | - | т<br>  |   |
| 5329 | .55          | 2   | - | -       | -   | - | +      | - |
| 5330 | 55           | 2   | - | -       | -   | - | +      | - |
| 5331 | 5 5          | 2   | - | -       | -   | - | +      | - |
| 5332 | 5 5          | 2   | - | -       | -   | - | +      | - |
| 5333 | 5 5          | 2   | - | -       | -   | - | +      | - |
| 5334 | 5 5          | 2   | - | -       | -   | - | +      | - |
| 5335 | 5 5          | 2   | - | -       | -   | - | +      | - |
| 5336 | 55           | 2   | - | -       | -   | - | +      | - |
| 5337 | 55           | 2   | - | -       | -   | - | +      | - |
| 5338 |              | 2   | - | -       | -   | - | +      | - |
| 5339 | 55           | 2   | - | -       | -   | - | +      | - |
| 5340 | 55           | 2   | - | -       | -   | - | +      | - |
| 5361 | 55           | 2   | _ | -       | -   | _ | +      | - |
| 5341 | 22           | 2   | - | -       | -   | _ |        |   |
| 5342 | 55           | 2   | - | -       | -   | - | +      | - |
| 5343 | 22           | 2   | - | -       | -   | - | +      | - |
| 5344 | 55           | 2   | - | -       | -   | - | +      | - |
| 5345 | 5 5          | 2   | - | -       | -   | - | +      | - |
| 5346 | 5 5          | 2   | - | -       | -   | - | +      | - |
| 5347 | 5 5          | 2   | - | -       | -   | - | +      | - |
| 5348 | 5 5          | 2   | - | -       | -   | - | +      | - |
| 5349 | 5 5          | 2   | - | -       | -   | ÷ | +      | - |
| 5350 | 5 5          | 2   | - | -       | -   | - | +      | - |
| 5351 | 5 5          | 2   | - | -       | -   | - | +      | - |
| 5398 | PS standards | s 2 | - | +       | -   | - | +      | - |
| 5399 | 61           | 2   | - | +       | -   | - | +      | - |
| 5400 | 62           | 2   | - | +       | -   | - | +      | - |
| 5401 | 63           | 2   | - | +       |     | - | +      | - |
| 5401 | 6.1          | 2   | _ | ,<br>   | _   |   | _      | - |
| 5402 | 64           | 2   | - | +       | -   | - | Ŧ      | - |
| 5405 | 65           | 2   | - | +       | -   | ~ | +      | - |
| 5404 | 66           | 2   | - | +       | -   | - | +      | - |
| 5405 | 67           | 2   | - | +       | -   | - | +      | - |
| 5406 | 68           | 2   | - | +       | -   | - | +      | - |
| 5407 | 69           | 2   | - | +       | -   | - | +      | - |
| 5408 | 70           | 2   | - | +       | -   | - | +      | - |
| 5409 | 71           | 2   | - | +       | -   | - | +      | - |
| 5410 | 72           | 2   | - | +       | -   | - | +      | - |
| 5414 | 73           | 2   | - | +       | -   | - | +      | - |
| 5415 | 74           | 2   | - | +       | -   | - | +      | - |
| 5416 | PS standard  | s 2 | - | +       | -   | - | +      | - |
| 5417 | 75           | 2   | - | +       | -   | - | +      | - |
| 5418 | 76           | 2   | - | +       | -   | - | +      | - |
| 5410 | 77           | 2   | _ |         |     | - | +      | - |
| 5419 | 79           | 2   | - | r<br>"L |     | - | T<br>L | _ |
| 5420 | 70           | 2   | - | +       | -   | • | Ŧ      | - |
| J421 | /9           | 2   | - | +       | -   | - | +      | - |

| 5422 | 80             | 2 | -       | +             | - | -          | +      |
|------|----------------|---|---------|---------------|---|------------|--------|
| 5423 | 81             | 2 | -       | +             | - | -          | +      |
| 5424 | 82             | 2 | -       | +             | - | -          | +      |
| 5425 | blank          | 2 | -       | <del>,+</del> | - | -          | +      |
| 5427 | 8 2            | 2 | -       | +             | - | -          | +      |
| 5428 | 83             | 2 | -       | +             | - | -          | +      |
| 5429 | 84             | 2 | -       | +             | - | -          | +      |
| 5430 | 8 5            | 2 | -       | +             | - | -          | +      |
| 5431 | 86             | 2 | -       | +             | - | -          | +      |
| 5432 | 87             | 2 | -       | +             | - | -          | +      |
| 5433 | 88             | 2 | - · · · | 4             | - | -          | +      |
| 5434 | 89             | 2 | -       | +             | - | -          | +      |
| 5435 | PS standards   | 2 | -       | +             | - | -          | +      |
| 5436 | 75             | 2 | -       | ÷             | - | -          | +      |
| 5430 | 76             | 2 | -       | +             | - | -          | +      |
| 5438 |                | 2 | -       | +             |   | -          | +      |
| 5430 | 7 8            | 2 | _       | +             |   | -          | +      |
| 5439 | 70             | 2 | -       | -             |   |            | т<br>Т |
| 5440 | / <del>/</del> | 2 | -       | +             | - | -          | т<br>1 |
| 5441 | 80             | 2 | -       | +             | - | -          | +      |
| 5442 | 81             | 2 | -       | +             | - | -          | +      |
| 5443 | 82             | 2 | -       | +             | - | -          | +      |
| 5444 | blank          | 2 | -       | +             | - | -          | +      |
| 5457 | PS standards   | 2 | -       | +             | - | -          | +      |
| 5458 | 83             | 2 | -       | +             | - | -          | +      |
| 5459 | 84             | 2 | -       | +             | - | -          | +      |
| 5460 | 8 5            | 2 | -       | +             | - | -          | +      |
| 5461 | 86             | 2 | -       | +             | - | -          | +      |
| 5462 | 87             | 2 | -       | +             | - | -          | +      |
| 5463 | 88             | 2 | -       | +             | - | -          | +      |
| 5464 | 89             | 2 | -       | +             | - | -          | +      |
| 5465 | 90             | 2 | -       | +             | - | -          | +      |
| 5466 | 91             | 2 | -       | +             | - | -          | +      |
| 5467 | 92             | 2 | -       | +             | - | -          | ÷      |
| 5468 | 93             | 2 | -       | +             | - | -          | +      |
| 5469 | 94             | 2 | -       | +             | - | -          | +      |
| 5470 | 9.5            | 2 | -       | +             | - | -          | +      |
| 5471 | 96             | 2 | -       | +             | - | -          | +      |
| 5472 | 97             | 2 | _       | +             | - | -          | +      |
| 5479 | PS standards   | 2 | _       | +             | _ | _          | +      |
| 5480 | 71             | 2 |         |               |   |            | +      |
| 5481 | 71             | 2 | -       | +             | - |            | -      |
| 5401 | 72             | 2 | -       | +             | - | -          | +      |
| 5402 |                | 2 | -       | +             | - | -          | +      |
| 5485 | 74             | 2 | -       | +             | - | -          | +      |
| 5484 | / 5            | 2 | -       | +             | - | -          | +      |
| 5485 | /6             | 2 | -       | +             | - | -          | +      |
| 5486 | /7             | 2 | -       | +             | - | -          | +      |
| 5487 | 78             | 2 | -       | +             | - | -          | +      |
| 5488 | 7 <b>9</b>     | 2 | -       | +             | - | -          | +      |
| 5489 | 80             | 2 | -       | +             | - | -          | +      |
| 5490 | 81             | 2 | -       | +             | - | -          | +      |
| 5491 | 82             | 2 | -       | +             | - | -          | +      |
| 5492 | 83             | 2 | -       | +             | - | -          | +      |
| 5493 | blank          | 2 | -       | +             | - | -          | +      |
| 5498 | PS standards   | 2 | -       | +             | - | <b>_</b> 1 | +      |

- - - -

| 5499 | 95    | 2 | -        |   | -   | - | + | -   |
|------|-------|---|----------|---|-----|---|---|-----|
| 5500 | 95    | 2 | -        | + | -   | - | ÷ | -   |
| 5501 | 95    | 2 | -        | + | -   | - | + | -   |
| 5502 | 95    | 2 | -        | + | -   | - | + | -   |
| 5503 | 95    | 2 | -        | ÷ | -   | - | + | -   |
| 5504 | 95    | 2 | -        | + | -   | - | + | -   |
| 5505 | 95    | 2 | -        | + | -   | - | + | _   |
| 5506 | 95    | 2 | -        | + | -   | - | + | -   |
| 5507 | 95    | 2 | -        | + | -   | - | + | -   |
| 5508 | 95    | 2 | -        | + | · - | - | + | -   |
| 5509 | 95    | 2 | -        | + | -   | - | + | -   |
| 5510 | 95    | 2 | -        | + | -   | - | + | _   |
| 5511 | 95    | 2 | -        | + | -   | - | + | -   |
| 5512 | 95    | 2 | -        | + | -   | - | + | -   |
| 5513 | 95    | 2 | -        | + | -   | - | + | -   |
| 5514 | 95    | 2 | -        | + | -   | - | + | -   |
| 5515 | 95    | 2 | -        | + | -   | - | + | -   |
| 5516 | blank | 2 | -        | + | -   | - | + | -   |
| 5517 | 96    | 2 | -        | + | -   | - | + | -   |
| 5518 | 97    | 2 | _        | + | -   | _ | + | _   |
| 5519 | 98    | 2 | _        | + | -   | - | + | _   |
| 5520 | 99    | 2 | _        | + | _   | - | + | _   |
| 5521 | 100   | 2 | _        | + | _   | _ | + | -   |
| 5522 | 101   | 2 | -        | + | _   | - | + | _   |
| 5523 | 102   | 2 | _        | + | _   | _ | + | _   |
| 5524 | 103   | 2 | -        | + | -   | _ | + | -   |
| 5525 | 104   | 2 | -        | + | _   | _ | + | _   |
| 5526 | 105   | 2 | _        | + | _   | _ | + | -   |
| 5527 | 106   | 2 | _        | + | _   | _ | + | -   |
| 5528 | 107   | 2 |          | + | _   | _ | + | -   |
| 5529 | 108   | 2 | -        | + | -   |   | + | -   |
| 5530 | blank | 2 | -        | + | -   | _ | + | _   |
| 5533 | blank | 2 | -        | + | _   | _ | + | -   |
| 5534 | 96    | 2 |          | + | -   | - | + | -   |
| 5535 | 97    | 2 | -        | + | -   | - | + | -   |
| 5536 | 98    | 2 | -        | + | -   | _ | + | -   |
| 5537 | 99    | 2 | -        | + | -   | _ | + | -   |
| 5538 | 100   | 2 | -        | + | -   | _ | + | _   |
| 5539 | 101   | 2 | e        | + | -   | - | + | -   |
| 5540 | 102   | 2 | -        | + | -   | - | + | -   |
| 5541 | 103   | 2 | <b>4</b> | + | -   | - | + | -   |
| 5542 | 104   | 2 | _        | + | -   | - | + | -   |
| 5543 | 105   | 2 | _        | + | -   | - | + | -   |
| 5544 | 106   | 2 | -        | + | -   | - | + | -   |
| 5545 | 107   | 2 | _        | + | -   | - | + | -   |
| 5546 | 108   | 2 | -        | + | ~   | - | + | _   |
| 5547 | blank | 2 | _        | + | _   | - | + | -   |
| 5636 | 99    | 2 | _        | + | -   | + | + | +   |
| 5637 | 99    | 2 | -        | + | -   | + | + | -+- |
| 5638 | 99    | 2 |          | + |     | + | + | +   |
| 5639 | 99    | 2 |          | + | -   | + | + | +   |
| 5640 | 99    | 2 |          | + | -   | + | + | +   |
| 5641 | 99    | 2 | -        | + |     | + | + | +   |
| 5642 | 99    | 2 | -        | + |     | + | + | +   |
|      |       | - |          | • |     |   |   | •   |

| 5643 | 99              | 2        | -   | +      | - | +      | + | +      |
|------|-----------------|----------|-----|--------|---|--------|---|--------|
| 5644 | 99              | 2        | -   | +      | - | +      | + | +      |
| 5645 | 76              | 2        | -   | +      | - | +      | ÷ | +      |
| 5646 | 76              | 2        | -   | +.     | - | +      | + | +      |
| 5647 | 76              | 2        | -   | + '    | - | +      | + | +      |
| 5648 | 76              | 2        | -   | +      | - | +      | + | +      |
| 5649 | 76              | 2        | -   | +      | - | +      | + | +      |
| 5650 | 76              | 2        | -   | +      | - | +      | + | +      |
| 5651 | 76              | 2        | -   | +      | - | +      | + | +      |
| 5652 | 76.             | 2        | -   | +      | - | +      | ÷ | +      |
| 5654 | 76 + DABCO)     | 2        | - 8 | +      | - | +      | + | +      |
| 5655 | 76 + DABCO)     | 2        | -   | +      | - | +      | + | +      |
| 5656 | 76 + DABCO)     | 2        | -   | +      | - | +      | + | +      |
| 5657 | 76 + DABCO)     | 2        | -   | +      | - | +      | + | +      |
| 5658 | 76 + DABCO)     | 2        | -   | +      | - | +      | + | +      |
| 5659 | $76 \pm DABCO)$ | 2        | -   | +      | - | +      | + | +      |
| 5660 | $76 \pm DABCO)$ | 2        | -   | +      | - | +      | + | +      |
| 5661 | $76 \pm DABCO)$ | 2        | -   | +      | _ | +      | + |        |
| 5662 | 76 + DABCO)     | 2        | -   | +<br>- | - | -      | + | т<br>1 |
| 5662 | 76 + DABCO)     | 2        | -   | т<br>  | - | +<br>- | + | т      |
| 5667 | 76 + DABCO)     | 2        | -   | т<br>, | - | т<br>, | + | - T    |
| 5665 | 76 + DABCO)     | 2        | -   | +      | - | +      | + | +      |
|      | 76 + DABCO)     | 2        | -   | +      | - | +      | + | +      |
|      | 76 + 3 X BHI    | 2        | -   | +      | - | +      | + | +      |
| 5667 | 76 + 3 X BHI    | 2        | -   | +      | - | +      | + | +      |
| 5668 | 76 + 3 X BHT    | 2        | -   | +      | - | +      | + | +      |
| 5669 | 76 + 3 X BHT    | 2        | -   | +      | - | +      | + | +      |
| 5670 | 76 + 3 X BHT    | 2        | -   | +      | - | +      | + | +      |
| 56/1 | 76 + 3 X BHT    | 2        | -   | +      | - | +      | + | +      |
| 5672 | 76 + 3 X BHT    | 2        | -   | +      | - | +      | + | +      |
| 5673 | 76 + 3 X BHT    | 2        | -   | +      | - | +      | + | +      |
| 5674 | 76 + 3 X BHT    | 2        | -   | +      | - | +      | + | +      |
| 5675 | 109             | 2        | -   | +      | - | +      | + | +      |
| 5676 | 110             | 2        | -   | +      | - | +      | + | ÷      |
| 5677 | 111             | 2        | -   | +      | - | +      | + | +      |
| 5678 | 112             | 2        | -   | +      | - | +      | + | +      |
| 5679 | 113             | 2        | -   | +      | - | +      | + | +      |
| 5680 | 114             | 2        | -   | +      | - | +      | + | +      |
| 5681 | 115             | 2        | -   | +      | - | +      | + | +      |
| 5682 | 116             | 2        | -   | +      | - | +      | + | +      |
| 5683 | 117             | 2        | -   | +      | - | +      | + | +      |
| 5684 | 118             | 2        | -   | +      | - | +      | + | +      |
| 5685 | 119             | 2        | -   | +      | - | +      | + | +      |
| 5686 | 120             | 2        | -   | + ′    | - | +      | + | +      |
| 5687 | 121             | 2        | -   | +      | - | +      | + | +      |
| 5688 | 122             | 2        | -   | +      | - | +      | + | +      |
| 5689 | 123             | 2        | -   | +      | - | +      | + | +      |
| 5690 | PS standards    | 2        | -   | +      | - | +      | + | +      |
| 5691 | 109             | 2        | +   | +      | - | +      | + | +      |
| 5692 | 110             | 2        | +   | +      | - | +      | + | +      |
| 5693 | 111             | 2        | +   | +      | - | +      | + | +      |
| 5694 | 112             | 2        | +   | +      | - | +      | + | +      |
| 5695 | 113             | 2        | +   | +      |   | +      | + | +      |
| 5696 | 114             | 2        | +   | +      |   | +      | + | +      |
| 5697 | • 115           | 2        | +   | +      | - | + ·    | + | +      |
|      |                 | <u>_</u> |     |        |   |        |   |        |

| 5698         | 116          | 2 | + | +    | - | +   | + | + |
|--------------|--------------|---|---|------|---|-----|---|---|
| 5699         | 117          | 2 | + | +    | - | +   | + | + |
| 5700         | 118          | 2 | + | +    | - | +   | + | + |
| 5701         | 119          | 2 | + | + ', | - | +   | + | + |
| 5702         | 120          | 2 | + | +    | - | +   | + | + |
| 5703         | 121          | 2 | + | +    | - | +   | + | + |
| 5704         | 122          | 2 | + | +    | - | +   | + | + |
| 5705         | 123          | 2 | + | +    | • | +   | + | + |
| 5706         | PS standards | 2 | + | +    | - | +   | + | + |
| 5765         | 139          | 1 | + | MEK  | - | +   | + | + |
| 576 <b>6</b> | 117          | 1 | + | MEK  | - | · + | + | - |
| 5767         | 117          | 1 | + | MEK  |   | +   | + | - |
| 5768         | 117          | 1 | + | MEK  | - | +   | + | - |
| 5769         | 117          | 1 | + | MEK  | - | +   | + | - |
| 5770         | 117          | 1 | + | MEK  | - | +   | + | - |
| 5771         | 117          | 1 | + | MEK  | • | +   | + | - |
| 5772         | 117          | 1 | + | MEK  | - | +   | + | - |
| 5773         | 117          | 1 | + | MEK  | - | +   | + | - |
| 5774         | 117          | 1 | + | MEK  | - | +   | + | - |
| 5800         | 61           | 1 | + | MEK  | - | +   | + | - |
| 5801         | 62           | 1 | + | MEK  | - | +   | + | - |
| 5802         | 63           | 1 | + | MEK  | - | +   | + | - |
| 5803         | 64           | 1 | + | MEK  | - | +   | + | - |
| 5804         | 6 5          | 1 | + | MEK  | - | +   | + | - |
| 5805         | 66           | 1 | + | MEK  | - | +   | + | - |
| 5806         | 67           | 1 | + | MEK  | - | +   | + | - |
| 5807         | 68           | 1 | + | MEK  | - | +   | ÷ | - |
| 5808         | 71           | 1 | + | MEK  | - | +   | + | - |
| 5809         | 72           | 1 | + | MEK  | - | +   | + | - |
| 5810         | 73           | 1 | + | MEK  | - | +   | + | - |
| 5811         | 74           | 1 | + | MEK  | - | +   | + | - |
| 5812         | 79           | 1 | + | MEK  | - | +   | + | - |
| 5813         | 80           | 1 | + | MEK  | - | +   | + | - |
| 5814         | 69           | 1 | + | MEK  | - | +   | + | - |
| 5815         | 76           | 1 | + | MEK  | - | +   | + | - |
| 5816         | 78           | 1 | + | MEK  | - | +   | + | - |
| 5817         | blank        | 1 | + | MEK  | - | +   | + | - |
| 5818         | 51           | 1 | + | MEK  | - | +   | + | - |
| 5819         | 52           | 1 | + | MEK  | - | +   | + | - |
| 5820         | 53           | 1 | + | MEK  | - | +   | + | - |
| 5821         | 55           | 1 | + | MEK  | - | +   | + | - |
| 5822         | 56           | 1 | + | MEK  | - | 4   | + | - |
| 5823         | 57           | 1 | + | MEK  | - | +   | + | - |
| 5824         | 58           | 1 | + | MEK  | - | +   | + | - |
| 5825         | 59           | 1 | + | MEK  | - | +   | + | - |
| 5826         | 60           | 1 | + | MEK  | - | +   | + | - |
| 5827         | 70           | 1 | + | MEK  | - | +   | ÷ | - |
| 5828         | 75           | 1 | + | MEK  | - | +   | + | - |
| 5829         | 77           | 1 | + | MEK  | - | +   | + | - |
| 5830         | 81           | 1 | + | MEK  | - | +   | + | • |
| 5831         | 82           | 1 | + | MEK  | - | +   | + | - |
| 5836         | 124          | 1 | ÷ | MEK  | - | +   | + | - |
| 5837         | 125          | 1 | + | MEK  | - | +   | + | - |
| 5838         | 126          | 1 | + | MEK  | - | +   | + | - |
|              |              |   |   |      |   |     |   |   |

| 5839 | 127 | 1 | +  | MEK | - | +   | + |  |
|------|-----|---|----|-----|---|-----|---|--|
| 5840 | 128 | 1 | +  | MEK | - | +   | + |  |
| 5841 | 129 | 1 | +  | MEK | - | +   | + |  |
| 5842 | 130 | 1 | +  | МЕК | - | +   | + |  |
| 5843 | 131 | 1 | +  | MEK | - | +   | + |  |
| 5844 | 132 | 1 | +  | MEK | - | +   | + |  |
| 5845 | 133 | 1 | +  | MEK | - | +   | + |  |
| 5846 | 134 | 1 | +  | MEK | - | +   | + |  |
| 5847 | 135 | 1 | +  | MEK | - | +   | + |  |
| 5848 | 136 | 1 | +- | MEK | - | +   | + |  |
| 5849 | 137 | 1 | +  | MEK | - | + ' | + |  |
| 5850 | 138 | 1 | +  | MEK | - | +   | + |  |
|      |     |   |    |     |   |     |   |  |

•



Normalized MED Response



Elution Volume

Elution Volume





VU mn 422



Detector Response





VU mn 432

Shifted Elution Volume



Маtch Factor



Elution Volume

Elution Volume



Figure 10. Crumple Numbers and Laundry Numbers











Figure 15. 275 nm UV Correlations of THF Extracts of Black Inks







Figure 17. 230 nm UV Correlations of MEK Extracts of Black Inks



Figure 18. 240 nm UV Correlations of MEK Extracts of Black Inks



Figure 19. 254 nm UV Correlations of MEK Extracts of Black Inks







Figure 21. MED Correlations of MEK Extracts of Green Inks





Figure 23. 240 nm UV Correlations of MEK Extracts of Green Inks



Figure 24. 254 nm UV Correlations of MEK Extracts of Green Inks





| NIST-114A<br>(REV. 3-90)       | U.S. DEPARTMENT OF COMMERCE<br>NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY                             | 1. PUBLICATION OR REPORT NUMBER<br>NISTIR 4949 |
|--------------------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------|
|                                |                                                                                                           | 2. PERFORMING ORGANIZATION REPORT NUMBER       |
|                                | BIBLIUGRAPHIC DATA SHEET                                                                                  | 3. PUBLICATION DATE<br>OCTOBER 1992            |
| TITLE AND SUB                  | TITLE                                                                                                     |                                                |
| CHROMAT                        | OGRAPHIC EXAMINATION OF INTAGLIO INKS, RESINS AND V                                                       | ARNISHES                                       |
| AUTHOR(S)                      |                                                                                                           |                                                |
| Barry J                        | . Bauer, Brian Dickens, and William R. Blair                                                              |                                                |
| . PERFORMING O                 | RGANIZATION (IF JOINT OR OTHER THAN NIST, SEE INSTRUCTIONS)                                               | 7. CONTRACT/GRANT NUMBER                       |
| U.S. DEPARTME<br>NATIONAL INST | INT OF COMMERCE<br>ITUTE OF STANDARDS AND TECHNOLOGY                                                      |                                                |
| GAITHERSBURG                   | 3, MD 20899                                                                                               | Annual Report November 30 1001                 |
| . SPONSORING O                 | DRGANIZATION NAME AND COMPLETE ADDRESS (STREET, CITY, STATE, ZIP)                                         | Fundar Report November 50, 1991                |
| Office of                      | Research and Technical Services                                                                           |                                                |
| Bureau of                      | Engraving and Printing                                                                                    |                                                |
| 14 and C                       | Streets, S.W.                                                                                             |                                                |
| Washington                     | n, D.C. 20226                                                                                             |                                                |
| 0. SUPPLEMENTAP                | RYNOTES                                                                                                   |                                                |
| green and<br>from the p        | black inks, and differences in ink formulations can<br>ress match the retain samples well. Poor crumple m | be seen. Samples taken<br>umbers of inks were  |
| correlated                     | to the chromatographic results, but the laundry nu                                                        | mbers were not.                                |
|                                |                                                                                                           |                                                |
|                                |                                                                                                           |                                                |
|                                |                                                                                                           |                                                |
|                                |                                                                                                           |                                                |
|                                |                                                                                                           |                                                |
|                                |                                                                                                           |                                                |
| 2. KEY WORDS (6                | TO 12 ENTRIES; ALPHABETICAL ORDER; CAPITALIZE ONLY PROPER NAMES; AND SEPAR                                | RATE KEY WORDS BY SEMICOLONS)                  |
| chromatog                      | raphy; crumple; GPC; ink; laundry                                                                         |                                                |
|                                |                                                                                                           |                                                |
|                                |                                                                                                           |                                                |
| 3. AVAILABILITY                |                                                                                                           | 14. NUMBER OF PRINTED PAGES                    |
| X UNLIMITE                     | D                                                                                                         | 66                                             |
| FOR OFFIC                      | CIAL DISTRIBUTION. DO NOT RELEASE TO NATIONAL TECHNICAL INFORMATION SERVI                                 | ICE (NTIS).                                    |
| ORDER FF<br>WASHING            | ROM SUPERINTENDENT OF DOCUMENTS, U.S. GOVERNMENT PRINTING OFFICE,<br>TON, DC 20402.                       | A04                                            |
| X                              | POM NATIONAL TECHNICAL INFORMATION SERVICE (NTIS) SPRINGFIELD VA 22161.                                   |                                                |

•



