
U.S. DEPARTMENT OF COMMERCE
National Institute of Standards and Technology

PUBLICATIONS

Hi

U.S. DEPARTMENT OF COMMERCE
National Institute of Standards and Technology

» v?

! NISTIR 4944

0

NationalPDES Testbed

U.S. DEPARTMENT OF

COMMERCE

Barbara Hackman Franklin,

Secretary of Commerce

Technology Administration

Robert M. White,

Under Secretary for Technology

National Institute of

Standards and Technology

John W. Lyons, Director

October 13, 1992

NATIONAL

|
Transformr: A
Prototype STEP

US Exchange File

Migration Tool
Stephen Nowland Clark

UJ
o

v^T 0F Cq

%
^TESO^

X\
t
m

|

Transforms. A Prototype STEP
Exchange File Migration Tool

Stephen Nowland Clark

1 Introduction

Transformr is a prototype tool for migrating STEP exchange files [IS021] between

different versions of an EXPRESS [ISOl 1] schema.
1
Its inputs are source and target

EXPRESS schemas and a specification of the transformations which must be applied

to map a model from the source to the target schema. Transformr then reads exchange

files corresponding to the source schema and writes files corresponding to the target

schema.

This document is primarily a user’s guide to Transformr. It describes the transformation

specification language used to specify the correspondences between the two schemas

and the command-line syntax for invoking Transformr. After discussing some

limitations of the tool, a brief overview of the theory of operation of the transformation

engine is given, to give the user some context for understanding the messages which the

tool may produce.

It must be understood that Transformr is only a prototype. There are features of the

transformation specification language which are currently unimplemented, and while

these missing features and other known limitations are usually reported to the user

when encountered, this is not always the case. Similarly, Transformr is not yet robust,

and may encounter unexpected circumstances.

1.1 Motivation

STEP information models tend to undergo constant testing during their development.

As a result, a problem arises which is similar to the legacy data problem: As a model

changes, test cases written against it (which may exist in databases or in STEP
exchange files) must constantly be either recreated from scratch or massaged to take

into account these changes. This process is time consuming and error prone.

Given some information about the changes which have been made to a model, it is often

possible to automatically transform at least some of the associated instance data, easing

the task of testing a model in a constant state of flux.

1. Funding for the work described has been provided by the Department of Defense’s Computer-Aided Ac-

quisition and Logistic Support (CALS) Office. The work is funded by the United States Government and is

not subject to copyright.

Stephen Nowland Clark

Clearly, it is not always possible to completely transform all data as required. To take

an extreme case, entities might be added which represent information which was simply

not represented in the earlier revision; instance data for these entities certainly cannot

be automatically conjured out of thin air. Nevertheless, there are a number of changes

which can be handled automatically. Transformr is a tool which addresses this problem.

2 The Transformr Correspondence Specification

Language

The Transformr Correspondence Specification Language (TCSL) is a language for

specifying mappings between related EXPRESS schemas. For various reasons, it owes

a large debt to EXPRESS itself. TCSL builds tokens in the same way as EXPRESS, so

that identifiers, character strings, numbers, and so forth all look familiar. Comments are

written as in EXPRESS, enclosed between (* and *) . TCSL also borrows its entire

expression syntax from EXPRESS. Here the similarities end, however, and a TCSL
specification looks quite different from an EXPRESS schema.

There are two primary operations in TCSL: COPY and BUILD. COPY establishes a

direct mapping from instances of one entity in the source schema to instances of one

entity in the target schema. It specifies that each instance of the source entity is to be

transformed into an instance of the target entity. The resulting instance retains its prior

identity: in an exchange file, this means that it retains the same numeric identifier.

BUILD, on the other hand, specifies a construction for instances of one entity in the

target schema based on tuples of instances from the source schema. Source instances

are left untouched, and an instance with a new identity is constructed. This distinction

will become clearer in the following discussion of the two commands.

A TCSL specification consists simply of a series of instances of these two commands

placed one after the other :

1

tcsl-spec = { copy-decl
I
build-decl }

2.1 The COPY Command

The COPY command has the following syntax:

copy-decl = bulk-copy
|
single-copy .

bulk-copy = 'COPY' copy-from {
',' copy-from }

';'
.

single-copy = 'COPY' copy-from ';'
{ modifier ';'

} .

copy-from = target-entity-id ['FROM' source-entity-id] .

1. The syntax of TCSL is given formally in Wirth Syntax Notation (WSN) [Wirth], In WSN, a grammar is

represented as a collection of productions, where the language element to the left of *=’ can be rewritten as

the sequence on the right. Literals of the language are written between single quotes. Square brackets indicate

an optional element, and curly braces indicate an element which may be repeated 0 or more times. The vertical

bar indicates that a selection is to be made between the two elements surrounding it.

Page 2 Transformr: A Prototype STEP Exchange File Migration

Stephen Nowland Clark

Inits simplest form, ‘COPY <target-entity-id>’,theCOPY command specifies

that instances of the named entity in the source schema will become instances of the

entity of the same name in the target schema. Any explicit attribute which is declared

locally in either the source or the target entity, and which appears with the same name
and compatible or coercible types in both entities (whether declared locally or

inherited) will be copied; others will not. In general, types which are assignment

compatible in either direction in EXPRESS itself are considered to be coercible in

TCSL. This is discussed in more detail in section 4.

A COPY command inherits any COPY commands in place between any supertypes of

its source and target entities.

Example 1: Simple COPY with inheritance

Suppose we had these two schemas:

Source Schema Target Schema

SCHEMA people_schema

;

SCHEMA people_schema;

ENTITY person ENTITY person
SUPERTYPE OF (ONEOF (man, SUPERTYPE OF (ONEOF (man.

woman))

;

woman))

;

name : STRING; age : REAL

;

age : INTEGER; name : STRING;
END_ENTITY; size : INTEGER;

END_ENTITY;
ENTITY man
SUBTYPE OF (person)

;

ENTITY man
masculinity : INTEGER; SUBTYPE OF (person)

;

size : INTEGER; masculinity : INTEGER;
END_ENTITY; END_ENT I TY

;

ENTITY woman ENTITY woman
SUBTYPE OF (person)

;

SUBTYPE OF (person)

;

size : INTEGER; femininity : INTEGER;
femininity : INTEGER; END_ENTITY;

END_ENTITY;
END_SCHEMA; — people_schema

END_SCHEMA; -- people_schema

In migrating instances from the first schema to the second, we’d like to keep all

of the attribute values: clearly, we expect age and name to be retained for

instances of person, and masculinity/femininity for instances of

Transformr: A Prototype STEP Exchange File Migration Tool Page 3

Stephen Nowland Clark

man/woman. In addition, size can be retained for instances of man and of

woman, since this attribute simply moves up into the common supertype,

person. We can write the following simple TCSL specification:

COPY person;
COPY man;
COPY woman;

This instructs Transformr to keep any instances of person, man, or woman.

The new person instances will have age and name copied from the old

instances (the only attributes common to the source and target person entities).

Note that age is retained despite its change in type, since INTEGER is coercible

to REAL. New man instances will retain these two attributes (by inheriting the

COPY command from person) as well as masculinity (common to the

source and target man entities) and size (common to the source man and target

person entities). New woman instances will similarly be fully populated. Note

in particular that the COPY command need not concern itself with changes in the

order of attributes, or with simple movement of attributes up or down the class

hierarchy.

Adding ‘FROM source-entity- id’ to a COPY command simply generalizes the

operation so that the source and target entities need not have the same name. Provided

that no other modifications need to be made to the mapped instances, several of these

simple specifications (with or without FROM specifications) may be strung together

separated by commas following a single COPY keyword.

Example 2: Bulk COPY with renaming

In the previous example, we could more compactly have written:

COPY person, man, woman;

achieving the same effect.

Suppose now that the target schema defines subtypes male and female of

person, rather than the original man and woman. We still want to retain

instances of man/woman, but they must be transformed into new instances of

male/female. This is again straightforward. We can simply write:

COPY person, male FROM man, female FROM woman;

Page 4 Transformr: A Prototype STEP Exchange File Migration

Stephen Nowland Clark

Once again, the desired instances will be retained with all of their proper

attribute values.

Many of the interesting changes which are made to schemas involve rearranging,

adding, or deleting attributes from entities. These sorts of operations can be specified

by adding modifiers to a single COPY command. We now turn to these modifiers.

2.1.1 Modifiers (Derive and Drop)

There are two forms of modifiers in TCSL, derivations and drops. Both can used in the

COPY command, while only derivations are meaningful to the BUILD command (see

section 2.2). These modifiers have the following syntax:

modifier = derive
|
drop .

derive = special-ref ' :=' expression .

drop = ' DROP ' special-ref {
',' special-ref } .

special-ref = attr-id { qualifier } .

entity-id = source-entity-id
|
'SELF' .

As previously mentioned, TCSL expressions are the same as EXPRESS expressions.

Similarly, TCSL qualifiers are identical to EXPRESS qualifiers, although group

qualification and aggregate indexing are currently unsupported in the prototype

implementation.

The only entity identifiers which are valid in either type of modifier are the names of

the target (left-hand side of a derive modifier) and source (elsewhere) entities. SELF is

synonymous with the name of the source entity within a COPY command.

2.1.1.1 Derive

A derive modifier (derivation) is used to specify a value for an attribute of the target

instance or of one of its attributes which cannot or should not be directly copied from

an attribute of the source instance. It specifies an expression in terms of attributes of the

source instance which is used to compute the new attribute value.

Transformr: A Prototype STEP Exchange File Migration Tool Page 5

Stephen Nowland Clark

Example 3: Derive modifiers

Imagine that we have a geometry schema which uses polar coordinates, and we
wish to change the schema to use rectangular coordinates instead. Then we
might have the schema excerpts below:

Source Schema Target Schema

SCHEMA geometry; SCHEMA geometry;

ENTITY point; ENTITY point;
r ; REAL; x_coord : REAL;

theta : REAL; y coord : REAL;
END_ENTITY; END_ENTITY;

END_SCHEMA; — geometry END_SCHEMA; — geometry

In order to properly transform instances ofpoint, we must provide derivations

for the new attributes. Thus, we might write:

COPY point;
x_coord := r*cos (point . theta) ;

-- derivation for x_coord
y_coord := r*sin (SELF .theta) ; — derivation for y_coord

Note that SELF and point may be used interchangeably to refer to the instance

being transformed.

2.1. 1.2 Drop

A drop modifier is used to specify that a particular attribute or component thereof which

may appear to be the same in both the source and target entities actually is not, and so

values of this attribute must not be propagated to new instances. This operation is

provided for completeness; it is not clear how useful it is in practice, as the old and new
versions of the attribute concerned will most likely not be of compatible types, and so

will not be copied anyway.

Page 6 Transformr: A Prototype STEP Exchange File Migration

Stephen Nowland Clark

2.2 The BUILD Command

The BUILD command has the following syntax:

build-decl = 'BUILD' target-entity-id
'FROM' source-entity-id {

',' source-entity-id }

['WHERE' expression {
';' expression }]

';'

['DERIVE' derive ';'
{ derive ';'

}] .

A BUILD command specifies that instances of the named target entity are to be built

from tuples of source instances. Each tuple consists of one instance of each named

source entity. In the presence of a WHERE clause, only tuples which do not violate any

of the expressions in the WHERE clause are included. Note that, as in EXPRESS, a

clause which produces an UNKNOWN result is not considered to be violated.

The derivations in a BUI LD command specify how to compute the values of the various

attributes of the target instances. No data is copied into the target instances by default,

even if there are attributes available with the same name and compatible types. This is

one respect in which the BUILD command differs from the COPY command.

Another difference has to do with instance identity. Recall that the COPY command
maps source instances to target instances with the same identity, i.e., having the same

physical file identifiers as the source instances. The BUILD command creates entirely

new instances with new identifiers.

Example 4: A basic BUILD command

Let us revisit our earlier example. Suppose that the target schema contains an

additional entity:

ENTITY couple;
him : man;
her : woman;
compatibility : int;

END ENTITY;

Transform!-

: A Prototype STEP Exchange File Migration Tool Page 7

Stephen Nowland Clark

Now, we would like to build an instance of couple for every “compatible”

man-woman pair. Supposing that a compatible pair is one whose

masculinity/femininity scores differ by no more than two, we could

write:

BUILD couple FROM man, woman
WHERE
ABS (man .masculinity - woman . femininity) <= 2;

DERIVE
him := man;
her ;= woman;
compatibility := ABS (man .masculinity -

woman . femininity)

;

The WHERE clause will be evaluated against each possible man-woman pair, and

for each pair which does not violate it, an instance of couple will be produced.

Note that this example assumes that there are COPY commands in place for man
and woman: The derivations for him and her simply refer to the source entity

instances themselves, and it is assumed that the same instances will be available

in the target model.

Note that drop modifiers are not meaningful for a BUILD command, since no attribute

values are copied into the new instances by default Also note that SELF is not

meaningful in a derivation within a BUILD command, as there is typically more than

one source entity.

Another use of the BUILD command is to simulate a conditional COPY. This usage is

actually a kludge dictated by a limitation of the language, but expresses a useful

operation nonetheless. This usage is basically equivalent to a COPY command with a

WHERE clause, a construct which ought to appear in the language in the future, except

that the latter would preserve instance identity, while the BU I LD does not. The problem

this construct addresses is the problem of mapping instances of a particular source

entity into instances of different target entities, according to some criterion. This can be

expressed by writing several BUILD commands, each building instances of one of the

target entities from the source entity, and having as its WHERE clause the relevant

portion of the selection criterion.

Page 8 Transformr: A Prototype STEP Exchange File Migration

Stephen Nowland Clark

Example 5: BUILD as a conditional COPY

Suppose our original people_schema did not have the entities man and

woman, but rather represented gender as an attribute. We might wish to write a

new schema which does have these separate subtypes:

Source Schema Target Schema

SCHEMA people_schema; SCHEMA people schema;

TYPE gender type = ENUMERATION ENTITY person
OF (male, female)

;

SUPERTYPE OF (ONEOF (man,

woman))

;

ENTITY person; age : REAL;
name : STRING; name : STRING;
age : INTEGER; END ENTITY;
gender : gender_type;
inity : INTEGER; ENTITY man

END_ENTITY; SUBTYPE OF (person)

;

masculinity : INTEGER;
END SCHEMA; — people_schema END_ENTITY;

ENTITY woman
SUBTYPE OF (person)

;

femininity : INTEGER;
END_ENTITY;

END SCHEMA; — people schema

Now, we want to transform person instances according to the value of then-

gender attribute. We can do this by writing:

BUILD man FROM person
WHERE
person

.
gender = male;

DERIVE
age := person. age;
name := person. name;
masculinity := person . inity;

BUILD woman FROM person
WHERE
person .gender = female;
DERIVE
age := person. age;
name := person. name;
femininity := person . inity

;

Transformr: A Prototype STEP Exchange File Migration Tool Page 9

Stephen Nowland Clark

It quickly becomes evident why a conditional COPY command would be useful:

BUILD does not copy any attribute values by default, nor does it provide for

inheritance of other BUILD or COPY commands which might address some of

the inherited attributes. Nonetheless, this example shows that the desired

operation can be performed in TCSL in its current form.

3 Invoking Transformr

Transformr runs in a Unix™ environment, and is invoked by the command

% transformr -d <difference spec>
-e <source schema>
-t ctarget schema>
{-s <step file>

|
-o <output file>}

The -d option is used to specify the TCSL file specifying the mapping to be used. The

-e option specifies the source EXPRESS schema for the mapping, and -t the target

schema. The -s and -o options must be specified in equal numbers. Each -s specifies

a STEP exchange file to be transformed, and the corresponding -o, the output file to be

produced from this transformation.

Example 6: Typical Transformr invocation

transformr -d geom_dif fs . xform
-e old_geometry . exp
-t new_geometry . exp
-s parti. stp -o parti. new

parti . stp must be a STEP exchange file conforming to the EXPRESS
information model in old_geometry . exp. The product it defines will be

transformed according to the specification in geom_di f f s . xform into a

product conforming to the EXPRESS information model in

new_geometry . exp, which will then be written in exchange file format to

parti .new.

4 Basic Theory of Operation

This section briefly describes Transformr’’ s theory of operation, in hopes of

illuminating various behavioral idiosyncracies which may be encountered. It may be

skipped without seriously hampering your ability to use Transformr.

Page 10 Transformr: A Prototype STEP Exchange File Migration

Stephen Nowland Clark

There are two primary data structures used to represent the TCSL specification within

Transformr. The first, Correspondence, is used to represent COPY commands,

while Construction is used to represent BUILD commands. The semantics of these

data structures very closely parallel those of the corresponding TCSL commands. All

of the Correspondences and Constructions are collected together in a single

Mapping.

To transform a particular model, Transformr first examines each instance in turn,

checking for an applicable Correspondence and applying it if one is found. After

all of the instances have been examined and transformed as necessary, Transformr next

performs each Construction. To do this, the WHERE clause is evaluated for each

candidate tuple in turn; for each tuple which does not violate the WHERE clause, a new
instance is created and populated.

All derivations, whether for BUILD or COPY commands, are evaluated in the universe

of the source model. The resulting values are then coerced into the target universe. As

suggested above, the rules for type coercibility are similar to the rules for assignment

compatibility in EXPRESS.

All numeric types (INTEGER, NUMBER, and REAL) are inter-coercible. Real numbers

are truncated when they are coerced into integers.

An enumeration value in the source universe can only be coerced into an enumeration

value of the same name in the target universe. The coercion process is done

symbolically, so that reordering of enumeration values in the type definition is

automatically handled. A value which does not appear in the target model will

disappear in the coercion process, leaving the attribute in question with a missing value.

An aggregate value can only be coerced into an aggregate of the same class (array, bag,

list, or set), and only if its base type is coercible into the base type of the target. Multi-

dimensional aggregates currently are not handled.

When coercing a reference to an entity instance into the target universe, Transformr

verifies that the instance has indeed been preserved in the target model by a COPY
command; if it has not, the reference is deleted and the attribute left missing) and a

warning message produced.

5 Some Known Limitations

This section highlights several known limitations of Transformr. These limitations will

be addressed by future work.

Being based on the NIST PDES Toolkit [Clark90], Transformr inherits the limitations

of this foundation. Notable among these for users of Transformr are:

• The Toolkit’s STEP exchange file parser, STEPparse, currently does not allow

forward references to entity instances.

• The Toolkit’s EXPRESS parser, Fed-X, currently does not allow a particular

enumeration value to appear in more than one enumeration type.

Transformr: A Prototype STEP Exchange File Migration Tool Page 1

1

Stephen Nowland Clark

Both of these limitations will be removed from the Toolkit, and so from Transformr, in

the near future.

Transformr does not implement all of TCSL as described. Also, the design and

implementation of TCSL itself has been a learning experience in the requirements for

such a language, and TCSL is not entirely adequate to the task. For the purposes of this

discussion, these two classes of limitations are combined.

• TCSL lifts its expression syntax from EXPRESS. However, several types of

expressions are currently unimplemented, though some are accepted by the

Transformr parser. Unimplemented expressions include: aggregate constructors,

aggregate operations (including indexing), entity instance constructors, group

qualifiers, references to derived attributes, and most function invocations (only

built-in arithmetic functions of a single argument are currently implemented).

• There is no way to define new functions in TCSL (of course, they couldn’t be

invoked even if they could be defined).

• There is no way of converting an aggregate value from one class (array, bag, list, or

set) into another, short of writing a function, which currently cannot be done.

• As mentioned above, it would be immensely useful to be able to attach a WHERE
clause to the COPY command.

• There is no way of referring to the instances constructed by a BU I LD command, e.g.

to insert them as attribute values into another instance. This problem could be

alleviated by making the COPY command more powerful, e.g. adding conditional

COPY, which would reduce the language’s reliance on the BUILD command. The

remaining usages of the BUILD command would still require that this problem be

addressed.

• Some form of conditional expression or conditional assignment is needed within the

derivation syntax.

6 Summary

TCSL in its current form is able to express many of the kinds of transformations which

tend to be made to STEP information models. The prototype Transformr

implementation has shown that this approach is an appropriate way of addressing the

problem of keeping STEP instance data synchronized with changing EXPRESS
information models.

The prototyping work has provided valuable insight into limitations of the approach as

a whole and of the TCSL language in particular. There are two primary areas in which

further work needs to be done: the TCSL implementation in Transformr (this basically

means the expression evaluator) needs to be completed; and TCSL itself needs to be

extended, in particular to provide for conditional COP Ys and for referencing of the

results of BUILDs. Future work on Transformr will address these limitations of the

current prototype.

Page 12 Transformr: A Prototype STEP Exchange File Migration

Stephen Nowland Clark

A References

[Clark90]

[ISOll]

[IS021]

[Wirth]

Clark, S. N., An Introduction to the NIST PDES Toolkit . NISTIR

4336, National Institute of Standards and Technology, Gaithersburg,

MD, May 1990.

Spiby, P., ed.. ISO 10303 Industrial Automation Systems - Product

Data Representation and Exchange — Part 1 1 : Description Methods:

TheEXPRESS Language Reference Manual . Committee Draft N14,

ISO TC184/SC4, April 29, 1991.

Altemueller, J., The STEP File Structure . ISO TC184/SC4/WG1
Document N279, September, 1988.

Wirth, N., in a letter in Communications of the ACM . 20:1 1, pp.

822-823, November, 1977.

Transformr: A Prototype STEP Exchange File Migration Tool Page 13

.

NIST-1 14A

(REV. 3-90)

U.S. DEPARTMENT OF COMMERCE
NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY

i. PUBLICATION OR REPORT NUMBER
NISTIR 4944

BIBLIOGRAPHIC DATA SHEET
2. PERFORMING ORGANIZATION REPORT NUMBER

3. PUBLICATION DATE
OCTOBER 1992

4. TITLE AND SUBTITLE

Transformr: A Prototype STEP Exchange File Migration Tool

5. AUTHOR(S)

Stephen N. Clark

6. PERFORMING ORGANIZATION (IF JOINT OR OTHER THAN NIST, SEE INSTRUCTIONS) 7.

U.S. DEPARTMENT OF COMMERCE
NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY —
GAITHERSBURG, MD 20899 8-

9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (STREET, CITY, STATE, ZIP)

OASD/CALS Evaluation and Integration Office
Department of Defense
Pentagon, Room 2B322
Washington, DC 20301-8000

CONTRACT/GRANT NUMBER

TYPE OF REPORT AND PERIOD COVERED

10. SUPPLEMENTARY NOTES

11. ABSTRACT (A 200-WORD OR LESS FACTUAL SUMMARY OF MOST SIGNIFICANT INFORMATION. IF DOCUMENT INCLUDES A SIGNIFICANT BIBLIOGRAPHY OR
LITERATURE SURVEY, MENTION IT HERE)

This paper is a User’s Guide to the Transformr STEP exchange file translation tool. Transformr transforms

STEP exchange files between successive versions of their underlying EXPRESS information models. The

Transformr Correspondence Specification Language (TCSL), which is used to establish the mapping between

these schema versions, is described. The usage of Transformr is also described.

12. KEY WORDS (6 TO 12 ENTRIES; ALPHABETICAL ORDER; CAPITALIZE ONLY PROPER NAMES; AND SEPARATE KEY WORDS BY SEMICOLONS)

data migration; EXPRESS; PDES; schema evolution; schema versioning; STEP; STEP exchange file;

Transformr

13. AVAILABILITY

^ UNLIMITED

FOR OFFICIAL DISTRIBUTION. DO NOT RELEASE TO NATIONAL TECHNICAL INFORMATION SERVICE (NTIS).

ORDER FROM SUPERINTENDENT OF DOCUMENTS, U.S. GOVERNMENT PRINTING OFFICE,
WASHINGTON, DC 20402.

2 ORDER FROM NATIONAL TECHNICAL INFORMATION SERVICE (NTIS). SPRINGFIELD,VA 22161.

14. NUMBER OF PRINTED PAGES

16

15. PRICE

A02

ELECTRONIC FORM

