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Editor’s Note

The Office of Weights and Measures of the National Institute of Standards and Technology (NIST) provides

training in the form of Basic, Intermediate, and Advanced seminars in mass, length, and volume to State and
industry metrologists in support of the New State Standards Program which was funded by Congress in 1%5
and provided standards and equipment to State weights and measures laboratories.

To meet the advancing technological needs of the State laboratories and private industry calibration

laboratories, an Advanced Mass Measurements Workshop has been developed. This 5-day workshop aims to

disseminate NIST expertise in mass measurements and calibration to professionals and senior technical

personnel. Calibration designs and quality control techniques are emphasized for use in their own
laboratories.

This volume is a collection of publications that has been found to be essential and useful in the conduct of

an Advanced Mass Measurements Workshop under the sponsorship of the Office of Weights and Measures.

Publications included in this volume appeared originally as articles scattered in journals, NIST reports,

technical notes, monographs, and special publications. Some of these papers are now out of print. It is

anticipated that this publication will also serve as a useful reference on mass calibrations in addition to its use

during the workshop. The pagination for this publication follows the same format as Selected Publications

For the EMAP Workshop, namely: a unique alphabetic designation for each reprint is followed by the page

number of the original article, e.g. A- 14.

The author wishes to thank M. Carroll Croarkin for bringing the EMAP publication to her attention and for

her assistance in the development of subject material for the workshop.

Georgia L. Harris
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Measurement Assurance

Introduction

A single measurement can be the basis for actions taken to maintain
our health, safety or the quality of our environment. It is important
therefore that the errors of measurement be small enough so that the
actions taken are only negligibly affected by these errors. We
realize this necessity on a personal basis when we consider medical
measurements, or our exposure to radioactivity. In any government
regulatory action or measurement involved in legal actions it is also
obvious that the shadow of doubt surrounding the measurements should
be suitably small. But this is no less true for all other
measurements in science and industry and even though legal action may
not be involved, the validity of scientific inference, the
effectiveness of process control, or the quality of production may
depend on adequate measurements [2],

Allowable Limits of Measurement Error

How does one achieve this condition--that the measurements are "good
enough" for their intended use? It would seem obvious that one has to
start with the need—i.e., deciding upon what is "good enough". There
are a number of cases where physiological restraints provide the
definition such as in the allowable error in exposure to cobalt
radiation in cancer treatment or in the amount of pollutant entering a

lake. In nuclear materials control the allowable error is a function
of the amount of material which would pose a hazard if diverted. In

industrial production or commercial transactions, the error limit is

determined by a balance between the cost of better measurement and the

possible economic loss from poorer measurement.

By whatever path such requirements are arrived at, let us begin with

the assumption that the allowable error should not be outside the

interval (-a, +b) relative to the quantity being measured. Our

problem is one of deciding whether the uncertainty of a single

measurement is wholly contained in an interval of that size. We

therefore need a means of assigning an uncertainty to a single

isolated measurement and, in fact, we need a perspective (i.e.,

physical and mathematical model) in which to view measurement so as to

give operational meaning to the term "uncertainty."

Reference Base to Which Measurements Must Be Related

It is instructive to contemplate the possible "cross-examination" of a

measurement if it were to become an important element in a legal

controversy. Two essential features emerge. First, that the

contending parties would have to agree on what (actually realizable)

measurement would be mutually acceptable. The logic of this seems

unassail able--if one cannot state what measurement system would be
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accepted as "correct," then one would have no defensible way of

developing specifications or regulations involving such measurements.
Second, the scientific cross-examination by which one establishes the
"shadow of doubt" relative to this acceptable value gives one the
uncertainty to be attached to the measurement.

The consensus or generally accepted value can be given a particularly
simple meaning in dealing with measurements of such quantities as

mass, volt, resistance, temperature, etc. One may require that
uncertainties be expressed relative to the standards as maintained by
a local laboratory or, when appropriate, to the national standards as
maintained by NBS. In other cases, nationally accepted artifacts,
standard reference materials or in some cases a particular measurement
process may constitute a reference base. One basic quality should not
be overlooked--al 1 are operationally realizable. The confusion
engendered by introducing the term "true value" as the correct but
unknowable value is thus avoided.

Properties of Measurement Processes

In discussing uncertainty, we must account for two characteristics of

measurement processes. First, repeated measurements of the same

quantity by the same measurement process will disagree and, second,

the limiting means of measurements by two different processes will

disagree. These observations lead to a perspective from which to view

measurement namely that the measurement be regarded as the "output" of

a process analogous to an industrial production process. In defining
the process, one must state the conditions under which a "repetition"

of the measurement would be made, analogous to defining the conditions
of manufacture in an industrial process.

The need for this specification of the process becomes clear if one

envisions the "cross-examination" process. One would begin with such
questions as

Within what limits would an additional measurement by
the same instrument agree when measuring some stable

quantity?

Would the agreement be poorer if the time interval

between repetitions were increased?

What if different instruments from the same manu-
facturer were used?

If two or more types (or manufacturers) were used,

how much disagreement would be expected?

To these can be added questions related to the conduct of the

measurement.



What effect does geometry (orientation, etc.) have
on the measurement?

What about environmental condi tions--temperature,
moisture, etc.?

Is the result dependent on the procedure used?

Do different operators show persistent differences
in values?

Are there instrumental biases or differences due to
reference standards or calibrations?

The questions serve to define the measurement process--the process
whose "output" we seek to characterize.

The current understanding of a scientific or industrial process or of
a measurement process is embodied in a physical model which explains
the interactions of various factors, corrections for environmental or
other effects, and the probability models necessary to account for the
fact that repetitions of the same event give rise to nonidentical
answers. For example, in noise level measurement one is involved with
assumptions regarding frequency response, weighing networks, influence
of procedures and geometry, and an accepted theory for making
corrections for temperature and other environmental factors. In mass
the properties of the comparator (balance) the environmental effects,
and the procedure used all enter into the description of the method.

One thus begins with the specification of a measurement method--the
detailed description of apparatus, procedures and conditions by which
one will measure some quantity. Once the apparatus is assembled and
checked out, one has a measurement process whose output can be studied
to see if it conforms to the requirement for which it was created.

In industrial production one tries to produce identical items but

usually a measurement process is set up to measure a variety of

quantities and Ordinarily one does not measure the same quantity over

and over. One thus has the problem of sampling the output of the

measuring process so as to be able to make statements about the health

of the process relative to the needs. The needed redundancy can

sometimes be achieved by remeasuring some of the items, or by

measuring a reference artifact periodically. It is essential that the

repetitions be done under the same diversity of conditions as the

regular measurements, and that the items being measured be typical of

the regular workload.

As an example, a sequence of measurements was made using two sound

level meters to measure a sound of nominally 90 dB re 20 yPa. The

sound was generated by a loudspeaker fed broadband noise. On 16

A-
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different days measurements were made outdoors and over grass with the
loudspeaker in the same orientation and location relative to a

building 2 m behind the loudspeaker. The sound level meter was always
the same distance (10 m) from the loudspeaker and on a line
perpendicular to the face of the loudspeaker. Other than the grass,
the person holding the sound level meter, and the building to the rear
of the loudspeaker, there were no other reflecting surfaces or
obstacles within 50 m. No measurements were made in the rain or in

winds exceeding a few km/hr. The results from these 16 repetitions
are shown in Figure 1. Typically, had duplicate measurements been
made on the same day they would have given results as shown in Figure
2 .

FIGURE 1: DAY-TO-DAY VARIATION IN METER READINGS.
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FIGURE 2: DAY-TO-DAY VARIATION IN METER READINGS WITH MULTIPLE VALUES

PER DAY. (COINCIDENT POINTS INDICATED BY NUMBERS.)
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One now faces the question of how to describe the variation that
exists. Obviously there will be a different level of agreement
expected between pairs on the same day, but this variation in no way
predicts that encountered from day-to-day. The issue is not so much
the statistical procedures to be used— these will follow after one
defines the set of repetitions over which his conclusions must apply.
For measuring the short term change in noise level, the difference
between duplicates would apply; for any regulatory action, the day-to-
day variation would have to be considered.

The crucial step in assessing the effects of random error is that of
defining the set of repetitions over which the measurement is to
apply. In the context of legal proceedings, one arrives at the degree
of credibility of evidence by questions designed to find out how far
the statement could be in error. In measurement, the uncertainty is

arrived at by determining the amount of disagreement expected in the
set of repetitions that would be appropriate in the context of the
intended use of the measurement.

The Concept of a^ Repetition of a^ Measurement

Every measurement has a set of conditions in which it is presumed to
be valid. At a very minimum, it is the set of repeated measurements
with the same instrument-operator procedure-configuration. (This is

the type of repetition one would envision in some process control
oerations.) If the measurement is to be interchangeable with one made
at another location, the repetition would involve different
instrument-operator-procedure-environment configurations. (This type
of repetition is involved in producing items to satisfy a

specification and of manufacturing generally.) When the measurement
is to be used for conformance to a health, safety, or environmental

regulation even different methods may be involved in a "repetition."

To evaluate a measurement process some redundancy needs to be built

into the system to determine the process parameters. This redundancy

should be representative of the set of repetitions with which the

uncertainty statement is to apply. In MBS' measurements of mass, a

check standard is measured in parallel with the unknowns submitted for

calibration. One thus generates a sequence of measurements of the

same object covering an extended time period. From these results one

can answer questions relating to the agreement expected in a

recalibration and the operating characteristics of the measurement

process. In this simple case the check standard is treated exactly

the same way as the unknowns so that the properties of the process

related to it are transferrable to the unknown.

The essential characteristic in establishing the validity of

measurement is predictability that the variability remains at the same

level and that the process has not drifted of shifted abruptly from

its established values. One must build in redundancy in the form of a
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control— the measurement of a reference quantity of known value—or by
remeasuring some values by a reference method (or by an instrument
with considerably smaller uncertainty). In cases where the phenomenon
can be repeated, one can learn about random errors by remeasuring at a

later time sufficiently far removed to guarantee independence.

In measuring an "unknown" one gets a single value, but one still is

faced with the need to make a statement that allows for the scatter of
the results. If we had a sufficiently long record of measurements, we
could set limits within which we were fairly certain that the next
measurement would lie. Such a statement should be based on a

collection of independent determinations, each one similar in

character to the new observation, that is to say, so that each
observation of the collection and also the new observation can be
considered as random drawings from the same probability distribution.
These conditions will be satisfied if the collection of points is from
a sufficiently broad set of environmental and operating conditions to

allow all the random effects to which the process is subject to have a

chance to exert their influence on the variability. Suitable
collections of data can be obtained by incorporating an appropriate
reference measurement into routine measurement procedures, provided

they are representative of the same variability to which the "unknown"
is subject. The statistical procedures for expressing the results
will depend on the structure of the data but they cannot overcome
deficiencies in the representativeness of the values being used.

The results from the reference item provide the basis for determining

the parameters of the measurement process and the properties are

transferable. One is saying, in effect, if we could have measured the
"unknown" again and again, a sequence of values such as those for the

reference item would have been obtained. Whether our single value is

above or below the mean we cannot say, but we are fairly certain it

would not differ by more than the bounds to the scatter of the values
on the reference item.

The bound +R, to be used for the possible effect of random errors may
be as simple as +3 (standard deviation) or may involve the combination
of many components of variance. Once the set of repetitions over
which one's conclusions must apply is defined, the structure of the

random error bound can be determined.

Possible Offset of the Process

Once one has established that his measurement process is "in control"

from the point of view of random variation, there remains the question

of the possible offset of the process relative to other processes. It

is not helpful to speak of the offset from a "true value" which exists

only in the mathematical or physical model of the process. The

usefulness of considering measurement In the context of legal

proceedings helps clear away some of the classical confusion about



errors of measurement. In a legal or regulatory setting, one is
forced to state what would be accepted as correct such as comparison
(by a prescribed process) with national standards or with the results
from a designated laboratory or consensus of many laboratories.

The idea of defining uncertainty as the extent to which a measurement
is in doubt relative to a standard or process defined as correct finds
expression in the recent Nuclear Regulatory Commission statement [12]:

70.57(a) "Traceability" means the ability to relate
IndLividwii mecuuA.emcnt to national standards or
nationally accepted measurement systems ... (italics added)

One could measure the offset of his process relative to the accepted
process, and make suitable corrections to eliminate the offset.
However, for most processes, one is content with setting bounds to the
possible offset due to factors such as:

Errors in the starting standards

Departures from sought-after instrumentation (e.g.,
geometrical discrepancies)

Errors in procedures, environment, etc.

and other effects which are persistent. From properly designed
experiments one can arrive at a limit to the possible extent of errors
from these sources in answer to the question, "If the process were set
up ab initio, how large a difference in their limiting means would be
reasonable?"

A bound to a number of factors can be determined as part of regular
measurement. For example, the effect of elevation on sound level

measurements could be evaluated by occasionally duplicating a

measurement at a different height and taking an appropriate fraction
of the observed difference as the limit to the possible offset due to

any error in setting elevation. Figure 3 shows some results from

sound level meters at two heights with the source at a constant

height.

FIGURE 3: DIFFERENCE BETWEEN METER VALUES WITH CHANGE IN HEIGHT



Even if one has a functional relation, y = f(h), expressing the
dependence of the result, y, on height, h, one still has to carry out
these irieasurements . The usual propagation of error approach involving
partial derivatives, etc., implies that all instruments are equally
dependent on the parameter under study, that there are no effects
related to the factor except that contained in the formula. This can
be verified for a particular instrument by actually measuring its
response.

A similar comparison was made for a different orientation of the
instrument with respect to this signal source and is shown in Figure
4. The effect of orientation is negligible and one would not be
justified in adding an allowance for possible systematic error from
this source based on a theoretical calculation.

FIGURE 4: DIFFERENCE BETWEEN METER VALUES WITH A CHANGE IN ORIENTATION

From these measurements, one will have a set of bounds Ei , £ 2 * E 3 , ...

to the possible offset or systematic error from the various factors.
The question as to how to combine these to a single bound to the
possible offset depends on knowledge of the joint effects of two or
more factors and on the physical model assumed for the process. For
example, if the bounds Ei and Ej arise from independent random error



bounds, then it would be appropriate to combine them in quadrature,
i.e., + Ej. An error in the model e.g. , assumed linearity even
when nonlinearity exists) would act as an additive error. The
properties of any combination rule can be evaluated and a selection
made of the most appropriate. The result will be an overall value, E,
for the possible offset for the limiting mean of the process from that
of the nationally accepted process.

Uncertainty

What can one say about the uncertainty of a measurement made by a

process that may be offset from the nationally accepted process by
some amount +E, and is subject to random errors bounded by +R? How
should these values be combined? To begin with, one could raTse the
question, "If the random error could be made negligible, what
uncertainty would one attach to a value from the process?" Clearly
the answer is +E. The next question, "If, in addition, a random error
of size R is possible, what do we now say about the uncertainty?" The
answer seems obvious--E and R are added to give an uncertainty of +[E
+ R].

But what if E were itself the result of only random errors? The
answer depends on what one calls a repetition. By the way E is

defined, it is the bound for the systematic offset of the process and
although it may be arrived at from consideration of random errors, the
factor involved keeps the same (unknown) value throughout. Our
ignorance does not make it a random variable.

Consider the case of a mass standard. NBS' certificate states that
the uncertainty is based entirely on random variation, the effects
from systematic errors being negligible. But unless one recalibrates,
the error due to calibration remains fixed in all measurements by the

user.

The uncertainty of a measurement—the width of its "shadow of doubt"

in a legal proceeding—must therefore be the sum of the random error

and systematic error limits.

Measurement Process Control

The essential feature for the validity of the uncertainty statement is

that the process remain in a state of statistical control. Once an

out-of-control condition occurs, one has lost predictability and the

previous uncertainty statements are no longer valid.

To monitor the process some redundancy has to be built into the

system. A variety of techniques can be used to give assurance of

continued control. For example, one could periodically measure the

same reference item or artifact or one could make duplicate

measurements on some production items with enough delay to guarantee
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independence. The American National Standards Institute Standard
N15.18 for mass measurement DO] is an example where this approach is

worked out in detail. But one has to verify more than just those
parameters related to random variations. One needs to build in tests
of the adequacy of the physical model by a variety of tests on the
process (e.g., by repeating measurements under different conditions to
verify the adequacy of the corrections for such changes) as well as
periodic redetermi nation of the bounds for systematic error. One thus
tests that the assumed model is still acceptable and that the
parameters assigned to that model have not changed.

An excellent example of the efficacy of this approach is given by the
recent announcement [6] of discrepancies of 1 mg in the assignment of
mass to aluminum kilogram standards. The mass measurement system has
long been shown to be nearly perfect for the usual standards. To
check up on the performance of the system at densities nearer to that
of most objects involved in practical measurement, an aluminum
kilogram was sent to laboratories including several at high
elevations. It turns out that the difference between the mass of a

stainless steel and an aluminum kilogram is significantly different at
different elevations. This unsuspected property of the real
measurement system is now the subject of considerable study.

All measurements have some form of measurement assurance program
associated with them although, as with quality control, we usually
reserve the term for a formal program. In a formal program one treats
the whole process--beginning with a study of the need, the development
of a measuring process and a procedure for determining and monitoring
its performance, and an evaluation of the effectiveness of the whole
effort. One needs a criterion of success to be able to determine
whether more of one's current measurement activity or perhaps some

alternative would contribute most to the overall program, and this is

not necessarily provided by the smallness of the uncertainty for a

measurement.

For example, when the requirement is for matched sets (e.g., ball

bearings) or mated assembly parts, then it is usually cheaper and more
accurate to sort into finely divided classes and match for correctness
of fit rather than perform direct measurement of each part.

When the measurement requirements are stated in terms of the needs of

the system, (number of correctly matching parts, number of correctly
measured dosimeters, etc.) one can measure success of the measurement
effort in terms of closeness to meeting those goals. Measurement
efficiency is thus judged in terms of the output of the organization
rather than by the count of the number of significant digits. Also,

one needs this measure of performance of the measurement effort to be

able to identify those areas which need improvement.
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Examples of Measurement Assurance Programs in NBS Measurements

Two easily described measurement assurance programs are those in mass
and length. In routine calibration, a check standard is included with
each set of weighings and process control is maintained by monitoring
the value obtained for the check standard and of the random error from
the least squares analysis [8, 9]. Control charts have been
maintained since 1963. In the calibration of gage blocks, similar
process control has been maintained since 1972 on both the
interferometric process by which the assignment of length to the NBS
master gage blocks is done and on the comparator process by which
length values are transferred to customer gage blocks. [1, 7]

Similar programs are in effect in all divisions, but not all

quantities involved in calibration have a formal program worthy of the
name, measurement assurance.

Examples of Measurement Assurance Programs At Other Laboratories

Only two examples of measurement assurance programs at other
laboratories have ever been reported. One at Autonetics [3] in length
and one at Mounds Laboratory in mass. Once the mass measurement
system for UFg is underway as part of the Safeguards program, NBS will
be able to document the efficacy of the approach in practical
measurement.

The NBS Measurement Assurance Programs Offered As A Part Of
Our Calibration Service

Measurement Assurance Programs are listed as a calibration service in

mass, volt, resistence, capacitance, voltage ratio, watthour meters,
platinum resistance thermometry, and laser power. These are designed
to measure the offset of measurement processes for the calibration of

standards by other standards laboratories. These are applicable only
to those laboratories who maintain and calibrate standards in the same

manner as NBS. [See 11, 5, 13.]

These procedures enable a laboratory to determine the offset between

its process of calibrating standards and that of NBS.

Need For Measurement Assurance Program For Practical Measurement

The UFg cylinder program for Safeguards [10] 1s an example of NBS'

service in providing a direct method for measuring the offset of

practical measurement processes from that accepted as correct, namely

mass measurement by NBS. Investigation of the need and possible

mechanisms or artifacts for monitoring the offset of practical

measurements In quantities such as voltage, resistance, length,

radioactivity Is underway. (For examples of the application of these

principles to sound level meters, see [5].)

A-ll



In personnel dosimetry procedures are being worked out [14] to monitor
the output of firms providing such services. In this case, a table of
allowable limits of uncertainty are based on physiological
considerations. Process parameters are to be determined by an initial
study. Routine monitoring will be used to confirm that the process is

"in control" at those levels, otherwise the parameters are
redetermined ab -initio. These "consistency" or "in control" criteria
replace the usual one-time round robin approach. The amount of effort
needed to establish this predictability is a function of the risk and
costs of wrong decisions.

In industrial measurement we could ask

If some critical measurements on the production line were
repeated would the two measurements agree?

How much bad material is passed, or good material rejected
because of errors in measurement?

To those who have not properly answered these questions, dollar
savings and improved product quality are possible without redesign or
changes in production procedures.

Is our faith in instruments justified? Implicit faith in the
correctness of Instruments means that product variability (as

determined by these instruments) is attributed to variability in

components, raw materials or even poor design. One wonders how many
times this has led to expensive changes in production procedures
without apparent improvement because the variability actually arose in

the measurements themselves.

How often has the installation and methods of use degraded the output
of an instrument capable of much more accuracy than is required when
handled properly? Without some surveillance of the actual

measurements, one would never know.

One wonders how often a product is redesigned because measurement
error has led to the decision that the product does not conform to
specifications.

The result of this look at measurement is measurement assurance—the
quality control of measurement. If adequate control exists, then one
can look elsewhere for improvements in the product line. If it does
not, then one has the possibility of savings without changing
production procedures.

Some form of redundancy must be built into the process to answer these
questions.
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Preface

The purpose of this document is to guide the reader through the logical
development of a measurement assurance program as it is intended to

i) Tie a measurement process or reference standards to the defined unit of
measurement for the quantity in question or to national standards; and

ii) Establish the uncertainty of values reported by the process through the
maintenance of statistical control of the measurement process.

The discussion is approached in the context of the assumption that the tie to
defined units or national standards is accomplished via a tie to MBS.
Participation in a measurement assurance program can satisfy this tie where
systematic error is evaluated via measurements made in the participating
laboratory on an MBS transfer standard and where it can be shown that the
measurement process is continuously in a state of statistical control. This
in no way implies that measurement assurance cannot be attained without formal
participation in an NBS sponsored program, but the presentation is made more
concrete in this context.

The formulation of measurement assurance techniques for all n^asurement
situations is not within the scope of this document. Obviously, such matter
is best handled on a subject basis. The dearth of suitable documentation for
specific measurement disciplines serves as a motivating factor in the

development of this guide which describes statistical procedures and analyses
that are generally pertinent to measurement assurance. It is hoped that the

reader will be able to adapt the philosophy and techniques contained herein to

his own particular measurement needs.

The material in this document is largely statistical in nature because of the

measurement assurance approach to quantifying both the random and systematic
errors that are generated by a measurement process. It should be recognized,
however, that measurement assurance is not achieved by statistical techniques
alone but by the totality of procedures such as correct measurement practice,

adherence to recommended procedures, control of environmental factors and

estimation of process parameters that relate the output of the measurement
system to national standards.

This document is the second part of a general treatise. Measurement Assurance
Programs , which is divided into Part I; General Introduction and

Part II: Development and Implementation . Part I by Dr. Brian C. Belanger is

intended as a statement of the goals of measurement assurance from a

managerial perspective and advances the basic philosophy of quality in

measurement. Part II, which was supported by the NBS Office of Measurement

Services, extends the principles so stated to specific measurement situations,

drawing extensively on programs that were developed by Mr. Joseph Cameron in

consultation with NBS technical divisions. In addition to these examples,

measurement control programs with verifiable uncertainty statements are

outlined for measurement situations that the author has encountered in

consultations with the measurement community outside NBS.

Table I and Table II in this manuscript were compiled using the NBS software

package DATAPLOT developed by Dr. James Filliben.
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Measurement Assurance Programs

Part II: Development and Implementation

Carroll Croarkin
Statistical Engineering Division
Center for Applied Mathematics
National Bureau of Standards

Gaithersburg, KD 20899

This document is a guide to the logical development of a

measurement assurance program in which the tie between a
measurement and its reference base is satisfied by measurements
on a transfer standard. The uncertainty of values repjorted by
the measurement process is defined; and the validation of this
uncertainty for single measurements is developed. Measurement
sequences for executing the transfer with NBS and procedures for
maintaining statistical control are outlined for eight specific
measurement situations with emphasis on characterizing pjarameters

of the measurement process through use of a check standard.

Key Words; Calibration; check standard; measurement assurance; random error;

statistical control; statistical methods; systematic error;
uncertainty.

1. The Development of a Measurement Assurance Program

1.1 Historical Perspective

The development of measurement assurance at the National Bureau of Standards

,

over the more than eighty years that the nation’ s premier measurement
laboratory has been in existence, has evolved hand in hand with the NBS
central mission of providing quality measurement. We might date this

evolution as starting with the early experiments on the velocity of light
(l] . Since then the principles of measurement assurance have reached
realizations of all SI units and numerous derived units of measurement, and

even now are influencing innovations in measurement science related to

electronics and engineering.

As the reader familiarizes himself with the concepts of measurement assurance,

he will come to realize that quality in calibration is dependent upon the

inclusion of a check standard in the calibration scheme. The first

application of this principle at NBS came in the area of mechanical
measurements where a prescribed series of observations known as a weighing
design, so called because of the obvious connection to mass weighings, defines

the relationship among reference standards, test items and check standards.

The first weighing designs published by Hayford in 1893 (2) and Benoit in 1907

[3l had no provision for a check standard, and the creation of suitable

designs had to await general progress in the area of experimental design which

characterized statistical activity at NBS in the nineteen fifties.

^The numbers in brackets refer to references cited at the end of this

document.

B-1



As early as 1926 an NBS publication by Pienkowsky [U] referred to a standard
one gram weight whose mass as "determined in the calibrations Just as though
it were an unknown weight" was used as a gross check on the calibrations of
the other unknown weights. It remained until the nineteen sixties for the
concept of measurement as a process to be described by repetitions on a check
standard such as the one gram weight described by Pienkowsky. At that time
calibrations of mass and length standards were formalized into measurement
assurance programs with demonstrable uncertainty of reported values and
statistical control of individual calibrations. A compendium of weighing
designs for mechanical and electrical quantities with allowance for a check
standard in each calibration sequence was published in 1979 (Csuneron et al

[5l).

Although many experimenters, past and present, have contributed to the quality
of measurement science at NBS, the formulation of measurement assurance is the

special province of the Statistical Engineering Division. Three members of

this group, C. Eisenhart, W. J. Youden and J. M. Cameron, were largely
responsible for fruition of the check standard concept, and the advent of
electronic computers aided in the rapid application of this concept to NBS
calibration programs. In I962 a paper by Eisenhart [6] laid the groundwork
for defining a repetition for a measurement process and assessing the
uncertainties associated with such a process. This paper still serves as the
primary treatise on the subject. Concurrently, Youden was implementing
"ruggedness" testing in physical measurements [t 1

y

and at the same time he was

introducing experimental design into interlaboratory testing [8]

.

In 1967 the first documentation of a measurement assurance approach appeared

in print as an NBS monograph. The tutorial by Pontius and Cameron ( 9 I

,

treated the entire spectrum of mass measurement as a production process and
began the dissemination of measurement assurance outside the NBS community.
In the years since then, measurement assurance, both within and outside NBS,

has been applied to basic SI units such as length as formulated in reference

[ 10 1 and complex measurement areas such as dimensional measurements for the

integrated circuit industry as formulated in reference (ill

.

Recently the

measurement assurance approach has found its way into an ANSI standard for

nuclear material control I 12] with the use of "artifact reference mass

standards as references for uranium hexafluoride" cylinders reported by

Pontius and Doher [l3]

.
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1.2 Introduction

The development of a measurement assurance program evolves logically from the
specific interpretation that we will give to the term "measurement assurance".
The reader is asked to lay aside interpretations given to this term from
previous experiences and to concern himself with what it means to have
demonstrable scientific assurance about the quality of a measurement. For
calibration activities, quality of a measurement is defined by its
uncertainty, and the validity of an uncertainty statement for an individual
measurement is guaranteed via the measurement assurance program as it is

intended to

i) Tie a single measurement to a reference base; and

ii) Establish the uncertainty of the measured value relative to this
reference base.

Firstly, in the case of basic SI units, a single measurement of a

characteristic embodied in an object or artifact must be related to the
defined unit for that quantity; for example, until recently the length of a

gage block was defined relative to the wavelength of radiation of krypton 86

as realized through interferometry [14] . Because derived units of measurement
can only be indirectly related to basic units, the measurement assurance
concept is extended to such quantities by requiring that they be related to a

reference base such as artifact standards or a measurement system maintained
by the National Bureau of Standards. Secondly, a measurement assurance
program must provide a means of maintaining statistical control over the
measurement system thereby guaranteeing the validity of the uncertainty for a

single measured value relative to its reference base (Cameron [15]).

The definition of measurement assurance is completed by an examination of the

properties of measurement. A single measurement is properly related to

national standards only if there is agreement between it and a value that

would be achieved for the same quantity at NBS—meaning a value that would be

arrived at from a sufficiently long history of like measurements at NBS. In

actuality it is not possible to estimate the disagreement between a single

measurement in a given laboratory and the long-term NBS value. However, if

the measurement system of the laboratory is stable or as we say operating in a

state of statistical control, the single measurement can be regarded as a

random draw from another long history of measurements which also tend to a

long-term value. The purpose of calibration is to eliminate or reduce the

disagreement, referred to as offset, between a laboratory's long-term value

for a measurement and the corresponding NBS long-term value by corrections to

the measurement system and/or reference standards.

Where offset cannot be eliminated or reduced by calibration, it is a

systematic error accruing to the laboratory's measurement system. Even where

there is an accounting for such disagreement, the fact that NBS has imperfect

knowledge about the long-term value from its own measurement system, based as

it is on a finite though large number of measurements, means that the limits

of this knowledge contribute another systematic error to the measurement

system of the laboratory. In some special cases systematic and random errors

that arise as NBS attempts to tie its measurement system to defined units of

measurement may also become part of the systematic error for the laboratory.
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The uncertainty that surrounds any single measurement describes the extent to
which that single number could disagree with its reference base. The
uncertainty includes all systematic errors affecting the measurement system;
it also includes limits to random error that define the degree to which the
individual laboratory, just as NBS, may be in error in estimating the long-
term value for the measurement. Where the calculation of a long-term value
for a measurement and limits to random error cannot be done directly, which is

the usual case for calibration measurements, the long-term value is referenced
to a long-term value of measurements made on an artifact(s) called a check
standard

.

Measurement assurance is attained when the determination of all sources of

systematic error is coupled with statistical control of the measurement
process as achieved by adapting quality control techniques to measurements on

the check standard. Statistical control consists of comparing current check
standard measurements with the value expected for such measurements and making
decisions about the condition of the process based on the outcome of this

test. The establishment of suitable check standards and implementation of

statistical control procedures are discussed in the next two chapters with
implementation for specific cases being outlined in chapter A.

The determination of systematic error is made by intercomparing the

laboratory's reference standard(s) or measurement system with national
standards or a measurement system maintained by the National Bureau of

Standards. This intercomparison can be interfaced with NBS in one of three

ways. Firstly, the reference standards can be submitted to the usual
calibration exercise wherein values and associated uncertainties are assigned

to the reference standards by NBS. The only sources of systematic error that

are identifiable in this mode are directly related to the reference standards
themselves and to the NBS calibration process. The name ’’measurement

assurance program" is not formally attached to such efforts because the NBS

involvement is limited and measurement control is left entirely to the

participant, but the goal of measurement assurance is certainly realizable by

this route.

Secondly, systematic error can be identified by internal calibration of

instrumentation or reference standards through use of a standard reference
material distributed by NBS. Thirdly, systematic error can be determined by a

formal program in which an NBS calibrated artifact, called a transfer

standard, is treated as an unknown in the participant's measurement process.

The difference between the participant's assignment for the transfer

standard and the NBS assignment determines the offset of the participant's

process or reference standards from NBS.

The National Bureau of Standards provides measurement assurance related

services that utilize the latter two courses, especially the use of transfer

standards, in selected measurement areas [16] . A standard reference material

and a transfer standard are comparable in the measurement assurance context.

The latter is referred to more frequently in this publication because transfer

standards are more publicized in connection with measurement assurance.
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The development of a program which satisfies the goals of measurement
assurance begins with the measurement problem which must be related to

physical reality by a statement called a model. Models covering three aspects
of metrology are discussed in this chapter. The first of these, the physical
model, relates the realization of the quantity of interest by a measurement
process to the fundamental definition for that quantity. Physical models
change with changes in fundamental definitions.

For example, until 1960, the standard of length was "the distance between two
scratch marks on the platinum-iridium meter bar at the Bureau International
des Poids et Mesures" [17]. Models for realizing length related the
intercoraparison between the international meter bar and the national meter bar
and subsequent intercomparison between the national meter bar and gage block
standards. In i960 length was redefined in terms of the wavelength of

radiation of krypton-86. The defining wavelength of 86Kr was related to the

wavelength of a stabilized laser light®, thus establishing the relationship of

interference fringe patterns observed with the laser interferometer to the

length of gage blocks standards. Length has recently been redefined in terms
of the velocity of light. This latest change will necessitate another model
relating standards to "the length of the path traveled by light in a vacuum
during a (given) time interval" [17].

The calibration model describes the relationship among reference standards,
items to which the quantity is to be transferred such as secondary or

laboratory reference standards, and the instrumentation that is used in the

calibration process. For example, calibration of gage blocks by

electromechanical intercomparison with gage block standards that have been

measured interferometrically includes a correction for the temperature
coefficient of blocks longer than 0.35 inches [19]. The calibration model for

these intercomparisons assumes a constant instrumental offset that is canceled

by the calibration experiment as discussed in section 1.4.

Statistical models further refine the relationship among calibration
measurements in terms of the error structure. Section 1.5 describes the

type of error structure that is assumed for measurement assurance programs

taking as an example the eletromechanical comparison of gage blocks according

to the scheme outlined in section 4.

Modeling, usually the responsibility of the national laboratory, is emphasized

in this chapter partly to lay the foundation for the remainder of the text and

partly so that the reader can form some idea of the degree of success that can

be expected from a measurement assurance program. It is an implicit

assumption that the validity of any intercomparison, either between transfer

standards and reference standards or between reference standards and the

workload, depends upon all items responding to test conditions in

fundamentally the same way as described by the models.

® "Direct calibration of the laser wavelength against 86Kr is possible, but is

relatively tedius and expensive. The procedure used is a heterodyne

comparison of the stabilized He-Ne laser with an iodione stabilized laser"

( Pontius [18]).
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This logic leads us the next major phase in development—the test of the
measurement prescription as a device for transferring a quantity of

measurement from the national laboratory to a laboratory participating in a

measurement assurance program. The final phase—the application of quality
control techniques to the measurement process ensures a continuing tie to the
national system of measurement. Several activities can take place during each
of these phases. These are listed either in section 1.6 under the role of NBS
or in section l.T under the role of the participant although it is clear that
in practice there is some overlapping of these responsibilities.

In summary, measurement assurance implies that the determination of systematic
error and the assignment of values to standards has been done correctly at

every step in the measurement chain and, moreover, that this is guaranteed by
a statistical control program that is capable of identifying problem
measurements at every transfer point in the chain. Accomodation to these
principles may require modification of the laboratory's calibration
procedures. Where an NBS transfer standard is used to directly calibrate
reference standards, the same measurement process and control procedures that
are us6d for this intercomparison should be used for the regular workload.
Where the transfer standard is used to calibrate a laboratory’s primary
standards, a statistical control program should be implemented for this
intercomparison, along with similar control programs for the intercomparison
of the primary standard with the reference standards and for the
intercomparison of the reference standards with the workload. Obviously, the
effort required to maintain such a system is greater than is required to

maintain a current calibration on the reference standards. Measurement
assurance places a substantial portion of the burden of proof on the

participant, where it should rightfully be, because it is the quality of his

measurements that is of ultimate interest.

1,3 Models for a Measurement System

A measurement system that relies on an artifact demands that the artifact play

"two essential roles in the system; it must embody the quantity of interest,

and it must produce a signal, (such as the deflection of a pointer on a scale

or an electrical impulse) which is unambiguously related to the magnitude or

intensity of the specified quantity" (Simpson (20) ). The first step that must

be undertaken in constructing a measurement system is to reduce the artifact

to an idealized model which represents those properties believed to be

pertinent to the intended measurement.

This model of the measurement process, based on the laws of physics, in the

broadest sense embodies our understanding of the physical universe. It is

usually a software model or statement that relates the signal produced by the

artifact and all procedures used to produce the desired measured value, called

the measurement algorithm, to the realization of the physical quantity of

interest taking into account any factors such as environmental conditions that

affect this realization.
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The integrated circuit industry is a case study of a measurement problem not
properly defined in terms of an artifact model. Inability throughout the
industry to measure optically the widths of chromium lines to the accuracies
needed for producing photomasks for integrated circuits can be traced to
misconceptions about the nature of linewidth measurements—misconceptions that
led to reliance on a line—scale calibration for making such measurements, in
the hope that a correct line-scale for the optical system would guarantee
accurate linewidth measurements.

Before attempting to produce a linewidth standard, NBS explored the nature of
the systematic errors that are inherent in line-scale and linewidth
measurements (Nyyssonen [2l]). Line-scale defines the internal ruler of an
instrument i.e. it is basically a left-edge to left-edge or a right-edge to
right-edge measurement for which any bias in detecting edge location is
assumed to cancel out. Linewidth, a more difficult determination, measures
the width of a physical object, in this case a chromium line. It is a
left-edge to right-edge measurement in which any bias in detecting edge
location is assumed to be additive (Jerke [22]).

This theoretical modeling was corroborated by an interlaboratory study which
demonstrated that an optical imaging system, although properly calibrated for
line-scale, would not necessarily produce linewidth measurements with
negligible systematic errors. The study also demonstrated that the samie

system when properly calibrated using a linewidth artifact would produce
linewidth measurements with negligible systematic errors (Jerke et al [23]).

A model is never complete or perfect, and the difference between the model and
reality leads to "a particular type of systematic error which exists if the
measurement algorithm is flawless. Failure to recognize this fact can lead to
major wastes of resources since no improvement in the measurement algorithm
can reduce this error" (Simpson [2U]),

Thus even though NBS semiconductor research has greatly enhanced linewidth
measurement capability, the accuracy of linewidth measurement is still
constrained by the difference between the real edge profile of a chromium line

and a theoretical profile (Nyyssonen [25]) upon which the model depends. The
discrepancy between the edges of chromium lines on production photomasks eind

the theoretical model is a limiting factor in attaining measurement agreement

among photomasks makers, and it will not be reduced by finer tuning of the

optical imaging systems or more accurate standards. This points out a problem

that exists in going from the calibration laboratory with carefully fabricated

artifacts to the production line and prompts us to include a caveat for the

claims of measurement assurance programs. This type of systematic error is

kept at an acceptable level only if the measured items are close in character

to the standards and theoretical model on which their assignments depend.

The only strategy which can reduce model ambiguity identically to zero uses

objects called "prototypes" and, in effect, takes a particular object and

defines it to be its own model. As pointed out by Simpson [26]

,
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This amounts to saying that this object is the perfect and
complete realization of the class of objects to which it belongs,
and hence the model ambiguity is, by definition, identically zero.
The only SI unit still using this strategy is mass where the Paris^
Kilogram is the kilogram of mass, and the only objects where mass
can be unequivocally defined are one kilogram weights made of
platinum.

The comparison of a non-platinum kilogram with the Paris kilogram would
produce a systematic error unless the comparison was done in vacuum. High
accuracy mass calibrations in air are corrected for air buoyancy — a
correction that depends on the material properties of the weight, temperature
on the weight at the time of weighing and the local pressure and humidity.
Any ambiguity between the model that drives this correction and the Paris
kilogram in vacuum contributes a systematic error to the calibration process
although admittedly this error is negligible.

l.U Models for a Calibration Process

l.U.l The Calibration Experiment

The exploration of the physical and mathematical models that^ relate a

measurement to a quantity of interest leads to a measurement algorithm which
defines a reference standard, instrumentation, environmental controls,
measurement practices and procedures, and computational techniques for
calibrating other artifacts or instruments with respect to the desired
property.

Calibration is a measurement process that assigns values to the
response of an instrument or the property of an artifact relative to
reference standards or measuring processes. This may involve
determining the corrections to the scale (as with direct-reading
instruments), determining the response cui*ve of an instrument or

artifact as a function of changes in a second variable (as with
platinum resistance thermometers), or assigning values to reference
objects (as with standards of mass, voltage, etc.) (Cameron (2?]).

Calibration consists of comparing an "unknown" or test item which can be an

artifact or instrument with reference standards according to the measurement
algorithm. The calibration model, which addresses the relationship among

measurements of test items and reference standards, must reflect the fact that

the individual readings on the test items and reference standards are subject

to systematic error that is a function of the measuring system and random

error that may be a function of many uncontrollable factors.

^The international standard of mass resides at the Bureau International des

Poids et Mesures in Sevres, Just outside Paris.
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There are two common generic types of calibration models, additive models and
multiplicative models. Reduction of systematic error by intercomparison with
a reference standard involves estimating offset as either an additive factor A
or a scale factor X which in turn is used to assign a value to the test item
relative to the known value of the reference standard. The choice of an
additive or multiplicative model depends on the nature of the relationship
among test items and reference standards and properties of the measuring
system.

The calibration experiment is designed not only to assign values to test items
that will account for systematic error between the requestor and the
calibrator but also to estimate the magnitude of random errors in the
calibration process. The nature of random error is discussed more fully in
section 2.2, but suffice it to say for now that we are talking about small
fluctuations that affect every measurement but are unmeasurable themselves for
a given measurement. The statistical derivations in this manuscript assume
that the random errors are independent and that they affect the measuring
process symetrically i.e., that one is not predictable in size or direction
from any other one and that the chances are equal of the resulting measurement
being either too large or too small. It is aJ-so assumed that random errors

for a given process conform to a law called a statistical distribution; quite
commonly this is assumed to be the normal distribution, and the calibration
experiment is designed to estimate a standard deviation which describes the

exact shape of this distribution.

In the next three sections ve list models that are in common usage in

calibration work, and although the list is not exhaustive, it includes those

models which form the basis for the calibration schemes in chapter U. It is

noted that the term "reading" or "measurement" in this context does not refer

to a raw measurement, but rather to the raw measurement corrected for physical
model specifications as discussed in the last section.

1.1;,2 Models for Artifact Calibration^

In the simplest additive model for a calibration process, a test item x with a

value X*, as yet to be determined, and a reference standard R with a known or

assigned value R* are assumed to be related by:

X* = A + R* il.h.l)

where A is small but not negligible. The method for estimating the offset A

between the two artifacts depends upon the response of the calibrating

instrument.

If the calibrating instrument is without systematic error, the instrument

response x for any item X will attain the value X except for the effect of

random error; i.e., the instrument responds according to the model

X = X + e

^ The models for artifact calibration are also appropriate for single-point

instrument calibration.
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where e represents the random error term. In this case there is no need to
compare the test item with a reference standard because the capacity for
making the transfer resides in the calibrating instrument. Such is assumed to
be the case for direct reading instruments. Normally the calibrating
instrument is not invested with such properties, and one calibration approach
is to select a reference standard that is almost identical to the test item
and compare the two using a comparator type of instrument for which additive
instrumental offset is cancelled out in the calibration procedure. Given
that the comparator produces a measurement x on the test item and a

measurement r on the reference standard, the response is assumed to be of the
form:

X = ij; + X* +

and (l.U.2)
r = 4; + R* + Ej.

where ip is instrumental offset and the and Sj. are independent random
errors. An estimate^ of A is gotten by the difference

^ = X - r , (l.U.3)

and the value of the test item is reported as

An inherent deficiency in relying on a single difference to estimate A is that
it does not admit a way of assessing the size of the random errors. If the
calibration procedure is repeated k times in such a way that the random errors

from each repetition can be presumed to be independent, the model for k pairs
of readings rj , xj (j=l,***,k) becomes

xj = ^ X* ^

r. = 4^ + R* + e-
J

and the offset is estimated by

1 ^

^ i (xi - ri)
k i=i

(l.U.U)

(1.U.5)

Given the further assumption that all the random errors come from the same

distribution, the magnitudes of the random errors can be quantified by

a standard deviation (see (281 for a clear and concise discussion of

standard deviations)

.

Another less frequently assumed response for a calibrating instniment allows

not only for instrumental offset 4* tut also for a non-constant error that

depends on the item being measured. This type of response is sometimes
referred to as non-linear behavior, and in this case two reference standards

with known values R]_ and R2 are required to estimate X . Given measurements

r]^ on the first standard and r2 on the second standard, the instriment
response for the three artifacts is described by:

^ The caret (*) over a symbol such as A denotes an estimate of the parameter

from the data. It is dropped in future chapters where the intent is obvious.
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X = + 6X + G,

- i|) + BR]^ + Gj.^

and r2 = 4; + 6R2* + Ej.

(1.U.6)

where the parameter 6 is non-trivial and different from one, and g,^, Gj.

and Gj.^ are independent random errors. 1

Then the measured differences x-r]_ and r2-r2_ are used to construct an estimate
of A, namely,

^ = (R2* - Ri*)*(x - ri)/(r2 - r^). (l.U.T)

The calibrated value of the test item is reported as

X* = A + Ri*. (1.U.8)

Equivalently, A can be estimated by

A = (Ri* -R2*)*(x - r2)/(ri - r2)

in which case *

X = A + R2 .

In order to achieve symmetry in the use of the reference standards , before and
after readings, X]_ and X2, can be taken on the test items with the readings in

in order X]^, r^^, r2> and X2. Then A is estimated by

^ = - (R2* - Ri*)*(xi - r]_ -r2 +X2)/(r2 -r^), (l.U.Sa)

and the value for the test item is given by

X* = A + - (Ri* + R2*)

.

2

In comparing the models in (l.U.2) and (I.U.6) one sees that the former model
amounts to the slope 8 of the response curve of the instrument being
identically one. If this slope is in fact close to one, which is certainly a

reasonable assumption for most instruments, any departure from this assumption
will contribute only a small systematic error in the assignment to the test

item because of the small interval over which the measurements are taken. For

this reason (1.^.2) is the commonly accepted model for calibration processes
that use a coii5)arator system of measurement.

The model in (I.I4.6) amounts to a two-point calibration of the response
function of the instrument; it is not dependent on a small calibration

interval; and it is commonly used for direct-reading instruments. Notice that

for either model a valid calibration for the test item does not depend on the

response parameters of the instrument as long as they remain stable.
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A multiplicative model for calibration assumes that the test item X and the
reference standard R are related by

X* = yR* (1.U.9)

and that the measuring instrument has a response function of the form

X = 6X* + (I.U.IO)

r = 6R* + Ej.

where 3 and e^^ and Ej. are defined as before. The model leads to an estimate
of Y ; namely,

Y = x/r . (l.U.ll)

The calibrated value of the test item is reported as

X* = yR*. (1.U.12)

1.4.3 Models for Instrument Calibration

Models for instrument calibration relate the response of the instrument to a

known stimulus called the independent variable. Where non-constant response
of the instrument over a range of stimuli can be either theoretically or
empirically related to the stimulus, the relationship is called a calibration
curve.

The model for a calibration curve assumes that a response X is offset from a

known stimulus W by an amount A(W) that depends on W and that the relationship
holds over the entire calibration interval within a random error e. A
relationship of the form

X = a + 3W + E (1.4.13)

where a and 8 may be unknown parameters is called a linear calibration curve.

Once the parameters of the calibration curve are known or have been estimated
by an experiment, future responses can be related back to their corresponding
stimuli. In the general case this inversion is not easy nor is the attendant
error analysis veir tractable because the calibration curve is used in the
reverse of the way that the data are fitted by least-squares.

The only case where the solution is straightforward is the linear case where a

series of readings Xj (j=l,* •
• ,n) at designated points Wj* (j=l,***,n) are used

A A
to obtain estimates a and 6 of the parameters. The best estimate of offset

for the linear case is

^(W) = a + B(W). (1.4.14)

Methods for estimating the parameters and quantifying the random error are

discussed by Mandel (291.
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1.5 Models for Error Analysis

The models in sections 1.4.2 and 1.4.3 admit random errors that come from a

single error distribution whose standard deviation is of interest in
quantifying the variability in the calibration process. We now expand this
concept to models that include two distinct types of random errors; a random
error term for short-term repetitions that is usually attributed to instrument
variability and a random error term that allows for changes that are dependent
on the conditions of the calibration and as such are assumed to remain
constant for a given calibration. These two types of errors give rise to two

distinct error distributions with associated standard deviations which can be

estimated from the calibration data. The former is usually referred to as a

"within" standard deviation and is designated by s^;.

The latter referred to as a "between" standard deviation, meaning between

calibrations and designated by sb, is attributed to changes in the calibration
process from day-to-day. These include environmental changes that are not

accounted for by modeling, changes in artifact alignment relative to the

standard, and other fluctuations that are not reflected in the within
standard deviation. For example, the model in (1.4.4) can be rewritten in

terms of measured differences dj (j=l,***,k) as

dj = Xj-rj = X*- R* + Ej (1.5.1)

where the subscript j denotes short-term repetition and the are independent
random errors that come from a distribution with standard deviation s„. When

this model is expanded to allow for day-to-day changes, the model becomes

dj = (X* + Sy) - (R* + <Sr) + Sj (1.5.2)

where 6x and 6r are assumed to be independent random errors that come from a

distribution with standard deviation s^*

The quantities s^ and Sb» while of interest in their own right, are components

of a "total" standard deviation that includes both "within" and "between" type

variations in the measurement process. It is this total standard deviation,

whose structure is discussed at length in this and later chapters, that is of

primary interest in measurement assurance. The reader can verify that the

proposed approach to error modeling is compatible with a components of

variance model [30] by considering model (1.5.2) which leads to the estimate

of offset given in (1.4.5). In terms of the error structure this offset is

1 ^

S - (X* - R*) + («x -
*R> + - I .

k j.i

It can be shown^ that a reported value based on a single (k=l) measured

difference has standard deviation

2 2 ^

Sj- = (2Sb + Sy; ) .

^he methodology for arriving at the standard deviation is not explained in

this publication. See Ku [28], pages 312-314, for the computation of standard

deviations when several independent errors are involved.
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A reported value based on the average of k short-term differences has

standard deviation

Sj, = ( 2 s^ +
2

/

Sv /k j

Notice that the contribution of the component s-^j to the standard deviation Sj.

is not reduced by taking multiple measurements that are closely spaced in

time. This is the reason for discouraging short-term repetitions in

measurement assurance and insisting that the definition of the total standard
deviation encompass a broad range of operating conditions in the laboratory

—

implications which will be addressed in some detail in later chapters.

In this manuscript the total standard deviation s^, is defined to be the
standard deviation of a "check standard" value as estimated from repeated
calibration of the check standard. Where the error structure for the check
standard value is the same as the error structure for the reported value of
the test item, the standard deviation of the reported value which we call s^.,

is exactly s^. Otherwise, Sj. must be adjusted accordingly. For example,
suppose that a test item X with unknown value X is compared with two
reference standards and R2 with known values R^^ and R2* by consecutive
readings x^^, r^^, r2, X2 as described in section U.2.

The error model for the measured differences

di = XI - ri
and

*^2 “ X2 “ r2

can be written as

di = (X* +

d2 = (X* +

where it is assumed that 5 ]^, 62,
and £2 have standard deviation s^

The offset is estimated by

(1.5.3)
61) - (Ri* + 62) + ei

6^) - (R2
*

^2

63 and 61^ have standard deviation s^ and

A = - (d]^ + d2 ) (I.5.U)

and in terms of the error model

A * 1 1
A = X - - (Ri* + R2*) - 62 + 6^ - 6i| + ^1 ^2) (1.5.5)

A check standard defined as the difference between R^ and R2 is computed for

each calibration by

c = ( d2 - d]^ )

.

(1.5.6)
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In terras of the errors the check standard raeasureraent can be written

c = (Ri* - R2 *) + (-62 + 62 + 63 - 64 - Cl + £ 2 ) (1.5.7)

The error raodel (1.5.5) for the reported value

X* - A + - (Rj* + R2
*), (1.5.8)

and the error model (1.5.7) for the check standard measurment c are comprised
of the same error terms and differ structurally by a factor of two.

Explicitly, the standard deviation of the reported value X* is

1 2 2^/2
Sr = - (Asb + 2 s„ ) (1.5.9)

and the standard deviation of c is

Therefore

,

2 2 1/2
Sc = (Asb + 2s„ ) (1.5.10)

(1.5.11)

In practice Sc is estimated by check standard measurements from many
calibrations (see chapter A), and this estimate is used in (1.5.11) to
compute Sj.*

Where the check standard value is a least-squares estimate from a design or a

function of measurements on more than one artifact, the computation of the
standard deviation of a reported value is more complicated. In such a case,
one must first estimate s„ from a single calibration and compute Sb from an
equation for Sc such as (1.5.10). Then the standard deviation of the reported
value can be computed from an equation such as (1.5.9).

1.6 NBS Role in the Development of a Measurement Assurance Program

1.6.1 Study of Operations at Participating Laboratories

Before undertaking the development of a measurement assurance program for

disseminating a unit of measurement, NBS technical staff familiarize
themselves with operations at potential user laboratories so that the program
can be structured around the equipment, facilities and personnel available to

the laboratories. Suggestions for equipment modifications and additions are

made at this time. The range of operating conditions in the participating
laboratories is checked for consistency with the model, and in order to

determine whether or not the accuracy goals of the measurement assurance
program are attainable, NBS is advised of the individual laboratory's

measurement requirements and capabilities.
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1.6.2 Identification of Factors Capable of Perturbing the System

It is the responsibility of NBS to identify and isolate those factors capable
of seriously disrupting the measurement system so that equipment and
procedures can be designed to offset the impact of such factors (Youden l3l]).
This is particularly important if the measurement assurance program is

intended for an industrial setting rather than a controlled laboratory
setting.

An example of this type of testing, called "ruggedness" testing is found in

the NBS flowmeter program for liquids (Mattingly et al [32]). The effects of

three types of perturbation on turbine meters were studied experimentally, and
it was found that the profile of the flow entering the meter has a significant
effect on meter performance. This research led to the development of a flow
conditioner which can be inserted in an upstream section of pipe to regulate
the profile of the flow entering the meter. Because flow profiles vary from
laboratory to laboratory depending on the source of the flow, such a flow
conditioner is appended to the turbine meters that are circulated in the
industry as NBS transfer standards.

1.6.3 Design of Interlaboratory Exchanges

The purpose of the interlaboratory study or round-robin test that is usually
sponsored by NBS at the inception of a measurement assurance program is to
determine the extent and size of offsets from NBS that are typical in the

target industry. Secondary goals are the evaluation of the adequacy of
proposed procedures for resolving the measurement problem, critique of the
format eind content of directions from NBS, and study of the ease of

implementation on the part of participants. Frequently a preliminary
interlaboratory test designed to identify significant problem areas is

followed by a more comprehensive study which incorporates modifications to

artifacts and protocols based on experience gained in the preliminary test.

1.6.U Development of a Stable Transfer Standard or Standard Reference

Material

Either a standard reference material or a transfer standard is developed for

each measurement assurance program that is sponsored by NBS. The standard

reference material (SRM) is a stable artifact produced either commercially or

in-house that is calibrated, certified end sold by NBS in fairly large

numbers.*^ Standard reference materials are well known for chemical
applications. Recently NBS has certified two separate dimensional artifact

standards as SRMs, one a linewidth standard for the integrated circuit

industry [NBS SRM-UT^j and the other a magnification standard for scanning

electron microscopes [NBS SRM-USU). An SRM has the unique property that it

can be used not only for determining offset from NBS but also eis an in-house

standard for controlling the measurement process.

^ A listing of SRM’s is contained in the catalog of NBS Standard Reference

Materials, NBS Special Publication 260, 1979-80 Edition, available from the

Office of Standard Reference Materials, NBS, Gaithersburg, MD.
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The transfer standard is a calibrated artifact or instrument standard that is
used for disseminating the unit of measurement. It is loaned to the
participant to be intercorapared with the participant's standards or
instrumentation under normal operating conditions in order to determine offset
from NBS.

Artifacts that are stable with relation to a physical quantity, such as the
mass of an object, do not usually pose any special problems when they are used
as transfer standards because they can be shipped from one place to another
without a change in the quantity of interest. Transfer standards that are not
easily transported are packaged in environmentally controlled containers, but
additional redundancy in the form of multiple standards and observations is
always included in the measurement assurance program whenever the stability of
the transfer standard is in question.

1.6.5 Dissemination of Measurement Technology and Documentation

The participant in a measurement assurance program is entitled to draw upon
the expertise and experience that resides in the sponsoring NBS technical
group. Technical assistance is disseminated by way of NBS publications, ASTM,
standards, ANSI standards, laboratory visits, telephone conversations and NBS
sponsored seminars. In conjunction with the advent of a new program a series
of seminars is usually offered to the public to explain the philosophy,
theory, measurement technology and statistical analyses which form the basis
for a measurement assurance progreun in that discipline.

Documentation for standard reference materials is available through NBS Special
Publication Series 260. As part of a long range plan to upgrade its

calibration services, the National Bureau of Standards has instituted
documentation requirements for all calibration services. Documentation
includes theory, laboratory setup and practice, measurement technique,
maintenance of standards, specification of measurement sequence, protocol for
measurement control and determination of final uncertainty. When these
publications become available, they will provide the bulk of the documentation

that is needed for implementing a measurement assurance program that is related
to an NBS calibration service. Insofar as a measurement assurance program as

implemented by the participant may differ from the NBS calibration program in

regard to the number of standards, specification of measurement sequence,
corrections for environmental conditions, estimation of process parameters, and

methods for determining offset and uncertainty, additional user oriented

documentation may be made available.

1.6.6 Establishment of Measurement Protocol for Intercomparisons with NBS

Measurement assurance programs currently in existence fall into two

categories. The first category contains those services which are highly

structured for the participant, with regard to the number of laboratory

standards to be employed in the transfer with NBS, the number of repetitions to

be made in the exchange, and the protocol to be used for establishing an

in-house measurement control program. At this time only the Gage Block

Measurement Assurance Program (Croarkin et al [33l ) and the Mass Measurement

Assurance Program fall into this category.
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All other programs allow the participant considerable leeway in regard to the
items mentioned above in order to make the service compatible with the unique
situation in each laboratory. The advantage of operating within the
constraints of equipment and staff resources that are already allocated to the
laboratory's normal workload is obvious, especially where accuracy requirements
are not difficult to meet. However, there are drawbacks. The data analysis
must be tailored to each participant, imposing an additional burden on NBS
staff, and responsibility for instituting a rigorous measurement control
program is left entirely to the participant.

1.6.T Data Analyses and Determination of Offset

The determination of offset and associated uncertainty as realized by
intercomparison of laboratory reference standards with NBS transfer standards
is accomplished in one of two ways:

i) The transfer standard(s) is sent to the participant sis a blind sample, and
the data from the intercomparison are transmitted to NBS. Based upon the value
assigned to the transfer standard by NBS and associated uncertainty from the
NBS process, new values with associated uncertainties are assigned to the
laboratory standards along with the uncertainty that is appropriate for an item
measured by the participant's process.

ii) the transfer standard along with the its assigned value and associated
uncertainty are transmitted to the participant, and the analyses and
determination of offset become the responsibility of the participant.

Data analyses relating to the regular workload and measurement control
procedures in a laboratory are best left to the individual participant. These
analyses provide important insights into the pecularities of a measurement
process, and, consequently, these analysis are best done internally. Even

where much or all of the data analysis is undertaken by NBS, participants are

encouraged to develop facility in this area in order to make themselves

independent from NBS in the future. Some participants in measurement assurance

programs have automated the analysis of calibration data, decisions relating to

process control, updating of data files and final determination of uncertainty

on minicomputers in their laboratories.

l.T Participant’s Role in a Measurement Assurance Program

1.7.1 Staff Preparation

The success of a properly conceived measurement assurance program depends upon

the enthusiasm and dedication of the personnel who are meiking the measurements

and resolving problems that arise in day-to-day operations. The measurement

assurance approach is a long-term commitment in terms of evolving a measurement

control technique that continually checks on the state of control of the

process. Before undertaking such a program, there should be reasonable

assurance of continuity of personnel assigned to the project, and steps should

be taken to guarantee that new personnel are sufficiently prepared for taking

on the assignment before the departure of experienced personnel.
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The success of such a program also depends on a certain depth of understanding
on the part of the staff. Here we are talking not so much about the
intricacies of a particular analysis, but about a basic understanding of
scientific methodology, the philosophy of measurement assurance, and the
relationship between the control techniques and the validity of the values
reported by the measurement process and their associated uncertainties. To
this end, NBS offers seminars in which the attendees are instructed in these
principles, but some prior staff preparation may be necessary in order to
benefit fully from these expositions. Courses at local community colleges are
recommended for exploring scientific principles and gaining facility with
fundamental mathematical and statistical manipulations.

1.7 *2 Selection of a Check Standard

The selection of a check standard must be considered in the preliminary
planning for measurement assurance program. In short, its purpose is to
provide a continuing thread that characterizes the operation of the measurement
process over changing laboratory conditions and over time with regard to both
the variability of the process and the long-term average of the process. It is

a basic tenet of measurement assurance that the response of the process to the
check standard be sufficiently similar to the response of the process to the
test items that the performance of the process at all times can be adequately
monitored by monitoring the response of the process to the check standard. The
value of the check standard at any given time is a decision-making tool, and
unexpected behavior on its part is grounds for discontinuing the process until
statistical control is resumed.

Careful consideration should be given to the type of artifact that would be

suitable for this purpose. It should certainly be of the same character as the

items that constitute the workload in the laboratory. For some processes, such

as processes dealing with basic units of measurement, the selection is obvious;

check standard artifacts are similar to reference standards in design and

quality. In general, an artifact that is less stable than the reference

standards will not be useful as a check standard if its instability is large

enough to mask the properties of the measurement process.

The check standard should be thought of not so much as an artifact but as a

data base because it is the measurements that are of interest and not the

artifact per se. The check standard data base consists of measurements,

properly corrected for environmental factors, or some function of those

measurements that have been made on the artifact check standard or on the

reference standards. For example, a test item that is compared to two

reference standards has its assignment based on the average of the values

assigned to the two reference standards. The check standard can be defined to

be the difference between the measurements on the reference standards thus

eliminating the need for an extraneous measurement or other artifact. Where a

calibration involves only one reference standard, an artifact that is similar

in response to the test items can be designated as the artifact check standard.

This need not be a calibrated artifact, and the properties of the measurement

process are ascribed to it as long as it is measured in the same time frame as

the other items in the calibration process. Several check standards used

separately or in combination may be employed when the stability of the

reference standards, such as a bank of standard cells, is cause for concern.
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Where reference standards exist at several levels, such as mass standards or
length standards, check standards are maintained and monitored at each level.
Where the quantify of interest is propagated over several levels from one
standard such as a one ohm resistor, which is used to propagate resistances
between one and ten ohms, the same check standard artifact may be employed at
the different levels, but the data bases for the different levels are regarded
as separate check standards.

An SRM makes an ideal check standard if it is not contaminated or otherwise
degraded by heavy usage. In any case the artifact or artifacts on which the
check standard base is built must be readily available to the measurement
process over a long period of time.

The proliferation of check standards involves no small amount of work in

maintaining the data base, and serious thought should be given to placement of
check standards in the measurement echelon. For a new program, one should
start with check standards at a few critical points and gradually increase
these as experience is gained with the program.

l.T«3 Initial Experiments to Estimate Process Parameters

The establishment of an initial data base for the laboratory's check standards
is the first order of business in a new measurement assurance program. Before
one attempts to quantify offset, it must be demonstrated that a measurement
process does in fact exist; i.e., that measurements from the process satisfy
the requirements for statistical control. This presupposes that the process
precision is well known and that this can be documented. If, in fact, the

documentation of the process has been lax, or if a substantially new process
has been instituted for the measurement assurance program, then measurements
taken over as long a time period as practical should be made on the check
standard(s) in order to estimate the long-term average of the process and the
standard deviation. Procedures for obtaining these initial estimates are
discussed in subsequent chapters.

A laboratory planning a transfer with NBS should undertake these experiments
well in advance of the arrival of the NBS transfer standard so that any

problems encountered in the measuring system can be rectified. This provides a

shake-down period for procedures, equipment and software involved in the

measurement assurance program. Once the transfer standards are intercompared

with the laboratory's reference standards, the resulting measurements involving
the check standard are compared with the initial data base to decide if the

process is in control at that time, and the transfer between the laboratory

process and the NBS process is accomplished only if the process is Judged in

control. Therefore, participants are urged to make the initial experiments as

representative of laboratory conditions as possible and to request help from

the sponsoring NBS group if measurement problems or procedural ambiguities

exist so that delays with the transfer can be avoided.

l.T.*^ Calibration Procedures

Accomodation to measurement assurance principles can mandate a change in

calibration procedures within the laboratory. Most often such change will

amount to additional redundancy in the design and/or change in the order of

measurements. The laboratory should settle upon one calibration design for the
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transfer with NBS and the calibration workload. There is considerable
advantage in doing this because the uncertainty determined from the transfer
with NBS is only valid for that measurement process, and if the uncertainty is
to have validity for the workload, the two measurement processes must be
identical. There is a further advantage; the same statistical control program
will suffice for both processes, and the check standard measurements from both
sources can be combined into a single data base.

Another consideration is the manner in which systematic error is handled in the
transfer experiment. Some measurement assurance programs are structured so
that the determination of systematic error is made relative to the average of
two or more reference standards as in section U.2.U. For example, two
reference gage blocks can be calibrated by intercomparison with two NBS
transfer blocks by a design that assigns values relative to the average of the
two reference blocks called the restraint. Systematic error is estimated as
the difference between the restraint and the average computed for the two NBS
blocks by the transfer experiment. The laboratory's restraint is then
corrected for this offset. Meaningful values cannot be computed for the
reference standards individually from the transfer experiment. Thus, the same
design that is used for the transfer with NBS is employed in the calibration
workload so that all assignments are made relative to the corrected restraint.

1.7.5 Process Control

The measurement assurance concept demands that a value be assigned to an
artifact only when the measurement process is in control in order to guarantee
the validity of the assignment and associated uncertainty statement. This

means that statistical control is employed in the everyday workload of the

laboratory as well as during the transfer with NBS. For highest accuracy work,

comparable to calibrations at NBS, a check for control is made during every

measuring sequence in which an artifact is calibrated by the system.

Statistical control procedures based on check standard measurements along with

the appropriate statistical tests are discussed in section 3.3.

The choice of a control procedure and its implementation are the responsibility

of the participant. Those who are familiar with industrial quality control

procedures and Shewhart type control charts should be able to adapt these

methodologies to check standard measurements. A general discussion of control

charts with examples is contained in chapter 5» and statistical control

procedures for specific measurement situations are outlined in chapter U.

1.7.6 Data Base Maintenance

A record of check standard measurements is kept separately from other

laboratory records such as records of past calibrations. This permanent record

should include all pertinent information relating to the measurement. For

example, it normally includes an identification for the check standard,

identification for the instrument, identification for the operator, day, month,

year, identification for the type of statistical design used in the

intercomparison, observed value of the check standard, environmental conditions

that could affect the measurement such as temperature, pressure and relative

humidity, standard deviation if applicable, and finally a flag denoting whether

or not the check standard was in control on that occasion.
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2. Characterization of Error

2.1 Introduction

It is the purpose of this chapter to introduce the reader to the concepts of
random error, systematic error and uncertainty. It is the expressed purpose of
measurement assurance to identify and quantify all sources of error in the
measurement process, because in so doing, the worth of any value reported by
the process can be stated in quantitative terms called an uncertainty. In a
very real sense, a value assigned to an artifact only has meaning when there is

an assessment of how well that number describes the property of interest (be it

length, mass or whatever) in terms of its reference base. An uncertainty
statement provides that assessment.

Error in measurement is categorized as either systematic, coming from a source
that is constant and ever present in the measurement process, or random, coming
from a source (or sources) that is continually fluctuating. Systematic error
may be known or estimable for any given situation, but random error by its

nature is never known for a given measurement situation. The point is that for

a single measurement it may be possible to determine the size of the systematic
error by intercomparison. On the other hand, the random error that is unique
to a single measurement cannot be replicated because conditions of measurement
cannot be repeated exactly. Therefore, it is common practice in metrology, as

it is in process control [3^1 « to quote limits to random error for all such
experiments.

Classification of sources of error as either systematic or random is not always

straightforward depending as it does on the way in which the potential source

of error enters the measurement process, how it affects the output of that

process, and the interpretation of the uncertainty. For example, the maximum
obse3*ved difference between operators can define a systematic error for a

system that is highly operator dependent and for which there are a restricted

number of operators or, alternatively, a separate uncertainty statement can be

issued for each operator's measurements. Measurement systems that routinely

make use of many operators are better served by folding the effect of operator

error into the total random error for that system.

At the National Bureau of Standards considerable attention is given to the

classification of sources of error. For the participant in a measurement

assurance program, systematic error is usually assumed to come from specific

sources that are spelled out in this chapter, and remaining sources of error

are assumed to be part of the random error of the participant's process and

must be estimated as such.
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2.2 Process Precision and Random Error

2.2,1 The Standard Deviation

A "measurement process" is said to exist for quantifying a physical attribute
of an object, such as its length, only if the process is operating in a
state-of-cont rol (Eisenhart [35])* The fact is that, even for such a process,
repeated measurements on the same object will not produce identical results.
As long as the source of this disagreement is random in nature; i.e., its
direction and magnitude not being predictable for any future measurement, the
disagreement among measurements is referred to as the process imprecision. A
measure of precision, such as the process standard deviation, quantifies this
random error or scatter or, more aptly, describes the degree of agreement or
closeness among successive measurements of the same object.

The term process precision as used in this publication is not limited to the
characterization of the behavior of the particular measuring device per se, but
it is intended to describe the total configuration of operator, environmental
conditions, instrumentation and whatever other variables go into making any
given measurement. As it is rarely possible to measure an item submitted for

calibration over a representative set of environmental and working conditions
in the laboratory, redundancy is obtained from measurements made on a check
standard that is introduced into the measurement sequence on a routine basis.

It is assumed that the check standard is similar in response to the test item

and that the process precision can be estimated from the measurements made on

the check standard.

The simplest measure of process precision is the range—the difference between

the largest and smallest measurements in the group. The range is a

satisfactory measure of precision when the number of measurements is small, say

less than ten. It "does not enjoy the desirable property" (Ku [36]) of tending

toward a limiting value as more measurements are taken; it can only increase

and not decrease. Therefore, it is desirable to find a measure of precision

which takes into account the information in all the measurements and which

tends to a limiting value as the sample size increases if we are to use this

measure to describe the process behavior as a stable phenomenon.

The standard deviation is such a measure. Small values for the standard

deviation are indicative of good agreement and large values are indicative of

poor agreement. Because it is necessary to distinguish different kinds of

variability that contribute to the total process variability, it is likewise

necessary to define different kinds of standard deviations. We routinely

identify two levels of standard deviations in calibration work.

These two levels are described briefly in the first chapter where we are

dealing with the nodels covering the error structure among measurements.

Reiterating, the first type of standard deviation is a measure of the

variability of the measurement process over a short period of time, usually the

time necessary to complete one calibration using a particular sequence of

measurements called a statistical design. This measure is called the "within

standard deviation." Its usage as a check on the internal consistency of an

individual calibration experiment is explained in chapter 3 and chapter h along

with formulas and examples.
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The second type of standard deviation that we are dealing with in measurement
assurance, and by far the more important of the two, is the total standard

deviation s^,. This latter measure includes both the "within" component of
variability s^ and a "between" component of variability s-^, which the reader
will recall explains incremental changes that can take place from calibration
to calibration. The relationship among these quantites is assumed to be of the
form

Therefore, the total standard deviation, including as it does both "within" and
"between" components of variability, should accurately reflect both the short-
term and long-term random errors that are affecting the measurement process.

The limits to random error quoted in the uncertainty statement are computed
from the total standard deviation thus assuring that the conditions of a single
calibration do not invalidate this measure of the quality of the reported
value. As has been noted previously, the total standard deviation, not
generally being available from the calibration data, is based on repeated check
standard measurements that are structured to include all possible sources of
random error. This is accomplished by monitoring the check standard over a

long period of time eind over the full range of environmental factors for which
the uncertainty statement is assumed to be valid.

The total standard deviation depends on the physical model. The most familiar
form

( 2 . 2 . 1 )s
c

where the arithmetic mean is

( 2 . 2 . 2 )c

assumes that check standard measurements c^,***,Cjj are independent of time and

that the effect of other variables is negligible.

The term (n-l) , called the degrees of freedom associated with s, is an

indication of the amount of information in the standard deviation and is always

reported along with the standard deviation.

2.2.2 Pooled Standard Deviation

If several standard deviations with small nxmibers of degrees of freedom are

con5)uted from the same process, they will vary considerably among themselves.

It goes without saying that the standard deviation that is quoted in the

uncertainty statement must have a sufficient amount of information to guarantee

that it is a valid measure of process precision. The question is, "How much
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redundancy is sufficient?" As a general rule, fifteen degrees of freedom is a

minimum for the initial computation of the standard deviation. As the
measurement assurance program progresses, the standard deviation is recomputed
to take advantage of the increased data base, and assuming that the process is
stable, this will assure a more reliable value of the standard deviation.
A standard deviation based on as few as two data points can be combined with
other similar estimates that have been obtained on separate occasions for the
same process to obtain what is called a "pooled" standard deviation. If the
individual standard deviations are S]_,***,si^ with degrees of freedom
respectively, the pooled standard deviation is

The degrees of freedom associated with Sp is v = + • • • +

2.2.3 Limits to Random Error

Limits to random error can be con5)uted with a given probability if the
distribution of random errors is known. Limits, so stated, depend upon
assumptions concerning the average value and spread of the underlying
distribution. ?br a calibration process it is assumed that random errors of
measurement have an equal chance of being negative or positive such that their
average value is zero. It is also assumed that the spread of the distribution
is adequately estimated by the total process standard deviation.

Limits to random error for a single value from the measurement process are
constructed so that the probability is (l-a)

,

for a chosen suitably small,

that if the measurement algorithm were to be repeated many times, the average

outcome of these experiments would fall within ± reported
value, where s,, is the total process standard deviation, v is the number of
degrees of freedom in s-, and percent point of Student's t

distribution. (See Ku l37l for a further discussion of Student's t

distribution.) Critical values for Student's t are given in Table I for
o = 0.05 and a = 0.01 and degrees of freedom v = 2(2)120.

Frequently a precise probability interpretation for the limits to error is not
needed and, in fact, will not be possible if it cannot be demonstrated that the

underlying probability distribution for the data is exactly a normal
distribution. In metrology the limits to random error are often taken to be

three times the standard deviation. Other technical areas may use two standard

deviations. Ihe bounds, plus and minus three standard deviations, are
statistically robust (with respect to the coverage of the distribution) in that

if the experiment were to be repeated, the chance of reporting a value outside

of these bounds would be extremely small. This, of course, assumes that the

random errors affecting the experiment come from a distribution that is close

in character to the normal distribution and that enough data have been

collected to provide a reliable estimate of the standard deviation. The

examples given in this chapter use three standard deviation limits.

B-25



2.3 Systematic Error

2.3.1 Conventional Calibration

Systematic error takes into account those sources of error, peculiar to the
measurement system, that remain constant during the calibration process and
explain a difference in results, say, between two different measuring systems
trying to realize the same quantity through a large number of measurements.
Some obvious examples are: uncertainties in values assumed for reference
standards, uncertainties related to the geometry or alignment of instrumen-
tation, differences between operators, differences between comparable systems,
etc. The size of the possible discrepancy is estimated, either empirically or
theoretically, but its direction is not always known.

In order to define systematic error for a calibration process, it is necessary
to define the steps in a calibration echelon that relate the measured value of
the quantity of interest back to its basic SI unit or to a national standard.
NBS, except in the case of international comparisons, occupies the premier
position in the U.S. calibration echelon. Thus the first transfer point in

this calibration echelon involves the intercomparison of a laboratory
reference standard with the national standard maintained by NBS which may be
an artifact standard or an instrument. The second transfer point involves the
intercoraparison of the laboratory reference standard with an unknown which in

turn can be a working standard from the same laboratory or an artifact
standard from a lower level calibration laboratory or a finished product. The
calibration chain is extended in this way until the final product has been
calibrated by an intercomparison involving it and a standard which can be

traced back to the National Bureau of Standards.

Systematic error is assessed at every transfer point and passed along to the

next lower level in the calibration chain. Thus, the total systematic error
for the measurement process that delivers the final product is an aggregate of

systematic errors from all transfer points. Systematic error must be defined

very specifically for each transfer point in terms of the long-term values for

measurements from two systems, and it must also include an estimate of the

amount by which the higher level system, such as NBS, may be in error in

estimating its long-term value.

The purpose of each transfer point is to reduce or eliminate systematic errors

at that level. If we look at an exchange between a laboratory and NBS, a

potentially large source of systematic error comes from the values assigned to

the laboratory's reference standards. Calibration of the reference standards

at NBS can eliminate offset from this source, but the calibration itself is

still a source of systematic error whose magnitude depends on how well NBS was

able to conduct the calibration as measured by the uncertainty associated with

the calibrated values.
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The rationalization for assessing a systematic error from this source is that
the values for the reference standards remain constant as they are used as a

reference for assigning values to other artifacts or instruments. At least
they remain constant until they are recalibrated at NBS, and the assignments
resulting from their use are all affected in the same way, being either too
low or too high, even though the direction and exact magnitude of this error
are not known. Thus, uncertainties for values of reference standards are
regarded as a systematic error in the laboratory's process (Youden [UO]).

Systematic error associated with the uncertainty of a reference standard is
assessed proportional to the nominal value of the test item and the nominal
value of the reference standard. For example, if a one kilogram standard is

used in a weighing design to calibrate a 500g weight, the systematic error
from this source is one-half of the uncertainty associated with the assignment
for the kilogram standard.

If the value for a test item is reported relative to the averetge of two

reference standards R]^ and R2 , all artifacts being of the same nominal size,
and if the assignments for R]_ and R2 are independent, the systematic error
from this source is assessed as

where and are the uncertainties for R]_ and R2 respectively. Where the
assignments to R^^ and R2 are not done independently

U = (Uri + Ur2)/2.

2 . 3.2 Measurement Assurance Approach

A laboratory participating in a measurement assurance program measures a

transfer standard(s) from NBS as if it were an unknown item using the
reference standards and instirumentation that constitute the measurement system

in that laboratory. Tlie resulting value for the transfer standard, be it

based on one measurement or on several repetitions in the laboratory, is

compared with the value assigned the transfer standard by NBS. The

relationship between the laboratory's assignment and the NBS assignment for

the transfer standard defines an offset which is used to correct the values

for the laboratory's reference standards.

This approach has an advantage over the usual calibration route as far as

identifying systematic error in the laboratory. Either method suffices for

identifying errors related to the values of the reference standards, but given
that the reference standards are properly calibrated, the particular

conditions of their usage in the laboratory may invite systematic errors that

are unsuspected and unidentifiable. The dependence of optical systems on

operator was mentioned in an earlier chapter, eind systematic error caused by

operator effect may be significant for other types of systems as well. Also,

instrumentation can differ enough that the reference standards alone are not

sufficient for eliminating systematic error. Of course, both of these sources

of systematic error might be identifiable by proper experimentation, but it

would be difficult to assess the magnitude of such errors without the
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measurement assurance program. Other factors that are probably not

identifiable within the laboratory itself are systematic errors related to
lack of proper environmental control or incorrect measurement of temperature
and humidity.

Two sources of systematic error are always present in a measurement assurance
program. The uncertainty associated with the value of a transfer standard is

one. Because another transfer point has been effectively added to the

calibration chain, the limits to random error associated with the transfer
measurements in the participating laboratory define another systematic error
for the laboratory.

2.3*3 Calibration Curve

A more complex situation arises when the purpose of the program is to
calibrate an instrument over a range for all continuous values. In this case
transfer artifacts are provided at selected points covering the range of
interest, and the intercomparisons are used to establish a functional
relationship between the instrument and the NBS system. The assignment of

values is based on this functional relationship. For example, systematic
errors in linewidth measurements produced by an optical imaging system can be

reduced relative to the NBS prototype optical system (38) from measurements
made on an NBS dimensional artifact. (This artifact is a glass substrate with
a series of chromium lines at spacings spanning the range of interest.)

Measurements made on individual lines on the artifact define a functional
relationship between the two systems, and a least-squares technique is used to

derive a best fitting cui*ve to the measured values as a function of the NBS

values. The empirical fit is called the calibration curve.

Y-qx1i

Schematic diagram of a linear calibration curve showing the

relationship between an observed value Y(T) and its calibrated value X(T)
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In figure 1, each optical measurement is plotted against the corresponding NBS
value, and the calibration curve fitted to all the measurements is shown by
the solid line. The offset between the user’s system and the NBS system is
reduced by relating any future measurement back to the NBS value.
Schematically, for a future value Y(t) as shown on the Y-axis, a dotted line
is drawn through Y(t) parallel to the X-axis. At the point where it

intersects the calibration curve another dotted line is drawn parallel to the
Y-axis, and its point of intersection on the X-axis, X(T), is the
corresponding calibrated value relative to NBS.

Because the functional relationship is not known exactly but is estimated by a
series of measurements, the calibration curve can be in error. A discussion
of the effect of this error on the final uncertainty of a calibrated value is
beyond the scope of this treatise. The reader is referred to Hockersmith and
Ku ( 39 ] for a discussion relating to quadratic calibration curves and to
Croarkin and Varner [Uol for a discussion relating to linear calibration
curves.

2.U Uncertainty

2.U.1 Definition

The uncertainty statement assigns credible limits to the accuracy of the
reported value stating to what extent that value may differ from its reference
base. In practice it quantifies the magnitude of any possible discrepancy
between the value actually obtained in the laboratory and the value which
would be obtained at NBS for the same property of an object. An uncertainty
provides both a measure of the worth of the values reported by the measurement
laboratory and an estimate of the systematic error accruing to any
organization that makes use of these values.

The xincertainty statement is composed of i) all sources of sytematic error
that contribute to the offset from the reference base and ii) a limit to

random error that quantifies the variability that is inherent in the
measurement process as it transfers from a "known" or calibrated artifact or

measurement system to an "unknown".

2.U.2 Combination of Random and Systematic Error

Once the systematic errors and the limits to random error have been estimated,

they are combined into a single number which is called the uncertainty. Much

controvery arises over the proper way to combine systematic and random errors

in an uncertainty statement. Basic premises concerning measurement and its

uncertainty as espoused by Youden [Ul] , Eisenhart et al. (U2] and others have

long been adopted by NBS calibration services and are recommended for

measurement assurance programs. A different philosophy that has recently been

advanced by the Bureau International des Poids et Mesures is discussed in

reference (U 3 I. Basically the question revolves around whether systematic

errors should be added linearly or combined in quadrature and around whether

the systematic error and the limit to random error should be added linearly or

combined in quadrature. For example, if there are several sources of

systematic error adding the systematic errors linearly assumes the

worst possible combination of errors and gives a total systematic error of

B-29



total systematic error S where

S — S]_ + S2 • * • + (2.U.1)

Combining the systematic errors in quadrature produces a total systematic
error for those sources of

(2.U.2)

Recommended practice for measurement assurance programs is to combine in
quadrature systematic errors that are known to be independent as in (2.U,2),

to add linearly systematic errors that may not be independent as in (2.U.1),
and to combine systematic and random errors linearly.

2 .U .3 Final Statement

Because there is no universal agreement on setting limits to random error,
such as two or three standard deviation limits, and also because there is no
universal agreement either at NBS or internationally as to how the systematic
and random components should be combined, it is recommended that for maximum
clarity the composition of the uncertainty statement be fully explained. The
explanation should include a statement of the limits to random error, a list
of sources of systematic error, and a description of the way in which they
have been combined. An example of an uncertainty statement from an NBS
calibration process is:

The apparent mass correction for the nominal 10 gram weight is

+0.583mg with an overall uncertainty of ±0.0U2mg, using three times
the standard deviation of the reported value as a limit to the effect
of random errors of measurement, the magnitude of systematic
errors from all known sources being negligible.

The chain of uncertainty as propagated through a calibration echelon starts
with the uncertainty assessed at NBS which consists of all sources of error,

both systematic and random, associated with that process including the
uncertainty of its reference standards relative to basic units of

measurements. If the calibration echelon involves one or more standards
laboratories, the total uncertainty as assessed at each echelon becomes a

systematic error for the next lower echelon laboratory, and the uncertainties
at each level are propagated in like manner. In the next section the

propagation of uncertainties for a laboratory that uses an NBS calibrated
artifact as a reference standard is compared with the propagation of

uncertainties for a laboratory that calibrates its own measuring system

through the use of an NBS transfer standard.

2.5 Uncertainty of Reported Values

2 . 5.1 Uncertainty via Conventional Calibration

The uncertainty associated with a value reported for a test item by a

measurement process that is operating in a state of statistical control using
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a reference standard calibrated by NBS is

U - 3si- + UsTD . (2.5.1)

This assumes that the standard is not changed during transport and that
environmental and procedural factors are not different from the conditions of
calibration. The standard deviation of the reported value Sj. depends on the
total standard deviation s^, the error structure for the reported value as

discussed in section 1.5, and the number of measurements made on the test
item. The quantity Ug-pp is the uncertainty associated with the reference
standard as stated in the NBS calibration report.

Note that where the reported value is an average of p measurements, the usual
standard deviation of an average, Sj-/ /p, sometimes called the standard error,
will apply to the reported value only if the p repetitions were made over the

same set of environmental conditions that were sampled in the calculation of

the total standard deviation. In a calibration setting where repetitions are

done within a day or two, the standard deviation of a reported value depends
upon a between component of variability sj, and a within component s^ as

explained in section 1.5.

2.5.2 Uncertainty via a Transfer Standard

Where a laboratory has calibrated its own reference standard using an NBS

transfer standard, rather than using a reference standard calibrated at NBS,

another echelon has effectively been added to the calibration chain. The

uncertainty of that transfer must be assessed, and it contributes another

systematic error to the process of subsequently assigning values to test

items

.

The uncertainty of a transfer involving a single transfer standard compared

with a single laboratory standard is

Utr = 3st + Ut (2.5.2)

and the uncertainty associated with a value reported for a test item is

U = 3sj- + 3st + Ut = 3sj- + Uff (2.5.3)

where Sj. is the standard deviation associated with the reported value of the

test item as discussed in the last section; s^ is the standard deviation

associated with the value assigned to the laboratory's reference standard via

measurements made on the transfer standard; and Uj is the uncertainty assigned

to the transfer standard by NBS.

Admittedly there can be some concern about qualifying a laboratory's

systematic error by means of an NBS transfer standard because of the

additional systematic error that this imposes on the uncertainty statement.

This fact is inescapable, but the resulting uncertainty statement is, in fact,

a realistic expression of the errors affecting the process whereas the usual

calibration route does not provide a way of assessing systematic errors that

may be affecting measurements, other than those directly involving the

artifact standard.
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The uncertainty, U<p, associated with a transfer standard will usually be
smaller than the uncertainty associated with a calibrated artifact. The
calibration workload at NBS is at least one step removed from the NBS primary-

standard, and the size of U-p relative to U3-p£) can be reduced by eliminating
this step in assignments to transfer standards. For example, transfer
standards for voltage measurements are compared directly to an NBS primary
reference bank that is in turn compared on a monthly basis to the Josephson
effect, which provides a realization of the volt. The regular calibration
workload is compared with a secondary bank of cells that is compared to the
primary bank on a daily basis.

Transfer standards that are assigned values at NBS based on secondair
standards are calibrated several times over a long time period in order to

reduce the contribution of random error to the uncertainty of the assignment.
For example, values for gage blocks that comprise the transfer set from NBS

are averages of approximately nine electro-mechanical calibrations completed
over a two year period. Furthermore, because s-^ can be made small by

sufficient repetition and careful excution of the transfer, the total
uncertainty in (2.5.3) can be kept close to the uncertainty in (2.5 •!) or at

least small enough to meet the goals of the measurement assurance program.
See figure 2 for a graphic comparison of uncertainties via measurement
assurance eind conventional calibration routes.

MEASUREMENT ASSURANCE VIA TRANSm STANDARD CONVENTIONAL CALIBRATION

Random error
Transfer ) ^

Uncercainty
lab reference scds

3s^ ^

Random error'
NBS calibrationN ^
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Uncertainty
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NBS NBSi

Random error
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Figure 2

Diagrajn showing propagation of uncertainties from NBS process to final

uncertainty for test item via measurement assurance route con^iared to

the conventional calibration route
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2.5.3 Example of an Uncertainty Statement

The principles of this chapter are illustrated by a preliminary experiment at

NBS that eventually led to the development of a linewidth standard.
Three sources of systematic error were identified in the NBS photometric
process that related linewidth measurement to the fundamental definition of

length through line-scale interferometry.

The uncertainty from the interferometric process, resulting from random errors

associated with making the interferometric determinations and negligible
systematic error, translated into a systemtic error in the photometric
process of O.Olum. The maximum differences that were observed between the two

operators and two instruments that were employed in the NBS system translated

into systematic errors of 0.005um and 0.020um respectively.

Values assigned to linewidth artifacts were averaged from four photometric

readings, and the standard deviation of each assignment was reported as Sj..

The limits to random error were taken to be three times the standard deviation

of the assignment. An error budget showing the various components

contributing to the total uncertainty is shown below.

Components of Uncertainty

Limit to Random Error = Ssj. ± O.OUOym

Systematic errors:
a. Operator differences ± 0.005ym

b. Instrument differences ± 0.020ym

c. Uncertainty from ± O.OlOym

interferometry

± 0.035yni

± 0.0T5wm
Total systematic errors

Total Uncertainty^

Based on this analysis NBS assigned a total uncertainty of ± 0.0T5ym to

artifacts that were calibrated by this system. If such an artifact were to be

used by a laboratory for calibrating its optical imaging system, this

uncertainty would become a systematic error for that process.

§It is suggested that uncertainties be stated to no more than two

significant figures and that the last decimal place in the reported value of

the measured item correspond in place value to the last decimal place in the

uncertainty statement.
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3. The Check Standard in a Measurement Assurance Program

3.1 Introduction

A check standard provides a means of characterizing the behavior of a
measurement process by way of repeated measurements on the same artifact,
combination of artifacts, or instrument over a substantial period of time and
over fluctuating environmental conditions. It should be thought of as a data
base of such measurements rather than as an artifact per se because it is the
measurements, or some function of those measurements, corrected according to
the model specifications, that actually describe process performance.

The structure of the check standard measurement depends on whether the
calibration procedure is based on a single measurement or a calibration design.
In some cases the check standard may be a function of readings on two
reference standards, thus eliminating the need for an additional artifact.
Check standard measurements of the following types form the basis for the ’

measurement assurance programs in the next chapter.

1) Measurements made on a single artifact as close in time as possible to the
measurements on the reference standard and the test item.

2) Differences between the observed values of two reference standards whose
assigned values are the basis for assigning a value to a test item.

3) Computed value for single artifact from a statistical design involving k

intercomparisons of reference standards, test items and artifact check
standard.

U) Computed value of difference between two reference standards from a

statistical design involving k intercomparisons of reference standards and

test items.

5 ) Measurements made on a calibrated artifact by a direct reading instrument.

6) Calibrated value of a single artifact from a calibration process that uses

a ratio technique.

3.2 Process Parameters Defined by the Check Standard

Measurement processes have two properties that are critical to a measurement

assurance program. Measurements of a stable quantity tend to a long-term

average which may not be the same average that would be achieved if a different

laboratory produced the measurements. As discussed in detail in the last

chapter, these measurements while tending to an average, will not be identical

because of inability to reproduce conditions of measurement exactly, and this

latter property is referred to as process variability or in^jrecision. Process

parameters are quantities that describe the long-term value and the process

precision from redundant measurements on a check standard.

The statistic for characterizing the long-term value is simply the arithmetic

average of the check standard measurements and is referred to as the "accepted
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value of the check standard." The check standard measurements supplant the
ideal set of measurements that could be made on a test item if it were in the
laboratory for a sufficiently long period of time. The average of those
hypothetical measurements is, of course, the quantity that is of primary-
interest, but because such is not at our disposal, we define the process in
terms of the accepted value of the check standard. This statistic defines a
local base for the measurement process which is intimately related to any
discrepancy between the reference base and the average of the measurements that
could be made on a test item, and any change in the local base is reason to
suspect that this systmatic error has changed.

The statistics for characterizing the process precision are: i) a total
standard deviation computed from the same check standard measurements and ii) a
within standard deviation computed from each calibration design or group of
repetitions for cases where the calibration experiment reports a value based on
more than a single measurement on a test item. Within standard deviations are
pooled according to (2.2.3) into a single value called the "accepted within
standard deviation" which reflects variations that typically take place in the

measurement process during the course of a calibration.

If the check standard measurements are properly structured, the accepted total
standard deviation reflects the totality of variability in the measurement
process. The scatter of check standard measurements will be characteristic of

measurements of a test item observed over a period of time in the calibration
setting only if both t-ypes of measurements are affected by the same sources of

error. Then the accepted total standard deviation computed from the check

standard measurements can be used to compute the standard deviation for a value

reported by the calibration process. Evidently, this computation depends on

the type of measurements that are designated as check standard measurements and

on the model for the calibration process. Specific examples are discussed in

chapter k.

Before embarking on a full-scale measurement assurance program, the participant

conducts a series of experiments to establish a data base of check standard

measurements. Accepted values for the process parameters are computed from

this data base, and it is emphasized that these experiments should cover

several weeks' time and should number at least fifteen to obtain reasonable

estimates. The calibration schemes or designs for producing the check standard

data must be identical to the procedures for calibrating test items in the

workload and measuring transfer standards from NBS.

The importance of the initial check standard measurements dictates that they

describe the system in its normal operating mode. Care should be exercised to

guarantee that this is indeed the case, so that the standard deviation will be

appropriate for an uncertainty statement constructed at any time in the future.

This is done by varying the conditions of measurement to cover a representative

range of laboratory conditions including operator and environmental

variations. These measurements should be scrutinized for outliers because even

one significant outlier in a small data set can seriously bias the estimates of

the process parameters—perhaps causing an out-of-control condition when the

transfer standard is being characterized in the laboratory and invalidating the

transfer.
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Methods for identifying outliers are highly dependent on underlying
distributional assumptions. Several methods for detecting outliers are
discussed in ASTM Standard E1T8^, but for the foregoing reason, they may not be
effective given a limited number of check standard measurements. A plot of the
data points is usually satisfactory for detecting outliers. Each check
standard measurement should be plotted against a time axis, thus creating a
preliminary control chart, and measurements which are obviously aberrant should
be deleted from the data set. On the other hand, the data should not be edited
in order to achieve seemingly better precision because this will cause failures
in the control mechanism at a later time. If a large n’j~ber of points are
suspected as outliers, say more than five percent, the c.eck standard
measurements do not constitute a strong data base, and the cause of large
variations should be investigated and rectified before proceeding with the
measurement assurance program.

3.3 The Check Standard in Process Control

Each check standard measurement is subjected to a statistical test for control,
and the outcome of that test is used as a mechanism for accepting or rejecting
the results of the measurement process. This presupposes that there is, in

fact, a process that is in control, that sufficient data from the process
exists to quantify this control, and that the behavior of future measurements
is predictable from past behavior of the process. This test is exactly
analogous to control chart methodology wherein values that fall inside control
limits based on historical data are said to be in control, and values that fall
outside the control limits are Judged out-of-control.

The technique that is used for control is called a t-test wherein a test
statistic is con^juted from the current check standard measurement, the accepted
value of the check standard, and the total standard deviation. This test
statistic, when large in absolute value compared to a critical value of

Student’s t distribution, is indicative of lack of control.

The critical value depends on v, the number of degrees of freedom in

the accepted total standard deviation, and on a, the significance level. The

significance level a, the probability of mistakenly flagging a check standard
measurement as out-of-control, should be chosen by the participant to be

suitably small, say between 0.10 and 0.01, so that the number of remeasurements
that must be made because of a chance failure is kept at an acceptable level.

Once the control procedure is installed in the laboratory, the assignments

generated by the calibration process are accepted as valid within the stated

uncertainty as long as the check standard measurements remain in control.

Action is required whenever a check standard measurement is out-of-control.

The immediate action is to discard the results of the calibration. Of course,

at this point one is faced with a dilemna about what future actions should be

taken in regard to the calibration process. Because of the probability of

chance failure, exactly a, it is reasonable, while discarding the results of

the calibration, to repeat the calibration sequence, hoping that check standard

measurements will be in control.

^ ASTM Standard E1T8 is available from the American Society for Testing

Materials, 1916 Race Street, Philadelphia, Pennsylvania 19103.
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In this happy event, one assumes that either something was amiss in the initial
calibration, such as insufficient warm-up time for the instrument, or that one
was the victim of chance failure. In either case it is permissible to accept
the more recent result and proceed as usual. In the event of repeated
successive failures or numerous failures over time, one must conclude that a
major disruption in the calibration process is affecting the process offset,
such as a change in a laboratory reference standard, and the calibration
process should be shut down until the problem can be rectified and control
reestablished. Each calibrration experiment is intended to reveal the offset
of a test item or the client's process relative to NBS, and this offset will
not be correctly estimated by the calibrating laboratory if the long-term
average for its measurements is not constant relative to the reference base.
Therefore, a failure of the check standard test implies that offset has not
been eliminated or accounted for by the calibration experiment.

A consideration in choosing a is that the significance level for process
control should be the same as the significance level for determining the limits
of error in section 2.3. Smaller values of a, the probability of having to
remeasure unnecessaarily , that is because of chance failure, correspond to
larger associated limits of error. Thus the cost of remeasurement must be
weighed against the impact of a larger uncertainty. Values of a = 0.05 or
a = 0.01 are recommended.

An alternative to a critical value based on the t-distribution, as explained in

section 2.3, is a factor such as three or two which can be used for computing
limits to random error eind testing for control. The factor three corresponds
approximately to a = 0.003 for the normal distribution and is well established
in quality control applications. There are no hard and fast rules for picking
either a significance level a or a factor such as three for the control
procedure, but once it is chosen, it plays a large part in determining the

frequency of remeasurement and the magnitude of the uncertainty for the
process.

The measurement assurance procedures that are outlined in the next chapter are
based upon a critical value of three in almost all cases. Those wishing a more

stringent control procedure can substitute the appropriate value of t(j/2 in

the appropriate equations. In calibration work, the purpose of the control

procedure is to flag those measurements which are clearly out-of-control, and a

critical value of three is suitable for many situations. This approach is the

current practice of many calibration services at NBS. Moreover, limits based

on the factor three work well, covering a large percentage of the distribution

of possible values of the test statistic, even where the test statistic is not

strictly distributed as Student's t which is the case for some of the more

complicated constructions in the next chapter.

If the measurement sequence allows for a within standard deviation, the ratio

of this within standard deviation to the accepted within standard deviation is

compared to a critical value based on Snedecor's F distribution (see Ku (UU)

for a discussion of the F test). A ratio that is large compared to the

critical value is indicative of lack of control during the course of the

measurement sequence.
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The critical value Fci(vi,V2 ) depends on; , the number of degrees of freedom
in the current within standard deviation; the number of degrees of freedom
in the accepted within standard deviation; and a, the significance level
discussed in preceding paragraphs. Critical values of tabulated
in Table II for a=0.01, vi = l ( 1 ) 10( 2)30( 10) 120 and V2=10( 1 )20( 2)30( 5 ) 120

.

The t-test and F test are invoked simultaneously— the failure of either test
constituting grounds for discarding the measurement on the test item or

transfer standard. The combination of these two tests is a powerful means of

detecting shifts in the long-term average of the process as it defines
systematic error.

The efficacy of the check standard as a device for guaranteeing that the
process is functioning properly and that, therefore, the test items are

assigned values with negligible offset relative to NBS, depends on the

relationship among the measurements made on the test items, the measurements
made on the reference standards and the measurements made on the check
standards. The strongest case for measurement assurance exists when all
assignments are statistically interrelated as in a statistical design. When
the assignments are by nature statistically independent, it is essential that

the measurements be temporally related by completing the measurement sequence
in as short a time as possible.

There is really no guarantee that a predictable response on the part of the

check standard assures a good measurement on the test item if it is possible
for the process to change appreciably during the intervening time between the

check standard measurement and the other measurements. However, a strong
case for confidence in a measurement process exists for a process that is

continuously in control. Furthermore, out-of-control findings for the check

standard are almost unfailingly indicators of measurement problems because the

control limits are specified so that the probability of a single value being
out-of-control is extremely small.

The question of how often the process should be checked for control can only

be answered in terms of the goals of the measurement program. A criterion
based on economic considerations must balance the tradeoff between the cost of

making additional measurements to ensure accuracy and the costs incurred when
inaccurate measurements are allowed to occur. In order to achieve the highest

level of measurement assurance, check standard measurements should be

incorporated in every calibration sequence. When this is not possible or not

necessary, a check for control should be incorporated in start-up procedures

and repeated at intervals thereafter that depend on the level of system

control that is desired and on past experiences with the control procedure.

A system that is always in control when checked can be presumed to remain in

control between checks, and the time between check standard measurements can be

lengthened. Conversely, the same presumption cannot be made for a system that

is occasionally out-of-control, and the time between check standard

measurements should be shortened if one is to determine how long the system can

operate in-control.

'The notation 10(2)30, for example, indicates that the values go in steps of

two from ten to thirty.
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3 .^ The Transfer with NBS

During the transfer between the participating laboratory sind NBS, current
check standard measurements that result from the transfer experiments are
compared with the accepted value of the check standard by a t-test in order to
ascertain whether or not there has been a significant change in the long-term
average of the process. If the check standard measurements are continually
out-of-control while the transfer standard is in the laboratory, the transfer
measurements are invalid, and the transfer experiment should be discontinued
until the initial check standard measurements are repeated and new accepted
values are established. Isolated failures can be treated as they are treated
in the calibration workload, and offending measurements that cannot be
repeated are deleted from the transfer data.

Similarly, the within standard deviation computed from the transfer
measurements is compared with the accepted within standard deviation by an
F-test. If possible, sufficient repetitions spaced over a period of time are
also included in the procedures for lasasuring the transfer standards so that

the standard deviation for the transfer can be compared to the accepted total
standard deviation.

After the completion of the transfer with NBS, the tests for control are

continued for the calibration process. When an out-of-control condition is

encountered in this mode, the measurement process is discontinued until
control is restored which may amsount to simply repeating the measurement

sequence on the test item and check standard. When it is obvious that the

process mean has shifted because of repeated out-of-control findings for the

check standard, signifying that the offset from NBS has changed, it is time

for another intercomparison with NBS. Theoretically one my be able to
analyze the amount of change in the offset, but it seems Judicious at this

point to reestablish the values of the laboratory’s reference standards.

3.5 Updating Process Parameters

After the control procedure has been in place for a year or more, sufficient

data should be available so that the process parameters can be updated. The

mechanics for doing this depend on the degree of automation that exists in the

laboratory euid on the computing capability at its disposal. In a sophisti-

cated program one compares the accepted value for the check standard and the

accepted total standard deviation with values computed from the check standard

data that has been accumulated since the last update. If the two sets of data

are essentially in agreement , updated process parameters are computed based on

all check standard measurements. In cases where the process has changed

significantly in regard to these parameters, the past historical data are

discarded, and new process parameters are computed from the most recent data.

For co05)uter systems such as micro-con^uters with limited storage capacity, it

may be feasible to retain only a fixed number of check standard measurements.

Obviously the number should be sufficient for obtaining reliable estimates.

The data file is continually updated by deleting the oldest measurement and

adding the newest-thereby always keeping a fixed number of check standard

measurements in the data file with which to con^jute the process parameters.
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U. Implementation of Measurement Assurance for Specific Cases

This chapter contains the basic outlines for implementing measurement
assurance programs for eight specific measurement situations where the
sequence of measurements that constitute an intercomparison depends upon the
number of reference standards, the number of test items and the number of
redundant measurements to be employed in each intercomparison.

The essential elements that specify the measurement situation for each plan
are as follows:

U.l A comparator process in which one reference standard is compared to a

test item and a check standard.

h,2 A comparator process in which a test item is compared to each of two
reference standards, and control is maintained on the difference between
readings on the two reference standards.

U,3 A comparator process in which three test items are compared to two
reference standards in a statistical design, and control is maintained
on the difference between the two standards.

U.U A comparator process for mass calibrations illustrating the use of a

1, 1, 1 design and a5, 3, 2, 1, 1, 1 design with provision for a check
standard for each series.

U,5 A comparator process in which four test items are compared to
four reference standards, without direct intercomparison between the test

items or reference standards. Control is maintained on the difference
between two reference standards.

U.6 Direct reading of the test item with the instrument as the standard.

Control is maintained by repetitions on a calibrated artifact.

U.T Simultaneous measurement of a group of test items relative to a bank

of reference standards where a check standard is always included among

the test items.

U.8 A ratio technique for one or more test items and one or two reference

standards. Control is maintained on calibrated values of an artifact
check standard.

Calibration eis a process of intercomparing a test item with a reference
standard and eissigning a value to the test item based on the accepted value of

the standard is frequently carried out by a comparator process. For high

precision work, the comparator process makes use of an instrument or device

which is capable of handling only very small differences between properties of

similar objects such as a mechanical comparator for comparing gage blocks

of the seune nominal length or an electrical bridge for detecting very small

differences between resistances. Where individual readings, in scale units,

are taken on the unknown and the reference standards and converted to the

appropriate units, a value can be assigned to the test item only through the

B-40



difference between the reading on the test item and the reading on the
reference standard (See section l.U,2). The calculated difference between the
two readings is the "measurement of interest" and the number of such
differences determines the redundancy in a measurement scheme.

Where the calibration experiment produces only a difference measurement, such
as the difference in emf between two saturated cells as measured by a
potentiometer, the term "reading on an unknown" or "reading on a standard"
does not have a literal interpretation but refers to the logical
intercomparison of the items. In either case, a value is assigned to an
unknown relative to the known value of one or more reference standards. This
known value is referred to as the restraint.

Where there are a small number of unknowns and reference standards, the
calibration experiment nay consist of all possible intercomparisons that can
be made on the collection of items; this would amount to k(k-l)/2 difference
measurements for k items being intercompared two at a time. A calibration
design consists of a subset of all possible intercomparisons such that, given
a restraint or assigned value for the reference standards, the series of
intercoraparisons can be solved for the unknowns. The method for finding a
solution is least-squares, and the resulting values for the unknown items are
least-square estimates.

Several factors dictate the choice of intercon5)arisons that constitute the
design. Obviously, it is desirable to keep the number of intercomparisons
small. Designs are usually structured so that precision in the assignments to

the test items is the same for all items of the same nominal size and so that

precision in this sense is optimized for a given number of intercoraparisons.
Other optimality criteria that are discussed in the statistical literature in

references [U 5 I and (U6] may be of interest to the reader.

Calibration can also be carried out using a direct reading device or

instrument in which case the device is regarded as the standard, and values,

already in the appropriate units, are assigned directly to the test items.

Such a device, for exan5)le an interferometer, can also be used in a comparator

mode in which case the difference between a reading on the test item and a

reading on the standard is regarded as the measurement of interest.

The eight measurement plans that are discussed in this section have been

adapted to both mechanical and electrical measurements. Plan U.l is the

sin5)lest schecae for a comparator process and may be appropriate when accuracy

requirements are moderate. It does not afford a high degree of protection

because the linkage between the measurement on the test item euid the

measurement on the check standard is not as strong as it is for the other

con^iarator schemes. Plan U.2 affords a higher degree of protection against

incorrect measurements by requiring redundant measurements on each test item.

This plan is well suited to mechanical measurements and is currently utilized

in the Gage Block Measurement Assurance Program. The program is illustrated

with data from one participant in section h,2,l.

Plans U,3 and U.5 involve calibration designs that are particularly

appropriate for voltage and resistance measurements. The designs have a

provision for estinating a so-called left-right effect which is an important
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circuit parameter for voltage measurements. The discussion of plan U.5, which
is illustrated with data from the NBS Volt Transfer Program, explains the
steps to be followed in process control using a check standard that is either
stable or is drifting linearly with time.

Plan U.U describes a measurement assurance program for guaranteeing the
accuracy of very precise weighings by means of two designs which are routinely
used in the NBS mass calibration program. Weighing designs for different
combinations of weights along with designs for mechanical and electrical
measurements involving more standards and test items are described by Cameron
et al [UtI. Designs for eliminating temporal effects are described by Cameron
and Hailes [U8l

.

Surveillance testing as a means of ensuring the self-consistency of a weight
set is described in detail in a recent publication by Jaeger and Davis [l9l.
The basic idea is to compare a given weight aigainst a collection of other
weights in the set whose nominal sum equals the first weight. The authors
develop measurement assurance methods for monitoring the difference calculated
from the comparison and resolving it with values assigned to the individual
weights.

Plan U.6 is probably the simplest and involves only direct readings on the
test items. It is appropriate for large volume workloads that utilize an

instrument standard such as interferometer, digital voltmeter, or electronic
balance where there is a need to monitor or guarantee the accuracy of the
instrument as a matter of course.

Plan U.T is appropriate for assigning values to test items or instruments
relative to a bank of standards where the calibration consists of

subjecting all items including the reference standards to the same stimuli,
usually simultaneously. Control is maintained by a check standard which is

included as a test item in each measurement sequence. Applications include

watthour meter calibration where test meters eind reference meters are

connected to the same power source and very low pressure calibration where
several pressure gages are confined in a vacuum chamber with a reference

pressure gage.

By necessity, the analyses are outlined in a straightforward manner, and

problems involving drifting reference standards or check standards must be

considered separately. It is obviously impossible to anticipate the spectrum

of complications that may arise in a given measurement area, and these

analyses, offered as a sin^jlistic approach to sometimes difficult problems,

are intended to provide a starting point for measurement assurance.

Each measurement assurance program that is presented in this chapter relies

upon a check standard concept as discussed at length in the last chapter, and

the check standard measurements are crucial to the steps that constitute such

a program; namely i) establishment of process parB.meters ; ii) routine process

control; iii) evaluation of systematic error by transfer with NBS; iv)

determination of uncertainty for test items; v) update of process parameters.

The first four steps are outlined in detail for each program, and the fifth

step relating to updating and maintaining the data base was discussed in

generality in section 3.5*
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^•1 Comparator Process for One Test Item, One Reference Standard, and One
Check Standard

U.l.l Measurement Sequence

This scheme is appropriate for a comparator process where the intercomparison
of the test item X with the reference standard R is immediately followed by
the intercomparison of an artifact check standard Y with the reference
standard R in the sequence X, R, Y, R. The readings are denoted by x, r]_, y,
T2 respectively. This measurement sequence should be followed for all
calibrations for which statistical control is to be achieved. The value of

the check standard for one such sequence is defined from the reading on the

artifact check standard and the duplicate readings on the reference standard

as

c = y -
1

2
(ri + r2) . (U.1.1)

All aspects of a measurement assurance program involving this design are

explained and illustrated for gage blocks in reference l50].

U.1.2 Process Parameters

Initial values of the process parameters are obtained from n such measurement

sequences, where ci,***,Cn are the observed values of the check standard.

The accepted value of the check standard is the mean of the check standard

measurements ; namely

,

= - 1 Ci .

n i=i

(U.1.2)

The accepted total standard deviation for the check standard is

„ .
,

JL Itci -
n-1 i=i

(U.1.3)

with V = n-1 degrees of freedom.

The nodel assumed for the calibration process is the additive model (l.U.2).

Under this nodel the error structure for the value of the test item and the

error structure for the check standard measurement are identical. Thus s^,

also estimates the standard deviation of the reported value of the test item

which is shown in (U.1.6).
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The control limits^ that are appropriate for future check standard
observations are given by

Upper control limit = + 3S(,

Lower control limit = - 3S(, .

U.1.3 Control Procedure

The control procedure applied to each calibration depends on a test statistic
t^ that is computed from the observed value of the check standard c for that
measurement sequence by

c - A,

(1^.1.

M

If tr < 3 (U.1.5

the process is in control, and the value of the test item is reported as

X* = X - - (ri + rp) + R*
2

(U.1.6)

where R* is the value assigned to the reference standard,

If tc > 3,

the calibration of the test item is invalid and must be repeated.

^The factor 3 is used in this and all subsequent computations in place of the

appropriate percent point of the t distribution;
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4.1. A Transfer with NBS

The transfer with NBS is accomplished by p repetitions of the measurement
sequence in which a transfer standard takes the place of the test item in each
repetition. Process control as defined by (4.1.5) should be confirmed
for each repetition. Any sequence that is out-of-control should be repeated
until control is reestablished or else that repetition is deleted from the

transfer. If the value assigned to the transfer standard by NBS is T with
uncertainity U-p, the uncertainty of the transfer is

3S(,

U
j. j.

= U-p
,

(4.1.7)

The offset A of the laboratory process from NBS is

1 * *
A = -

51
Xj - T (4.1.8)

P j = l

where Xi*,**‘,Xp* are values calculated according to (4.1.6) for the transfer

standard for each of the p repetitions.

This offset is judged significant if

IaI
> 3 (4.1.9)

and in such case the assigned value of the reference standard becomes

R* - A.

The assigned value of the reference standard is unchanged if

4,1.5 Total Uncertainty

The total uncertainty that is appropriate for a value assigned to a test item

by one calibration sequence is

U = Utr + 3sc. (4.1.10)
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U.2 Comparator Process for One Test Item and Two Reference Standards

U.2.1 Measurement Sequence

This scheme involving duplicate measurements on the test item is appropriate
for a comparator process where the assignment for the test item is made
relative to the average of the values assigned to the two reference standards,
called the restraint R . Ihe intercomparison of the test item X with each of
two reference standards, R]_ and R2 , in a trend eliminating design (Croarkin et

al ( 51 ] ) is accomplished by the sequence X, R
2_, R2 , X, and the readings are

denoted by X]_ , r^^ r2 , X2 respectively. The difference measurements are:

di = XI - ri

d2 = X2 - r2

There is no artifact check standard for this design, and a check standard
value is defined for each sequence as the calculated difference between the

readings on the two reference standards as

(U.2.1)c = d2 - d]_

The value c is structured so as to reflect the maximum variation that occurs

in the measurement sequence between the first and the last readings on the
test item and not Just the variation that occurs between the readings on the
two reference standards.

1+.2.2 Process Parameters

Initial values of the process parameters are obtained from n such measurement
sequences yielding check standard values C]^,***,Cn. The accepted value of the
check standard is given by the mean of the check standard values; namely.

(U.2.2)

The total standard deviation of the check standard is defined by

with V = n-1 degrees of freedom.

The control limits^ that are appropriate for future observations on the check

standard are given by

Upper control limit = A^. + Ssj,

Lower control limit = A^, - 3S(, .

^The factor 3 is used in this and aill subsequent computations in place of the

appropriate percent point of the t distribution; namely, tQf/2^'^)*
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The model assumed for the process is the additive model (l.U. 2 ). Ihe error
structures for the check standard measurement and the reported value of the
test item are worked out in detail in section 1.5 where it is shown that the
standard deviation for the reported value of the test item is s^/2.

k.2.3 Control Procedure

The control procedure applied to each calibration depends on a
that is computed from the observed value of the check standard
measurement sequence where

Ic - A^l
t^ = .

Sc

If tc < 3 (u.2.5)

the process is in control, and the value of the test item is reported as

X* = i (di + d2) + R* (I1.2.6)

where the restraint R* = - (R]^* + R2*) , and Rj^* and R2* are the assigned

values of the reference standards.

If tc > 3 ,

the calibration of the test item is invalid and mist be repeated.

statistic
c for that

(U.2.I1)

U.2.I1 Transfer with NBS

The transfer with NBS can be accon^ilished with two tranfer standards T]^ and
T2* In this mode P]^ repetitions of the measurement sequence are made with T]^

taking the place of the test item aind P2 repetitions of the measurement
sequence are made with T2 taking the place of the test item. This produces a

total of p]^ + P2 repetitions for the transfer. Process control as defined by

(U.2.5) should be confirmed for each repetition. Any sequence that is

out-of-control shoxild be repeated until control is reestablished or else that

repetition is deleted from the transfer. If the values assigned to the

transfer standards by NBS are T]^ and T2 with uncertainties Urji]^ and Up2

respectively, the vincertainty of the transfer is

where

Utr
3

k Pl-P2

+ Up

1 / 2 2\1/2
Ut =

2 \
^2 ]

(U.2.T)
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The offset A of the laboratoiy process from NBS is defined only in terms of
the restraint; i.e., the average of the two reference standards. It is

computed from the p]_ values assigned to the first transfer standard according
to (U.2.6); naunely, ^i*>***.Xp* and the P2 values assigned to the second

transfer standard according to (1.2.6); namely, ^]_**
,

* *
* ,X-r

= — Z Xi + — I Xi**
2Pi iil 2P2 iii

The offset is Judged significant if

_ . (Ti* + T2*) ( 1 . 2 . 8 )

t > 3, (1.2.9)

where
t =

( 1 . 2 . 10 )

’^Pl+P2 Sc

and in such case the assigned value of the restraint is changed to R* - A.

The restraint is unchanged if t < 3.

1.2.5 Uncertainty

The total uncertainty that is appropriate for a value assigned to a test item
by (1.2.6) from one calibration sequence is

3sc
U = U+- + . (1.2.11)

2

1.2.6 Example from the Gage Block Measurement Assurance Program

Two sets of eighty-one gage blocks from NBS were sent to industrial
participants for the purpose of assigning values to their laboratory reference
standards. Before the transfer blocks left NBS, each participant conducted a

minimum of six experiments in which his two sets of reference standards were
compared to a set of test blocks according to the measurement scheme in

section 1.2.1. Because six measurements are not sufficient for estimating a

standard deviation, the data were analyzed by groups, with about twenty blocks

constituting a group.

In order to check a large data set for outliers, such as the data accumulated
on the gage block check standards, it is sometimes possible to make use

of the information in the individual standard deviations. Because the

measurements are assumed to all come from the same process, a standard
deviation that is large compared to the other standard deviations in the group

suggests an outlier in the check standard measurements for that nominal size.
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If there are k block sizes in a group, the test statistic is the ratio of a
single standard deviation s^ to a quantity that has been pooled from the
remaining standard deviations in that group; namely, sj (j=l,***,k; j^i). The
test statistic is

and Si has V]^ degrees of freedom and each pooled standard deviation has
degrees of freedom. If all s^ have the same number of degrees of freedom v,

then = V and V2 = (k-l)*v. If for a chosen suitable small,

F > F(j(vi,V2)

where F(j(v
2
,V2 ) is the upper a percent point of the F distribution with v^

and V2 degrees of freedom, the standard deviation in question is considered
significant, and the individual measurements for that check standard are
inspected for an outlier— the outlier being either the largest or the smallest
measurement.

Consider the standard deviations in exhibit 4.2.1 which were computed from
check standard measurements for nine nominal sizes. The individual
measurements are plotted in figure 3 as deviations from the mean for each
nominal size as a function of nominal size. Test statistics computed for each
nominal size show that the standard deviation for the 0.122000 inch check
standard is significantly larger than the others, and figure 3 verifies that

the smallest observation is not consistent with the other data for that size

and is thus labeled an "outlier."

Exhibit 4.2.1 - Standard deviations from check standard measurements

Nominal Length
( Inches)

Values in microinches

Std Devs Degrees of Pooled
Freedom Std Devs

Degrees of

Freedom
Test

Statistic

Si ^1

i

V2 F

0.117000 0.445 5 0.723 40 0.38

0.118000 0.288 5 0.733 40 0.15

0.119000 0.952 5 0.659 40 2.09

0.120000 0.382 5 0.727 40 0.28

0.121000 0.616 5 0.707 40 0.76

0.122000 1.303 5 0.579 40 5.06^

0.123000 0.539 5 0.715 40 0.57

0.124000 0.674 5 0.700 40 0.93

0.125000 0.472 5 0.721 40 0.43

’ (si/«p^ f > F.0l(5.A0) where F,oi(5,40) = 3.51 from Table II •
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GME (LOCK CHCCIC STANDARDS

SIZE IN INCHES

Figure 3

Deviations (microinches) from the mean versus nominal length (inches) for
groups of six check standard measurements showing a single outlier

The initial data tedcen by the participants in the measurement assurance
program were inspected for outliers by this method. All outliers were deleted
from the data base before calculating the accepted values and standard
deviations of the check standard measurements. A subset of the data for one
participant is featured in exhibit ^.2.3 with the number of blocks being
restricted to five for the purpose of the illustration. The exhibit shows the
data from the initial experiments, with a check standard for each repetition
computed according to (U.2.1) and initial values for the process parameters A^,

and Sq computed using (U.2.2) and (U.2.3) respectively. After the initial
data set was edited for outliers, the transfer blocks were sent to the

participant. The values assigned to the transfer standards by NBS and the
value for the participant's restraint are listed in exhibit U.2.2.

Exhibit U.2.2 - Participant's restraint and NBS values for transfer standards
Values in microinches

Nominal Restraint Transfer Stds Uncertainties Total§

R* T^» T2* Uti Ut2 Uip

0.1006 1.30 Io7^3 -0.5^ 2.17 2.06 2.12

0.1008 0.80 3.21 3.1U 2. IT 2.06 2.12

0.1010 2.65 2.33 2.52 2.17 2.06 2.12

0.1020 O.I45 0.35 0.19 2.17 2.06 2.12

0.1030 -0.05 -2.09 -2.32 2.17 2.06 2.12

§ The systematic errors associated with the transfer standards are added

linearly instead of in quadrature because the assignments T]_ and T2 are

not independent. Thus = (Uti + Ut2)/2»
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Exhibit i+. 2.3 •- Readings on unknown X and reference standards R^ and R2
Corrections to nominal size in microinches

Nominal Reps Readings Check Mean Total D.F.
( inches

)

Standard S.D.

XI 1*1 ^2 X2 c ^c Sc V

1 53.9 52.7 U6.8 53.9 5.9
2 5U.8 U9.9 U5.O 3 h .3 U.6

3 56.0 50.0 UU.l 56.1 6.0

0.1006 U 56.3 50.0 UU.l 56.3 5.9 5.80 0.616 5

5 55.1 U9.7 U3.7 55.1 6.0

6 55.0 50.0 U3.9 55.3 6.U

1 51.1 51.1 U9.2 50.5 1.3

2 53.0 U9.9 U7.9 53.1 2.1

3 5U.2 50.1 h7-3 5U.3 2.7
0.1008 k 5U.U 50.2 U7.5 3h ,3 2.6 2.33 0.551* 5

3 53.2 U9.9 U7.2 53.2 2.7

6 53.3 50.0 U7.3 53.2 2.6

1 52.0 50.1 U9.I 52.5 1.5

2 5U.8 U8.8 h7.7 5U.7 1.0

3 55.5 50.0 U8 .U 55.5 1.6

0.1010 k 33 -h 50.0 U8.3 33 -h 1.7 1.70 0.593 5

5 55.5 51.0 U8.2 55.5 2.8

6 55.8 50.0 U8.2 55.6 1.6

1 52.1 50.1 U8.1 52.2 2.1

2 57.

3

51.1 U9.0 57.2 2.3

3 57.

0

50.0 U8.3 57.0 1.7

0.1020 1; 57.2 50.1 U8 .U 57.1 1.6 2.07 0.339 5

5 55.3 50.0 U7.6 55.3 2 . 1*

6 55.1 U9.9 U7.6 55.1 2.3

1 53 .9 - U9.2 U8.5 5^*.! 0.9

2 58.8 50.0 U9.0 58.8 1.0

3 59.1* 50.0 U9.I 59.5 1.0
0.3610.1030 U 59. 50.0 U9.I 59.

U

0.9 0.73 5

5 59.3 50.0 U9.5 58.9 0.1

6 59.7 50.2 U9.6 59.6 0.5

Pooled O.5OT 25
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Each transfer block was intercorapared twice with the participants reference
standards by the same scheme used to obtain the initial data, resulting in a
total of P3^ + p2 = repetitions. The data for each repetition are shown in
exhibit U. 2 .U, The readings on the reference standards are designated by ri
and rp, and the duplicate readings on a transfer standard are designated by X]_

and X2. The exhibit also lists the check standard that was computed for each
repetition, the test statistic t;,, and the value reported for the NBS transfer
standard according to (U.2.6).

Notice that on three occasions the check standard measurement failed the test
for control defined by (U, 2 . 5 ). Because the data were analyzed at NBS after
the transfer standards left the participant's laboratory, it was not possible
to repeat those sequences, and they were deleted from the transfer data
thereby reducing the number of valid repetitions for those block sizes.

Exhibit U.2.U - Readings on transfer standards T]_ and T2

Corrections to nominal size in microinches

Nominal
( inches

)

Stds Reps Readings Check
Std

Test Transfer
Statistic Std

XI ri r2 X2 c tc X*

Tl 1 51.2 55.2 U8.0 50.8 6.8 2.0 0.70

Tl 2 51.3 55.2 U8.9 51.2 6.2 0.8 0.50
0.1006 T2 1 50.8 5U.9 U8.1 51.3 T .3 3 . 0 § —

T2 2 51.2 55.2 U8.9 51.3 6.U 1.2 0.50

Tl 1 56.5 55.3 52.

U

56.3 2.7 0.7 3.35

Tl 2 56.2 55.1 52.5 56.2 2.6 0.5 3.20

0.1008 T2 1 56.1 55.1 52.3 56.

U

3.1 1.5 3.35

T2 2 55 .7 55.0 52.5 55.8 2.6 0.5 2.80

Tl 1 5U.0 5U.9 53.2 51*.

0

1.7 0 2.60

Tl 2 53.5 55.0 52.8 53.5 2.2 1.0 2.25

0.1010 T2 1 53.9 5U.9 53.3 53.9 1.6 0.2 2.U5

T2 2 53.8 55.0 52.8 53.9 2.3 1.2 2.60

Tl 1 5U.9 5U.3 52.1 5U.7 2.0 0.1 2.05

Tl 2 55.0 55.1 52.5 55.0 2.6 1.0 1.65

0,.1020 T2 1 5U.6 5U.3 52.1 5U.6 2.2 0.3 1.85

T2 2 55.2 55.1 52.5 55.2 2.6 1.0 1.85

Tl 1 52.9 53.9 52.9 52.8 0.9 -0.60

Tl 2 53.9 5U.9 52.

U

53.9 2.5 3.53 —
0.1030 T2 1 52.

U

53.9 52.9 52.5 1.1 -1.00

T2 2 53 .

U

5h ,9 52.

U

53 .

U

2.5 3.53

^Failed the test for control. The Gage Block Measurement Assuance Program

uses a critical value of 3 .
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Offsets from ITBS were computed for each block size by (U,2.8) and were
tested for significance by (U.2.9)» The participant was advised to
change the value of the restraint for those block sizes which showed a
significant offset from NBS. The uncertainty of the current transfer with NBS
was computed. Results are reported in exhibit U.2.5. The participant was
further advised that the uncertainty appropriate for his process was
U = 3.42 microinches as calculated by (i+.2.1l).

This uncertainty is valid for calibrations conducted according to the
measurement scheme in Section U.1.1 with the value of the restraint as
stipulated as long as the process remains in control. Another transfer with
NBS will be scheduled in two years to check on the state of the measurement
assurance program, and it is anticipated that thereafter transfers with NBS
will become increasingly rare. Specific blocks that shows signs of change can
be recalibrated or replaced in the interim.

Exhibit U.2.5 - Offsets from NBS and corrected restraints
Values in microinches

Nominal Number of Offset Test Corrected Uncertainty
( inches

)

Repetitions Statistic Restraint of Transfer

Pi + P2 L t R* - A Utr

0.1006 3 l.lU 7.3"^ 0.16 2.59
0.1008 h 0.00 0.0 0.80§ 2.50
0.1010 k 0.05 O.U 2.65§ 2.50

0.1020 k 1.58 12.
5‘’’

-1.13 2.50

0.1030 2 l.UO 7.81 -I.U 5 2.66

Che test statistic t > 3 indicating that the offset from NBS is significant

and that the laboratory restraint should be decreased by the eimount A.

§The restraint is unchanged because the offset is not significant.
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U.3 Comparator Process for Three Test Items and Two Reference Standards

U.3.1 Measurement Seq^uence

In this scheme, which is particularly suitable for electrical measurements,
the small difference between two items, such as the difference between the
electromotive forces for two saturated cells, constitutes a measurement. The
assignments of values to test items are done relative to two reference
standards. The statistical design leads not only to equal precision in the
assigned value for each test item, but it is also structured so that any
position effect in the electrical connection, called left-right effect, is

cancelled (Cameron & Eicke [52]). The theory of least-squares estimation
which governs the solution of this type of design is explained by Cameron
in reference [53].

The design is composed of a subset of all possible difference measurements
that could be made on the two standards and three test items. The total
number of measurements that could be made in order to achieve left-right
balance on such a complement of standards and test items is twenty, and the

design is parsimonious in that it requires a subset of ten of the possible
measurements while still achieving equal precision for each assignment.

The reference standards are designated by R]^ and R2 , the test items by X, Y,

and Z and the corresponding intercomparisons on each by r^, r2 , x, y, 2

respectively. The order of measurements is given below:

di = ri - r2

d2 = r2 - X

d3 X - y

du = y - 2

d^ = 2 - r]^ (U.3.1)

d6 = y - n.

dj = r2 - y

dg = 2 - r2

d9 X - 2

dlO = ri - X

The left-right effect is estimated by

(U.3.2)
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The differences of the reference standards from their average as
estimated by least-squares are:

1

r]_ = — (2d]_ - d2 - d^ - d^ - dy + d8 + d^Q)
10

1

^2 = — (-2d]_ + d2 + dc + dg + dy - d8 - d]_Q)

10

and the corresponding differences for the test items are:

X = — (-3d2 + 2d2 + d^ + dg - dj + d8 + 2dp - 3d]_Q)

1 (U,3.3)

y = — (-d2 - 2d3 + 2di| + d^ + 3dg - 3dY + dg - d]^Q)

^ = — (-dg - 2d^ + 3d5 + dg - dy + 3d8 - 2dg - d^^Q).

The vithin standard deviation for each design is

(U.3.U)

with degrees of freedom v = 5.

The individual deviations from the least-squares fit are defined by:

^1

52

53

5U

^5

56

5t

58

^9

5l0

d]_ - + r2 -

A /V
+ X - C

d3

dll

/V
X

y

d^ - z +

dg - ^ + ri - C

dy - r2 + y -

dg - z + ^2 ” ^

,
A A ^

d^ - X + z - C

dlO - ri + X - C.

(It. 3. 5)
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This design can be used for measurement situations where there is no
left-right effect to be estimated. In this case, the equations for the

deviations Ci do not have the term and the degrees of freedom associated
with s^, is V = 6. All other computations remain the same.

The value of the check standard for one such sequence is defined as the

difference between the estimated values of the two reference standards for the
sequence as

1

(2di - d2 - d5 - d^ - dy + dg + d^o) (4.3.6)c
5

4.3.2 Process Parameters

Initial values of the process parameters are obtained from n such designs,
yielding check standard values ci,‘**,Cri and within standard deviations

Sw »***»s^ . The accepted value of the check standard is defined as the mean
1 n

of the check standard values; namely.

(4.3.7)

The accepted value of the within standard deviation, describing short-term
phenomena that affect the measurements within the design, is the pooled value

(4.3.8)Sp

with degrees of freedom = vn

The total standard deviation of the check standard is defined as

(4.3.9)

with V2 = n-1 degrees of freedom.

The model assumed for the process is the additive model (1.4.2). Under this

model the error structure for the check standard measurement and the error

structure for the reported value of an individual test item are such that

the appropriate standard deviation for a value reported for a test item is

/T
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The control limits^ that
given by

Upper

are appropriate for future check standard values are

control limit = + 3sc

Lower control limit = - Ss^ .

4.3.3 Control Procedure

A test statistic t^ that depends on the observed value of the check standard c
is computed for each design by

|c - Acl

tc =
• (4.3.10)

The control procedure depends upon this test statistic and the within standard
deviation s^, for that design. A dual control procedure is applied as follows:

If tc < 3 (4.3.11)

and if Sw < Sp /Fci(v, VI ) (4.3.12)

for a chosen suitably small, the process is in control and values of the
test items are reported as

X* = X + R*

Y* = y + R* (4.3.13)

Z* = z + R* .

The restraint is defined as R* = j(Ri* + R2*) where R^* and R2
* are the

assigned values of the reference standards.

If tc > 3,

the calibration of the test items is invalid and must be repeated.

4,3.4 Transfer with NBS

Given three transfer standards Tj, T2 , and T3 , the transfer with NBS could be

accomplished in one of several ways such as including only one transfer
standard in each design. The most straightforward way is to let the transfer
standards take the place of the test items X, Y, and Z in the design. The

calibration design is repeated p times, and process control should be

confirmed for each repetition as defined by (4.3.11) and (4.3.12).

^The factor 3 is used in this and all subsequent computations in place of the

appropriate percent point of the t distribution; namely, t£j/ 2 (v).
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Any design that is out-of-control should be repeated until control is

reestablished or else that design is deleted from the transfer. If the values
assigned to the transfer standards by NBS are T2*, and T3

* with
uncertainties itpij ^2 » ^3 respectively, the uncertainty of the transfer
is

3

A characteristic of the design that is not always recognized is that the

offset A of the laboratory process from NBS is defined only in terms of the
restraint and not in terms of individual reference standards. The reference

standards should not be used separately and, if one standard is replaced, the
value of the remaining standard and the replacement standard must be

reestablished in relationship to NBS.

Given the p values assigned to each transfer standard by (U.3.13); namely.

«
Zl

the offset is computed as

A
3P i=l 3

The offset is Judged significant if

(U.3.16)t > 3 ,

2/15P 1a1

(U.3.17)where t =

and in such case the assigned value of the restraint R is changed to R - A

The restraint is unchanged if t < 3

I1 . 3.5 Uncertainty

The total uncertainty that is appropriate for a value assigned to a test item

by (U.3.13) from one design is

3/3
(U.3.18)
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Comparator Process for Mass Calibrations with One Check. Standard for

Each Series

4.4.1 Measurement Sequence

High precision mass determination is done by a sequence of intercomparisons
that relate the mass of an object to the laboratory's kilogram reference
standards which in turn are related to the Paris kilogram. An entire weight
set may require several series of intercomparisons in order to assign values to
all weights. The weights in each series are intercompared by a statistical
design that prescribes the weighings. Each weighing involves a mass
difference between two nominally equal weights or groups of weights. Values
assigned thereby are least-squares estimates from the design. Provision for a

check standard is included with the weights for each series. The reader is

referred to Cameron et al. [5] for the statistical theory governing weighing
designs; to Jaeger and Davis [54] for the physical theory; to Varner [55] for a

description of the NBS software for mass determination; and to Appendix A in

this publication for a description of the matrix manipulations needed for a

solution to general weighing designs and the propagation of standard deviations
and uncertainties through several series.

Normally the first series involves two kilogram reference standards, and R2 ,

a test kilogram arid a summation of other weights totaling one kilogram
nominally. The restraint is the average of the values assigned to Rj and R2 ,

and the check standard is defined as the difference between R^ and R2 as

estimated from the design.

The value assigned to the summation Zj by the first series constitutes the

restraint for the second series with the individual weights in the summation
being calibrated separately in the second series. For example, if a 500 gram,

a 300 gram, and a 200 gram weight make up the summation totaling one kilogram,

those weights are assigned values in the second series of intercomparisons.

Two series are needed to calibrate a weight set consisting of 1kg, 500g, 300g,

200g, and lOOg weights, say. A summation of weights Z2 which becomes the

restraint for third series is included in the second series if the weight set

is to be extended to 50g, 30g, 20g, and lOg weights, and the calibration is

extended to lesser weights in like manner.

The weighing designs for two such series are described generically as a

1, 1, 1, 1 design and a 5, 3, 2, 1, 1, 1 design representing the ratios of the

weights in the series to each other. A design consists of a subset of all

possible intercomparisons that can be made on the group of weights with several

factors dictating this choice. A design is always constructed so that the

standard deviation of reported values for weights of the same nominal size are

equal. The number of intercomparisons is kept small, less than twenty, so that

the weighings can be completed with thermal effects being minimized.

Furthermore, the number of weights that one is willing to have on the pan at

one time and the maximum load of the balance have some bearing on the choice of

observations.
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Two designs satisfying these criteria are shown below for calibrating the

aforementioned weight set. These designs are used routinely in the NBS
calibration program. Six observations designated by di,***,d5 suffice for the
first series. A check standard for the first series is constructed by

differencing the values of and R2 that were estimated from the design. The
second series has eleven observations designated by d]^ ,

* *
*

,
d

j
. Notice that a

lOOg weight designated as C is included in this design as a check standard. An

observation for a single pan balance is defined as the mass difference between
the weights marked by (+) and the weights marked by a (-) as defined by Jaeger
and Davis [54]

.

Design for 1st Series

Obs
1kg 1kg 1kg 1kg

Rl R2 XlO J^l

dl + -

d2 + -

d3 + -

d4 + —

d5 + -

db + —

Design for 2nd Series

Obs
500g 300g 200g lOOg lOOg lOOg

X 5 X3 X2 Xl J:2 c

dl + - - + -

d2 + - - + -

d3 + - — — +

d4 + - —

d5 + — — — —

de + — + —

d? + - — + —

d8 + - — — +

dg + —

dlO
dll

4.4.2 Process Parameters

The check standard for the first series is defined as

C]^ “ (1/4) {2di + d2 + d3 - d4 “ d5} . (4.4.1)

The check standard for the second series is defined as

C2 = (1/920) {4di - llld2 + 119d3 + 4d4 - 108d5 - 102d6 - 102d7

+ 128d8 - lOdg - 125dio - 125dn}. (4.4.2)
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The within standard deviation for the first series is

with vj - 4 degrees of freed

w.

om.

^ i = l

1/2

The deviations that are needed to compute are defined by:

^1 = di - (1/4) [2di - d 2 ~ d3 + d4 + d5 ]

^2 - ^2 ~ (1/4) [-d^ + 2d2 - d 3 - d4 + d^

]

^3 = d3 - (1/4) [-di - d2 + 2d3 - d5 - d^]

C4 = d4 - (1/4) [d^ - d2 + 2d4 - d5 + d^

]

^5
~ “ (1/4) [di - d3 - d4 + 2d5 - d^]

^6 ^6 “ (1/^) [d2 - d3 + d4 - d5 + 2d5] .

The within standard deviation for the second series is

1/2

’w„
6 i=i

with V2 = 6 degrees of freedom.

defined as follows;
compute the within standard deviation

Cl = - X5 +
A
X3 + X2 - XI + ^2

C2 = d2 -
*5 + X3 + “rX2 - Z2 + C2

C3 = d3 - X5 +
ys
X3 + X2 + XI

- C2

C4 “ d4 - X5 + X3 + X2

C 5 = d5 - X5 + X2 + XI + Z2
+ C2

C6 ' ^6 - X3 + *2 -
XI +*^2 + C2

C? = d? - X3 + X2 + XI - Z2 + C2

00
N dS - *3 + X2 + ITi + Z2

- C2

C9 ' dg - X2 + XI + 22

Cio ’= dio X2 + XI + C2

Cii ' dll X2 + 22 + C2

(4.4.3)

(4.4.4)

are

(4.4.5)
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where
$
5

(1/920) {100(dQ_ +, d2 + d^ + di; ) + 60d5
- 20(dg + dy + dQ d^ + d]_o "*

A
X (1/920) {-68(d]_ + d2 d^ + di| )

- Ud^ + 12U(dg + dy + dg)
- 60 (d^ + d]_o + d]_]_)}

X = (1/920) {-32(dT + d2 + do + dh) - 56dc - lOU (dg + d7 + d«)
2 + 80(d9 dio - dn)}

T d

^ = (1/920) {119di + Ud2 - llld3 + Udi^ - 108d5 + 128d6 (U.U.6)
1 - 102(dy + ds) - 125 (d9 + dio) - lOdii)

t = (1/920) {-llldi + Il9d2 + i+(d3 + di^) - 108d5 - 125d5 +128dy
2 - I02d8 - 125d9 - lOdio -125dii}

Accepted values for the check standards, within standard deviations, and total
standard deviations are obtained from n initial repetitions of the two series.
Check standard values ,

• •
• ,C]_j^ and C2i,***,C2n from the respective series

are averaged to obtain accepted values.

and

^ = - 1 cii
1 n i=i

1

n
C2i

(J+.U.7)

Similarly, within standard deviations s^, »***jSv
11 In

and S-- ,***,Sv from the second series are pooled
21 2n

within standard deviations for the two series:

and

from the first series

to obtain accepted

(U.U.8)

The total standard deviations for the check standards for each series are

respectively

Sc
1

(cii -

1/2

and

1

n-1
I
i=l

(C2i

(U.U.9)
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4.4.3 Control Procedure^

Statistical control is maintained on the measurements by series. For the
first series, test statistics computed from the current check standard value
c^, and the within standard deviation s„ are used to test for control. Let

Ac^ - Cl

(4 .4.10)

If tp < 3

1

(4.4.11a)

and if Sw < Sp /Fa(4 ,4n)
1 ^1

(4 .4. 1 lb)

for o chosen suitably small, the measurement process is in control, and the

following values are assigned to the the test weight Xig and summation Zi:

Xio* = -( 1 / 8 ) {3d2 + dg + 3d4 + d5 - 2d5 }
+ R*

Zl* = “( 1 / 8 ) {d2 + 3d3 + d4 + 885 + 2 d5 }
+ R’* (4.4.12)

where R = - (Ri + R2 ) and Ri and R2 are the corrections to nominal size

for the kilogram standards Ri and R2 .

Statistical control for the second series depends upon the current check

standard value C2 and within standard deviation s^^ for that series. Let

If < 3 (4.4.14a)

and if < Sp^ /F(,(6 ,6n) (4.4.14b)

the measurement process is in control for that series.

Equations (4.4.10) and (4.4.13) are the simplest constructions for testing for

offset using a t statistic. The technique for constructing these statistics

follows the general method for t statistics; namely, the difference between

J^The factor 3 is used in this and all subsequent computations in place of the

appropriate factor of the t distribution; namely, t(j/ 2 (v).
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the current value of the check standard and its accepted value divided by the

standard deviation of the check standard. As such the construction is

applicable to any design. In this case the statistic defined by (4.4.10) is

precisely correct if the data base for check standard comes from identical
designs with identical restraints, and similarly for the statistic deifined by

(4.4.13). In practice a check standard, especially C2 , can be utilized in a

variety of designs. This does not affect the interpretation of the accepted
value of the check standard, but it does affect the interpretation of the

total standard deviation. In such case the test statistics can be computed
using the within standard deviations as follows:

*^2
i
Ac - Cl

I

^ (4.4.10a)

1

I
Ac- - C2I

tc = (4.4.13a)

' /il 2.

y
230 2 100 8 '^l

y

These equations are compatible with the documenation in reference [55] where
the between component of variance is assumed to be zero —an assumption that

is true for the NBS mass calibration process. Notice that the construction of

the relevant t statistic becomes increasingly complicated as one moves through
the series of weighings depending as it does on the within standard deviations
from all prior designs. See Appendix A for the general construction for any

design.

Given that (4.4.14a) and (4.4.14b) are satisfied, values are reported for

test items and summation for the next series as follows:

Weights

500g

300g

200g

lOOg

ZlOOg

Reported Values

X5 = ^5 + - ^1

Xt = x-j + — ~ Zi

920

* /s 18^ *
X2 = X2 + Zi

920

* 92 *
Xi = xi + - Zi

920

* /N 92
,

Z2 = Z2 + Zi’
920

(4.4.15)

where ^<5 , 'X3 ,

'$
2 , "xi and Z 2 are defined in (4.4.6) and Zi* is defined in

(4.4.12). Whenever a series is out-of-control, the calibration results for

the test weights in that series are invalid and must be repeated.
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4.4.4 Transfer with NBS

For a mass measurement assurance program the laboratory's starting kilograms
are calibrated at NBS and assigned values and R2

* and associated
uncertainties and Ur2 . The transfer is accomplished by relating all
weighings to these standards as explained in section 4.4.1.

4.4.5 Uncertainty™

The uncertainty associated with the value assigned to any weight is a function
of the design and the within standard deviations for that series and all prior
series. It also includes as systematic error a proportional part of the

uncertainty associated with the starting restraint. For example, the

uncertainty for the value assigned to the one kilogram summation which is

the starting restraint for the second series is UiqoO where

UlOOO = 3/iq s^ + - (Uri + Ur2), ki= - . (4.4.16)12 o

The uncertainties for the 500g, 300g, 200g, and lOOg test weights are

respectively:

U 5OO " 3^k2

U300 =
3
^k3

U2OO =
3
^k4

UlOO =
3
^k5

^Uncertainties are

zero. See reference [55] for the general construction.

2 3 2 2V
Sw^

g
Sw 1 •+-^(Ur1 + Ur2), k2 = —

,
m2 =

2 3 2 2V
Sw^ + - ™3

j
+ ^(Uri + Ur2), k3 = —

, m3 =

2 3 2 2
\^^^

Sw + - m4 Sw + ™4 (Uri + Ur2), k4 =
, 1114

=

2 8 1/ ^ Kz . -4
920

^

2 3 2 2
\^^^

Sw2
g

™5 Sw ) + ^(Uri + Ur2), k5 =
, ms =

1

2

3

10

1

5

1

10

computed assuming the between component of variance is
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4.5 Comparator Process for Four Reference Standards and Four Test Items

4 . 5.1 Measurement Sequence

This design for four reference standards and four test items involves the

intercomparison of items two at a time where each test item is intercompared
with each standard one time, and there is no direct intercomparison among
standards or test items. The design is routinely used for voltage
measurements where the laboratory’s reference standards

, R2 , R3 and R4 in

one temperature controlled box are intercompared with test items W, X, Y and Z

or transfer standards in another box, and there are no intercomparisons within
a box.

Schematically, the intercomparisons are as shown below where a plus (+) or a

minus (-) indicates relative position in the circuit.

R^ R2 R3 R4

+ - + -

- + - +

+ - + -

- + - +

Measurements on the laboratory standards R^ , R2 , R3 » and R4 and

the test items W, X, Y and Z are designated by rj , r2 , r3 and r4 and w, x, y,

and z respectively. The design consists of the following sequence of

difference measurements:

dl = ri
- w

d2 =
^^1

"
y

d3 = rs
-

y
d4 = r3 - w
d5 = rz

- X

de = ri
- z

d? = r4 - z

d8 = r4 - X

dg = X - rl
= z -

ri

^11 = z - rs

di2 = X - ^3

di3 s w - ^2

di4 =
y

- rz

<^15
=

y
- r4

^16 = w - r4

The design has several features that make it particularly suitable for

intercomparing saturated standard cells. Let the observations dj^, ordered as

in ( 4 . 5 . 1 ) so as to minimize the number of circuit connections, represent the

differences in emf between two cells as measured by a potentiometer. The

convention adhered to is, for example, that r^-w represents the measured

difference between R^ and W with the cells reversed in the circuit relative to

their positions for the difference w-r^

.
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The design is balanced so as to cancel out any spurious emf that may be
present in the circuit [ 56 ] . In the presence of such systematic error, called
left-right effect, the measurements d^^ are assumed to be related to the actual
differences Dj_ in emf between two cells in the following way:

di = Di + c + Gi i = l,***,l6

where C is the left-right effect, and is random error. For a circuit with
negligible left-right effect, one expects that the measurements would sum to
zero except for the effect of random error. Any disparity between this
expectation and the summation gives an estimate of the magnitude of left-right
effect; namely.

. 1 16

C = — I di .
(1..5.2)

16 i=i

A measuring process such as the one described in the foregoing paragraph can
be characterized by:

i) a short-term or within standard deviation which describes variability
during the time necessary to nake the sixteen measurements for one

design.

ii) accepted values for check standards which have been specifically
chosen for this measurement situation.

iii) a total standard deviation for the process based on the check

standard measurements.

The difference of each test item from the average of the reference group is

computed by:

^ + di^ - di3 - di6)

x = — -(dc + dg-dn - ^0^2^
k

y =
1

k
(d2 + dg dll* - dig)

(h.5.3)

z = - - (dg + dj - dio - dll)

The foregoing quantities in conjunction with the differences of the reference

standards from their group average; namely.
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= — (3d]_+3d2-d3-d4-d5-dg-dY-d3-3dg-3d]_Q+d2^]_+d]_2'''d]_3+d]_i|+d]_c+d]_5)
Id

^2 ~ "g (-d]_-d2-d3-di;+3d5+3d5-dY-d8+d^+d]_Q+d]_]_+d]_2“3d]_2-3d]_^+dQ_5+d]_3)

1 (U.5.U)

^3 = “ (-d]_-d2+3d3+3di|-d5-dg-dY-d8+d5+d]_Q-3d]_]_-3d]_2'''d]_3+d]_Lj+d]_5+d]_g

)

~ “7 (-d]_-d2-d3-d^-d5-d5+3dY+3d8+d^+d]_Q+d]_2.+d]_2''’d]_3+d]_^-3d]_c-3d]_5)
Id

and the estimated left-right effect C are used to estimate a within standard
deviation s^ for each design; namely.

i=l
(U.5.5)

with v=8 degrees of freedom. The individual deviations are given by:

^1 = dl - A ^ A
r^ + w

A
- c

^2 = d2 - A. .A
ri + y

A
- C

^3 = d3 - A .A
r3 + y

A
- c

= du - r3 + w
A

- C

^5 = ^5 - ?2 X - e

^6 = d6 - r2 + z
AK

- c

= d? - 'z
A

- 5

^8 = - -t

^9 = d9 - - t

^10 = dlO - - t

5ll = dll - z + ^
A

- ;

^12 = di2 - - t

^13 di3 - 0 + ?2 - t

^lU
= diU - 9 + r2 - c

^15 = "^15 -
A A
y + ri;

A
- c

^16 = di6 —
A A
w + rl|

A
- ;

(U.5.6)

B-68



Check standards for electrical measurements are not easily defined because of
the inherent nature of electrical quantities to drift over time. For this
reason, three separate check standards are recommended for measurements on
standard cells. The left-right effect reflects many of the sources of error
in the measurement system and can be presumed to remain stable over time. For
this reason it makes a suitable check standard for process control.
Specifically, the value of the first check standard is defined for each design
as ^ from (i+.5.2).

There is also a need to check on the stability of the reference standards,
changes or instabilities in which may not be reflected in the left-right
effect. The least-squares estimates for the reference standards from the
design (U.5.U) cannot be used to check on the stability of the standards
themselves because these estimates are in effect a consequence of the design,
subject to the restraint, and are not meaningful separately. For example,
if the restraint is changed to exclude one of the reference standards,
the least-squares estimates for the remaining reference standards as computed
from the same observed differences (U,5.l) can change appreciably.

The information in a design does, however, allow a way of monitoring the

change in one reference standard relative to another reference standard. A
measured difference between two reference standards that is not subject to the

restraint can be computed from each design, and two check standards, each one

involving the difference between two reference standards, are recommended for

monitoring the stability of the four reference standards.

Check standard C]_ is defined for the difference between Rq and R3, and check

standard C2 is defined for the difference between R2 and Ri^. Their respective

values cq and C2 are computed for each design as follows:

^1 “ - (dq + d2 - d3 - di| - d^ - dqo dqq +

(U. 5 .T)

C2 = - (d5 + d6 - dy - d8 - dq3 - dqU + dq5 + dq6) .

Because it is anticipated that the change in one reference standard relative

to another may not be stable over time, the method for analyzing check

standards Cq and C2 is a modified process control technique that allows for

linear drift.
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i|.5.2 Process Parameters for Stable and Drifting Check Standards

Initial values for the process parameters are established from n repetitions
of the design in which the four reference standards are compared to any four
test items. The resulting check standard measurements are

cxi » * * * and C2i,***,C2n* the left-right effect the n values are
averaged to obtain the accepted value

1
A; = - I ?i . (1i.5.8)

n 1=1

A total standard deviation for the left-right effect is also computed from the
initial check standard measurements by

with V = (n-l) degrees of freedom.

The control limits® that are appropriate for future measurements on the left-
right effect are:

Upper Control Limit = + 3s^

Lower Control Limit = A^ - Bs^.

Similar calculations of accepted values and standard deviations are made for

Cx and C2 where the check standard measurements cxi»***»cxn and <^21^* * *

are stable over time. More often than not these quantities are not stable
over time, and this fact must be taken into account in the analysis. If the
check standard values show drift and if the drift is linear with time, check

standard values cx,***,Cn at times tx,***,tn can be characterized by

cx = a + Btx i=l, • *
• ,n

where the intercept a ajid the slope 3 are estimated by

a = c - 3 t

n _ _
^ I (ti-t)(ci-c)

and 3 = i=l

" -9
I (ti-t)

i=l

®The factor 3 is used in this and all subsequent computations in place of the

appropriate percent point of the t distribution; namely, ta/2('^)»
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with t

In the linear case the accepted total standard deviation for each check
standard is

1/21/2

(i+.5.10)

with V n-2 degrees of freedom. See reference [59l for analyses relating to
linear regression models.

The parameters of the linear fit and associated standard deviations should be

computed for Ci and Cg separately resulting in estimates a]_, s^, with

= n-2 degrees of freedom for check standard and 02 , 02 * ^c with

V 2 = n-2 degrees of freedom for check standard C2 . The value that a check
standard is expected to take on at any given time is thus dependent on the
linear fit. Therefore, for a future time t', provided t' is not too far
removed from t^, the accepted values for the check standards are defined by

^ f

= oil + 61 t
1

and (U.5.11)

= 02 + 62 ^ •

2

A total standard deviation for the measurements on and C2 can be pooled
from s^ and s^ by the formula

1 2

with V = 2 (n-2 ) degrees of freedom.

The control procedure assumes that t' is close to tj^ because the standard
deviation of a predicted value from a linear fit increases dramatically as the

linear fit is extrapolated beyond the check standard data. Thus the chance of
detecting a real shift in the process diminishes as the tests for control are

continued into the future. This fact necessitates frequent updating of the

parameters of the linear fit based on recent check standard values.

Furthermore, the control procedure and the assumption of a linear model are

interdependent. Because there is no way of separating these two elements, an

out-of-control signal can be caused by either lack of process control or a

breakdown in the linearity of the check standard measurements. One must

recognize this as a short-coming in the control procedure and arrange for

other independent checks on the stability of the reference standards.
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The control procedure also makes use of the accepted within standard deviation
Sp which is not dependent upon model assumptions for the check standards . It
is computed from the within standard deviations for each design as
follows: 1

(‘+.5.13)

with = 8n degrees of freedom.

‘+.5»3 Process Control

Process control is maintained by monitoring the within standard deviation for

each design and the performance of the three designated check standards. If
check standard Ci or C2 repeatedly fails the test for control, it is likely
that one of the two reference standards comprising the check standard has

changed in value. In this case it will be necessary to replace one or both of

the standards in question or reestablish their values relative to NBS.

Process control should be verified for the within standard deviation s^ as it

is calculated for each design and for the current values of the check
standards for that design; namely, 5, C]_, and C2 » For the left-right effect C,

the test statistic is:

A-

; - Aj;

= . (i+.5.1‘+)

For check standards C]_ and C2 that are drifting linearly over time the

corresponding test statistics at time t' are;

and

icj - A^;
I

|c2 - Aq^
I

(U.5.15)

where
(t’ - t)^

1/2

-^2
I(ti-t)
i=l
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Then the following conditions can be imposed:

If tr and tp and tp are all < 3
t-l c^ (4.5.16a)

and if < sp/^

F

qjCS.vj) (4.5.16b)

for a suitably small, the process is judged in control for that design.

The values of the test items are reported as

IT* ^ _i_ n*W = w + R

X = X + R*

Y* = y + R* (4.5.17)

Z* = z + R*

where the restraint R* = - (R^* + R2
* + R3

* + R4*), and Ri*, R2 *, R3 *, and R4
*

4

are the values assigned to the laboratory's reference standards.

If the results of the control procedures along with other experimental
evidence indicate instability or other anomalous behavior on the part of one

of the reference standards, the entire experiment need not necessarily be

discarded. It is possible to delete the reference standard in question from
the restraint and obtain new values for the test items if the values of the

remaining reference standards are known individually. For example, if one is

involved in a transfer with NBS, and if reference standard R^ shows signs of

serious malfunction after several days of intercomparisons between the

reference standards and the transfer standards, the values for the transfer
standards can be recomputed for each design as follows:

” 48

1

48

1

48

1

^ 48

and W*,

changed

{-9di+3d2“d3-13d4-d5-d5-d7-d8-3d9-3dio‘*‘^l l+di2''’^ 3'*'dl4‘*'di 5+1 3di5 }

{3di+3d2“d3-d4“l3d5-d5-d7-13d8+9d9-3dio‘''‘^l I'*’13di2'''dl3‘*’di4+di5+di5}

(4.5.18)

{3di-9d2“13d3-d4-d5-d6-d7-d8-3d9“3dio‘''dil+di2'*'dl3+13di4+13di5+di6 }

{3d]+3d2-d3-d4-d5-13d8-13d7-d8“3d9+9dio‘‘'13di i+di2'^di3+di4+di5+di5 }

X*, Y* and Z* are computed according to (4.5.17) with the restraint R*

to:
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R
*

R3* + Ru*).

The differences of reference standards R2
,
R3 and Ri^ from their average value

are recomputed to be:

^2 = ~ {-d3-di4+2d5+2d5-dY-d3+d]_i+d]_2-2di3-2dii^+d]_5+d]_6}

"^3 = ~ {2d3+2di;-d5-d6-dY-d6-2dii-2dx2+di_3+d]_4+d]_5+d]_5} (U.5.19)

- 1
rU = ~ {-d3-di;-d5-d6+2dY+2d8+dii+di2+di3+di4-2di5-2di6}

The vithin standard deviation for each design (see equations (U.5.5) and
(I1.5.6)) can be computed using either the original quantities in (U,5.3) and

or the adjusted quantities in (U.5.I8) and (U.5.19) with identical
results

.

U. 5 .^ Transfer with NBS

Transfer with NBS is accomplished by means of p repetitions of the design in

which four transfer standards T]_, T2, T3, and Ti| replace the four test
items. If one of the tests for control defined by (J+. 5 .l6a) and (U. 5 .l6b) is

not satisfied, the design should be repeated or else that repetition should
be deleted from the transfer.

Given p repetitions of the design in which T]_ replaces W, T2 replaces X, T3

replaces Y and Ti| replaces Z, the p values assigned to each transfer standard
by the participant’s process are computed from (U.5.IT); namely.

Wi*,- w

Y- • • Y

Yl*.*

Zl*»-

NBS eissigns values to electrical transfer standards that take into account
their individual and collective behavior both before, during, and after their
sojurn in the participant's laboratory. A transfer standard that displays
unstable behavior during one of these periods may be excluded from the

analysis. Normally the averages for the four transfer standards from the

"before and after" NBS determinations are fit by least-squares to a linear

function of time; then average values Tj* are predicted for the times

tj
( J=1

, • •
• ,p) that the transfer standards were in the participant's laboratory

by the equation
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where and 6 q are estimated from NBS measurements.

This makes it possible to compute daily offsets Aj
(
J=1 , • •

•

,p) for the
reference group where

A. = - (Wi* Xj* + Yj* + Z/) - Ti* J=l,---,p (U.5.20)

and assuming the reference group is stable, an average offset for the
reference group is computed by

A =

The offset is Judged significant if

1

P
(U.5.21)

t > 3

U/p I A

I

where t =

- Sp
2yir2

In such case the value of the laboratory restraint is changed to R*

Otherwise, the restraint is unchanged.

A.

U. 5.5 Uncertainty

The uncertainty of the transfer is

3 (Us/ - s/)
1/2

U.tr " + Uf (U.5.22)

where is the uncertainty assigned to the transfer standards by NBS.

The uncertainty that is appropriate for the laboratory's process as it assigns

a value to a test item based on a single design is

U
,

1/2
+ Utr (U.5.23)
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U. 5.6 Example

An example is presented from the Volt Transfer Program where an
environmentally controlled box of four standard cells was sent to an
industrial participant to be intercompared with the participant's box of four
standard cells. After the NBS cells had been in the participant's laboratory
for two weeks, thereby giving them a chance to recover from the trip, the
laboratory's reference cells were intercompared with the NBS cells each day
for l6 days using the design described in sec U.5.1. The data corrected for
the temperature in each box are shown in exhibit U.5.1.

Exhibit U.5.1 - Intercomparison of laboratory standard cells with NBS cells
Value in microvolts

Dayl2 3i^5 6T8
Oba

dl 86.70 86.92 86.86 86.98 86.97 86.99 87.07 87 .17
d2 87.28 87.02 86.77 86.69 86.57 86.60 86.63 86 .68

d3 89.29 89.01 88.75 88 . 61+ 88.52 88.52 88.51+ 88 .57
88. 8U 88.98 88.87 88.91+ 88.97 88.91+ 88.98 89 .10

dc 88.06 87.97 87 . 81+ 87.89 88.33 88.17 88.03 88 .11

d6 87. U3 87. ou 86.91+ 86.91+ 86.96 86.92 86.92 87 .07
d? 88.96 88.58 88.1+6 88 . 1+7 88 . 1+5 88 . 1+7 88.50 88 .55

^8 89.63 89.52 89.39 89.1+3 89.85 89.70 89.63 89 .60

d
9

-86 .

U

7 -86.60 -86.32 -86.31+ -86.71 -86.71 -86.61 -86 .71

‘^lO -85.81 -85.70 -85.1+0 -85.1+1 -85.39 -85.1+9 -85.51+ -85 .66

^11 -87.82 -87.67 -87.31+ -87.37 -87.31+ -87.1+0 -87.1+2 -87 .51+

di2 -88 .

U

9 -88.62 -88.25 -88.32 -88.72 -88 . 61+ -88.51+ -88 .59

di 3
-88 . 80 -89.11 -88 . 81+ -88.92 -88.90 -88.88 -88.92 -89 .03

^lU -89.15 -89.16 -88.73 -88 . 61+ -88 . 1+8 -88 . 1+7 -88 .

U

8 -88 .55

-90.90 -90.69 -90.2I+ -90.13 -89.93 -89.98 -90.02 -90 .08

^16 -90.38 -90 . 61+ -90.33 -90.1+0 -90.35 -90.1+1 -90.1+9 -90 .60

\ Day
ObsS.

9 10 11 12 13 1I+ 15 16

di 87.25 87.28 87.32 87.1+5 87.1+^ 87.50 87.53 87 .59

d2 86.72 86.80 86.81 86.87 86.90 86.91 86.92 86 .97

d
3

88.60 88.52 88.52 88.62 88.59 88.59 88.59 88 .62

dU 89.13 89.07 89.09 89.16 89.18 89.17 89.21 89 . 21+

dc 88.09 88.00 87.78 88.12 88.05 88.06 88 . 01+ 88 .05

^6 87.07 86.99 86.89 87.17 87.15 87.09 87.07 87 .07

d? 88.58 88.56 88.62 88.69 88.82 88.68 88.69 88 .70

^^8 89.60 89.55 89.60 89.68 89.79 89.67 89.65 89 .68

do -86.66 -86.66 -86.71+ -86.78 -86.78 -86 . 81+ -86.92 -86 .89

^10 -85.63 -85.67 -85.79 -85.79 -85.80 -85.88 -85.96 -85 .93

dll -87.52 -87.1+8 -87.55 -87.58 -87.58 -87.60 -87.59 -87 .60

di 2 -88.57 -88 .

U

7 -88.51 -88.53 -88.57 -88.51+ -88.57 -88 .57

di 3 -89. ou -89.00 -89.01 -89.10 -89.06 -89.10 -89.10 -89 .12

diU -88.53 -88 .U 1+ -88 .

U

7 -88.55 -88 . 1+7 -88.51 -88.55 -88 .53

-90.07 -90.00 -90.05 -90.12 -90.1I+ -90.10 -90.12 -90 . 11+

dl6 -90.60 -90.51^ -90.58 -90.68 -90.69 -90.69 -90.75 -90 .77
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Exhibit U.5*2 - Estimates for transfer standards and reference standards
Values in microvolts

NBS Standard Cells Laboratory Reference Cells L-R
Day Tl T2 ^3 TU R2 ^3 RU Ef feet

A A A A A A A A
w X y Z ^2 ^3 ^U

1 -88.68 -88.16 -89.15 -87.50 -1.811 -0.016 O.23U 1.592 -0.102
2 -88.91 -88.17 -88.96 -87. 2U -1.767 -0.007 O.2U3 1.531 -0.197
3 -88.72 -87. 9U -88.62 -87.03 -I.7U6 K). 00U 0.219 1.522 -0.098
k -88.80 -87.99 -88.50 -87. ou -1.739 +0.003 0.223 1.513 -0.097
5 -88.80 -88 . Uo -88.38 -87. ou -I.7U3 +0.015 0.235 1.U92 -0.075
6 -88.81 -88.31 -88 . Uo -87.07 -1.696 -0.033 0.232 1.U97 -O.lOU
T -88.87 -88.20 -88 .

U

2 -87.10 -1.683 -0.058 0.225 1.515 -0.108
8 -88.97 -88.25 -88 .

U

6 -87.20 -1.671 -0.036 O.22U 1.U82 -0.119

9 -89.00 -88.23 -88 .

U

8 -87.20 -1 . 66U -O.OU7 0.226 1.U86 -0.098
10 -88.98 -88.17 -88 . UU -87.18 -1.587 -0.082 0.196 I.U73 -0.093
11 -89.00 -88.16 -88 .

U

6 -87.22 -I.5U3 -0.171 0.209 I.50U -0.129
12 -89.10 -88.28 -88 . 5U -87.31 -1.583 -0.071 0.167 I.U87 -0.086
13 -89.10 -88.30 -88.53 -87. 3U -1.579 -0.132 0.166 I.5U6 -0.072
Ik -89.12 -88.28 -88.53 -87.32 -1.526 -0.118 0.167 I.U77 -0.099
15 -89.15 -88.30 -88.55 -87.30 -I.U96 -0.139 0.161 I.U7U -0.116
16 -89.18 -88.30 -88.57 -87.33 -I.U97 -O.IU9 0.166 I.U81 -0.102

Figures U-7 show the individual behavior of the transfer standards, and figure
figure 8 shows the behavior of the transfer group on the average. One might
conclude based on these graphs that the cells were not sufficiently stabilized
at the beginning of the experiment and that the first two measurements in the
participant’s laboratory should be deleted from the transfer data.

The differences for the transfer cells and the reference cells from their

group means (See equations (U.5.3) and (U.5.^)) are listed in exhibit U.5.2.

The behavior of the reference cells during the transfer with NBS is of
interest because the final assignment of offset depends on the assumption that

the reference cells are stable. As was noted earlier in this section, the
quantities listed in exhibit U.5.2 do not describe the behavior of the
individual reference cells because these quantities are constrained so that

their sum is equal to zero.

The only way to observe the individual cells during the transfer is to reverse

the way in which the assignments are currently made; i.e., to analyze the data
from the intercoii5)arisons using the reference cells as unknowns and the value

of the transfer group from NBS as the restraint. This will give individual

values for each reference cell and can be done after the fact if the transfer

group proves sufficiently stable. Ihe rationalization for computing an offset

using the reference cells as the restraint is that one would expect the

reference cells, if they are of the same quality as the transfer cells, to be

more stable considering they have not recently been in transit.
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Figure U

Values (yV) assigned to transfer
standard versus time (days)

Figure 5

Values (uV) assigned to transfer
standard T2 versus time (days)
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Figure 6

Values (yV) assigned to transfer
standard versus time (days)

Figure T

Values (yV) assigned to transfer

standard T4 versus time (days)
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Figure 8

Average values (yV) assigned to four transfer standards versus time (days)

Each day's intercon5)arisons are analyzed for internal consistency via an F
test on the within standard deviation for that day. The stability of the three
designated check standards is also tested each day. Results of those designs
which show evidence of lack of statistical control or anomalous behavior on

the part of one of the check standards are excluded from the transfer
experiment. Because we do not have prior history on this measurement process,
we rely on hypothetical data to demonstrate to the reader the analysis that

should be done for each design.

The left-right effects (U.5.2) are plotted in figure 9* Their respective test

statistics (4.5«8) eire listed in exhibit U.5.3* Upper and lower control

limits in figure 9 indicated by dashed lines, and points that fall outside
these control limits are equivalent to the corresponding test statistics being

significant. These con5)utations assume that prior data on the left-right
effect established a standard deviation for the left-right effect of

s^ = 0.02uV with = 50 degrees of freedom and that the accepted value of the

left-right effect was established as = O.lOOwV from the same data.

Check standards and C2 as constructed in (U. 5 .T) are observed differences

between two reference cells and do not depend on the restraint or the design.

Tracked over a period of time they show the way in which two cells are

changing in respect to each other. Their values are listed in exhibit U.5.3

and plotted as a function of time in figures 10-11.
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Left-right effect (uV) plotted against time (days) with dashed lines
indicating upper and lower control limits at the 1% significance level

Exhibit - check standards and test statistics'*’

Values in microvolts

Run Date Left-right
Effect

Test
Stat

Check Std Test
Stat

Check Std Test
Stat

tf t' Cl ^c C2

1 2

1 3 -0.102 0.1 -2.OU5O 0.22 -1.6075' 2.90'

2 U -O.I97S U.8§ -2.0100 0.29 -1.5375 0.51
3 5 -0.098 0.1 -1.9650 1.10 -1.5175 0.29

U 6 -0.097 0.2 -1.9625 0.58 -1.5100 0.68

5 9 -0.075 1.2 -1.9775 1.66 -I.U775 2.16

6 10 -O.lOU 0.2 -1.9275 0.69 -1.5300 0.69

T 11 -0.108 O.U -1.9075 0.66 -1.5725 0.U6
8 12 -0.119 1.0 -1.8950 0.85 -1.5175 1.37

9 13 -0.098 0.1 -1.8900 1.27 -1.5300 l.lU

10 16 -0.093 O.U -1.7825 0.25 -1.5550 0.8U

11 17 -0.129 l.U -1.7525 0.58 -1.6675 2.35

12 18 -0.086 0.7 -1.7500 0.09 -1.5575 1.05

13 19 -0.072 l.U -I.7U5O 0.32 -1.6775 2.31

lU 20 -0.099 0.0 -1.6925 0.65 -1.5950 0.25

15 23 -0.116 0.8 -1.6575 0.01 -1.6125 0.18

16 2U -0.102 0.1 -1.6625 0.66 -1.6300 0.17

'*’We choose to illustrate the control procedure at the 1% significance level.

§Failed test for control at 1% level of significance based on a critical
value ^^005(50) = 2.678 from TSable I.

^Failed test for control at 1% level of significance based on a critical
value t^005(lOO) = 2.626 from Tkble I.
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For this analysis, it was assumed that data from fifty-one initial designs
established a linear relationship with time for each check standard as
follows

:

Cl = -2.095 + 0.0190t

C2 = -1.501 - 0.00513t
(U.5.25)

and that standard deviations, s^^ for and s^^ for C2, were pooled to

form a process standard deviation s^ = O.OBOyV with v = 100 degrees of
freedom.

Based on the foregoing assumption, predicted values (U.5.II) for the check
standards were computed for each time t' that the transfer standards were
measured in the participant's laboratory. Given this infonnation, the check
standard measurements on each day were tested for eigreement with the
extrapolated line by the test statistics listed in exhibit 4,5,3. Ihe test
statistics for C]_ and C2 that are shown in exhibit 4,5.3 were con^juted from
(4.5.15) with n = 31 emd values of t^C i=l , • •

• ,3l) = -30(l)0.

The same euialysis is shown graphically in figures 10-11. llie upper portion of
figure 10 shows the linear fit to the historical data as a solid line, and the
values of check standard Ci for the transfer experience are shown ais discrete
points, (*) with the convention that the transfer experiment starts at

time t = 0.

The lower portion of figure 10 shows the analysis of the check standard
measurements. The solid line is an extrapolation of the linear fit from the

upper portion of the same figure to the time of the transfer experiment. The
dashed lines are upper and lower control limits that show the range within
which the check standard measurements are expected to deviate from the

extrapolated line. A point being outside these control limits is exactly
analogous to the corresponding test statistic being significant in exhibit

4.5.3. Althoxigh it is not readily apparent from the graph, the control limits

become wider as the check standard measurements are further removed in time

from their historical data base. Thus, there is a smaller chance of detecting

anomalous behavior as the experiments are continued into the future if the

data base is not updated frequently.

Figure 11 shows the same analysis for the values of check standard C2 from the

transfer experiment with check standard C2 out-of-control on the first

day.

The within standard deviations are listed in exhibit 4.5.4 and plotted in

figure 12. An F test based on an accepted standard deviation Sp = 0.02yV with

V3 = 4o8 degrees of freedom indicates that there etre measurement problems on

the first and eleventh days. It is interesting to note that check standard C2

is low on the eleventh day although it is not actually out-of-control and that

the left-right effect is very close to being out-of-control on that same day.

Given the responses of the check standards and the transfer standards and the

information garnered from the control procedure, it would seem reasonable to

delete three measurements from the transfer data; namely, the first, second

and eleventh days* measurements.
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Figure 10
Check standard (uV) plotted against time (days)

with a solid line indicating a predicted linear fit and dashed lines
indicating upper and lower control limits at the 1% level of significance

B-82



(/)—

11

“

o<03)r)>->3

to—

tfo^o^o

-1.3

M
I

-t.B-

*

*
* «

*

*

Pinra LHC TO HISTORIOM. OOTA

• CU«D(T MTA

r-
l I I

I

T- I I I

[

I I I I

[

t I T T
[

I I

-30 -20 -10 0 10

*

*
*

ri I'll
20

r-

30

(a)

Figure 11

Check standard C2 (uV) plotted against time (days)

with a solid line indicating a predicted linear fit and dashed lines

indicating upper and lower control limits at the 1% level of significance.
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Exhibit A. 5. 4 - Within sandard deviations and test statistics
Values in microvolts

Run Date Within SD DF
0 t V3

1 3 0.054§ 8

2 4 0.018 8

3 5 0.019 8

4 6 0.015 8

5 9 0.022 8

6 10 0.011 8

7 11 0.016 8

8 12 0.021 8

9 13 0.013 8

10 16 0.021 8

11 17 0.054§ 8

12 18 0.018 8

13 19 0.031 8

14 20 0.013 8

15 23 0.018 8

16 24 0.011 8

^Failure to satisfy the inequality s^ < Sp/F,oi(® »*) the 1% significance
level based on Sp = O.OZyV and a critical value F,oi(8»*) = 2.5 from Table II.
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Figure 12

Within standard deviations (yV) plotted against time (days)

with dashed line indicating control limit at IZ level of significance.
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U.6 Direct Reading of the Test Item with an Instrument Standard

U.6.1 Measurement Sequence

In this mode of operation a value is directly assigned to a test item X by a
calibrated instrument. Observations on a stable artifact that takes on the
role of the check standard C are used to establish a base line for the
instrument and to maintain and control its variability in what amounts to a

surveillance type test. An observation on the test item is denoted by x, and

an observation on the check standard is denoted by c.

U.6.2 Process Parameters

Initial values of the process parameters are obtained from n independent
measurements on the check standard accepted value of the

check standard is defined by the mean of the check standard measurements

;

namely

,

= - 1 • (U.6.1)
n i=i

The total standard deviation of the instrument is

/in
Be = — I (=l

-

l^n-li=i
j

with V = n-1 degress of freedom. The control limits'^ that are appropriate

for future observations on the check standard are given by

Upper control limit = A,, + 3s^

Lower control limit = A^ - .

i|,6.3 Control Procedure

The primary purpose of the control procedure is to monitor instrumental drift,

and observations on the check standard should be taken frequently enough to

ensure that such drift is being contained. A test statistic tj, con^juted from

the most recent check standard measurement c is given by

|c - Acl

The process is in control at the time of the check standard measurement c if

tc < 3 . (U.6.3)

nipi^e factor 3 is used in this and all subsequent computations in place of the

appropriate percent point of the t distribution; namely, ta/2 (v).
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If

tc > 3 ,

the process is not in control at the time of the check standard measurement,
and measurements should be discontinued until the problem with the instrument
is rectified.

U.6.U Transfer with NBS

Determination of systematic error can be made by making p measurements
r]_,***,rp on a calibrated artifact or transfer standard which has an assigned
value T and associated uncertainty lip. Instrumental offset i|; defined by

is not significant if

'I'
= - I Ti

P i= l

/P 1^1
< 3

(U.6.U)

(U.6.5)

It is extremely important to recognize that this approach makes two important
assumptions that must be verified experimentally; namely, that the instrument

has a constant offset from the NBS process over the regime of interest as in
(l.U.2) eind that the precision of the instnoment is constant over this same

regime. The question of constant offset is considered first. A single point
is not sufficient for the determination, and the system must be checked using
several calibrated artifacts that span the regime of interest. Assume that m
transfer standards are sufficient to verify the points of interest and that

the transfer standards have assigned values Tp and associated
uncertainties UTl»***>UTm* Assume also that m offsets '!>]_

>***,
4)111

computed
according to (U.6.U) have been determined from measurements made on the

transfer standards.

If all
4'j

axe insignificant as Judged by (U.6.5), no adjustment to

the instrument is needed. If the offsets are of varying magnitudes, and if it

can be shown that these offsets are functionally related to the assigned
values of the transfer standards, it may be possible to calibrate the

instmoment using a calibration curve based on the offsets (see section 2.3*3).
Finally, if the offsets are significant and of the same magnitude, either the

instrument is adjusted for the average offset

Ipj-4'j

4^ = Jzi
m

(
1*. 6 . 6 )

where pj (j=l,***,m) represents the number of measurements on the J^^ transfer
standard or a reading x on a test item x is reported as
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The uncertainty of the transfer is

1 2 \
1/2

(i+.6.T)+
m

i^.6.5 Uncertainty

The total uncertainty that is appropriate for one measurement made on a test
item using the calibrated instrument is

(U.6.8)U = Utr + 33^.

U,6.6 Process Precision

The question concerning whether or not the precision of an instrument remains
constant over a given regime can be addressed by con^jaring standard deviations
from several levels in the regime. A familiar example is an electronic
balance that is used over a large range of loads where the precision of the
instrument may be load dependent. This assumption can be checked either with
calibrated or uncalibrated artifacts.

Standard deviations with their associated degrees of freedom shoxold be
tabulated by load and inspected for consistency. It is possible to quote one
uncertainty over the entire regime only if the precision is constant over aJ.!

load levels; i.e., if these standard deviations are all of the same
magnitude.

A visual inspection of the values may be sufficient for determining whether or

not the standard deviations are of roughly the same magnitude in which case

the standard deviations should be pooled using (2.2.3) and the uncertainty
con^iuted by replacing s^, in equations (U.6.T) and (U.6.8) with the pooled
standard deviation.

If there is some question about the propriety of combining all the standard

deviations, the largest standard deviation can be checked for agreement with

the others using a test developed by Cochran (57). A description of the test

statistic and tables for deciding whether or not the largest standard

deviation in a group is significantly different from the group are tabulated

by Eisenhart (581

.

If it is logical to assume that the precision of the instrument will vary with

the magnitude of the quantity of interest, then a series of check standards

should be established, one at each level of interest, with the estimate of

process precision (U.6.2), the test for statistical control (U.6.3), and

con^iutation of uncertainty (U.6.8) being made at each level independently,

thus begging the question of constant variability.
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U.7 Simultaneous Measurement of a Group of Test Items and a Group of

Reference Standards

U.T*1 Measurement Sequence

This scheme is appropriate for assigning values to individual test items or

instruments relative to the average of a bank or group of reference standards,
called the restraint R*, when all items including the standards are
simultaneously subjected to the same stimuli such as a power source or a

vacuum chamber. Assume there are m reference standards Ri,***,Rni> and I test
items One position in the configuration of test items should be

reserved for a check standard Y, an artifact similar to the test items, where
a reading on Y is always recorded along with the other readings.

Assume that a measurement sequence produces readings !*]_,• ••,rjjj on the
standards, on the test items and y on the check standards. The
value that is recorded as the check standard measurement for one sequence is

1 ®
c = y - - I ,

(U.T.l)
m i=i

In other words the measured difference between the artifact check standard and
the average of the reference standards is the check standard measurement. In

the remainder of this section, the term check standard refers to this
recorded difference rather than the measured value y.

k. 7,2 Process Parameters

Initial values of the process parameters are obtained from n such measurement
sequences where C]^,***,Cn are the check standard measurements.

The accepted value of the check standard is the mean of these values; namely.

1
?^ ~ ~
2. ^i .

n i=i

The total standard deviation of the check standard is

s c

1

n-1

n

I (Ci - A^)

i=l

(U.T.2)

(^.7.3)

Control limits*! that are appropriate for future check standard observations
are given by

Upper Control Limit = A^, +

Lower Control Limit = A^ - 3S(, .

*lThe factor 3 is used in this and all subsequent computations in place of the

appropriate percent point of the t distribution; namely, t^/2^''^*
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The control procedure applied to each calibration depends on a test statistic
tj, computed from the value of the check standard c for that measurement
sequence by

(U.T.U)
s c

If (U.T.5)tc < 3

the process in control, and the value of a test item is reported as

y *
j=l,“-,i (U.t.6)

where R* = - (Rj^* + ••• + Rm*) and R]_* ,

* *
* ,Rjq* are the values assigned to the

m

reference standards. If

the calibration of the test items is invalid and must be repeated

U,T.3 Transfer with NBS

The transfer with NBS is accon^jlished by p repetitions of the measurement
sequence during which a group of I transfer standards T

2
^,»**,T£ replaces the

group of test items. Process control as defined by (U.T.5) should be

confirmed for each repetition. Any sequence that is out-of-control should be

repeated until control is restored or else that repetition is deleted from the

transfer. The values assigned the transfer standards are T^ ,***,T£ with
uncertainties Ut1»***»Ut£.

The offset (i=l,***,p) of the laboratory process from NBS for the ith

repetition is based on the values assigned to the I transfer standards by

(U.7.6); namely, X]^ ,X£* where

i j'v-v)* j=i

and the average offset con5)uted for the p repetitions is

i=l,***,p

A =
1

(1*.T.T)

P i=l

The xincertainty of the transfer is
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The offset is judged significant if

1^1
^ ^ (4.7.8)

and in such case the assigned value of the restraint is changed to R* - A.

The restraint is unchanged if

/pi
I

A|

< 3.

4.7.5 Uncertainty

The total uncertainty that is appropriate for a value assigned to a test item
by (4.7.6) from one calibration is

U = Utr + 3sc. (4.7.9)

4.8 Ratio Technique for One or More Test Items and One or Two Reference
Standards

4,8.1 Measurement Scheme

In this section we describe calibration of a test item X by an instrument such
as a scanning electron microscope which has only short-term stability.
Consider the case where the test item X and the reference standard R are

related by (1.4,9) and the instrument response is of the form (1.4.10). One

reference standard R is sufficient to provide a calibrated value X for the

test item given a single reading x on the test item and a single reading r on

the reference standard. The calibrated value is

X* = x*R*/r (4.8.1)

where R* is the value assigned to the reference standard.

Where the test item and reference standard are related by (1.4.1) and the

instrument response is of the form (1.4.6), two reference standards R^ and R2
are needed to calibrate a test item X (Cameron [60]). The artifacts should be

measured in the sequence Rj , X, R2 with the corresponding measurements denoted

by r^ , X, r2» The calibrated value for the test item is

(R2*- Ri*)*(x - ri)
X* = Ri* + (4.8.2.)

(r2 - ri)

where R^ and R2 are the values assigned to Rj and R2 respectively.
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If before and after readings are taken on the test item in the sequence X, Rj

,

R2 » X with the measurements denoted by xj
, r^ , r2 , X2 respectively, then the

calibrated value for the test item is

*
1

(Rl*+ R2*) +
(R2

* - Ri*)*(x 2
- r^ - r2 + X2 )

X (4.8.3)
2 (r2 - ri)

More than one unknown can be calibrated from the same pair of readings on Rj

and R2 only if the sequence of measurements can be arranged so that no test
item is too far removed from Rj^ and R2 in the measurement scheme. For
example, for test items X, Y, and Z, the sequence X, R^ , Y, R2 ,

Z

minimizes the separation between unknowns and standards, and the calibrated
value for each unknown is calculated according to (4.8.2).

In practice, it may be necessary to have several artifact standards that cover
the operating range of the instrument. In addition to artifact standards for

every level, it is necessary to have one artifact check standard Y for every
level. A measurement y on the check standard should be included in the

calibration program on a regular basis, and if feasible, with every
calibration scheme. The check standard value that is used for controlling the

process and for estimating random error is computed in exactly the same way as

X*. For example, for the measurement sequence described by (4.8.2), the check

standard value from one calibration is

(R2
*- Ri*)*(y - rj)

c = Ri* + (4.8.4)

(r2 - ri)

4.8.2 Process Parameters

Initial values of the process parameters are obtained from n such calibration

sequences yielding check standard values ci,***,Cp. The accepted value of the

check standard is defined as the mean of the check standard values; namely.

(4.8.5)

The total standard deviation of the check standard is defined by

(4.8.6)

with V = n-1 degrees of freedom.

In this case s^. is the standard deviation of a calibrated value X* and will

reflect not only the imprecision in the measurements x, rj
^

and r2 but also

any changes in the response curve for the instrument that are not accounted

for by the ratioing device.

B-91



The control limits^ that are appropriate for future check standard values are:

Upper control limit = Ac + 3sc

Lower control limit = - 3sc •

4.8.3

Control Procedure

A control procedure is applied to each calibration sequence which includes
check standard measurement. The control procedure is based on a test
statistic tc computed from the check standard value c for that sequence;
namely

,

|c - Ac
I

^c
s c

a

If

tc < 3 (4.8.7)

the process is in control, and the value of a test item X is reported as X

the process is out-of-control, and the calibration of the test item is

invalid and must be repeated.

4.8.4

Transfer with NBS

The tie to NBS is via the reference standards which are either standard
reference materials from NBS or secondary calibrated artifacts.

4.8.5

Uncertainty

The uncertainty for an artifact calibrated according to (4.8.1) is

U = 3sc + Ur (4.8.8)

where Ur is the uncertainty for R*. The uncertainty for an artifact

calibrated according to (4,8.2) or (4.8.3) is

1 / 2 2 \1/2
U * 3sc ~ ^Uri + Ur2

J
(4.8.9)

where Ur^ and Ur2 are the uncertainties for Rj* and R2
* respectively.

^The factor 3 is used in this and all subsquent computations in place of the

appropriate percent point of the t distribution; namely, t(x/ 2 (v).
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5. Control Charts

5.1 Introduction

The industrial application of control charts involves a production process
that yields product that is assumed to be homogeneous with respect to a

particular property that is measurable. The control chart is devised to
detect any variation in the production process that is not random in nature
and which, therefore, can be assigned a cause. Guaranteeing that all
variation in the production process is random in nature guarantees that the
process is operating in an optimal fashion, and if, given these circumstances,
the product is not within specifications, major adjustments to the process are
required in order to substantially affect its output.

Once a base line and control limits have been defined for the process, based
on prior data from the same process, the control chart is set up with a solid
horizontal line representing the base line and dashed lines above and below
the base line representing the control limits. Samples drawn at random from
the production process are measured for the property of interest, and the
resulting values are plotted on the control chart as a function of time.

Values that fall within the control limits are referred to as being "in

statistical control" and values that fall outside the control limits are
referred to as being "out of control". Values outside the control limits are

a sufficient indication that the "process should be investigated and
corrected" (Bicking & Gryna [61]).

The Shewhart control chart discussed above is appropriate for individual
measurements or averages of "natural" groups. This type of control chart,
used in conjunction with a control chart for standard deviations, is a

powerful means of detecting changes in the measurement process. Other types

of control procedures include a cusum chart (Duncan[62]) which is

particularly useful for detecting gradual drifts in a continuous process as

compared with abrupt shifts. Methods for detecting changes in both the base

line of the process and in the variability of the process on a single control

chart are discussed by Reynolds and Ghosh in reference [63]

.

Statistical control as originated by Shewhart [64] assumes that repeated
measurements of a reproducible property are available and that these

measurements constitute a random sample of all such possible measurements from

a known distribution such as the normal distribution. The term random sample

implies two Important properties of the measurements; namely, that they are

independent and that they all come from the same distribution. The average

value and standard deviation calculated from a random sample in conjunction

with known properties of the distribution are used to calculate limits within

which a certain percentage of all measurements should fall. In other words, a

series of initial measurements are made to characterize the distribution of

all possible measurements, and future measurements are checked for conformity

with this distribution.

Notice that one is not concerned with whether or not the product is within

certain specification limits, but rather with whether or not the production

process is behaving properly. The control procedure for a measurement process

is similar in many respects to Industrial control. In the measurement
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assurance context the measurement algorithm including instrumentation,
reference standards and operator interactions is the process that is to be

controlled, and its direct product is measurement per se. The measurements
are assumed to be valid if the measurement algorithm is operating in a

state of control; i.e., if the variations in that process are due to random
causes which can be quantified, thus assuring that a value reported by the
process will have negligible offset from national standards within predictable
limits. This will be the case if the control chart shows that the base line
for the process is not changing.

Statistical control in the measurement assurance context can conversely be

predicated on the assumption that the measurement process is stable and that
lack of control indicates a change in the artifact being measured. There are
circumstances where this type of control is needed— that is, when it is

necessary to know whether or not an artifact has changed with respect to the

property being measured. For example, a transfer standard that is being
circulated to several laboratories must be checked periodically at NBS.

Similarly, intercomparisons between working standards and primary standards
can be subjected to a control procedure to ensure that the working standards
have not changed appreciably. In these instances, lack of control will result
in either replacing the artifact in question or in reassigning its accepted
value.

Calibration control is perhaps dissimilar to industrial control in that

although artifacts submitted for measurement are of the same general type,

their properties must be quantified individually. Thus, there is an inherent
problem in controlling the values assigned to individual artifacts or

instruments because the measurement is rarely repeated, let alone repeated
sufficiently often to characterize the distribution of possible values.

Without a historical data base there is no way of determining whether or not

the current calibration is in control or is, in fact, a proper assignment for

the item. For this reason a check standard is introduced into the measurement
sequence in such a way that it can be assumed that the measurement algorithm
acts on the check standard in much the same way as it acts on the item being

calibrated. The redundant measurements on the check standard are the basis

for both characterizing the distribution of measurements and deciding if the

measurement process is in control on a given occasion.

The control limits are chosen so that the probability is 100a percent that

future measurements will fall outside the control limits strictly by chance.

Therefore, a if always chosen small, say a = .01 or a = .05 so that very few

measurements will be discarded unnecessarily. Smaller values of a correspond

to wider control limits which result in the measurement almost always being

accepted unless there is a serious shift in the process. The converse is also

true—larger values of a correspond to narrower control limits which result in

tighter control of the measurement process with more frequent remeasurement.

Obviously, the success that can be expected in detecting changes in the

process which is referred to as the power of the control procedure is linked

to the choice of a.

The reader may have already noted that the procedure for determining control

or lack thereof is exactly analogous to a statistical t-test for deciding

whether or not a single observation comes from a process with known mean and

unknown standard deviation.
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5.2 Control Charts for Single Measurements

The measurements for initiating the control chart must be collected over a

sufficiently wide range of operating conditions to ensure a correct
characterization of the distribution and over a sufficently long period of
time to ensure independence. Grant and Leavenworth state that ideally
twenty-five measurements should be spread over several months time [65]. As

few as ten or fifteen measurements can suffice if this data base is updated
when more measurements are available. The measurements are plotted as a

function of time without imposing a base line or control limits on the plot in

order to track the measurement process and verify that it produces stable
measurements whose variability is random in nature. Such a plot also allows
one to check specification limits, but specification limits do not constitute
statistical control because they do not have a probabilistic interpretation.

When one is satisfied that the initial measurements are adequate for

representing the distribution and that process variability is tolerable, a

base line and control limits are computed from this data base.

For single measurements the base line is taken to be the average of initial

measurements xi,***,Xj^; namely

1 r
X = -

5^ Xi (5.2.1)
n i=i

and the control limits are taken to be

X + s*t(,/2(v)

X - s*ta/2('')

(5.2.2)

where s,

is

the total standard deviation computed from the initial measurements

s

" _ 9

I (xi - x)

1=1

1/2
(5.2.3)

with V = n-1 degrees of freedom. The number t(j/ 2 (v) is the a/2 percentage

point of Student's t distribution with v degrees of freedom.

Once the average value and the control limits have been established, future

measurements are tested for control. One concludes that measurements that

fall within the control limits come from the hypothesized distribution, and

that, therefore, the measurement process is acting in an acceptable and

predictable manner. The converse is also true. Measurements that fall

outside the control limits infer a significant change in the process. Where

such a change is noted, one mist determine whether the change is permanent or

transitory.
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In a measurement assurance context, every violation of the control limits

requires a remedial action. It may be sufficient to simply repeat the

offending measurement in order to reestablish control, but all measurements
since the last successful test for control are discarded once an out-of-
control condition occurs.

As an example, consider how repeated measurements on a calibrated weight can

be used to demonstrate that an electronic balance is, indeed, weighing
accurately at all times. Accuracy in this context means that values delivered
by the balance are in agreement with national standards (prototype kilogram)
as maintained by NBS within the stated uncertainty. Parobeck et al [66]

describe a measurement assurance program for large volume weighings on

electronic balances where redundancy and control are achieved by repeating
weighings of selected test items on different days.

A program to control a weighing process is begun by making n initial
measurements on the calibrated weight, being sure to allow enough time

between successive measurements to cover a range of operating conditions in

the laboratory, and using these initial measurements as a historical base for

computing the average "x and the standard deviation s of the balance.

Given a calibrated value A with uncertainty for the weight, the balance is

accurate within the uncertainty ± s*tQj/ 2 (n-l) if

A - s*t(j/2(n-l) ~ < X < A + s*tQj/2(n-l) + U^.

/n i/n

Notice that this test takes into account both the limits to random error for

the measurement process, ±s * t(j/ 2 (n-l ) / /n, and the uncertainty associated with
the calibrated value of the weight, U^.

Once the accuracy has been verified, the control phase of the program is

pursued by remeasuring the weight from time to time. The resulting values are

plotted on a control chart having base line and control limits as defined in

equations (5.2.1) and (5.2.3), and it is presumed that the balance continues
to be accurate as long as

X - s*to/ 2 (n-l) < yi < x + s*ta/2(t^“l)

for all future measurements yj.

There is always a question, in this type of application, of how often one

should check for control. It seems obvious, particularly if one is dealing
with electronic instrumentation, that there should always be a check for

control as part of any start-up procedures. After that, the frequency is

dictated by the past performance of the system and by the amount of

inconvenience and expense that is generated when an out-of-control condition

is encountered—keeping in mind that when the balance is found to be

out-of-control, it is necessary to recall all the measurements that were made

on that balance since the previous successful check for control.
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5.3 Control Charts for Averages or Predicted Values

Thus far, the discussion has centered on control charts for individual
measurements, and it is easily extended to include control charts for averages
that are completely analagous to the control charts for individual
measurements. When the reported value of a measurement sequence, be it an
average or a predicted value from a least-squares analysis, is computed from k
intercoraparisons that were made over a relatively short period of time, the
"measurement of interest" is the corresponding average or predicted value of

the check standard. This quantity is treated analogously to a single
measurement with base line and control limits for the control chart determined
from n such initial quantities. That is, given check standard values xi,*’*,Xn
each of whi^h is an average or predicted value from k intercomparisons, the

grand mean x computed from (5.2.1) represents the base line of the process
and control limits as in (5.2.2) can be calculated using the total standard
deviation s from (5.2.3). In this case the quantity s is the standard
deviation of an average or predicted value and not the standard deviation of a

single measurement from the process.

5.4 Control Charts for Within Standard Deviations

For a measurement scheme involving k intercomparisons, it is possible to

generate a control chart for what is called the "within" or short-term
variability of the process.

Assume that each check standard value x^ (i=l,***,n) is the result of k

intercomparisons; namely, where the quantity is the average

of these intercomparisons,

The within standard deviations are estimated by

(5.4.1)

with degrees of freedom = k-1 . Where the intercomparisons form a

statistical design, the quantity x^ and the within standard deviation are

computed from a least-squares analysis.

The base line and limits for controlling short-term process variability make

use of the same intercomparisons that were used to establish the control chart

for averages. The base line is the pooled within standard deviation

(5.4.2)
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The degrees of freedom v = V
2
+ ***+Vj^ allow for a different number of degrees

of freedom in each estimate of the within standard deviation in (5.A.1). If

all measurement schemes contain the same number of intercomparisons, say k,

then V = n( k-1 )

.

Because a standard deviation is a positive quantity, it is only necessary to

test against an upper limit in order to test the short-term variability.
Thus for any future measurement sequence involving k intercomparisons

, the

within standard deviation s„ is computed as in (5.4.1) and is said to be

in-control if

Sy < Sp /FQ((k-l
,
v) (5.4.3)

where FQj(k-l,v) is the upper a percent point of the F distribution with
k-1 degrees of freedom in the numerator and v degrees of freedom in the
denominator.

The control chart for averages used in conjunction with the control chart for

within standard deviations is a powerful means of detecting changes in the

process. The two control procedures are evoked simultaneously, and if an

out-of-control condition is encountered for either test, the process is

assumed to be out-of-control and the measurement sequence is repeated.

5.5 Alternative Control Limits

The reader may be familiar with control charts with control limits computed as

the product of the total standard deviation and a fixed multiplicative factor,

such as two or three, instead of the appropriate percentage point of the F or

t-distribution. Control charts for within standard deviations should always
be based on the F distribution because the critical values of the F

distribution change rapidly with changes in degrees of freedom.

The consideration of whether a control chart for averages should be based on

the percentage points of Student's t distribution or on a fixed nultiplicative
factor, such as three or two, is really a matter of choice depending on the

level of control that one is hoping to achieve and on the type of measurements

that are in question. The use of Student's t distribution is the most

rigorous test if the measurements truly represent a random sample from a

normal distribution. It allows a strict probability interpretation of the

control procedure.

It cannot always be shown, and indeed is not always the case, that

measurements come from an idealized distribution such as the normal
distribution. If one looked at a large number of measurements on the same

item, they might come from a distribution that is slightly skewed; i.e., for

example, extreme large values may be more likely than extreme small values.
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The problem of deciding whether to use limits based on
the normal distribution, those based on some other
distribution, or those which involve no assumption about
the form of the distribution is one which, though of a
kind common in applied statistics, has no satisfactory
solution. Limits based on the normal distribution are
substantially shorter for a fixed sample size than those
based on no assumption about the distribution, but they may
be irrelevant if the distribution is too far from normal.
( Bowker [67 ] )

.

For this reason it is customary in the United States to use plus or minus
three standard deviations as the control limits (Duncan [68]). The factor
three guarantees that a large proportion of the distribution is covered for
measurements coming from any distribution that is close to the normal
distribution in character. These limits are robust, and should be used when
the intent is to identify measurements that are clearly out-of-control.
Because these limits are so wide, an out-of-control finding is almost
certainly an indication of a serious malfunction in the measurement process.
If a somewhat tighter control is desired, two standard deviation limits can be

considered. Very few values will fall between the two and three standard
deviation limits, and the price of remeasuring for those few may be worth the

added degree of control.

5.6 Control Charts for Drifting Check Standards

Another consideration concerns the problem of drifting check standards and

whether or not they can be used for control purposes. The assumption is made

in most measurement control programs that the check standard is stable and

that any change that is noted by the control procedure is caused by changes in

the measurement process itself. Obviously if the check standard is not

completely stable, the ability to detect a change in the process is confounded

with any possible drift in the check standard.

Unfortunately the situation in reality is that artifacts may not be

completely stable, and this instability will be detected when it is large

compared to the process precision. Changes in check standards over time can

be expected. Of the forty or more check standards that are in continual use

in the NBS mass calibration program, only about half of those standards are

completely stable or do not show any drift over time. The question is, "Can a

drifting check standard be used for control purposes?" Sometimes it can, but

a drifting check standard causes complications in the analysis when, depending

on the rate of change, the control limits pick up this change.

There are a few ad hoc procedures that can be used in lieu of a rigorous

approach to this problem. Probably the simplest approach is to determine the

time interval over which the check standard is stable by studying historical

data and to enforce the control procedure over this interval. When this time

interval has elapsed or when numerous values have been flagged as being

out-of-control, the base line and control limits can be adjusted based on more

recent measurements on the check standard.
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It trie check, standard is changing steadily, as is the case for many artifact
standards at NBS, it is sometimes possible to model the rate of drift and to

predict from this model a value for the check standard at a future time that
is not too far removed from the present. This involves fitting a regression
equation to the measurements as a function of time by the method of

least-squares and computing the values of the check standard for future times.
Then the control procedure is time dependent; the base value is the predicted
value from the regression equation at that time, and the control limits which
depend on the standard deviation of this predicted value become wider with
time. This approach has been used at NBS for check standards with linear
drift rate as a function of time. It can work reasonably well as long as the
drift remains linear, but the cause of a breakdown in the linearity assumption
cannot be easily identified because it is never really possible to separate
the change in the artifact from the change in the process. In such a

situation it is imperative that the process be checked frequently for offset
by comparison to a national standard or to other stable laboratory standards.

5.7 Synopsis and Examples of Control Charts

Four important ideas that are pertinent to calibration programs should emerge
from the disucssion thus far. First, when dealing with statistical control of

the properties of an artifact or statistical control of a measurement process,
the control parameters are not imposed upon the process externally but are

characteristic of the measurement process itself as described by historical
data.

Secondly, if the check standard measurement is outside the established control
limits, the calibration sequence is presumed to be out-of-control, and the

calibrations of the test items are considered invalid. When such a condition
is initially encountered, the instrumentation can be checked and the

measurement sequence repeated— testing again for control. Any intervening
results should be discarded. If control cannot be restored, a significant
change has occurred in the process, and this change must be investigated. If

a process is repeatedly out-of-control, the base line and control limits
should be reestablished based on more recent data.

If the check standard measurement is in-control, this is taken as evidence
that the process is behaving as expected in relation to the item submitted for

calibration, and its assignment is assumed to be correct. Lack of control is

certainly grounds for rejecting the calibration of the test item, but the

complimentary argument is not as strong. The relationship between the

measurement on the test item and the measurement on the check standard must be

interrelated or executed very close together in time in order to be satisfied

that the assignment ot the check standard has, indeed, been done properly.

Thirdly, the process precision is very well characterized by a total standard

deviation calculated from measurements on the check standard. In some cases,

such measurements provide the only way of obtaining a realistic estimate of

this source of uncertainty. Fourthly, even though the tests for control can

be automated, it is not only advantageous to visually examine the control

charts in order to detect anomalies or slight shifts in the process and

possible drifting of the check standard over time, but it is essential for

understanding the long term behavior of the measurement process.
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In order to demonstrate the value of such critical examinations, four examples
that have been encountered in NBS measurement assurance programs are
discussed.

The National Bureau of Standards maintains control charts on about forty check
standards that are used in the mass calibration program. The control chart
shown in figure 13 depicts values of the one kilogram check standard as it has

been estimated from the measurement sequence used in the calibration workload
for one kilogram weights. The three standard deviation limits shown by

the dashed lines are the control limits that are used for this program, and if

one compares these limits with the two standard deviation limits shown by

the dotted lines, it is apparent that very few points fall between the two
sets of limits. It can also be noted that the two standard deviation control

limits are almost identical with control limits based on student's t

distribution at significance level a = 0.01 when the number of points is

large as in this case.
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Figure 13

Check standard #Ul (mg) as measured on NBS balance #U

plotted against time (years)
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At this point the reader should be sufficiently sensitized to this approach to
be aware of one shortcoming in this control chart. Ihe chart implies that the

process, which is demonstrably in-control, has never been out-of-control. A
few points should fall outside of the control limits merely by chance, and as

it happens other out-of-control situations have occurred in this program over
the years. In fact, the control procedure would serve no useful purpose in

the calibration program if there were no out-of-control situations to be
detected. Actually this graph represents only the successful tests for

control that were made with the one kilogram check standard because the
calibration results and the check standard values were automatically discarded
whenever the control limits were violated. The software for the NBS mass

calibration program has been changed so that all values of the check standard
are retained, and each value is flagged as to whether or not it was in control
on that occasion. One should know when and how often control limits have been
violated, eind control charts should contain all findings.

The short-term or within variability of the same process is charted in

figure lU which shows within standard deviations for calibration sequences
involving all weights calibrated on NBS balance #U. A calibration sequence
typically requires between three and fifteen measurements, and the within
standard deviation that is calculated from each sequence reflects the
inherent variability of the balance and the effect of any environmental
changes that occur during the time needed to make the requisite measurements.

The base line for this control procedure, shown by the solid line, is the
pooled within standard deviation in (5«^.2). Because the number of degrees of
freedom varies with the design, it is not possible to establish a single upper

control limit for this process; the control limit for each point is calculated
separately, and the control procedure is automated using the control limit
based on the F distribution as shown in (5»^«3). Once a year the within

standard deviations are plotted to see if any degradation has occurred in the

balance over the year.
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The examples cited in figures 13 and lU are for a process, as was said before,
that has been in existence for a long time euid that is demonstrably
in-control. It may be instructive to examine a few processes, or at least the
data from those processes, that have not been carefully monitored eind that are
not necessarily in-control.
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Figure 15
Measurements (mg) on a lOOg weight plotted against time (months)

Take, for example, the data in figure 15 which represent repeated weighings
made over a fifteen month period on a calibrated weight. Notice that the
majority of the values are clustering close together but that there are a
relatively large number of extremely discordant values. It is not sensible in

this case to ask, ’^/hat base line and control limits are appropriate for this
process?" In fact, at this point in time, a measurement process does not

exist because it is not possible to predict a future value of the process, or

in other words, the data as plotted in figure 15 do not represent a random
sample from a single error distribution. In this case, a critical deficiency
in the measurement process was tracked down; neunely, that the elapsed time

between two weighings being made on the balance in succession was not

sufficient for the balance to come to proper equilibrium.

A control procedure involving a power instmanent standard is shown in

figure l6. The graph shows assignments made to the power standard as it was
intercon^jared with its primary power source over a two-week period. The

sixteen resulting measurements define the base line and control limits for the

process.
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The results of sixteen additional measurements taken a year later are shown in

figure IT, and although they are clearly out-of-control with respect to the
initial measurements, they are consistent among themselves raising a question
as to whether the power standard itself is changing radically, whether the
initial measurements were, in fact, out-of-control and should be discounted,
or whether the process is not properly characterized by either set of
measurements. Really only one thing is clear at this point — that the
assignment cannot be made with any degree of confidence and that the power
standard should not be the basis for a calibration program until the process
of assigning a value to the power standard is adequately characterized.

This was accomplished by repeating the intercomparison at three month
intervals taking only two or three measurements each time instead of sixteen.

The results are shown in figure l8. A large component of variance that did
not show up in the initial two-week interval affects the measurement process

,

and the standard deviation computed from the short-term measurements
under-estimates the process variability as it exists over, say, a year's time.

This example demonstrates an extremely important principle of measurement
assurance

; namely that in general there is little value in closely spaced
r- petitions. These should be kept to a minimum, and measurements should be
taKen frequently over a long period of time in order to correctly characterize
a process. This practice should be continued xmtil the process parameters are
well established and only then should the intervals between intercomparisons
be lengthened.
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Figure l8

Measurements {% reg) on the power standard at three month intervals

over three years
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Table I

Critical Values tci/2(v) of Student's t Distribution

V 0=0.05 a=0 .01 V c(=0.05 a=0.01

2 i^.303 9.925 62 1.999 2.657
U 2.776 U.60U 6U 1.998 2.655
6 2 .hkJ 3.707 66 1.997 2.652
8 2.306 3.355 68 1.995 2.650

10 2.228 3.169 70 I.99U 2 . 6U8

12 2.179 3.055 72 1.993 2.646
lU 2.IU5 2.977 Jh 1.993 2 . 6UU
16 2.120 2.921 76 1.992 2.642
18 2.101 2.878 78 1.991 2.640
20 2.086 2.8U5 80 1.990 2.639
22 2.O7U 2.819 82 1.989 2.637
2 h 2.O6U 2.797 8U 1.989 2.636
26 2.056 2.779 86 1.988 2.634
28 2.OU8 2.763 88 1.987 2.633
30 2.OU2 2.750 90 1.987 2.632
32 2.037 2.738 92 1.986 2.630
3 U 2.032 2.728 9U 1.985 2.629
36 2.028 2.719 96 I.98U 2.628
38 2.O2U 2.712 98 1.983 2.627
UO 2.021 2.70U 100 1.983 2.626
k 2 2.018 2.698 102 1.983 2.625
kk 2.015 2.692 lOU 1.982 2.624
U 6 2.013 2.687 106 1.982 2.623
U 8 2.011 2.682 108 1.981 2.622
50 2.009 2.678 110 1.981 2.621

52 2.007 2.67U 112 1.981 2.620

5 ^ 2.005 2.670 llU 1.981 2.620

56 2.003 2.667 116 1.981 2.619
58 2.002 2.663 118 1.980 2.618

6o 2.000 2.660 120 1.980 2.617
OD 1.960 2.576

V = nmber of degrees of freedom in the total standard deviation.
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Table II

Critical values FaCvi, ^2) of the F Distribution
0=0.01

Degrees of freedom
1 23456789 10

10.04 7.56 6.55 5.99 5.64

9.65 7.21 6.22 5.67 5.32
9.33 6.93 5.95 5.41 5.06
9.07 6.70 5.74 5.21 4.86
8.86 6.51 5.56 5.04 4.69

8.68 6.36 5.42 4.89 4.56
8.53 6.23 5.29 4.77 4.44

8.40 6.11 5.18 4.67 4.34
8.29 6.01 5.09 4.58 4.25
8.18 5.93 5.01 4.50 4.17

8.10 5.85 4.94 4.43 4.10
7.95 5.72 4.82 4.31 3.99
7.82 5.61 4.72 4.22 3.90
7.72 5.53 4.64 4.14 3.82
7.64 5.45 4.57 4.07 3.75

7.56 5.39 4.51 4.02 3.70
7.42 5.27 4.40 3.91 3.59
7.31 5.18 4.31 3.83 3.51
7.23 5.11 4.25 3.77 3.45
7.17 5.06 4.20 3.72 3.41

7.12 5.01 4.16 3.68 3.37

7.08 4.98 4.13 3.65 3.34
7.04 4.95 4.10 3.62 3.31
7.01 4.92 4.07 3.60 3.29
6.99 4.90 4.05 3.58 3.27

6.96 4.88 4.04 3.56 3.25
6.94 4.86 4.02 3.55 3.24
6.93 4.85 4.01 3.53 3.23
6.91 4.84 3.99 3.52 3.22
6.90 4.82 3.98 3.51 3.21

6.88 4.81 3.97 3.50 3.20
6.87 4.80 3.96 3.49 3.19
6.86 4.79 3.96 3.49 3.18
6.85 4.79 3.95 3.48 3.17

6.63 4.61 3.78 3.32 3.02

5.39 5.20 5.06 4.94 4.85
5.07 4.89 4.74 4.63 4.54

4.82 4 . 64 4.50 4.39 4.30
4.62 4.44 4.30 4.19 4.10
4.46 4.28 4.14 4.03 3.94

4.32 4.14 4.00 3.89 3.80
4.20 4.03 3.89 3.78 3.69
4.10 3.93 3.79 3.68 3.59
4.01 3.84 3.71 3.60 3.51
3.94 3.77 3.63 3.52 3.43

3.87 3.70 3.56 3.46 3.37

3.76 3.59 3.45 3.35 3.26
3.67 3.50 3.36 3.26 3.17

3.59 3.42 3.29 3.18 3.09
3.53 3.36 3.23 3.12 3.03

3.47 3.30 3.17 3.07 2.98

3.37 3.20 3.07 2.96 2.88

3.29 3.12 2.99 2.89 2.80

3.23 3.07 2.94 2.83 2.74

3.19 3.02 2.89 2.78 2.70

3.15 2.98 2.85 2.75 2.66

3.12 2.95 2.82 2.72 2.63

3.09 2.93 2.80 2.69 2.61

3.07 2.91 2.78 2.67 2.59

3.05 2.89 2.76 2.65 2.57

3.04 2.87 2.74 2.64 2.55

3.02 2.86 2.73 2.62 2.54

3.01 2.84 2.72 2.61 2.52

3.00 2.83 2.70 2.60 2.51

2.99 2.82 2.69 2.59 2.50

2.98 2.81 2.69 2.58 2.49

2.97 2.81 2.68 2.57 2.49

2.96 2.80 2.67 2.57 2.48

2.96 2.79 2.66 2.56 2.47

2.80 2.64 2.51 2.41 2.32
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Table II continued

Critical Values F(j(vi,V2 ) of the F Distribution
a = 0.01

*

P
DF Degrees of freedom
V2 12 14 16 18 20 22 24 26 28 30

10 4.71 4.60 4.52 4.46 4.41 4.36 4.33 4.30 4.27 4.25

1

1

4.40 4.29 4.21 4.15 4.10 4.06 4.02 3.99 3.96 3.94
12 4.16 4.05 3.97 3.91 3.86 3.82 3.78 3.75 3.72 3.70
13 3.96 3.86 3.78 3.72 3.66 3.62 3.59 3.56 3.53 3.51

14 3.80 3.70 3.62 3.56 3.51 3.46 3.43 3.40 3.37 3.35

15 3.67 3.56 3.49 3.42 3.37 3.33 3.29 3.26 3.24 3.21

16 3.55 3.45 3.37 3.31 3.26 3.22 3.18 3.15 3.12 3.10
17 3.46 3.35 3.27 3.21 3.16 3.12 3.08 3.05 3.03 3.00
18 3.37 3.27 3.19 3.13 3.08 3.03 3.00 2.97 2.94 2.92
19 3.30 3.19 3.12 3.05 3.00 2.96 2.92 2.89 2.87 2.84

20 3.23 3.13 3.05 2.99 2.94 2.90 2.86 2.83 2.80 2.78
22 3.12 3.02 2.94 2.88 2.83 2.78 2.75 2.72 2.69 2.67
24 3.03 2.93 2.85 2.79 2.74 2.70 2.66 2.63 2.60 2.58
26 2.96 2.86 2.78 2.72 2.66 2.62 2.58 2.55 2.53 2.50
28 2.90 2.79 2.72 2.65 2.60 2.56 2.52 2.49 2.46 2.44

30 2.84 2.74 2.66 2.60 2.55 2.51 2.47 2.44 2.41 2.39

35 2.74 2.64 2.56 2.50 2.44 2.40 2.36 2.33 2.30 2.28
40 2.66 2.56 2.48 2.42 2.37 2.33 2.29 2.26 2.23 2.20
45 2.61 2.51 2.43 2.36 2.31 2.27 2.23 2.20 2.17 2.14

50 2.56 2.46 2.38 2.32 2.27 2.22 2.18 2.15 2.12 2.10

55 2.53 2.42 2.34 2.28 2.23 2.18 2.15 2.11 2.08 2.06

60 2.50 2.39 2.31 2.25 2.20 2.15 2.12 2.08 2.05 2.03

65 2.47 2.37 2.29 2.23 2.17 2.13 2.09 2.06 2.03 2.00

70 2.45 2.35 2.27 2.20 2.15 2.11 2.07 2.03 2.01 1.98

75 2.43 2.33 2.25 2.18 2.13 2.09 2.05 2.02 1.99 1.96

80 2.42 2.31 2.23 2.17 2.12 2.07 2.03 2.00 1.97 1.94

85 2.40 2.30 2.22 2.15 2.10 2.06 2.02 1.98 1 .95 1.93

90 2.39 2.29 2.21 2.14 2.09 2.04 2.00 1.97 1.94 1.92

95 2.38 2.28 2.20 2.13 2.08 2.03 1.99 1.96 1.93 1.90

100 2.37 2.27 2.19 2.12 2.07 2.02 1.98 1.95 1.92 1 .89

105 2.36 2.26 2.18 2.11 2.06 2.01 1.97 1.94 1.91 1 .88

no 2.35 2.25 2.17 2.10 2.05 2.00 1.96 1.93 1.90 1.88

115 2.34 2.24 2.16 2.10 2.04 2.00 1.96 1.92 1.89 1 .87

120 2.34 2.23 2.15 2.09 2.03 1 .99 1 .95 1.92 1.89 1 .86

OD 2.19 2.09 2.00 1.94 1.88 1.84 1.79 1.76 1.73 1.70

il

P

P

P

P

P

R

P
«



DF
V2

10

11

12

13

14

15

16

17

18

19

20
22

24

26

28

30

35
40
45

50

55

60
65
70

75

80
85
90
95

100

105

no
115

120
CD

Table II continued

Critical Values Fqj(v]^,V2) of the F Distribution
a=0.01

Degrees of freedom vj

40 50 60 70 80 90 100 1 10 120 00

4.17 4.12 4.08 4.06 4.04 4.03 4 .01 4.00 4.00 3.91

3.86 3.81 3.78 3.75 3.73 3.72 3.71 3.70 3.69 3.60

3.62 3.57 3.54 3.51 3.49 3.48 3.47 3.46 3.45 3.36
3.43 3.38 3.34 3.32 3.30 3.28 3.27 3.26 3.25 3.17

3.27 3.22 3.18 3.16 3.14 3.12 3.11 3.10 3.09 3.01

3.13 3.08 3.05 3.02 3.00 2.99 2.98 2.97 2.96 2.87

3.02 2.97 2.93 2.91 2.89 2.87 2.86 2.85 2.84 2.76

2.92 2.87 2.83 2.81 2.79 2.78 2.76 2.75 2.75 2.65

2.84 2.78 2.75 2.72 2.70 2.69 2.68 2.67 2.66 2.57

2.76 2.71 2.67 2.65 2.63 2.61 2.60 2.59 2.58 2.49

2.69 2.64 2.61 2.58 2.56 2.55 2.54 2.53 2.52 2.42

2.58 2.53 2.50 2.47 2.45 2.43 2.42 2.41 2.40 2.31

2.49 2.44 2.40 2.38 2.36 2.34 2.33 2.32 2.31 2.21

2.42 2.36 2.33 2.30 2.28 2.26 2.25 2.24 2.23 2.13

2.35 2.30 2.26 2.24 2.22 2.20 2.19 2.18 2.17 2.07

2.30 2.24 2.21 2.18 2.16 2.14 2.13 2.12 2.11 2.01

2.19 2.14 2.10 2.07 2.05 2.03 2.02 2.01 2.00 1.89

2.11 2.06 2.02 1.99 1.97 1.95 1.94 1.93 1.92 1.81

2.05 2.00 1.96 1.93 1.91 1.89 1.88 1 .86 1.85 1.74

2.01 1.95 1 .91 1.88 1.86 1.84 1.82 1.81 1.80 1 .69

1.97 1.91 1.87 1 .84 1.82 1.80 1.78 1.77 1.76 1.64

1.94 1.88 1.84 1.81 1.78 1.76 1.75 1.74 1.73 1.60

1.91 1.85 1.81 1.78 1.75 1.74 1.72 1.71 1.70 1.57

1.89 1.83 1.78 1.75 1.73 1.71 1.70 1.68 1.67 1.54

1.87 1.81 1.76 1.73 1.71 1.69 1.67 1.66 1.65 1.52

1.85 1.79 1.75 1.71 1.69 1.67 1.65 1.64 1.63 1.50

1.83 1.77 1.73 1.70 1.67 1.65 1.64 1.62 1.61 1 .48

1.82 1.76 1.72 1.68 1 .66 1.64 1.62 1.61 1.60 1.46

1.81 1.75 1.70 1.67 1.65 1.63 1.61 1.60 1.58 1 .45

1.80 1.74 1 .69 1.66 1.63 1.61 1.60 1.58 1.57 1.43

1.79 1.73 1.68 1.65 1.62 1.60 1.59 1.57 1.56 1.42

1.78 1.72 1.67 1.64 1.61 1.59 1.58 1.56 1.55 1.41

1.77 1.71 1.66 1.63 1.60 1.58 1.57 1.55 1.54 1.40

1.76 1.70 1.66 1.62 1.60 1.58 1.56 1.54 1.53 1.39

1.60 1.53 1 .48 1 .44 1.41 1.38 1.36 1.35 1.33

B-109



II

REFERENCES

[l] Dorsey, N. E. Ihe velocity of light. Trans. Am. Phil. Soc. XXXIV .

;

19^^, pp. 1-110.

[2I Hay ford, J. A. On the least square adjustment of weighings, U.S. Coast
and Geodetic Survey Appendix 10, Report for 1892; 1893.

[3] Benoit, M. J. R. L'Etalonnage des Series de Poids Travaux et

Memoirs du Bureau International des Poids et Mesures 13( 1

)

; 1907.

[U] Pienkowsky, A. T. Short tests for sets of laboratory weights.

Scientific Papers of the Bureau of Standards, 21(327

)

; 1926.

[5I Cameron, J. M. ; Croarkin, M. C.; Raybold, R. C. Designs for the
Calibration of Standards of Mass. Nat. Bur. Stand. (U.S.) Tech Note 952;
1977.

[61 §Eisenhart , C. Realistic evaluation of the precision and accuracy of
instrument calibration systems. J. Res. Nat. Bur. Stand. (U.S.) 67c (2);
1962. pp. 161-187.

[7l^Youden, W. J. Experimental design and ASTM committees. Materials
Research and Standards, l(ll) ; 196I. pp. 862-867.

[8]§Youden, W. J. Physical measurements and experiment design. Colloques
Internationaux du Centre National de la Recherche Scientifique No. 110,

le Plan d’ Experiences ; I96I. pp. 115-128.

[9I ^Pontius, P. E. and Cameron, J. M. Realistic Uncertainties and the Mass
Measurement Process. Nat. Bur. Stand. (U.S.) Monogr. 103; 1967.

(10) Croarkin, M. C.; Beers, J. S.; Tucker, C. Measurement Assurance for Gage
Blocks. Nat. Bur. Stand. (U.S.) Monogr. l63; 1979*

[ill Croarkin, M. C.; Varner, R. N. Measurement Assurance for Dimensional
Measurements on Integrated Circuit Photomasks. Nat. Bur. Stand. (U.S.)

Tech. Note ll64; I982.

[12) American National Standard ANSI NI5. 18-1975. Mass calibration techniques
for nuclear materials control. Available from ANSI, Inc., IU30 Broadway,

New York, NY IOOI8.

[13] Pontius, P. E. and Doher, L. W. Ihe Joint ANSI-INMM 8.1-Nuclear
Regulatory Commission study of uranium hexafluoride cylinder material
accountability bulk measurements. Proc. l8th Ann. Mtg. INMM, Vl(lll) ;

1977. p. U80.

^Reprinted in Nat. Bur. Stand. (U.S.) Spec. Publ. 300, Vol I. Precision
Methods and Calibration: Statistical Concepts and Procedures. H. H. Ku,

editor. 19^9.

B-110



[l^] Beers, J. S. A Gage Block Measurement Process Using Single Wavelength
Interferometry. Nat. Bur. Stand. (U.S.) Mcnogr. 152; 1975.

[l5l Cajneron, J. M. Measurement Assurance. Nat. Bur. Stand. (U.S.) NBSIR
7T-12U0; 1977.

[16] Kieffer, L. J. , ed. Calibration and Related Measurement Services of the
National Bureau of Standards. Nat. Bur. Stand. (U.S.) Spec. Publ. 250;
1982.

[17] Pipkin, F. R. , Ritter, R. C. Precision measurements and fundamental
constants. Science, 219 (^^87) ; 1983. p. 917.

1 18] Pontius, P. E. The Measurement Assurance Program - A Case Study: Length
Measurements Part I. Long Gage Blocks (5 in to 20 in) . Nat. Bur. Stand.

(U.S.) Monogr. IU9; 1975.

(19I Beers, J. S. , Tucker, C. D. Intercomparison Procedures for Gage Blocks
Using Electromechanical Comparators. Nat. Bur. Stand. (U.S.) NBSIR
76-979; 1976. p. 9.

(20I Simpson, J. A. Foundations of metrology. J. Res. Nat. Bur. Stand.
(U.S.). 86(3) , 1981. p. 282.

[21] Nyyssonen, D. Linevidth measurement with an optical microscope: The
effect of operating conditions on the image profile. Appl. Opt. l6(8

)

;

Ausust 1977. pp. 2223-2230.

I22] Jerke, J. M. , ed. Semiconductor Measurement Technology: Accurate
Linevidth Measurements on Integrated Circuit Riotomasks. Nat. Bur.

Stand. (U.S.) Spec. Publ. UOO-U3; I98O. pp. 7-15.

[23I Jerke, J. M. ; Croarkin, M. C.; Varner, R. N. Semiconductor Measurement
Technology: Interlaboratory Study on Linevidth Measurements for

Antireflective Chromium Photomasks. Ifeit. Bur. Stand. (U.S.) Spec. Publ.
I+OO-7U; 1982.

[2U] See reference 20, p. 283.

(25 1 See reference 22, p. 50.

[26] See reference 20, p. 283.

[27] Cameron, J. M. Ehcyclopedia of Statistical Sciences , Vol 1^. S. Kotz
and N. L. Johnson, ed. New York: John Wiley & Sons, Inc.; 1982.

pp. 3^1-3U7.

(28I Ku, H. H. Statistical concepts of a measurement process. Precision
Methods and Calibration: Statistical Concepts and Procedures. Nat. Bur.

Stand. (U.S.) Spec. Publ. 300, Vol I. H. H. Ku, ed. I969. PP 296-20 to

33O-5U.

B-111



[29] Mandel, J. The Statistical Analysis of Experimental Data * New York:
Interscience Publ; 1964. pp. 276-279*

[ 30 ] Snedecor, G. W. and Cochran, W. G. Statistical Methods , Sixth ed . Ames,
Iowa: The Iowa State University Press; 19T6. pp. 279-280.

[ 31 ] See reference [j 1

•

pp* 862-863.

[ 32 ] Mattingly, G. H. ; Pontius, P. E. ; Allion, H. H. ;
Moore, E. F. A

laboratory study of turbine meter uncertainty. Proc. Symp. on Flow in

Open Channels and Closed Circuits; Nat. Bur. Stand. (U.S.) Spec. Publ.

484; 1977*

[ 33 ] See reference [lO]

.

[ 34 ] Duncan, A.J. Quality Control and Industrial Statistics , Fourth ed .

Homewood: Richard D. Irwin, Inc; 197^* p* 381.

[ 35 I See reference [8]

,

p. 21-22.

[ 36 ] See reference [28 ] , p. 299*

[ 37 ] See reference [28], p. 305-308.

[ 38 ] See reference [23]

*

[ 39 ] Hockersmith, T. E. ; Ku, H. H. Uncertainties associated with proving ring
calibration. Precision Methods and Calibration: Statistical Concepts
and Procedures. Nat. Bur. Stand. (U.S.) Spec. Publ. 300, Vol. 1. H. H.

Ku, ed. ; 1969* pp* 257-1 to 264-8.

[40] See reference [ll] , p. 30-33.

[41] Youden, W. J. Uncertainties in calibration. IRE Transactions on
Instrumentation, I-ll , (3,^); 1962. p. 137*

[42] Eisenhart, C., Ku, H. H. and Colle, R. Expression of the Uncertainties
of Final Measurement Results; Reprints. Nat. Bur. Stand. (U.S.) Spec.

Pub. 644; 1983 .

[ 43 ] Giacomo, P. News from BIPM. Mstrologia, I98I. pp. 73-7^*

[44] See reference [28]. pp. 322-323*

[ 45 ] Raghavarao, D. Construction and Combinatorial Problems in Design of
Experiments . New York: John Wiley & Sons, Inc; 1971* p* 315*

[46] Mood, A* M. On Hotelling's Weighing Problem. Annals of Mathematical
Statistics, 19^+6. pp. 432-446.

[ 47 ] See reference [ 5 ]

*

B-112



[48] Cameron, J. M.; Hailes, G. E. Designs for the Calibration of Small
Groups of Standards in the Presence of Drift. Nat. Bur. Stand. (U.S.)
Tech Note 8A4; 1974. p. 1.

[49] Jaegar, K. B. and Davis, R. S. A Primer for Mass Metrology. Nat. Bur.
Stand. (U.S.) Special Publication: Industrial Measurement Series 700-1;
1984.

[50] See reference [10], pp. 13-25.

[51] See reference [10], pp. 27-39.

[52] Came ron, J. M.; Eicke, W. G. Designs for Surveillance of the Volt
Maintained by a Small Group of Saturated Standard Cells. Nat. Bur.
Stand. (U.S.) Tech Note 430; 1967.

[53] Cameron, J. M. The Use of the Method of Least Squares in Calibration.
Nat. Bur. Stand. (U.S.) NBSIR 74-587; 1974.

[54] See reference [49].

[55] Varner, R. N. Mass Calibration Computer Software. Nat. Bur. Stand.
(U.S.) Tech. Note 1127; 1980.

[56] See reference [52]. pp. 1-2.

[57] Cochran, W. J. The distribution of the largest of a set of estimated
variances as a fraction of their total. Annals of Eugenics, JU; 1941.

pp. 47-52.

[58] Eisenhart, C. Significance of the largest of a set of sample estimates of

variance. Chapter 15 of Selected Techniques of Statistical Analysis .

Eisenhart, C., Hastay, M. W., Wallis, W. A., editors. New York: McGraw
Hill Book Co., Inc.; 1947. pp. 383-394.

[59] Draper, N. R.; Smith, H. Applied Regression Analysis . New York: John

Wiley & Sons, Inc.; 1966. p. 1-32.

[60] See reference [22], p. 350.

[61] Bicking, C. A.; Gryna, F. M. Jr. Process Control by Statistical Methods.

Section 23 of Quality Control Handbook, Third Edition
,

J. M. Juran, ed.

New York: McGraw-Hill Book Co.; 1974. p. 23-2, 23-3.

[62] See reference [34]. pp. 464-484.

[63] Reynolds, J. R. Jr.; Ghosh, B. K. Designing control charts for means and

variances. 1081 ASQC Quality Congress Transactions: San Francisco;

1981.

[64] Shewhart, W. A. Statistical Method from the Viewpoint of Quality
Control. The Graduate School, U.S. Department of Agriculture,

Washington, DC; 1939.

B-113



[65] Grant, E. L. ;
Leavenvorth, R. S. Statistical Quality Control, ^th

Edition . Nev York: McGraw Hill Book Co.; 1976. p. 129.

[66] Parobeck, P. ;
Tomb, T. ; Ku, H. H. ; Cameron, J. M. Measurement assurance

program for weighings of respirable coal mine dust sajnples. J. Quality
Tech, 13(3) ; 1981. pp. 157-165.

[ 67 ] Bowker, A. H. Tolerance limits for normal distributions. Chapter 2 of
reference [ 58 ] . p. 99*

[68] See reference [ 63 ] . p. 38l.



APPENDIX A

The purpose of this appendix is to define the matrix manipulations^ that
produce the least-squares solution to a weighing design along with the
propagation of associated standard deviations and uncertainties.'*’ The theory
is explained by Cameron et al. in reference [ 5 I • It is assumed that a series
of weighing designs is required in order to calibrate an entire weight set and
that assignments to individual weights depend upon a starting restraint with
known value that is invoked in the first design. The starting restraint is

usually the known sum of two reference kilograms. It is also assumed that the
designs are interconnected in such a way that a value assigned to an
individual weight or sum of weights from one design constitutes the restraint
for the next design in the series.

Each design in the series involves n intercomparisons among p weights where

the p weights include the reference standards composing the restraint, the
test weights, and check standard.

The model for the measurement process assumes that these observations are
related to the values of the weights by

D = AX* + e (A.l)

where D is the (nxl) vector of observations; A is an (nxp) design matrix of

zeroes and ones such that a plus or minus one in the ijth position indicates
that the Jth weight is measured by the ith observation, and a zero indicates
the converse; X is the (pxl) vector of unknown values for the p weights; and
e is the (nxl) vector of random errors.

Define

d’ = (di
• • • dn) (A. 2)

(X*)' = (Xi* • • • Xp*) (A.U)

and e' = • * * t^) (A. 5)

^^e matrix notation that is used in this appendix denotes the transpose of

the matrix M by M* and the inverse of the matrix M by M"^.

Assuming that there is no significant between coii5)onent of variance in the

measurement process.
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In order to define various linear combinations of the weights, we will also
define several vectors of size (pxl) which have the general form

z' = (Z;i_
• • • ip)

where each element (i=l,...,p) is either zero, plus one or minus one.

The least-squares estimate for (A.U) depends upon the inverse of the normal
equations A*A. The usual case for calibration experiments is that A’A has

rank p-1. Where A'A has rank less than p, the inverse does not exist and a

solution can be obtained only bjr imposing a restraint upon the system of

equations. Therefore, we let R be a scalar with known value called the
restraint; and be a (pxl) vector of zeroes and ones such that a one in the

Jth position indicates that the Jth weight is in the restraint, and a zero

indicates the converse. For example,

%' = (1 1 0 • • • 0)

indicates that the restraint is over the first two weights.

One approach to finding the least-squares estimate for X* is via
an augmented matrix B where

is a (p+2)x(p+2) matrix \rtiose inverse

(A. 6)

h

0 (A.T)

can be partitioned as shown above. The (pxp) matrix Q in the upper left hand

corner of B”^ contains information relating to the variances of the
estimates, and the (pxl) matrix X* in the upper right hand corner of B"^

contains the least-squares estimates for the p weights. The other quantities
in B”1 are not of interest for this application. Notice that once the inverse
of B has been con^juted, the estimates are immediately available without

further matrix multiplications.'

The individual deviations of the observations from their fitted values are

given by the (pxl) vector C where

C' = (D - AX*)
' ,

(A. 8)

' The caret (") indicating a least-squares estimate from the data is dropped
in future references to X .
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and the within standard deviation for the design is

with n-p+1 degrees of freedom.

The restraint for the next design in the series can be written in the form

2* = liX* (A. 10)

where is a (pxl) vector of zeroes and ones where a one in the ith position
indicates that the ith weight is to be included in the restraint for the next
design, and a zero indicates the converse. Tlie standard deviation for the
outgoing restraint is given by

5 K
a/2

n-p+1
(A. 9)

^

ll\ll Sv^ +

tr W

Ap W

2

SR
2

(A. 11)

where sp is the standard deviation of the incoming restraint R as computed
from the previous design, and

W = (Wi . . . Wp)

where W is a (pxl) vector of nominal values for the p weights. If the current
design is the first design in the series, then sr is zero.

Notice that the coii5)utation of the standard deviation associated with the
check standard as defined in (A.lU) and the con5)utation of the standard
deviation associated with the values of the test weights as defined in (A.16)

are also dependent on sp. TSius, the standard deviations for each series are
dependent on all prior series as they are propagated starting with the first

series.

The current value for the check standard from the design can be written in the

form
c = ic'x* (A. 13)

where is a (pxl) vector of zeroes and ones such that a plus or minus one in

the ith position indicates that the ith weight is in the check standard, and

a zero indicates the converse.

The standard deviation of the check standard value is given by

(A.lU)
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Then given that the accepted value for the check standard is

previous experiments to be , a test for control is made by

test statistic

|Ac - c|

t. =

s c

known from
computing the

(A. 15)

and comparing it to a critical value.

Finally, we are interested in the uncertainty of the value assigned to a

single weight or to a collection of weights. For each summation or difference
of weights that is of interest, we define a (pxl) vector ig of zeroes, plus
ones and minus ones such that a one in the ith position indicates that the ith

weight is involved in the summation or difference, and a zero indicates the
converse. The reported value for the summation S is S where

S* = tg X •

The standard deviation for the summation, designated by sg is

and the uncertainty associated with the summation is

Jlg'w

U = 3sg + — Ugj^ (a. IT)

where Ugp is the uncertainty assigned to the starting restraint in the series,
and similarly Agj^ is the (pxl) vector of zeroes, plus ones and minus ones
such that a plus or minus one in the ith position indicates that the ith
weight is in the starting restraint.

Notice that if we are talking about a single weight whose value is Xj*, then
the quantity

% Qis - qjj

where qjj is the Jth diagonal, element in Q.

For the next design in the series, let the restraint be R = Z with
standard deviation Sj^ = sj and proceed with the calculation starting with
equation (A.l).
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Foreword

The reporting of final measurement results, and the uncertainties associated with

the measurement processes used to obtain these results, has always been and continues

to be a source of difficulty. The three articles reprinted in this publication are collected

here as a convenient reference source for experimenters who must face the difficult

task of deciding how to express measurement uncertainties. The philosophical basis,

general guidelines, and specific recommendations for expressing uncertainties

contained within these articles have evolved at NBS over a period of many years.

The first article originally appeared in Science in 1968. This article develops the

underlying basis and general guidelines on the forms of expression needed for

uncertainty statements, and presents specific recommendations for four distinct cases;

(i) when both systematic error and imprecision are negligible; (ii) when systematic

error is not negligible, and imprecision is negligible; (iii) when neither systematic error

nor imprecision is negligible; and (iv) when systematic error is negligible, and

imprecision is not negligible.

The second article, written as a companion to the first, originally appeared in a 1968

issue of M&D: Measurements and Data. It gives a condensed summary of the recom-

mendations presented in the first article, and provides tabular guides to commonly
used statements of imprecision, systematic error, and uncertainty.

The third article is a postscript to the two preceding articles, and was prepared in

1980 for an internal NBS communications manual. It reinforces the major thrust and

content of the earlier articles, but includes more recent thought particularly in regard

to overall uncertainty statements.

The first two articles have since been reprinted in several NBS publications

including Special Publication 300, Volume 1, Precision Measurement and Calibra-

tion: Statistical Concepts and Procedures (Harry H. K.u, ed., 1969). The 1980 NBS
communications manual incorporated the second and third articles, but did not

reprint the first article. Furthermore, this manual is not accessible outside NBS. This

special publication, therefore, collects all three articles, for the first time, in one

convenient source which is available to the many scientists and engineers throughout

the entire measurement community.
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Expression of the Uncertainties

of Final Results

Clear statements of the uncertainties of reported

values are needed for their critical evaluation.

Churchill Eisenhart

Measurement of some property of a

thing in practice always takes the form

of a sequence of steps or operations

that yield as an end result a number
that serves to represent the amount or

quantity of some particular property of

a thing—a number that indicates how
much of this property the thing has,

for someone to use for a specific pur-

pose. The end result may be the out-

come of a single reading of an instru-

ment, with or without corrections for

departures from prescribed conditions.

More often it is some kind of average,

for example, the arithmetic mean of a

number of independent determinations

of the same magnitude, or the final

result of a least squares “reduction" of

measurements of a number of different

magnitudes that bear known relations

with one another in accordance with a

definite experimental plan. In general,

the purpose for which the answer is

needed determines the precision or ac-

curacy required and ordinarily also the

method of measurement employed.

Although the accuracy required of a

reported value depends primarily on
the intended use, or uses, of the value,

one should not ignore the requirements

of other uses to which it is likely to

be put. A reported value whose accu-

racy is entirely unknown is worthless.

Strictly speaking, the actual error of

a reported value, that is the magnitude

and sign of its deviation from the truth

(/), is usually unknowable. Limits to

this error, however, can usually be in-

ferred—with some risk of being incor-

rect—from the precision of the mea-

surement process by which the reported

value was obtained, and from rea-

sonable limits to the possible bias of

the measurement process. The bias, or

systematic error, of a measurement proc-

ess is the magnitude and direction of

its tendency to measure something

other than what was intended; its preci-

sion refers to the typical closeness to-

gether of successive independent mea-

surements of u single magnitude gen-

erated by repeated applications of the

process under specified conditions; and

its accuracy is determined by the

closeness to the true value characteris-

tic of such measurements.

Precision and accuracy are inherent

characteristics of the measurement proc-

ess employed and not of the particular

end result obtained. From experience

with a particular measurement process

and knowledge of its sensidvity to un-

controlled factors, one can often place

reasonable bounds on its likely system-

atic error (bias). It is also necessary to

know how well the pardcular value in

hand is likely to agree with other

values that the same measurement proc-

ess might have provided in this in-

stance, or might yield on remeasure-

ment of the same magnitude on another

occasion. Such information is provided

by the esumated standard error

(2) of the reported value, which mea-

sures (or is an index oO the charac-

terisdc disagreement of repeated deter-

minations of the same quantity by the

same method, and thus serves to indi-

cate the precision (strictly, the impreci-

sion) of the reported value (i).

Four Distinct Forms of

Expression Needed

The uncertainty of a reported value

is indicated by stating credible limits

to its likely inaccuracy. No single

form of expression for these limits is

universally satisfactory. In fact, differ-

ent forms of expression are recom-

mended, which will depend on the rela-

tive magnitudes of the imprecision and

likely bias, and their relative impor-

tance in relation to the intended use of

the reported value, as well as to other

possible uses to which it may be put

(d).

Four distinct cases need to be recog-

nized: (i) both systematic error and im-

precision negligible, in relation to rhe

requirements of the intended and likely

uses of the result; (ii) systematic error

not negligible, imprecision negligible;

(iii) neither systematic error nor im-

precision negligible; and (iv) systematic

error negligible, imprecision not negli-

gible.

Specific recommendations with re-

spect to each of these cases are made
below. General guidelines upon which

these specific recommendations are

based are discussed in the following

paragraphs.

PerUs of Shorthand Expressions

Final results and their respective un-

certainties should be reported in sen-

tence form whenever possible. The
shorthand form "a ^ b" should be

avoided in abstracts and summaries; and

never used without explicit explana-

tion of its connotation. If no explana-

tion is given, many persons will take

±b to signify bounds to the inaccuracy

of a. Others may assume that 6 is the

“standard error," or the “probable er-

ror,” of a, and hence the uncertainty

of a is at least ^ib, or ±4b, respectively.

Still others may take 6 to be an indica-

tion merely of the imprecision of the in-

dividual measurements, that is, to be the

“standard deviation,” or the “average

deviation,” or the “probable error" of

a single observation. Each of these in-

terpretations reflects a practice of which

instances can be found in current

scientific literature. As a step in the

direction of reducing this current con-

fusion, it is recommended that the use

of “a i: h" in presenting results be

limited to that sanctioned for the case

of tabular results in the fourth recom-

mendation of the section below headed

“Systematic error not negligible, im-

precision negligible.”

The author la a lenlor research fellow tod

fonner chief of the SutUtlcal Ea(iiiecriii« Labora-

tory at the Natiooal Bureau of Staodardt. Wtah-
iogton, D.C. 20234. The rccommeodatiom pre-

•eoted in ttaia paper have erolved at the Bureau

over a period of many years and are made
public here for tencral i^ormation, and to educe

comraenu and tuuettiooa.
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Imprecision and Systematic Error

Require Separate Treatment

Since imprecision and systematic

error are distinctly different components

of inaccuracy, and are subject to dif-

ferent treatments and interpretations in

usage, two numerics respectively ex-

pressing the imprecision and bounds

to the systematic error of the reported

result should be used whenever both

of these errors are factors requiring

consideration. Such instances are dis-

cussed in the section below for the case

of "Neither systematic error nor im-

precision negligible."

In quoting a reported value and its

associated uncertainty from the litera-

ture. the interpretation of the uncer-

tainty quoted should be stated if given

by the author. If the interpretation is

not known, a remark to this effect

is in order. This practice may induce

authors to use more explicit formula-

tions of their statements of uncertainty.

Standard Deviation and Standard Error

The terms standard deviation and

standard error should be reserved to

denote the canonical values for the

measurement process, based on consid-

erable recent experience with the mea-

surement process or processes involved.

When there is insufficient recent ex-

perience, an estimate of the standard

error (standard deviation) must of ne-

cessity be computed by recognized sta-

tistical procedures from the same mea-

surements as the reported value itself.

To avoid possible misunderstanding, in

such cases, the term “computed (or

estimated) standard error” ("computed

standard deviation") should be used. A
formula for calculating this computed

standard error is given in the section

below for the case of “Neither system-

atic error nor imprecision negligible.”

Uncertainties of Accepted Values of

Fundamental Constants or

Primary Standards

If the uncertainty in the accepted

value of a national primary standard or

of some fundamental constant of na-

ture (for example, in the volt as main-

tained at the National Bureau of Stan-

dards, or in the acceleration of gravity

g on the Potsdam basis) is an important

source of systematic error affecting the

measurement process, no allowance for

possible systematic error from this

source should be included ordinarily

in evaluating overall bounds to the sys-

tematic error of the measurement proc-

ess. Since the error concerned, what-

ever it is, affects all results obtained

by the method of measurement in-

volved, to include an allowance for this

error would be to make everybody’s

results appear unduly inaccurate rela-

tive to each other. In such instances

one should state: (i) that measurements

obtained by the process concerned are

expressed in terms of the volt (or the

kilogram, or other unit) “as maintained

at the National Bureau of Standards,”

or (ii) that the indicated bounds to the

systematic error of the process are ex-

clusive of the uncertainty of the stated

value adopted for some particular con-

stant or quantity. An example of the

latter form of statement is:

. . . neglecting the uncertainty of the value

6 6256 X 10'” joule seconds adopted for

Planck’s constant.

Systematic Error and Imprecision

Both Negligible

In this case the reported result

should be given, after rounding, to rhe

number of significant figures consist-

ent with the accuracy requirements of

the situation, together with an explicit

statement of its accuracy. An example

is:

. . . the wavelengths of the principal visible

lines of mercury- 198 have been measured
relative to the 6057.802106 A (angstrom

units) line of krypton-98, and their values

in vacuum are

5792.2685 A
5771.1984 A
5462.2706 A
4359.5625 A
4047.7146 A

correct to eight significant figures.

It needs to be emphasized that if no

statement of accuracy or precision ac-

companies a reported number, then, in

accordance with the usual conventions

governing rounding, this number will

ordinarily be interpreted as being ac-

curate within unit in the last signif-

icant figure given; that is, it will be

understood that its inaccuracy before

rounding was less than ^ 5 units in the

next place. The statement “correct to

eight significant figures" is included ex-

plicitly in the foregoing example, rather

than left to be understood in order to

forestall any concern that an explicit

statement of lesser accuracy was in-

advertently omitted.

Systematic Error Not Negligible,

Imprecision Negligible

When the imprecision of a result is

negligible, but the inherent systematic

error of the measurement process con-

cerned is not negligible, then the fol-

lowing rules are recommended:

1 ) Qualification of a reported result

should be limited to a single quasi-

absolute type of statement that places

bounds on its inaccuracy.

2) These bounds should be stated to

no more than two significant figures.

3) The reported result itself should

be given (that is, rounded) to the last

place affected by the stated bounds

(unless it is desired to indicate and

preserve such relative accuracy or pre-

cision of a higher order that it may
possess for certain particular uses).

4) Accuracy statements should be

given in sentence form in all cases,

except when a number of results of

different accuracies are presented, for

example, in tabular arrangement. If it

is necessary or desirable to indicate

the respective accuracies of a number

of results, the results should be given

in the form a ± b (or a 1^, if neces-

sary) with an appropriate explanatory

remark (as a footnote to the table,

or incorporated in the accompanying

text) to the effect that the ^b. or 1^,

signify bounds to the systematic errors

to wfiich the a’s may be subject.

5) The fact that the imprecision is

negligible should be stated explicitly.

The particular form of the quasi-

absolute type of statement employed

in a given instance will depend ordi-

narily on personal taste, experience,

current and past practice in the field

of activity concerned, and so forth.

Some examples of good practice are:

... is (are) not in error by more than 1

part in (x).

. . . is (are) accurate within ± (x units)

[or ± (x) percent).

. . . is (are) telieved accurate within

( ).

Positive wording, as in the first two

of these quasi-absolute statements, is

appropriate only when the stated

bounds to the possible inaccuracy of

the reported value are themselves relia-

bly established. However, when the in-

dicated bounds are somewhat conjec-

tural, it is desirable to signify this

fact (and put the reader on guard) by

inclusion of some modifying expres-

sion such as “believed,” “considered.”

“estimated to be,” “thought to be,” and
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so forth, as exemplified by the third of

the foregoing examples.

The term uncertainly may sometimes

be used effectively to achieve a concise-

ness of expression otherwise difficult or

impossible to attain. Thus, one might

make a statement such as:

The uncertainties in the above values

are not more than 0.5 °C in the range

0°C to 1100°C, and then increase to

2°C at USO’C,

or

The uncertainty in this value does not

exceed . . . excluding (or, including) the

uncertainty of ... in the value . . . adopted
for the (reference standard involved).

A statement giving numerical limits

of uncertainty as in the above should

be followed by a brief discussion tell-

ing how the limits were derived.

Finally, the following forms of quasi-

absolute statements are considered poor

practice, and are to be avoided:

The accuracy of ... is 5 percent.

The accuracy of ... is i 2 percent.

These are presumably intended to

mean that the result concerned is not

inaccurate, that is. not in error, by

more than 5 percent or 2 percent, re-

spectively, but they explicitly state the

opposite.

Neither Systematic Error Nor

Imprecision Negligible

When neither the imprecision nor the

systematic error of a result are negligi-

ble, then the following rules are rec-

ommended:

1) A reported result should be quali-

fied by a quasi-absolute type of state-

ment that places bounds on its sys-

tematic error, and a separate statement

of its standard error or its probable

error, or of an upper bound thereto,

whenever a reliable determination of

such value or bound is available. Other-

wise a computed value of the standard

error, or, probable error, so designated,

should be given together with a state-

ment of the number of degrees of

freedom on which it is based.

2) The bounds to its systematic error

and the measure of its imprecision

should be stated to no more than two

significant figures.

3) The reported result itself should

be stated at most to the last place af-

fected by the finer of the two qualify-

ing statements (unless it is desired to

indicate and preserve such relative ac-

curacy or precision of a higher order

that it may possess for certain particu-

lar uses).

4)

The qualification of a reported

result with respect to its imprecision

and systematic error should be given

in sentence form, except when results

of different precision or with different

bounds to their systematic errors are

presented in tabular arrangement. If

it is necessary or desirable to indicate

their respective imprecisions or bounds

to their respective systematic errors,

such information may be given in a

parallel column or columns, with ap-

propriate identification.

Here, and in the next section, the

term standard error is to be under-

stood as signifying the standard devia-

tion of the reported value itself, not as

signifying the standard deviation of the

single determination (unless, of course,

the reported value is simply the result

of a single determination).

The above recommendations should

not be construed to exclude the pres-

entation of a quasi-abolute type of state-

ment placing bounds on the inaccuracy,

that is. on the overall uncertainty, of a

reported value, provided that separate

statements of its imprecision and its

possible systematic error are included

also. To be in good taste, the bounds

indicating the overall uncertainty

should not be numerically less than the

corresponding bounds placed on the

systematic error outwardly increased by

at least three times the standard error.

The fourth of the following examples

of good practice is an instance at

point:

The standard errors of these values do
not exceed 0.(X)0004 inch, and their sys-

tematic errors are not in excess of 0.00002

inch.

The standard errors of these values are

less than {x units), and their systematic er-

rors are thought to be less than ^ (y

units). No additional uncertainty is as-

signed for the conversion to the chemical

scale since the adonted conversion factor

is taken as 1.000275 exactly.

. . . with a standard error of (x units),

and a systematic error of not more than

^ (y units).

. . . with an overall uncertainty of ^ 3

percent based on a standard error of 0.5

percent and an allowance of 1.5 percent

for systematic error.

When a reliably established value for

the relevant standard error is available,

and the dispersion of the present mea-

surements is in keeping with this ex-

perience, then this canonical value of

the standard error should be used (5).

If such experience indicates that the

standard error is subject to fluctuations
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greater than the intrinsic variation of

such a measure, then an appropriate

upper bound should be given, for ex-

ample, as in the first two of the above

examples, or by changing “a standard

error . .
.” in the third and fourth

examples to “an upper bound to the

standard error . .
.”

When there is insufficient recent

experience with the measurement proc-

esses involved, an estimate of the

standard error must of necessity be

computed by recognized statistical pro-

cedures from the same measurements

as the reported value itself. It is

essential that such computations be

carried out according to an agreed-

upon standard procedure, and the results

thereof presented in sufficient detail to

enable the reader to form his own judg-

ment, and make his own allowances

for their inherent uncertainties. To
avoid possible misunderstanding, in such

cases, first, the term computed standard

error should be used; second, the esti-

mate of the standard error employed

should be that obtained from

estimate of standard error =

^

sum of squared residuals

where n is the (effective) number of

completely independent determinations

of which a is the arithmetic mean (or

other appropriate least-squares adjusted

value) and v is the number of degrees

of freedom involved in the sum of

squared residuals (that is, the number

of residuals minus the number of fitted

constants or other indqjendent con-

straints on the residuals): and third, the

number of degrees of freedom should

be explicitly stated. If the reported

value a is the arithmetic mean, then:

estimate of standard error = (i*/n)V4

where

j* = £ (X. - d)'/(n - 1)
i—

1

and n is the number of completely in-

dependent determinations of which a is

the arithmetic mean. For example:

. . . which is the arithmetic mean of (n)

independent determinations and has a stan-

dard error of . . .

. . . with an overall uncertainty of

* 5.2 km/sec based on a standard error

of 1.5 km/ sec and estimated bounds of

0.7 km/sec on the systematic error.

(The figure 5.2 is equal to 0.7 plus 3

times 1.5.)

or, if based on a computed standard

error.

The computed probable error (or. stan-

dard error) of these values is (x units).



based on (») degrees of freedom, and the

systematic error is estimated to be less than

2: (y units).

. . . with an overall uncertainty of ±: 7

km/sec derived from bounds of :± 0.7

km/ sec on the systematic error and a com-
puted standard error of 1.5 km/sec based
on 9 degrees of freedom. [The number
7 IS approximately equal to 0.7 + (4.3 x
1.5), where 4 3 is the value of Student's /

for 9 degrees of freedom exceeded in ab-

solute value with 0 002 probability. As
I' — X, ; ( i') — 3.090.]

When the reported value is the result

of a complex measurement process

and is obtained as a function of sev-

eral quantities whose standard errors

have been computed, these several

quantities and their standard errors

should usually be reported, together

with a description of the method of

computation by which the standard

errors were combined to provide an

overall estimate of imprecision for the

reported value.

Systematic Error NegiigiMe,

Imprecision Not Negligible

When the systematic error of a result

is negligible but its imprecision is not,

the following rules are recommended:

1) Qualification of a reported value

should be limited to a statement of its

standard error or of an upper bound

thereto, whenever a reliable determina-

tion of such value or bound is avail-

able. Otherwise a computed value of

the standard error, so designated,

should be given together with a state-

ment of the number of degrees of

freedom on which it is based.

2) The standard error or upper

bound thereto, should be stated to not

more than two significant figures.

3) The reported result itself should

be stated at most to the last place af-

fected by the stated value or bound

to its imprecision (unless it is desired

to indicate and preserve such relative

precision of a higher order that it may
possess for certain particular uses).

4) The qualification of a reported

result with respect to its imprecision

should be given in sentence form, ex-

cept when results of different precision

are presented in tabular arrangement

and it is necessary or desirable to indi-

cate their respective imprecisions in

which event such information may be

given in a parallel column or columns,

with appropriate identification.

5) The fact that the systematic er-

ror is negligible should be stated ex-

plicitly.

The above recommendations should

not be construed to exclude the pres-

entation of a quasi-absolute type of

statement placing bounds on its possible

inaccuracy, provided that a separate

statement of its imprecision is included

also. To be in good taste, such bounds

to Its inaccuracy should be numeri-

cally equal to at least three times the

stated standard error. The fourth of

the following examples of good practice

is an instance at point.

The standard errors of these values are

less than (x units).

. . . with a standard error of (x units).

. . . with a computed standard error of

(x units) based on (•-) degrees of freedom.

. . . with an overall uncertainty of i: 4.5

km^sec derived from a standard error of

1.5 km 'sec. (The figure 4.5 is equal to

3 X 1.5.)

or, if based on a computed standard

error,

. . . with an overall uncertainty of :± 6.5

km^sec derived from a computed standard

error of 1.5 km/sec (based on 9 degrees

of freedom). (The number 6.5 is equal to

4.3 X 1.5. where 4.3 is the value of Stu-

dent’s I for 9 degrees of freedom ex-

ceeded in absolute value with 0.002 prob-
ability. As —> oc, r no: (v) —« 3.090.)

The remarks with regard to a com-
puted standard error in the preceding

section apply with equal force to the

last two examples above.

Conclusion

The foregoing recommendations call

for fuller and sharper detail than is

general in common pactice. They
should be regarded as minimum stan-

dards of good practice. Of course, many
instances require fuller treatment than

that recommended here.

Thus, in the case of determinations

of the “fundamental physical con-

stants” and other basic properties of

nature, the author or authors should

give a detailed account of the various

components of imprecision and sys-

tematic error, and list their respective

individual magnitudes in tabular form,

so that (i) the state of the art will be

more clearly revealed, (ii) each individ-

ual user of the final result may decide

for himself which of the indicated com-

ponents of imprecision or systematic

error are, or are not. relevant to his

use of the final result, and (iii)—most

important—the final result itself or its

uncertainty can be modified appropri-

ately in the light of later advances. This

is, and has long been, the practice fol-

lowed in the best reports of funda-

mental studies, but current efforts to
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prepare critically evaluated standard

reference data have revealed that far

too great a fraction of the data in the

scientific literature “cannot be criti-

cally evaluated because the minimum
of essential information is not present”

«5).
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usually unknown in advance, and the statisucal

uncertainty of the final results must therefore

be expressed entirely in terms of quantities

derived from the data of the experiment

itself.

5. The control chart is an invaluable toot lo

providing justification for the use of a ca-

nonical value of the standard error. See. for

example. ASTM Manual on Quality Control

of Materials (American Soaety for Testing

and Materials, Phtladephia, 1951).

6. L. M. Branscomb. •‘TTie misinformauon ex-

plosion: Is the literature worth reviewing^.’*

a talk presented to the Philosophical Society

of Washington, 17 November 1967, and to

be published in Scientific Research.



EXPRESSIONS OF IMPRECISION,
SYSTEMATIC ERROR,

AND
UNCERTAINTY ASSOCIATED
WITH A REPORTED VALUE

HARRY H. KU, National Bureau of Standards

T he work of a calibration laboratory

may be thought of as a sequence of

operations that result in the collection, stor-

age, and transmittal of information. In mak-
ing a statement of uncertainty of the result

of calibration, the calibration laboratory

transmits information to its clients on the

particular item calibrated.

It is logical, then, to require the trans-

mitted information to be meaningful and
unambiguous, and to contain all the rele-

vant information in the possession of the

laboratory. The information content of the

statement of uncertainty determines, to a
large extent, the worth of the calibrated

value.

A common deficiency in many statements
of uncertainty is that they do not convey
all the information a calibration laboratory

has to offer, information acquired through
much ingenuity and hard work. This deh-

ciency usually originates in two ways;

1. Loss of information through oversim-

plification, and

2. loss of information through the inability

of the laboratory to take into account in-

formation accumulated from ita past ex-

perience.

With the increasingly stringent demands
for improved precision and accuracy of cali-

bration work, calibration laboratories as a

whole just caiuiot afford such luxury.

Traceability to the national standards,

accuracy ratios, and class tolerance require-

ments are simplified concepts that aim to

achieve different degrees of accuracy re-

quirements. These concepts and the result-

ing statements are useful on certain occa-

sions, but fail whenever the demand is

exacting. The general practice of obliterat-

ing all the identifiable components of un-

certainty, by combining them into an over-

all uncertainty, just for the sadce of simplicity,

is another case in point. After all, if the

calibration laboratory reports all the per-

tinent information in separate components,
the user can always combine them or use

them individually, as he sees fit. On the

other hand, if the user is given only one

number, he can never disentangle this num-
ber into its various components. Since the

information buried under these oversimpli-

fied statements is available, and may well

be useful to sophisticated customers, such

practices result in substantial waste of ef-

fort and resources.

In calibrating an item by repeating the

same calibration procedure, the calibration

laboratory gains increments of information

about its calibration system. These incre-

ments of information are quantified and ac-

cumulated for the benefit of the calibration

laboratory. If the precision of the calibra-

tion process remains unchanged, the sta-

tistical measure of dispersion (s) - i.e.,

the standard deviations computed from these

sets of data - can be pooled together,

weighted by their respective degrees of

freedom. When many such increments of

information are combined, an accepted or

canonical value of standard deviation ( ^ )

is established. This established (canonicail)

value of standard deviation characterizes

the precision of the calibration process, and

is treasured information in any calibration

laboratory.
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Hence, the canonical value of standard
deviation is the quantification of informa-

tion accumulated from past experiences of

the calibration laboratory, and is an essen-

tial element of the statement of uncertainty.

The standard deviation (s) computed from

the current calibration is used to check the

precision of current work, and to add to the

pool of information on the process, but cer-

tainly does not represent all the informa-

tion available in the possession of an es-

tablished calibration laboratory. Only by
passing its accumulated information to the

users is the calibration laboratory perform-

ing a complete service.

STATEMENT OF UNCERTAINTY

In the preparation of a statement
of uncertainty, it is helpful to beau in mind
that:

1. The derivation of a statement of un-

certainty has as its foundation the work
done in the laboratory, and is based on
information accumulated from past experi-

ence, and

2. In generad, information is lost through
oversimplification, and demands for im-

proved precision and accuracy cannot be

met with simplified statements of uncer-

tainty.

Unless a statement of uncertainty is well

formulated and supported, it is difficult to

say what is meant by the statement, a dif-

ficulty frequently encountered. Since the

evaluation of uncertaiinty is part and par-

cel of the high standard of work of a cali-

bration laboratory, the statement of uncer-

tainty deserves all the attention required

to make the statement both realistic and
useful. To this end. Tables 1, 2 and 3 give

terms and expressions compiled as a ready

reference for those who are searching for

some appropriate format or wording, to car-

ry out the thoughts expressed. They sum-
marize the recommended practices on
expression of uncertainties as given in

Chapter 23 of NBS Handbook 91. A re-

vised version of this chapter with the title

“Expression of Uncertainties of Final Re-

sults” by Churchill Eisenhart may be found

in NBS Special Publication 300-1. Figure 1

gives a condensed summary of this

material. Tables 1, 2, and 3 give details of

forms of imprecision, systematic error,

and uncertainty statements.
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TABLE 1 - IMPRECISION STATEMENTS

Value

raportad Index or Measure af Error R«morlis

Precision of a mea-

surernent (cotibro-

hon) process

(o) Stondord deviation (rr) ol

0 Single determination (ob-

servotion)

O’ (or s with the associated degrees ol freedom') is ol

mom interest as on index of precision of the mea-

surement process If the overage of n such measure-

ments IS also reported, see (b) below.

Arithmetic mean
(in) o( n numberi

(b| Standard error (ff/-^n) of the

reported value

In >s of mom interest; the number n is olso essentioi

information; <7 assumed known '

(cj 2 sigmo limits

(d). 3 sigma limits

Commonly used bounds of imprecisions; usually used

when (T known, or when n torge

(e). Confidence intervol (indicote

one- or two-sided]

Data points assumed to be normally distributed, report

confidence coefficient (level) 100 (1 -cr)%. ’

(f) Half-width of confidence inter-

val (or confidence limits)

Some os (e) above; for symmetrical two-sided intervals;

an index to bounds ol imprecision t

(gl Proboble error of the reported

value

a
Probable error = .6745 -y/p lor normolly distributed

doto points when o known Use of o/y/n preferred

Incorrect if a not known

(h). Mean deviation, or overage

deviation, of o measurement from

the meon calculoted from the

sample

Limiting meon of mean deviation = ^

normolly distributed data points when o known

Use of a usually preferred.

(i). Any of the obove expressed

in percent, or ppm of

Stole what is being expressed in percent, eg., [o/y^n]

(100/ in j,Xn being 0 fairly constant volue.

m meons each com-

puted from n meo-

surements

(ll (b), (c), (d) and (f) above II the meosurements ore of equal precision and o un-

known, use

s_’«_L T s-|’ as estimate of o’ The no of de-
” m . ,isl

grees of freedom associated with sp is m(n-1 ).

(k) Sample coelf icient of variation

(v .4-)
In

or relative percent

(v X 100)

Appropriate when the m meons cover o wide range

and where the v's computed for Ihr m sets ore about

the some magnitude. Give rorsge of v's for the m
sets. The meons must be positive ond bounded away

from zero.

Weighted mean

wif,

I w, + w,

(1). Standard error {of’) of the

weighted mean
If w, = \/of^’ and w, = Vajj’. 'hen =

Not recommended when the tr's are not known and

ore estimated by s computed from small number ol

measurements.

An equation (theo-

retical or empirical)

filled to dolo points

by the method ol

least squares

(m). Standard deviotion computed

from the deviations (residuals) of

data points from the fitted curve

Report n, the number of data points, and k, the num-

ber of constants fitted,

»’=£
(y, -?j)V(a-ll),

isl

particular Value of s usually given in computer

prinl-«ut.

Constants (coeffi-

cients) in the equa-

tion fitted to the

data points by the

method of least

squoros

(n). Standard errors of the cooffi-

cients based on the standard de-

viation computed uryfer (m)

Standard errors usually given in computer pnni-out.

Report n ortd k as above. ’
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TABLE 1 - IMPRECISION STATEMENTS - (Continued)

Valw*

raportad Index or AAeosure of Error Remarks

A predicted point on

the curve y lot a

porticulor < g

(o| Stondord error (s*
)
of thepre-

dieted point

For the straight line cose, the computer print out gives

the vorionce-covarionce matrix
(

*"
)

Sy’ = 111 2S,jIo ‘iJ-Io’
'

Report n ond k.

A predicted obterv-

ed value lor a par-

ticular Xg

|p|. Standard error of the predict-

ed value of y

For the stroight line cose, ty^ = ty' s’ where sj’

ond s> are thot given in (o) and (m) respectively ’

Report n and k

Value ol function of

the arithmetic
means ol several

measured variables

(q). Standard error calculated by

the use of propagation of error

formulas

Appropriate when errors ol measurements are small

compared to the volues of variables measured Use

standard error ol the meons of the voriobles in the

formulas * Report number of measurements from

which these standard errors ore computed

Percentage or pro-

portion (r/ n), r and

n being counts

(r). Confidence limits of the true

proportion P

Procedures for obtoining exact ar>d approximate confi-

dence limits are discussed in Chapter 7, NBS Hand-

book 91. State one-sided or two-sided

TABLE 2 - SYSTEAAATIC ERROR ^ (BIAS) STATEMENTS

Value

reported Ifsdex or AAeoeure of Error Remarks

Numerical value re-

sulting from o mea-

surement process

Reotonoble bounds ascribed to

the value originating from:

(i)- systemotic error reliably es-

toblished

Detailed discussions ol systemotic errors are alwoys

helpful.

Positive wordirsg is appropriate:

*.
. . is not in error by more than .

- is accurate within ± . .

.’

(ii). systematic error estimoted

from experierKe or by judgment

Use modifier such as 'believed*, 'estimated*, 'consider-

ed', to signify the coniecturol nature of the statement.

(iii). cembinotion of a number of

elemental systematic errors

State explicitly the method of combination such os

'the simple sum of the bounds' or 'the square root of

the sum of squares'.

(iv). uncertainty in some funda-

mental constant

Give reference to the volue of constant used.

|v). uncertointy in colibrated

values

Ascertpin the meaning of the systematic and random

components of the urKertointy from the colibrotion

laboratory so that decisions on the uses of these com-

ponents con be mode from the correct interpretotions.

(vi) bios in the method of com-

putotion

Correct if feasible, or give the magniludei.
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TABLE 3 - UNCERTAINTY STATEMENTS

Value

reported Indei or Measure of error Remarks

Numerical value re-

sulting from o meo-

surement process

Bounds to inoccurocy;

(1) Systematic error and impre-

cision both negligible

Explicit expression of correctness to the last significant

figure, interpreted os being occurote within '/j units

in the last significant figure given

(2). Imprecision negligible. Bounds

on inaccuracy given to no more

than two significant figures.

Sentence form preferred such as given under remark

for (ij and (iij Footnote needed if bounds are given

in tabular form

(3). Systematic error negligible

Indei of precision (b), (g), (h), (i),

(k), or (n) stated to no more than

two significont figures

State explicitly the index used and give essential in-

formation associoted with the index Qualify index col-

culated by the word 'computed' Avoid using expressions

of the form o ^ b unless the meaning of b is explained

fully immediately following or in footnote

(3'). Systemotic error negligible

Bounds to imprecision (c), (d), (ej,

or (f) stated to no more than two

significant figures.

Same os under (3).

(4). Neither systemotic error nor

imprecision negligible. Two nu-

merics indicating bounds to sys-

tematic error and index of im-

precision respectively

|2) and (3) above separately stoted

(4'). Bounds to systematic error

and imprecision combined, indi-

cating the likely inoccurocy of the

volue

(2) ond (3') above where the two components either

have been previausly described, or exploined im-

mediotely following (or in footnote).

(5). Quoted from literature State reference and give author's interpretation of the

uncertainty; odd remark if meanirtg unknown or

ambiguous.

'
If a not known, use the computed stondord deviation s boted on k meosurements os on estimate of a, where

s’ = ^ 2 (li - it)’ The number (k-1
)

is the degrees of freedom associated with s.

i=l

’ For interpretation see Chapter I, NBS Hartdbook91, Experimontal Sfalistki, by M. G. Natrella, 1963.

* For details see Chapter 5 (straight line), and Chapter 6 (multivariate and polynamial), NBS Handbook 91

.

*
For details see 'Nates on the use of propogotion of error formulas', by Harry H. Ku, NBS Journal of Research, Vol.

70C, No. 4, October-December, 1966.

’ See 'Realistic Evaluatian af the Precision and Accuracy af Instrument Calibration Systems' by Churchill Eisenhart,

NBS Journal af Reseorch, Vol. 67C, No. 2, April-June, 1963, and 'Systematic Errors in Physical Constants' by W. J.

Youden, Physics Today 14, 1961.
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FIGURE 1 - SUMMARY OF RECOMMENDATIONS ON
EXPRESSIONS OF THE UNCERTAINTIES OF FINAL RESULTS

SYSTEMATIC ERROR AND
IMPRECISION BOTH NEGLIGIBLE
(CASE 1)

In this case, the reported result should

be given correct to the number of signifi-

cant figures consistent with the accuracy

requirements of the situation, together with

an explicit statement of its accuracy or

correctness.

SYSTEMATIC ERROR NOT
NEGLIGIBLE, IMPRECISION
NEGLIGIBLE (CASE 2)

(a) Qualification of a reported result

should be limited to a single quasi-absolute

type of statement that places bounds on its

inaccuracy;

(b) These bounds should be stated to no

more than two significant figures;

(c) The reported result itself should be

given (i.e., rounded) to the last place af-

fected by the stated bounds, unless it is

desired to indicate and preserve such rela-

tive accuracy or precision of a higher order

that the result may possess for certain par-

ticular uses;

(d) Accuracy statements should be given

in sentence form in all cases, except when
a number of results of different accuracies

are presented, e.g., in tabular arrangement
If it is necessary or desirable to indicate

the respective accuracies of a number of

results, the results should be given in the

form a b (or a^ if necessary) with an

appropriate explanatory remark (as a foot-

note to the table, or incorporated in the

accompanying test) to the effect that the

^ b, orl^ signify bounds to the errors

which the a’s may be subject.

(e) The fact that the Imprecision is negli-

gible should be stated explicity.

NEITHER SYSTEMATIC ERROR NOR
IMPRECISION NEGLIGIBLE (CASE 3)

(a) A reported result should be qualified

by: (1) a quasi-absolute type of statement

that places bounds on its systematic error;

and, (2) a separate statement of its stan-

dard error or of an upper bound thereto,

whenever a reliable determination of such

value or bound is available — otherwise, a
computed value of the standard error so

designated should be given, together with

a statement of a number of degrees of free-

dom on which it is based;

(b) The bounds to its systematic error

and the measure of its imprecision should

be stated to no more than two significant

figures;

(c) The reported result itself should be

stated, at most, to the last place adfected

by the finer of the two quailifying state-

ments, unless it is desired to indicate and
preserve such relative accuracy or preci-

sion of a higher order that the result may
possess for certain particulaj uses;

(d) The qualification of a reported result,

with respect to its imprecision and syste-

matic error, should be given in sentence

form, except when results of different preci-

sion or with different bounds to their sys-

tematic errors aire presented in tabular ar-

rangement If it is necesssuy or desirable

to indicate their respective imprecisions or

bounds to their respective systematic errors,

such information may be given in a psirallel

column or columns, with appropriate iden-

tification.

SYSTEMATIC ERROR NEGLIGIBLE,
IMPRECISION NOT NEGLIGIBLE
(CASE 4)

( a ) Quadification of a reported value should

be limited to a statement of its standard

error or of an upper bound thereto, when-
ever a reliable determination of such value

or bound is available. Otherwise, a com-
puted vadue of the standard error so desig-

nated should be given, together with a state-

ment of the number of degrees of freedom
on which it is based;

(b) The standard error, or upper bound
thereto, should be stated to not more than
two significant figures;

(c) The reported result itself should be
stated, at most, to the last place aiffected

by the stated value or bound to its impre-

cision, unless it is desired to indicate and
preserve such relative precision of a higher

order that the result may possess for cer-

tain particular uses;

(d) The qualification of a reported resiilt

with respect to its imprecision should be
given in sentence form, except when results

of different precision are presented in tabu-

lar arrangement and it is necessary or de-

sirable to indicate their respective impre-

cisions, in which event such iniformationmay

be given in a parallel column or columns,
with appropriate identificatioa

(e) The fact that the systematic error is

negligible should be stated explicitly.
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POSTSCRIPT

Over the intervening years since the publication of
Eisenhart's and Ku 's articles, it has become apparent that a

few additional comments may be useful. It is equally

apparent that a complete revision is neither necessary nor

desirable inasmuch as the major thrust and content of the

articles remain as valid and as appropriate as when first

written. For this reason, these comments are made as a

postscript.

Uncertainty Assessments Must Be Complete

The uncertainty of a reported value is meant to be a

credible estimate of the likely limits to its actual error, i.e.,

the magnitude and sign of its deviation from the truth. As
such, uncertainty statements must be based on as nearly

complete an assessment as possible. This assessment

process must consider every conceivable source of

inaccuracy in the result.

A measurement process generally consists of a very

complicated sequence of many individual unit operations

or steps. Virtually every step in this sequence introduces

a conceivable source of inaccuracy whose magnitude

must be assessed. These sources include:

• Inherent stochastic variability of the measurement

process;

• Uncertainties in standards and calibrated apparatus;

• Effects of environmental factors, such as variations in

temperature, humidity, atmospheric pressure, and power
supply voltage;

• Time-dependent instabilities due to gradual and subtle

changes in standards or apparatus;

• Inability to realize physical model because of

instrument limiutions;

• Methodology procedural errors, such as incorrect

logic, or misunderstanding what one is or should be

doing;

• Uncertainties arising from interferences, impurities,

inhomogeneity, inadequate resolution, incomplete

discrimination, etc.;

• Metrologist errors, such as misreading of an

instrument;

• Malfunctioning or damaged apparatus;

• Laboratory practice including handling techniques,

cleanliness, etc.; and

• Computational uncertainties as well as errors in

transcnption of data, and other calculational or anthme-
tical mistakes.

This list should not be interpreted as exhaustive, but

rather as illustrative of the most common genenc sources

of inaccuracy that may be present.

The various sources of inaccuracy are generally

classified into sources of imprecision (random
components) and sources of bias (fixed offsets). To which
category a particular source should be properly assigned

is often difficult and troublesome. In pan, this is because

many experimental procedures or individual steps in the

overall measurement process embody both systematic and

stochastic (random) elements. (For an alternative

discussion that questions the need for a clear cut

distinction between random and systematic components
of uncertainty, see I?].) One practical approach is to

classify the sources of inaccuracy according to how the

uncertainty is estimated. In this way, sources of

imprecision are considered to be those components which
can be and are estimated by a statistical analysis of

replicate determinations For completeness, the systematic

uncertainty components can be considered to be the

residual set of conceivable sources of inaccuracy that are

biased and not subject to random variability, and those

that may be due to random causes but cannot be or are not

assessed by statistical methods. The systematic category

includes sources of inaccuracy other than biases in order

to obtain a complete accounting of all sources of

inaccuracy in the measurement process. Hence, it is

meaningful to report a random uncertainty contribution,

only if one has a computed statistic for the magnitude of

its imprecision or random variation. Many sources of

inaccuracy may exist consisting of several components
from both the random and systematic categones and can

be assessed only after consideration of the more funda-

mental processes involved. The uncertainty in the

calibration of an instrument with a standard reference

matenal, for example, would have not only components
from the uncertainty in the standard itself, but also

uncertainty components arising from the use of the

standard in performing the calibration.

Assessment of Imprecision (Random Uncertainties)

Although the treatment and expressions of reporting

the imprecision of measurement results were adequately

covered in the original article, a number of points are of

sufficient importance to deserve reemphasis.

The only way to assess realistically the overall

imprecision is to make direct—or preferably, when
possible, indirect—replicate determinations [ 1 j

and

calculate an appropriate statistic such as the standard

error of the mean. It is extremely imponant to be definite

on what constitutes a “replicate determination" because

the extent to which conditions are allowed to vary freely

over successive “repetitions" of the measurement process

determines the scope of the statistical inferences that may
be drawn from measurements obtained [2, sec. 4.

1
). When

measurements of a particular quantity made on a single

occasion exhibit closer mutual agreement than

measurements made on different occasions so that

differences between occasions are indicated, the value of

the computed sundard error of the mean of all the

measurements obtained by lumping all of the

measurements together will underestimate the actual

sundard error of the mean. A more realistic value is

given by taking the arithmetic means of the

measurements obtained on the respective occasions as the

replicate determinations and calculating the standard error

of their mean in the usual way (3, sec. 3.5].

In many situations, it may not be possible or feasible

because of time and cost constraints to perform a

sufficient number of completely independent determina-

tions of the measurement result. For results derived from

several component quantities, the individual imprecision

estimates must be propagated to obtain the imprecision of

the final result. It must be emphasized, however, that
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these estimates of imprecision should not be based

exclusively on the information denved from just the

present measurements. Presently derived information

should be added to the information accumulated in the

past on the imprecision of the measurement process. In

this way, more realistic and reliable canonical values of

the imprecision statistics may be established over time.

Ideally, every major step or component of the

measurement process should be independently assessed.

This would include not only the variability inherent in

the particular measurement of concern, but also the

imprecision ansing from corrections, calibration factors,

and any other quantities that make up the final result.

Assessment of Systematic Uncertainties

Although a general guideline for the approach to the

assessment of systematic uncertainties can be formulated,

there are, unfortunately, no rules to objectively assign a

magnitude to them. For the most part, it is a subjective

process. Their magnitudes should preferably be based on
expenmental verification, but may have to rely on the

judgment and expenence of the metrologist. In general,

each systematic uncertainty contribution is considered as

a quasi-absolute upper bound, overall or maximum limit

on its inaccuracy. Its magnitude is typically estimated in

terms of an interval from plus to minus 6 about the mean
of the measurement result. By what method then should

the magnitude of these maximum limits be assigned? It

may be based on comparison to a standard, on
experiments designed for the purpose (4), or on
venfication with two or more independent and reliable

measurement methods. Additionally, the limits may be

based on judgment, based on experience, based on
intuition, or based on other measurements and data. Or
the limits may include combinations of some or all of the

above factors. Whenever possible, they should be

empirically derived or verified. The reliability of the

estimate of the systematic uncertainty will largely depend
on the resourcefulness and ingenuity of the metrologist.

The Need for an Orerall Uncertainty Statement

Without deprecating the perik of shorthand expres-

sions, there is often a need for an overall uncertainty

statement which combines the imprecision and systematic

uncertainty components. Arguments that it is incorrect

from a theoretical point of view to combine the

individual components in any fashion are not always

practical. First, an approach which retains all details is

not amenable for large compilations of results from
numerous sources. And second, this approach shifts the

burden of evaluating the uncertainties to users. Many
users need a single uncertainty value resulting from the

combination of all sources of inaccuracy. These users

believe, and nghtly so, that this overall estimate of

inaccuracy can be most appropnately made by the person

responsible for the measurement result. It must be

emphasized, however, that there is no one clearly

superior appropriate method for reporting an overall

uncertainty, and that the choice of method is somewhat
arbitrary. Several methods are commonly employed |S,6].

One method is to add linearly all components of the

systematic uncertainty and linearly add the total to the

imprecision estimate. Since the individual systematic un-

cenainties (6^ are considered to be maximum limits, it

logically should be added to an imprecision estimate at a

similar confidence level. That is, for example, the overall

uncertainty u may be given by

<?

u = (t„(a)ls + Z S,

7=1

where s is the computed standard error based on v

degrees of freedom, r„(a) is the Student-r value

corresponding to a two-tail significance level of a = 0.05,

0.01, or 0.001 (depending on the practice in the

measurement field concerned), and 6^ is the magnitude of

the estimated systematic uncertainty for each of the

identified q systematic uncertainty components. This

approach probably overestimates the inaccuracy, but can

be considered as an estimate of the maximum possible

limits. For example, if someone estimated that five contn-

butions of about equal magnitude made up the total

systematic error, that person would have to be very

unlucky if all five were plus, or all five were minus. Yet,

if there was one dominant contnbutor, it might be a very

valid approximation.

Two other approaches have also been widely used.

These methods add in quadrature all of the systematic

uncertainty components, and either add the resulting

quantity linearly to the standard error estimate.

7=1

or add it in quadrature to the standard error estimate,

+ I
7=1

TTiese are frequently considered (erroneously) to

correspond to a confidence level with /*=68%.

In another method, often termed the PTB approach [6],

the component systematic uncertainties are assumed to be

independent and distributed such that all values within

the estimated limits are equiprobable (rectangular or

uniform distribution) [8]. With these assumptions, the

rectangular systematic uncertainty distributions can be

convoluted to obtain a combined probability distnbution

for which the variance may be computed. TTiis may then

be combined in quadrature with that for the random
uncertainty. In its simplest form, the uncertainty

components are combined to form an overall uncertainty

by

u = k + (1/3) I 5^^ .

7=1

where k is customarily taken as 2 or 3. The above simple

form is not appropriate when one of the component 6y’s is

much larger than the others; in such a case it will be

more informative to keep that component separate from

the others and add it linearly.
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A CoBcladiag Tlioagiit

If there is one fundAinenul proposition for the expres-

sion of unceruinties, it is

The information content of the statement of

uncertainty determines, to a large extent, the worth of

the final result.

This information content can be maximized by following

a few simple principles;

BE EXPLICIT

PROVIDE DETAILS

DONT OVERSIMPLIFY

When an overall uncertainty is reported, one should

explicitly state how the separate components were
combined. In addition, for r^ul^ of primary importance,

a detailed disctmion and complete specification of all of

the separate uncertainty components is still required. In

this way, some users will benefit from having the

metrologist’s »timate of the overall uncertainty, while

more sophisticated users will still have acc^ to dl of the

information n^emry for them to evaluate, combine, or

use the uncertainties as they see fit.
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FOREWORD

When the National Bureau of Standards was established more than 80

years ago, it was given the specific mission of aiding manufacturing
and commerce. Today, NBS remains the only Federal laboratory with this
explicit goal of serving U.S. industry and science. Our mission takes
on special significance now as the country is responding to serious
challenges to its industry and manufacturing— challenges which call for

government to pool its scientific and technical resources with industry
and universities.

The links between NBS staff members and our industrial colleagues
have always been strong. Publication of this new Industrial
Measurement Series, aimed at those responsible for measurement in

industry, represents a strengthening of these ties.

The concept for the series stems from the joint efforts of the

National Conference of Standards Laboratories and NBS. Each volume
will be prepared jointly by a practical specialist and a member of the

NBS staff. Each volume will be written within a framework of

industrial relevance and need.

This publication is an addition to what we anticipate will be a

long series of collaborative ventures that will aid both industry and
NBS.

Ernest Ambler, Director

D- iii



INTRODUCTION

This paper was published originally as a chapter in the book
entitled "Quality Assurance Practices for Health Laboratories".* It is

for that reason that the examples used as illustrations are taken from
health-related fields of research. However, the statistical concepts
and methods presented here are entirely general and therefore also
applicable to measurements originating in physics, chemistry,
engineering, and other technical disciplines. The reader should have
no difficulty in applying the material of this paper to the systems of
measurement in his particular field of activity.

J. Mandel
January, 1986

J. Mandel and L.F. Nanni , Measurement
Practices for Health Laboratories.
Health Association; 1978: 209-272.1244

Evaluation Quality Assurance
Washington: American Public

p.
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Measurement

Evaluation

J. Mandel {principal author), and L. F. Nanni.

Basic Statistical Concepts

Random variables

This chapter is concerned with the evaluation of measurements by

means of statistical methods. This qualification is important, for the total

evaluation of measurements involves many different points of view. What
differentiates the statistical viewpoint from all others is that each measure-

ment is considered as only one realization of a hypothetical infinite popu-

lation of similar measurements. Although, in general, all members of this

population refer to the measurements of the same property on the same
sample (e.g., the glucose content of a given sample of serum), they are not

expected to be identical. The differences among them are attributable to

chance effects, due to unavoidable fluctuations in many of the conditions sur-

rounding the measuring process. Alternatively, the members of the popu-

lation of measurements may refer to different samples, or different individ-

uals. Thus, one may consider the glucose content of serum of all healthy indi-

viduals in a certain age range. In such cases, the observed differences among
the measured values include what is referred to as sampling error, meaning
the differences in the measured property among the members of the popu-

lation of samples or individuals. A variable whose value is associated with a

statistical population is called a random variable or variate

.

Frequency distribution and histograms

A mathematical representation can be made of a statistical population,

such as the hypothetical infinite population of measurements just mentioned.

To obtain this representation, called ^.frequency distribution, one divides all

the measurements in the population into group intervals and counts the num-
ber of measurements in each interval. Each interval is defined in terms of its

lower and upper limit, in the scale in which the measurement is expressed.

Since in practice one is always limited to a statistical sample, i.e., a finite

number of measurements, one can at best only approximate the frequency

distribution. Such an approximation is called a. histogram. Figure 4.1 contains

a histogram of glucose values in serum measurements on a sample of 2,197

individuals. It is worth noting that the frequency tends to be greatest in the

vicinity of the mean and diminishes gradually as the distance from the mean



HISTOGRAM FOR GLUCOSE IN SERUM

Fig. 4.1

.

Histogram of glucose serum values on a sample of 2,197 individuals, with a

range of 47.5-157.5 mg/dl and a mean of 100.4 mg/dl.

increases. The grouped data on which the histogram is based are given in

Table 4. 1

.

Population parameters and sample estimates

Random samples

The sample of individuals underlying the histogram in Table 4. 1 is rather

large. A large size, in itself, does not necessarily ensure that the histogram’s

characteristics will faithfully represent those of the entire population. An ad-

ditional requirement is that the sample be obtained by a random selection

from the entire population. A random selection is designed to ensure that

each element of the population has an equal chance of being included in the

sample. A sample obtained from a random selection is called a random
sample, although, strictly speaking, it is not the sample but the method of

obtaining it that is random. Using the concept of a random sample, it is pos-

sible to envisage the population as the limit of a random sample of ever-in-

creasing size. When the sample size N becomes larger and larger, the charac-

teristics of the sample approach those of the entire population. If the random
sample is as large as the sample used in this illustration, we may feel con-

fident that its characteristics are quite similar to those of the population.
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Table 4.1. Grouped Data for Glucose in Serum

Glucose

(mg/dl)

Number of

individuals

Glucose

(mg/dl)

Number of

individuals

47.5 1 107.5 313

52.5
“)

112.5 220

57.5 117:5 132

62.5 3 122.5 50

67.5 12 127.5 26

72.5 20 132.5 8

77.5 52 137.5 6

82.5 118 142.5 4

87.5 204 147.5 1

92.5 281 152.5 0

97.5 351 157.5 1

102.5 390

Total number of individuals: 2,197

Thus, upon inspection of Table 4.1, we may feel confident that the mean se-

rum glucose for the entire population is not far from 100.4 mg/dl. We also

may feel confident in stating that relatively very few individuals, say about 1

percent of the entire population, will have serum glucose values of less than

70 mg/dl. Our confidence in such conclusions (which, incidentally, can be

made more quantitative), however, would have been much less had all of the

available data consisted of a small sample, say on the order of five to 50 indi-

viduals. Two such sets of data are shown in Table 4.2. Each represents the

serum glucose of ten individuals from the population represented in Table

4.1. The mean glucose contents of these samples are 107.57 and 96.37 mg/dl.

respectively. If either one of these samples was all the information available

Table 4.2. Two Small Samples of Glucose in Serum

Sample I Sample II

Individual Glucose (mg/dl) Individual Glucose (mg/dl)

1 134.2 1 88.2

2 119.6 2 82.0

3 91.9 3 96.0

4 %.6 4 94.1

5 118.8 5 96.3

6 105.2 6 108.8

7 103.4 7 106.3

8 112.1 8 101.1

9 97.0 9 89.4

10 %.9 10 101.7

Average 107.57 Average %.37
Variance 179.44 Variance 70.48

Standard deviation 13.40 Standard deviation 8.40
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to US, what could we have concluded about the mean serum glucose of the

entire population? And, in that case, what could we have stated concerning

the percentage of the population having a serum glucose of less than 70

mg/dl?

Population parameters—general considerations

The answer to these and similar questions requires that we first define

some basic characteristics of a statistical sample and relate them to the char-

acteristics of the population. Fortunately, most populations can be charac-

terized in terms of very few quantities, called parameters

.

In many cases,

only two parameters are required, in the sense that these two parameters

contain practically all the pertinent information that is required for answer-

ing all useful questions about the population. In cases where more than two

parameters are needed, it is often possible to perform a mathematical opera-

tion, called a transformation of scale, on the measured values, which will

reduce the required number of parameters to two. The two parameters in

question are the mean and the standard deviation, measuring, respectively,

the location of the center of the population and its spread.

Sample estimates

Let Xi, X2 , . . . , Xv represent a sample ofN measurements belonging to

a single population. The sample mean is generally denoted by x and defined

by

Xi -H V2 + . . . + -ty _ 'IpCi

N ~ If

The sample variance is denoted by si and defined by

s
2
j*

I(.r, - .f)^

N -
1

( 4 . 1 )

(4 . 2 )

The sample standard deviation is denoted by 5j. and defined by

s_r=Vsl (
4 . 3 )

Table 4.2 contains, for each of the samples, the numerical values of .v. s'j..

and Sj..

Population parameters as limiting values of sample estimates

The quantities defined by Equations 4.1, 4.2, and 4.3 are not the popu-

lation parameters themselves but rather are sample estimates of these pa-

rameters. This distinction becomes apparent by the fact that they differ from

sample to sample, as seen in Table 4.2. However, it is plausible to assume
that as the sample size N becomes very large, the sample estimates become
more and more stable and eventually approach the corresponding population

parameters. We thus define three new quantities: the population mean, de-

noted by the symbol p.', the population variance

,

denoted by the symbol cr'l

or by the symbol Var(.r); and the population standard deviation, denoted by
cTj. Thus:
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(Tj. = V dl - Var (x) (4.4)

It is customary to denote population parameters by Greek letters (e.g., /u., cr)

and sample estimates by Latin letters (e.g., .r, 5). Another often used conven-
tion is to represent sample estimates by Greek letters topped by a caret (‘

);

thus X and a both denote a sample estimate of cr. It is apparent from the

above definitions that the variance and the standard deviation are not two
independent parameters, the former being the square of the latter. In prac-

tice, the standard deviation is the more useful quantity, since it is expressed
in the same units as the measured quantities themselves (mg/dl in our ex-

ample). The variance, on the other hand, has certain characteristics that

make it theoretically desirable as a measure of spread. Thus, the two basic

parameters of a population used in laboratory measurement are; (a) its

mean, and (b) either its variance or its standard deviation.

Sums of squares, degrees of freedom, and mean squares

Equation 4.2 presents the sample variance as a ratio of the quantities

S(jc, - x)^ and (N - 1). More generally, we have the relation:

^^=3
(
4 . 5 )

where MS stands for mean square, SS for sum of squares, and DF for de-

grees offreedom. The term “sum of squares” is short for “sum of squares of

deviations from the mean,” which is, of course, a literal description of the

expression S(jc, - xf, but it is also used to describe a more general concept,

which will not be discussed at this point. Thus, Equation 4.2 is a special case

of the more general Equation 4.5.

The reason for making the divisor N -
1 rather than the more obvious

N can be understood by noting that the N quantities

Xi - X, X2 - X, . . . , Xf^ - X

are not completely independent of each other. Indeed, by summing them we
obtain:

^ (x, - x) = lx, - Sx = Ixi - Nx (4.6)
i

Substituting for x the value given by its definition (Equation 4.1), we obtain:

V (x, - x) = Sx, - N ^ =0 (4.7)

This relation implies that if any {N - 1) of the N quantities (x, - x) are giv-

en, the remaining one can be calculated without ambiguity. It follows that

while there areN independent measurements, there are only N -
1 indepen-

dent deviations from the mean. We express this fact by stating that the

sample variance is based onN - \ degrees offreedom. This explanation pro-

vides at least an intuitive justification for using N -
1 as a divisor for the

calculation of s^. When N is very large, the distinction betweenN and N -
1

becomes unimportant, but for reasons of consistency, we always define the
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sample variance and the sample standard deviation by Equations 4.2 and

4.3.

Grouped data

When the data in a sample are given in grouped form, such as in Table

4. 1 , Equations 4. 1 and 4.2 cannot be used for the calculation of the mean and
the variance. Instead, one must use different formulas that involve the mid-

points of the intervals (first column of Table 4.1) and the corresponding fre-

quencies (second column of Table 4.1).

Formulas for grouped data are given below.

To diflferentiate the regular average (Equation 4.1) of a set of .r, values

from their “weighted average” (Equation 4.8), we use the symbol x (.r tilde)

for the latter.

^ f,x,

.v = (4.8)

^ f,(x, - x)^

c2 = _

X (4.9)

-
'

= v' si (4.10)

where / (the “frequency”) represents the number of individuals in the /th

interval, and .r, is the interval midpoint. The calculation of a sum of squares
can be simplified by “coding” the data prior to calculations. The coding con-
sists of two operations:

1) Find an approximate central value (e.g., 102.5 for our illustration) and
subtract it from each x,.

2) Divide each difference x, — Xp by a convenient value c, which is generally
the width of the intervals (in our case, c = 5.0).

Let the mean

The weighted average u is equal to (x - XoVc. Operation (1) alters neither the

variance nor the standard deviation. Operation (2) divides the variance by c-

and the standard deviation by c. Thus, “uncoding” is accomplished by multi-

plying the variance of u by and the standard deviation of u by c. The for-

mulas in Equations 4.8, 4.9, and 4. 10 are illustrated in Table 4.3 with the data

from Table 4.1.

We now can better appreciate the difference between population param-

eters and sample estimates. Table 4.4 contains a summary of the values of

the mean, the variance, and the standard deviation for the population (in this

case, the very large sample N = 2,197 is assumed to be identical with the

population) and for the two samples of size 10.
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Table 4 . 3 . Calculations for Grouped Data

X u f X u f

47.5 -1

1

1 107.5 1 313

52.5 -10 1 12.5 220

57.5 -9 T 117.5 3 132

62.5 -8 3 122.5 4 50

67.5 -7 12 127.5 5 26

72.5 -6 20 132.5 6 8

77.5 -5 52 137.5 7 6

82.5 -4 1 18 142.5 8 4

87.5 -3 204 147.5 9 1

92.5 281 152.5 10 0

97.5 -1 351 157.5 11 1

102.5 0 390

u = -0.4156 .r = 102.5 + 5u = 100.42

si = 5.9078 si = 25si = 147.70

- 2.4306 Ss = =
112.15

We first deal with the question: “How reliable is a sample mean as an

estimate of the population mean?” The answer requires the introduction of

two important concepts—the standard error of the mean and the method of

confidence intervals. Before introducing the latter, however, it is necessary

to discuss normal distribution

.

Standard error of the mean

The widely held, intuitive notion that the average of several measure-

ments is “better” than a single measurement can be given a precise meaning
by elementary statistical theory.

Let jc,, JC2, . . . , JCv represent a sample of size N taken from a population

of mean and standard deviation cr.

Let Xi represent the average of the N measurements. We can visualize a

repetition of the entire process of obtaining the N results, yielding a new av-

erage X2- Continued repetition would thus yield a series of averages i,, X2,

. . . . (Two such averages are given by the sets shown in Table 4 . 2 ). These
averages generate, in turn, a new population. It is intuitively clear, and can

readily be proved, that the mean of the population of averages is the same as

that of the population of single measurements, i.e., On the other hand, the

Table 4.4. Population Parameter and Sample Estimates (Data of Tables 4.1 and 4.2)

Source Mean (mg/dl) Variance (mg/dl)^ Standard Deviation (mg/dl)

Population® 100.42 147.70 12.15

Sample I 107.57 179.55 13.40

Sample II %.37 70.56 8.40

“We consider the sample of Table 4.1 as identical to the population.
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variance of the population of averages can be shown to be smaller than that

of the population of single values, and, in fact, it can be proved mathemati-

cally that the following relation holds:

Var(.v)
Var(Ar)

From Equation 4.12 it follows that

(4.12)

CTx
aj. =

Vn
(4.13)

This relation is known as the law of the standard error of the mean, an ex-

pression simply denoting the quantity ctj.. The term standard error refers to

the variability of derived quantities (in contrast to original measurements).

Examples are: the mean ofN individual measurements and the intercept or

the slope of a fitted line (see section on straight line fitting). In each case, the

derived quantity is considered a random variable with a definite distribution

function. The standard error is simply the standard deviation of this distribu-

tion.

Improving precision through replication

Equation 4. 13 justifies the above-mentioned, intuitive concept that aver-

ages are “better” than single values. More rigorously, the equation shows
that the precision of experimental results can be improved, in the sense that

the spread of values is reduced, by taking the average of a number of repli-

cate measurements. It should be noted that the improvement of precision

through averaging is a rather inefficient process; thus, the reduction in the

standard deviation obtained by averaging ten measurements is only v 10, or

about 3, and it takes 16 measurements to obtain a reduction in the standard

deviation to one-fourth of its value for single measurements.

Systematic errors

A second observation concerns the important assumption of random-
ness required for the validity of the law of the standard error of the mean.
The N values must represent a random sample from the original population.

If, for example, systematic errors arise when going from one set ofN meas-
urements to the next, these errors are not reduced by the averaging process.

An important example of this is found in the evaluation of results from differ-

ent laboratories. If each laboratory makes N measurements, and if the within-

laboratory replication error has a standard deviation of cr, the standard

deviation between the averages of the various laboratories will generally be

larger than a/\/N, because additional variability is generally found between
laboratories.

The normal distribution

Symmetry and skewness

The mean and standard deviation of a population provide, in general, a

great deal of information about the population, by giving its central location
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and its spread. They fail to inform us, however, as to the exact way in which

the values are distributed around the mean. In particular, they do not tell us

whether the frequency or occurrence of values smaller than the mean is the

same as that of values larger than the mean, which would he the case for a

symmetrical distribution. A nonsymmetrical distribution is said to be skew,

and it is possible to define a parameter of skewness for any population. As in

the case of the mean and the variance, we can calculate a sample estimate of

the population parameter of skewness. We will not discuss this matter fur-

ther at this point, except to state that even the set of three parameters, mean,

variance, and skewness, is not always sufficient to completely describe a

population of measurements.

The central limit theorem

Among the infinite variety of frequency distributions, there is one class

of distributions that is of particular importance, particularly for measure-

ment data. This is the class of normal, also known as Gaussian, distribu-

tions. All normal distributions are symmetrical, and furthermore they can be

reduced by means of a simple algebraic transformation to a single distribu-

tion, known as the reduced normal distribution

.

The practical importance of

the class of normal distributions is related to two circumstances; (a) many
sets of data conform fairly closely to the normal distribution; and (b) there

exists a mathematical theorem, known as the central limit theorem, which
asserts that under certain very general conditions the process of averaging

data leads to normal distributions (or very closely so), regardless of the

shape of the original distribution, provided that the values that are averaged

are independent random drawings from the same population.

The reduced form of a distribution

Any normal distribution is completely specified by two parameters, its

mean and its variance (or, alternatively, its mean and its standard deviation).

Let X be the result of some measuring process. Unlimited repetition of

the process would generate a population of values jc,, X2 , x^, .... If the fre-

quency distribution of this population of values has a mean fx and a standard

deviation of cr, then the change of scale effected by the formula

(T

will result in a new frequency distribution of a mean value of zero and a

standard deviation of unity. The z distribution is called the reduced form of

the original x distribution.

If, in particular, JC is normal, then z will be normal too, and is referred to

as the reduced normal distribution.

To understand the meaning of Equation 4.14, suppose that a particular

measurement jc lies at a point situated at k standard deviations above the

mean. Thus:

X = fjL + kcr
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Then, the corresponding :: value will be given by

__ _ (/X + k(j) - ^ ^
a

Thus the c value simply expresses the distance from the mean, in units of

standard deviations.

Some numerical facts about the normal distribution

The following facts about normal distributions are noteworthy and

should be memorized for easy appraisal of numerical data:

1) In any normal distribution, the fraction of values whose distance from the

mean (in either direction) is more than one standard deviation is approxi-

mately one-third (one in three).

2) In any normal distribution, the fraction of values whose distance from the

mean is more than two standard deviations, is approximately 5 percent

(one in twenty).

3) In any normal distribution, the fraction of values whose distance from the

mean is more than three standard deviations is approximately 0.3 percent

(three in one thousand).

These facts can be expressed more concisely by using the reduced form
of the normal distribution:

1) Probability that |z| > 1 is approximately equal to 0.33.

2) Probability that |z| > 2 is approximately equal to 0.05.

3) Probability that jzj > 3 is equal to 0.003.

The concept of coverage

If we define the coverage of an interval from A to to be the fraction of

values of the population falling inside this interval, the three facts (1), (2),

and (3) can be expressed as follows (where “sigma” denotes standard devia-

tion):

1) A plus-minus o/ie-sigma interval around the mean has a coverage of about

2/3 (67 percent).

2) A plus-minus rwo-sigma interval around the mean has a coverage of about

95 percent.

3) A plus-minus three-sigma, interval around the mean has a coverage of 99.7

percent.

The coverage corresponding to a ±z-sigma interval around the mean has

been tabulated for the normal distribution for values of z extending from 0 to

4 in steps of 0.01, and higher in larger steps. Tabulations of the reduced nor-

mal distribution, also known as the “normal curve,” or “error curve,” can

be found in most handbooks of physics and chemistry,* and in most text-

books of statistics. Since the coverage corresponding to z = 3.88 is 99.99

percent, it is hardly ever necessary to consider values of z larger than four.

Confidence intervals

A confidence interval aims at bracketing the true value of a population
parameter, such as its mean or its standard deviation, by taking into account
the uncertainty of the sample estimate of the parameter.

D-10



Let Xi, .Vo Vv represent a sample of size N from a population of

mean /x and standard deviation cr. In general fx and a are unknown, but can

be estimated from the sample in terms of .v and s, respectively.

Confidence intervals for the mean

A confidence interval for the mean /x is an interval, AB, such that we
can state, with a prechosen degree of confidence, that the interval AB brack-

ets the population mean fx.

For example, we see in Table 4.3 that the mean of either of the two sam-
ples of size 10 is appreciably diflferent from the (true) population mean
(100.42 mg/dl). But suppose that the first of the two small samples is all

the information we possess. We then would wish to find two values, A and
B, derived completely from the sample

,

such that the interval AB is likely to

include the true value (100.42). By making this interval long enough we can

always easily fulfill this requirement, depending on what we mean by “like-

ly.” Therefore, we first express this qualification in a quantitative way by
stipulating the value of a confidence coefficient

.

Thus we may require that

the interval shall bracket the population mean “with 95 percent con-

fidence.” Such an interval is then called a “95 percent confidence interval.”

The case of known cr .—We proceed as follows, assuming for the mo-
ment that although jx is unknown, the population standard deviation cr is

known. We will subsequently drop this restriction.

We have already seen that the population of averages, x, has mean p.

and standard deviation o-/

V

N. The reduced variate corresponding to x is

therefore:

^

O-/ V A

By virtue of the central limit theorem, the variable x generally may be

considered to be normally distributed. The variable z then obeys the reduced

normal distribution. We can therefore assert, for example, that the probabili-

ty that

-1.96<2<1.96 (4.16)

is 95 percent. Equation 4.16 can be written

-l.% <
^ ~ ^— < 1.96

(j/ \/N

or

x - 1.96 —^ < p< X + 1.96 (4.17)

Vn \Jn

The probability that this double inequality will be fulfilled is 95 percent.

Consequently, Equation 4.17 provides a confidence interval for the mean.

The lower limit A of the confidence interval is i - 1 .96 (t/\/~N\ its upper lim-

it B is x + 1 .96 (t/\/N. Because of the particular choice of the quantity 1 .96,

the probability associated with this confidence interval is, in this case, 95
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percent. Such a confidence interval is said to be a “95 percent confidence

interval,” or to have a confidence coefficient of 0.95. By changing 1.96 to

3.00 in Equation 4.17, we would obtain a 99.7 percent confidence interval.

General formula for the case of known a .—More generally, from the

table of the reduced normal distribution, we can obtain the proper critical

value Zf. (to replace 1.96 in Equation 4.17) for any desired confidence

coefficient. The general formula becomes

.f - Zf • ^ < i + Zf - (4.18)

\//V V'/V

Values of z^ for a number of confidence coefficients are listed in tables of

the normal distribution.

The length L of the confidence interval given by Equation 4.18 is

L-|.r + z,- ^ |-2z,- (4.19)

V v ' v'v v'A’

The larger the confidence coefficient, the larger will be z^. and also L. It

is also apparent that L increases with cr, but decreases as N becomes larger.

This decrease, however, is slow, as it is proportional to only the square root

of N. By far the best way to obtain short confidence intervals for an un-

known parameter is to choose a measuring process for which the dispersion

(7 is small—in other words, to choose a measuring process of high precision.

The case of unknown cr. Student's {distribution .—A basic difficulty as-

sociated with the use of Equation 4.18 is that cr is generally unknown. How-
ever, the sample of N values provides us with an estimate 5 of cr. This esti-

mate has N -
1 degrees of freedom. Substitution of 5 for cr in Equation 4. 18

is not permissible, since the use of the reduced normal variate z in Equation

4.15 is predicated on a knowledge of cr.

It has been shown, however, that if x and 5 are the sample estimates

obtained from a sample of size N

,

from a normal population of mean g. and

standard deviation cr, the quantity, analogous to Equation 4.15, given by

X - fl

s/ \' N
(4.20)

has a well-defined distribution, depending only on the degrees of freedom,
N - \, with which s has been estimated. This distribution is known as Stu-

dent’s t distribution with N -
1 degrees of freedom.

For cr unknown, it is still possible, therefore, to calculate confidence in-

tervals for the mean /x by substituting in Equation 4. 18 5 for cr, and tc for z^..

The confidence interval is now given by

i - /,

s

Vn
5

< fl < X + tc

V'iV
(4.21)

The critical value t^., for any desired confidence coefficient, is obtained

from a tabulation of Student’s t distribution. Tables of Student’s t values can
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be found in several references. ^ ^ The length of the confidence interval

based on Student’s / distribution is

L = ltr
'

(4.22)
N

For any given confidence coefficient, t(. will be larger than Zp, so that the

length of the interval given by Equation 4.22 is larger than that given by
Equation 4. 19. This difference is to be expected, since the interval now must

take into account the uncertainty of the estimate s in addition to that of i.

Applying Equation 4.21 to the two samples shown in Table 4.2, and
choosing a 95 percent confidence coefficient (which, for 9 degrees of free-

dom, gives tc
= 2.26), we obtain:

1) Eor the first sample;

107.57 - 2.26
13.40

VTo
< /JL< 107.57 + 2.26

13.40

Vlo

or

98.0 < /a < 117.2

The length of this interval is

117.2 - 98.0 = 19.2

2) For the second sample:

%.37 - 2.26
8.40

VTo
< /j, < %.37 + 2.26

8.40

VTo

or

90.4 < fx < 102.4

The length of this interval is

102.4 - 90.4 = 12.0

Remembering that the population mean is 100.4, we see that the confidence

intervals, though very different in length from each other, both bracket the

population mean. We also may conclude that the lengths of the intervals,

which depend on the sample size, show that a sample of size 10 is quite un-

satisfactory when the purpose is to obtain a good estimate of the population

mean, unless the measurement process is one of high precision.

Confidence intervals for the standard deviation

The chi-square distribution .—In many statistical investigations, the

standard deviation of a population is of as much interest, if not more, than

the mean. It is important, therefore, to possess a formula that provides a con-

fidence interval for the unknown population standard deviation a, given a

sample estimate s.
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If the number of degrees of freedom with which 5 is estimated is denoted

by V, a confidence interval for cr is given by the formula:

In this formula, the quantities X f and Xl are the appropriate upper and low-

er percentage points of a statistical distribution known as chi-square

,

for the

chosen confidence coefficient. These percentage points are found in several

references.

This formula can be illustrated by means of the two samples in Table

4.2. To calculate 95 percent confidence intervals for cr (the population stand-

ard deviation), we locate the limits at points corresponding to the upper and

lower 2.5 percentage points (or the 97.5 percentile and the 2.5 percentile) of

chi-square. From the chi-square table we see that, for 9 degrees of freedom,

the 97.5 percentile is 19.02, and the 2.5 percentile is 2.70. The 95 percent

confidence interval in question is therefore:

1) For the first sample:

13.40 < o- < 13.40
9

2.70

or

9.2 < (T < 24.5

2) For the second sample:

8.40 < a < 8.40

or

5.8 < cr < 15.3

Here again, both intervals bracket the population standard deviation 12.15,

but again the lengths of the intervals reflect the inadequacy of samples of

size 10 for a satisfactory estimation of the population standard deviation.

Tolerance intervals

In introducing the data of Table 4.1, we observed that it was possible to

infer that about 1 percent of the population has serum glucose values of less

than 70 mg/dl. This inference was reliable because of the large size of our

sample (N = 2,197). Can similar inferences be made from small samples,

such as those shown in Table 4.2? Before answering this question, let us first

see how the inference from a very large sample (such as that of Table 4.1)

can be made quantitatively precise.

The reduced variate for our data is
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.V
- X - 100.42

12.15<j

Making .V = 70 mg/dl, we obtain for the corresponding reduced variate:

70 - 100.42
: = = -2 50

12.15

If we now assume that the serum glucose data are normally distributed (i.e.,

follow a Gaussian distribution), we read from the table of the normal distribu-

tion that the fraction of the population for which z is less than -2.50 is

0.0062, or 0.62 percent. This is a more precise value than the 1 percent esti-

mate we obtained from a superficial examination of the data.

It is clear that if we attempted to use the same technique for the samples
of size 10 shown in Table 4.2, by substituting x for fx and s for cr, we may
obtain highly unreliable values. Thus, the first sample gives a z value equal

to (70 - 107.57)/13.40 or -2.80, which corresponds to a fraction of the popu-

lation equal to 0.25 percent, and the second sample gives z = (70 - 96.37)/

8.40 = -3.14, which corresponds to a fraction of the population equal to

0.08 percent. It is obvious that this approach cannot be used for small sam-
ples. It is possible, however, to solve related problems, even for small sam-

ples. The statistical procedure used for solving these problems is called the

method tolerance intervals.

Tolerance intervals for average coverages

Generally speaking, the method of tolerance intervals is concerned with

the estimation of coverages or, conversely, with the determination of inter-

vals that will yield a certain coverage. Let us consider an interval extending

from X - ks to X + ks, where k is any given value. The coverage correspond-

ing to this interval will be a random variable, since the end points of the inter-

val are themselves random variables. However, we can find ak value such

that, on the average, the coverage for the interval will be equal to any pre-

assigned value, such as, for example, 0.98. These k values, for normal distri-

butions, have been tabulated for various sample sizes and desired average

coverages.^’® As an illustration, we consider the first sample of size 10 given

in Table 4.2, where

i = 107.57, ^ = 13.40

For a coverage of 98 percent and 9 degrees of freedom, the tabulated value is

k = 3.053

Hence the tolerance interval that, on the average, will include 98 percent of

the population is

107.57 - (3.053)(13.40) to 107.57 + (3.053)(13.40)

or

66.7 to 148.5
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We can compare this interval to the one derived from the population itself

(for all practical purposes, the large sample of 2,197 individuals may be con-

sidered as the population). Using the normal table, we obtain for a 98 per-

cent coverage

100.42 - (2.326)( 12.15) to 100.42 + (2.326)( 12. 15)

or

72.2 to 128.7

The fact that the small sample gives an appreciably wider interval is due to

the uncertainties associated with the estimates x and s.

For a more detailed discussion of tolerance intervals, see Proschan.® Ta-

bles of coefficients for the calculation of tolerance intervals can be found in

Snedecor and Cochran^ and Proschan.®

Non-parametric tolerance intervals—order statistics

The tabulations of the coefficients needed for the computation of toler-

ance intervals are based on the assumption that the measurements from
which the tolerance intervals are calculated follow a normal distribution; the

table is inapplicable if this condition is grossly violated. Fortunately, one can

solve a number of problems related to tolerance intervals for data from any
distribution, by using a technique known as non-parametric or distribution-

free. The method always involves an ordering of the data. First one rewrites

the observation jc
1 ,^ 2 ,

. . . , jr.v in increasing order of magnitude. We will

note the values thus obtained by

'^(2)9 • • • » '^(.V)

For example, Sample I in Table 4.2 is rewritten as:

'Y(l)
= 91.9 -Te) ~ 105.2

'^(2)
“ 96.6 = 112.1

96.9 -T8) ~ 118.8

'^4)
~ 97.0 .r,9, = 119.6

-Ts)
= 103.4 .r,io, = 134.2

(1)’ -^2)’ are denoted as the first, secondThe values .tn), .r, 2 ), . . x^y) are denoted as the first, second, . . . , Nth order

statistic. The order statistics can now be used in a number of ways, depend-

ing on the problem of interest. Of particular usefulness is the following gener-

al theorem.

A general theorem about order statistics.—On the average, the fraction

of the population contained between any two successive order statistics

from a sample of size N is equal to
^ ^

.
The theorem applies to any con-

tinuous distribution (not only the Gaussian distribution) and to any sample

size N.

Tolerance intervals based on order statistics.—It follows immediately

from the above theorem that, on the average, the fraction of the population

contained between the first and the last order statistics (the smallest and the

largest values in the sample) is ^ |
.
For example, on the average, the frac-
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tion of the population contained between the smallest and the largest value

of a sample of size 10 is • The meaning of the qualification “on

the average” should be properly understood. For any particular sample of

size 10, the actual fraction of the population contained in the interval
N - I

Xi.\)
~

-'^(
1 )

will generally not be equal to . But if the average of those

fractions is taken for many samples of size /V, it will be close to
^ |

.

Tolerance intervals involving confidence coefficients

One can formulate more specific questions related to coverages by in-

troducing, in addition to the coverage, the confidence of the statement about

the coverage. For example, one can propose to find two order statistics such

that the confidence is at least 90 percent that the fraction of the population

contained between them (the coverage) is 95 percent. For a sample of size

200, these turn out to be the third order statistic from the bottom and the

third order statistic from the top (see Table A30 in Natrella^). For further

discussion of this topic, several references are recommended.'^-^ ®

Non-normal distributions and tests of normality

Reasons for the central role of the normal distribution in statistical theo-

ry and practice have been given in the section on the normal distribution.

Many situations are encountered in data analysis for which the normal distri-

bution does not apply. Sometimes non-normality is evident from the nature

of the problem. Thus, in situations in which it is desired to determine wheth-

er a product conforms to a given standard, one often deals with a simple di-

chotomy: the fraction of the lot that meets the requirements of the standard,

and the fraction of the lot that does not meet these requirements. The statisti-

cal distribution pertinent to such a problem is the binomial (see section on

the binomial distribution).

In other situations, there is no a priori reason for non-normality, but the

data themselves give indications of a non-normal underlying distribution.

Thus, a problem of some importance is to “test for normality.”

Tests of normality

Tests of normality should never be performed on small samples, be-

cause small samples are inherently incapable of revealing the nature of the

underlying distribution. In some situations, a sufficient amount of evidence

is gradually built up to detect non-normality and to reveal the general nature

of the distribution. In other cases, it is sometimes possible to obtain a truly

large sample (such as that shown in Table 4.1) for which normality can be

tested by “fitting a normal distribution” to the data and then testing the

“goodness of the fit.”®

Probability plots .—A graphical procedure for testing for normality can

be performed using the order statistics of the sample. This test is facilitated

through the use of “normal probability paper,” a type of graph paper on

which the vertical scale is an ordinary arithmetic scale and the horizontal
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scale is labeled in terms of coverages (from 0 to 100 percent), but graduated

in terms of the reduced z-values corresponding to these coverages (see sec-

tion on the normal distribution). More specifically, suppose we divide the

abscissa of a plot of the normal curve into N -t- 1 segments such that the area

under the curve between any two successive division points is
^

.

The

division points will be z ,, ^2^ • • • ^ the values of which can be determined
1 2

from the normal curve. Table 4.5 lists the values ^ ^

v
^

, in percent, in column 1, and the corresponding normal :: values in

column 2, for N = 10. According to the general theorem about order statis-

tics, the order statistics of a sample of size A^= 10 “attempt” to accomplish

just such a division of the area into N 1 equal parts. Consequently, the

order statistics tend to be linearly related to the z values. The order statistics

for the first sample of Table 4.2 are listed in column 3 of Table 4.5. A plot of

column 3 versus column 2 will constitute a “test for normality”: if the data

are normally distributed, the plot will approximate a straight line. Further-

more, the intercept of this line (see the section on straight line fitting) will be

an estimate of the mean, and the slope of the line will be an estimate of the

standard deviation.^ For non-normal data, systematic departures from a

straight line should be noted. The use of normal probability paper obviates

the calculations involved in obtaining column 2 of Table 4.5, since the hori-

zontal axis is graduated according to z but labeled according to the values

^7 , expressed as percent. Thus, in using the probability paper, the ten

order statistics are plotted versus the numbers

100
11

100 . . . 100
|0

1

1

or 9.09, 18.18, . . . , 90.91 percent. It is only for illustrative purposes that we
have presented the procedure by means of a sample of size 10. One would
generally not attempt to use this method for samples of less than 30. Even
then, subjective judgment is required to determine whether the points fall

along a straight line.

In a subsequent section, we will discuss transformations of scale as a

means of achieving normality.

The binomial distribution

Referring to Table 4. 1, we may be interested in the fraction of the popu-
lation for which the serum glucose is greater than, say, 1 10 mg/dl. A problem
of this type involves partitioning the range of values of a continuous variable

(serum glucose in our illustration) into two groups, namely: (a) the group of

individuals having serum glucose less than 110 mg/dl; and (b) the group of

individuals having serum glucose greater than 1 10 mg/dl. (Those having se-

rum glucose exactly equal to 110 mg/dl can be attached to one or the other

group, or their number divided equally among them.)
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Table 4 . 5 . Test of Normality Using Order Statistics®

Expected cumulative

areas” in percent

Reduced normal

variate

Order statistics

of sample

9.09 -1.335 91.9

18.18 -0.908 96.6

27.27 -0.604 96.9

36.36 -0.348 97.0

45.45 -0.114 103.4

54.54 0.114 105.2

63.64 0.348 112.1

72.73 0.604 118.8

81.82 0.908 119.6

90.91 1.335 134.2

Straight Line Fit of column 3 versus column 2:

Intercept = 107.6 = /i

Slope = 15.5 = &

^The example is merely illustrative of the method. In practice one would never test normality on a sample

of size 10. .

•’values of 100
~

r , where N = 10.N + 1

Suppose now that we have a random sample of only 100 individuals

from the entire population. What fraction of the 100 individuals will be found
in either group? It is seen that the binomial distribution has shifted the em-
phasis from the continuous variable (serum glucose) to the number ofindivid-
uals (or the corresponding fraction, or percentage) in each of the two
groups. There are cases in which no continuous variable was ever involved:

for example, in determining the number of times a six appears in throwing a

die. However, the theory of the binomial applies equally to both types of

situations.

The binomial parameter and its estimation

Let P represent the fraction (i.e., a number between zero and one) of

individuals in one of the two groups (e.g., serum glucose greater than 110

mg/dl) in the population. It is customary to represent the fraction for the oth-

er group by Q. Then it is obvious that Q -
1 - P. (If the fractions are ex-

pressed as percentages, we have percent Q = 100 - percent P.) For the

data in Table 4.1 and the dividing value 110 mg/dl, we can calculate P by
using the normal distribution:

The reduced value corresponding to 110 mg/dl is

no - 100.42

12.15
= 0.79

From the table of the normal distribution, we then obtain for P\

P = 0.215

Hence Q = \
- 0.215 = 0.785
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Let p represent the fraction of individuals having the stated character-

istic (serum glucose greater than 1 10 mg/dl) in the sample of size N; and let

q =
1 - /?. It is clear that for a relatively small, or even a moderately large

N, p will generally differ from P

.

In fact, p is a random variable with a well-

defined distribution function, namely the binomial.

The mean of the binomial (with parameter P) can be shown to be equal

to P. Thus

Eip) = P (4.24)

where the symbol E(p) represents the “expected value” ofp, another name
for the population mean. Thus the population mean of the distribution ofp is

equal to the parameter Ifp is taken as an estimate for P, this estimate will

therefore be unbiased.

Furthermore;

Var(/7) = (4.25)

Hence

o-p=
I
IS (4.26)

y N

The normal approximation for the binomial distribution

It is a remarkable fact that for a large N, the distribution of p can be

approximated by the normal distribution of the same mean and standard de-

viation. This enables us to easily solve practical problems that arise in con-

nection with the binomial. For example, returning to our sample of 100 indi-

viduals from the population given in Table 4.1, we have:

E(p) - 0.215

CTp
( 0 . 215 )( 0 . 785 )

100

= 0.0411

From these values, one may infer that in a sample of /V = 100 from the

population in question, the chance of obtaining p values of less than 0.13

(two standard deviations below the mean) or of more than 0.30 (two standard

deviations above the mean) is about 5 percent. In other words, the chances

are approximately 95 percent that in a sample of 100 from the population in

question the number of individuals found to have serum glucose of more
than 1 10 mg/dl will be more than 13 and less than 30.

Since, in practice, the value of P is generally unknown, all inferences

must then be drawn from the sample itself. Thus, if in a sample of 100 one
finds ap value of, say, 0.18 (i.e., 18 individuals with glucose serum greater

than 1 10 mg/dl), one will consider this value as an estimate for P, and con-

sequently one will take the value
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(^ 1

^
8)(1 - 0 . 18 )

'

"
100

= 0.038

as an estimate for cr^. This would lead to the following approximate 95 per-

cent confidence interval for P:

0.18 - (1.96)(.038) < P < 0.18 + (1.96)(.038)

or

0.10 < P < 0.25

The above discussion gives a general idea about the uses and usefulness

of the binomial distribution. More detailed discussions will be found in two
general references.

Precision and accuracy

The concept of control

In some ways, a measuring process is analogous to a manufacturing

process. The analogue to the raw product entering the manufacturing proc-

ess is the system or sample to be measured. The outgoing final product of the

manufacturing process corresponds to the numerical result produced by the

measuring process. The concept of control also applies to both types of proc-

esses. In the manufacturing process, control must be exercised to reduce to

the minimum any random fluctuations in the conditions of the manufacturing

equipment. Similarly, in a measuring process, one aims at reducing to a mini-

mum any random fluctuations in the measuring apparatus and in the environ-

mental conditions. In a manufacturing process, control leads to greater uni-

formity of outgoing product. In a measuring process, control results in high-

er precision, i.e., in less random scatter in repeated measurements of the

same quantity.

Mass production of manufactured goods has led to the necessity of inter-

changeability of manufactured parts, even when they originate from differ-

ent plants. Similarly, the need to obtain the same numerical result for a par-

ticular measurement, regardless of where and when the measurement was
made, implies that /oca/ control of a measuring process is not enough. Users

also require interlaboratory control, aimed at assuring a high degree of “in-

terchangeability” of results, even when results are obtained at different

times or in different laboratories.

Methods of monitoring a measuring process for the purpose of achiev-

ing “local” (i.e., within-laboratory) control will be discussed in the section

on quality control of this chapter. In the following sections, we will be con-

cerned with a different problem: estimating the precision and accuracy of a

method of measurement.

Within- and between-laboratory variability

Consider the data in Table 4.6, taken from a study of the hexokinase

method for determining serum glucose. For simplicity of exposition. Table

D-21



Table 4 .6 . Determination of Serum Glucose

Laboratory

Serum sample

A B C D

1 40.9^ 76.0 137.8 206.3

42.3 78.6 137.4 208.5

42.3 77.5 138.5 204.9

40.5 77.8 138.5 210.3

43.4 78.6 135.2 211.6

43.8 76.0 131.3 201.2

43.1 76.8 146.7 201.2

42.3 75.7 133.4 208.7

3 41.3 75.0 134.5 205.1

40.2 76.1 134.8 200.3

40.6 76.4 131.5 206.9

42.0 76.4 133.4 199.9

^All results are expressed in mg gJucose/dl.

4.6 contains only a portion of the entire set of data obtained in this study.

Each of three laboratories made four replicate determinations on each of

four serum samples. It can be observed that, for each sample, the results

obtained by different laboratories tend to show greater differences than re-

sults obtained through replication in the same laboratory. This observation

can be made quantitative by calculating, for each sample, two standard de-

viations: the standard deviation “within” laboratories and the standard de-

viation “between” laboratories. Within-laboratory precision is often re-

ferred to as repeatability

,

and between-laboratory precision as reproduc-

ibility d We will illustrate the method for serum sample A.

The data for serum A can first be summarized as follows:

Laboratory Average Standard Deviation

1 41.50 0.938

2 43.15 0.635

3 41.02 0.793

The three standard deviations could be averaged to obtain an “average

within-laboratory”standard deviation. However, if one can assume that

these three standard deviations are estimates of one and the same population

standard deviation, a better way is to “pool” the variances,^ and take the

square root of the pooled variance. Using this procedure, we obtain for the

best estimate of the within-laboratory standard deviation 5

= ( 0 . 938)2 + ( 0 . 635)2 + ( 0 . 793)2 ^ ^

3

Let us now calculate the standard deviation among the three average values

41.50, 43.15, and 41.02. Denoting this standard deviation by^j., we obtain:
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= 1.117

If the laboratories displayed no systematic differences, this standard devia-

tion, being calculated from averages of four individual results, should be

equal to 0.798/\/T = 0.399. The fact that the calculated value,

1.117, is appreciably larger than 0.399 can be explained only through the

presence of an additional, hetween-lahoratory component of variability.

This component, expressed as a standard deviation and denoted by

(where L stands for “laboratories"), is calculated by subtracting the “antici-

pated” variance, (0.399)^, from the “observed” variance, (1.117)^ and tak-

ing the square root:

Sl= V dVl 17)2 - (0.399)2 ^, 04

The calculations for all four serum samples are summarized in Table 4.7, in

which standard deviations are rounded to two decimal places.

It may be inferred from Table 4.7 that 5^. tends to increase with the glu-

cose content of the sample. The between-laboratory component, s^, shows
no such trend. However, the data are insufficient to establish these facts

with reasonable confidence. Since our purpose is to discuss general prin-

ciples, and the use of these data is only illustrative, we will ignore these

shortcomings in the discussion that follows.

Accuracy—comparison with reference values

The two components, and Si^, define the precision of the method. To
estimate its accuracy, one requires reference values for all samples. Let us

assume that such values have been established and are as follows:

Serum Sample Reference Value

A 40.8

B 76.0

C 133.4

D 204.1

The values given here as “reference values” are actually only tentative. We
will assume, however, in our present discussion, that they can be considered

to be free of systematic errors. Our task is to decide whether the values ob-

tained in our study are, within random experimental error, equal to these

reference values. The grand average value for sample A, 41.89 mg/dl, which

Table 4.7. Summary of Analysis for Serum Glucose Data

Standard deviation

Serum sample Average (mg/dl) (mg/dl) Si (mg/dl)

A 41.89 0.80 1.04

B 76.74 1.05 0.54

C 136.08 4.08 1.07

D 205.41 3.91 1.08
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we denote by the symbol.?, involves 12 individual determinations and four

laboratories. Its variance, therefore, can be estimated by the formula:

= <0.80)^ ( 1W . 0.57

y 12 4

Now, .? differs from the reference value by the amount:

41.89 - 40.8 = 1.09

Corresponding values for all four samples are shown in Table 4.8.

It can be seen that, on the one hand, all four grand averages are larger

than the corresponding reference values but, on the other hand, the differ-

ences D are of the order of only one or two standard errors s^. One would

tentatively conclude that the method shows a positive systematic error (bias)

but, as has been pointed out above, the data are insufficient to arrive at defi-

nite conclusions.

Straight line fitting

The fitting of straight lines to experimental data is a subject of great im-

portance, particularly in analytical laboratories. Many analytical and clinical

methods make extensive use of linear calibration curves for the purpose of

converting a measured quantity, such as an optical absorbance or a ratio of

peaks-heights on a mass-spectrometer scan, into a concentration value for

an unknown constituent. Calibration curves are established by subjecting

samples of known concentrations to the measuring process and fitting lines

to the resulting data. Let.r be the known concentration, and y the measure-

ment (e.g., optical absorbance). The data will consist of a set of paired val-

ues, as shown for an illustrative example in the columns labeled .v and y in

Table 4.9.

Inspection of the table shows that there is a “blank": for zero concen-

tration, one finds a nonzero absorbance value. If one “corrected" the sub-

sequent two values for the blank, one would obtain 0.189 - 0.050 = 0.139,

and 0.326 - 0.050 = 0.276. If the “corrected" absorbance were proportion-

al to concentration (as required by Beer’s law), these two corrected absor-

bances should be proportional to 50 and 100, i.e., in a ratio of 1 to 2. Ac-

tually, 0.139 is slightly larger than (0.276/2). We will assume that this is due

Table 4.8. Study of Accuracy of Glucose Deter.mination

Serum sample Reference value

(/?)

Grand average

(i)

D
{X - R)

A 40.8 41.89 1.09 0.57

B 76.0 76.74 0.74 0.41

C 133.4 136.08 2.68 1.29

D 204.1 205.41 1.31 1.25
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Table 4 .9 . Calibration Curve for Glucose in Serum

X y y d

0 0.050 0.0516 -0.0016

50 0.189 0.1895 -0.0005

100 0.326 0.3273 -0.0013

150 0.467 0.4652 0.0015

200 0.605 0.6030 0.0020

400 1.156 1.1545 0.0015

600 1.704 1.7059 -0.0019

214.29 0.6425 0.6425 0

y = 0.0516 + 0.0027571 T

5, = 0.0019

X = concentration of glucose, in mg/dl

y = absorbance

y = “fitted value”

d = residual

solely to experimental error in the measured absorbance values, thus assum-
ing that any errors in the concentration values are negligibly small.

A general model

If a represents the true value of the “blank” and /3 the absorbance per

unit concentration, we have, according to Beer’s law;

E{y) - a = (3x (4.27)

where E(y) is the expected value for absorbance, i.e., the absorbance value

freed of experimental error. Now the actual absorbance, y, is affected by an
experimental error, which we will denote by e. Hence:

y = Eiy) + e (4.28)

Combining Equations 4.27 and 4.28 we obtain the “model” equation

y = a + + e (4.29)

This equation should hold for all jc-values, i.e., . . . ,jc^, with the same
values of a and )3. Hence

yi = a -b fixi + ei (4.30)

where / = 1 to N.
The errors Cj should, on the average, be zero, but each one departs from zero

by a random amount. We will assume that these random departures from

zero do not increase with the absorbance (in some cases, this assumption is

not valid) and that their distribution is Gaussian with standard deviation o-p.

The object of the analysis is to estimate: (a) a and (3, as well as the uncer-

tainties (standard errors) of these estimates; and (b) the standard deviation

of e; i.e., cr^.

D-25



Formulas for linear regression

The fitting process is known in the statistical literature as the “linear

regression ofy on jc.” We will denote the estimates of a, /3, and 0-^ by a,

and Se, respectively. The formulas involve the following three quantities:

U = l{Xi - i)2 (4.31)

W = I(y, - y)2 (4.32)

P = liXi
-

i)(y,- - y) (4.33)

In terms of these three quantities, we have the formulas:

a = y - fix (4.34)

W - iP^/U)

N - 2
(4.35)

(4.36)

For the data of Table 4.9, the calculations result in the following values:

a = 0.0516, = 0.0010, fi
= 0.0027571, sq = 0.0000036, 5^ = 0.0019.

Since a and fi are now available, we can calculate, for each x, a “calcu-

lated” (or “fitted”) value, y, given by the equation y = a + fix. This is, of

course, simply the ordinate of the point on the fitted line for the chosen value

of X.

The differences between the observed value y and the calculated value y
is called a “residual.” Table 4.9 also contains the values ofy and the resid-

uals, denoted by the symbol “t/.”

It is important to observe that the quantity (W - P^IU), occurring in

Equation 4.35, is simply equal to l.d]. Thus:

This formula, though mathematically equivalent to Equation 4.35, should be

used in preference to Equation 4.35, unless all calculations are carried out

with many significant figures. The reason for this is that the quantities d, are

less affected by rounding errors than the quantity (W - P^IU).

Examination of residuals—weighting

The residuals should behave like a set of random observations with a

mean of zero and a standard deviation o-p. It follows that the algebraic signs

should exhibit a random pattern similar to the occurrence of heads and tails

in the flipping of a coin. In our example, the succession of signs raises some
suspicion of nonrandomness, but the series is too short to decide on this mat-

ter one way or the other. In any case, the errors are quite small, and the

calibration curve is quite satisfactory for the intended purpose.
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The assumptions underlying this procedure of fitting a straight line are

not always fulfilled. The assumption of homoscedasticity (i.e., alle, have the

same standard deviation), in particular, is often violated. If the standard de-

viation of the error 6’, is nonconstant and depends on jc,, the fitting of the

straight line requires the application of “weighted regression analysis.”

Briefly, assuming a different value of cr^ for each /, one defines a “weight”
vv, equal to the reciprocal of the square of 0-^.. Thus:

W, = \l(Te. (4.38)

The weights w, are then used in the regression calculations, leading to for-

mulas that are somewhat different from those given in this section. For fur-

ther details, two references can be consulted.

Propagation of errors

It is often necessary to evaluate the uncertainty of a quantity that is not

directly measured but is derived, by means of a mathematical formula, from

other quantities that are directly measured.

An example

As an example, consider the determination of glucose in serum, using

an enzymatic reaction sequence. The sequence generates a product, the opti-

cal absorbance of which is measured on a spectrophotometer. The proce-

dure consists of three steps: (a) apply the enzyme reaction sequence to a set

of glucose solutions of known concentrations, and establish in this way a cal-

ibration curve of “absorbance” versus “glucose concentration,” (b) by use

of the same reaction sequences, measure the absorbance for the “un-
known,” and (c) using the calibration curve, convert the absorbance for the

unknown into a glucose concentration.

It turns out that the calibration curve, for this sequence of reactions, is

linear. Thus, ify represents absorbance, and a: concentration, the calibration

curve is represented by the equation:

y = O' + )3jc (4.39)

The calibration curve is established by measuring y for a set of known jc val-

ues. We will again use the data of Table 4.9 for illustration. Fitting a straight

line to these data, we obtain:

y = 0.0516 + 0.002757 Ijc (4.40)

Let us now suppose that an unknown sample of serum is analyzed m times

(for example, m = 4), and that the average absorbance found isy^ = 0.3672

(where y^ stands for absorbance for the unknown). Using the calibration

line, we convert the value y^ into a concentration value, by solving the

calibration equation forjc:

y, - a _ 0.3672 - 0.0516

P 0.0027571

How reliable is this estimate?

114.47 mg/dl (4.41)
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Let us assume, at this point, that the uncertainty of the calibration line

is negligible. Then the only quantity affected by error is yu, and it is readily

seen from Equation 4.41 that the error ofiu is equal to that ofy^, divided by
)3. If we assume that the standard deviation of a single measured y-value is

0.0019 absorbance units, then the standard error ofy^, the average of four

determinations, is

0.0019/ V 4 = 0.00095

Hence the standard deviation of Xu is

0.00095//3 = 0.00095/0.0027571 = 0.34 mg/dl

A more rigorous treatment would also take account of the uncertainty of the

calibration line.

The general case

More generally, a calculated quantity z can be a function of several

measured quantitiesjcj, jc 2 ,jc 3, . . . , each of which is affected by experimen-

tal error. The problem to be solved is the calculation of the standard devia-

tion of the error of z as a function of the standard deviations of the errors of

^1, JTz, .^3, . . . .

We will only deal with the case of independent errors in the quantities

^1, -^2, JC3, . . . ; i.e., we assume that the error of any one of the jc’s is totally

unaffected by the errors in the otherx’s. For independent errors in the meas-
ured values jc,, X 2 , X 3 , , some simple rules can be applied. They are all

derived from the application of a general formula known as “the law of prop-

agation of errors,” which is valid under very general conditions. The reader

is referred to MandeE for a general discussion of this formula.

Linear relations.—For

y = aiXi + 02-^2 + 03X3 + . . . (4.42)

the law states:

Var(y) = a] Var(xi) + al Var(jC2) + al Var(jC3) -1-
. . . (4.43)

As an example, suppose that the weight of a sample for chemical analysis

has been obtained as the difference between two weights: the weight of an

empty crucible, W,, and the weight of the crucible containing the sample,

W2. Thus the sample weight S is equal to

5 = W2 - W, (4.44)

This is in accordance with Equation 4.42 by writing:

5 = ( 1 )W ,
+ (- 1)^2

Hence, according to Equation 4.43,

Var(5) = (l)2Var(Wi) + (-l)2Var(W2)

or

Var(5) = Var(Wi) + Var(W2)
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Hence

Or^ = V O^,, + O-V, (4.45)

Note that in spite of the negative sign occurring in Equation 4.44, the vari-

ances of Wi and W 2 in Equation 4.45 are added (not subtracted from each

other).

It is also of great importance to emphasize that Equation 4.43 is valid

only if the errors in the measurements x^, x 2 , x 3 ,
. . . , are independent of

each other. Thus, if a particular element in chemical analysis was deter-

mined as the difference between 100 percent and the sum of the concentra-

tions found for all other elements, the error in the concentrations for that

element would not be independent of the errors of the other elements, and

Equation 4.43 could not be used for any linear combination of the type of

Equation 4.42 involving the element in question and the other elements. But

in that case, Equations 4.42 and 4.43 could be used to evaluate the error vari-

ance for the element in question by considering it as the dependent variable

y. Thus, in the case of three other elements Xi, X 2 , and x^, we would have:

y = 100 - {xi + X2 + ATa)

where the errors of Xi, JC 2 ,
and X3 are independent. Hence:

Var(y) = Var(jCi) + Var(jC 2 ) + Var(A:3 )

since the constant, 100, has zero-variance.

Products and ratios .—For products and ratios, the law of propagation

of errors states that the squares of the coefficients of variation are additive.

Here again, independence of the errors is a necessary requirement for the

validity of this statement. Thus, for

y = ATi • a:2 (4.46)

with independent errors for jcj and X 2 ,
we have:

(I00^j.(l00^)%(l0oi^j (4.47)

We can, of course, divide both sides of Equation 4.47 by 100^, obtaining:

X2
(4.48)

Equation 4.48 states that for products of independent errors, the squares of

the relative errors are additive.

The same law applies for ratios of quantities with independent errors.

Thus, when Xi and X2 have independent errors, and

we have

y
X2

(4.49)

(4.50)
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As an illustration, suppose that in a gravimetric analysis, the sample weight

is 5, the weight of the precipitate is W, and the “conversion factor’’ is F.

Then:

W
y = lOOF^

The constants 100 and F are known without error. Hence, for this example.

If, for example, the coefficient of variation for S is 0.1 percent, and that for

W is 0.5 percent, we have:

= V (0.005)2 + (0.001)2 = 0.0051
y

It is seen that in this case, the error of the sample weight S has a negligible

effect on the error of the “unknown” y.

Logarithmic functions .—When the calculated quantity y is the natural

logarithm of the measured quantity x (we assumed that x > 0):

y = In jc (4.51)

the law of propagation of error states

o-„ (4.52)

For logarithms to the base 10, a multiplier must be used: for

y = logic X

the law of propagation of error states:

o-v

1

2.30 X

(4.53)

(4.54)

Sample sizes and compliance with standards

Once the repeatability and reproducibility of a method of measurement
are known, it is a relatively simple matter to estimate the size of a statistical

sample that will be required to detect a desired effect, or to determine wheth-
er a given specification has been met.

An example

As an illustration, suppose that a standard requires that the mercury
content of natural water should not exceed 2/Ltg/l. Suppose, furthermore,

that the standard deviation of reproducibility of the test method (see section

on precision and accuracy, and MandeF), at the level of 2/xg/l, is 0.88/xg/l. If

subsamples of the water sample are sent to a number of laboratories and
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each laboratory performs a single determination, we may wish to determine

the number of laboratories that should perform this test to ensure that we
can detect noncompliance with the standard. Formulated in this way, the

problem has no definite solution. In the first place, it is impossible to guaran-

tee unqualifiedly the detection of any noncompliance. After all, the decision

will be made on the basis of measurements, and measurements are subject to

experimental error. Even assuming, as we do, that the method is unbiased,

we still have to contend with random errors. Second, we have, so far, failed

to give precise meanings to the terms “compliance” and “noncompliance”;

while the measurement in one laboratory might give a value less than 2/xg/l

of mercury, a second laboratory might report a value greater than 2fxg/\.

General procedure—acceptance, rejection, risks

To remove all ambiguities regarding sample size, we might proceed in

the following manner. We consider two situations, one definitely acceptable

and the other definitely unacceptable. For example, the “acceptable” situa-

tion might correspond to a true mercury content of 1.5/Lig/l, and the “unac-

ceptable” situation to a mercury content of 2.5/Ltg/l (see Fig. 4.2).

Because of experimental errors, we must consider two risks: that of re-

jecting (as noncomplying) a “good” sample (1.5/u.g/l); and that of accepting

(as complying) a “bad” sample (2.5/Ltg/l). Suppose that both risks are set at 5

percent.

Let us now denote by N the number of laboratories required for the test.

The average of the N measurements, which we denote by x, will follow a

normal distribution whose mean will be the true value of the mercury^ con-

tent of the sample and whose standard deviation will be cr/V/V, or

0.88/\//V. For the “acceptable” situation the mean is 1.5ptg/l, and for the

“unacceptable” situation it is 2.5/i,g/l. We now stipulate that we will accept

CALCULATION OF SAMPLE SIZE

FOR PREDETERMINED RISKS

ACCEPTABLE UNACCEPTABLE

CONCENTRATION OF MERCURY
(A^g/I

)

Fig. 4.2. Distribution of measurements of mercury in subsamples of a water sample

sent to N laboratories.

D-31



the sample, as complying, whenever x is less than 2.0, and reject it, as non-

complying, whenever x is greater than 2.0. As a result of setting our risks at

5 percent, this implies that the areas A and 5 are each equal to 5 percent (see

Fig. 4.2). From the table of the normal distribution, we read that for a 5 per-

cent one-tailed area, the value of the reduced variate is 1.64. Hence:

. ^ =164
-

0.88/Vn
(We could also state the requirement that (2.0 - 2.5)/(0.88/\//V) = -1.64,

which is algebraically equivalent to the one above.) Solving forN, we find:

1.64 • 0.88 ,2

0.5 '

8.3 (4.55)

We conclude that nine laboratories are required to satisfy our requirements.

The general formula, for equal risks of accepting a noncomplying sample and
rejecting a complying one, is:

A = (4.56)

where cr is the appropriate standard deviation, 2 <. is the value of the reduced
normal variate corresponding to the risk probability (5 percent in the above
example), and d is the departure (from the specified value) to which the cho-

sen risk probability applies.

Inclusion of between-laboratory variability

If the decision as to whether the sample size meets the requirements of a

standard must be made in a single laboratory, we must make our calculations

in terms of a different standard deviation. The proper standard deviation, for

an average ofN determinations in a single laboratory, would then be given

by:

(4.57)

The term oi must be included, since the laboratory mean may differ

from the true value by a quantity whose standard deviation is o-^.. Since the

between-laboratory component oi is not divided by N, a cannot be less

than (Ti no matter how many determinations are made in the single laborato-

ry. Therefore, the risks of false acceptance or false rejection of the sample

cannot be chosen at will. If in our case, for example, we had o-^, = 0.75/Ltg/l

and o-f, = 0.46/xg/l, the total cr cannot be less than 0.46. Considering the fa-

vorable case, IX
= 1.5/xg/l, the reduced variate (see Fig. 4.2) is:

This corresponds to a risk of 13.8 percent of rejecting (as noncomplying) a

sample that is actually complying. This is also the risk probability of accept-
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ing (as complying) a sample that is actually noncomplying. The conclusion to

be drawn from the above argument is that, in some cases, testing error will

make it impossible to keep the double risk of accepting a noncomplying prod-

uct and rejecting a complying product below a certain probability value. If,

as in our illustration, the purpose of the standard is to protect health, the

proper course of action is to set the specified value at such a level that, even

allowing for the between-laboratory component of test error, the risk of de-

claring a product as complying, when it is actually noncomplying, is low. If,

in our illustration, a level of 2.5/xg/l is such that the risk of false acceptance

of it (as complying) should be kept to 5 percent (and ctl = 0.46^tg/l), then the

specification limit should be

which, solved forx, yields 1

Transformation of scale

Some common transformations

Non-normal populations are often skew (nonsymmetrical), in the sense

that one tail of the distribution is longer than the other. Skewness can often

be eliminated by 2i transformation of scale. Consider, for example, the three

numbers 1, 10, and 100. The distance between the second and the third is

appreciably larger than that between the first and the second, causing a se-

vere asymmetry. If, however, we convert these numbers to logarithms (base

10), we obtain 0, 1, and 2, which constitute a symmetrical set. Thus, if a dis-

tribution is positively skewed (long-tail on the right), a logarithmic transfor-

mation will reduce the skewness. (The simple logarithmic transformation is

possible only when all measured values are positive). A transformation of

the logarithmic type is not confined to the function y = log x. More gener-

ally, one can consider a transformation of the type:

y = log (A + Bx) (4.58)

or even

y = C + log (A + Bx) (4.59)

where C, K, A, and B are properly chosen constants. It is necessary to

choose A and B such that A + 5x is positive for all x values. Other common
types of transformations are:

y = V X (4.60)

and

y = arcsin V x (4.61)

Robustness

The reason given above for making a transformation of scale is the pres-

ence of skewness. Another reason is that certain statistical procedures are

set at a value x such that:

2.5 - X

0.46

.75 /u.g/1.

= 1.64
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valid only when the data are at least approximately normal. The procedures

may become grossly invalid when the data have a severely non-normal distri-

bution.

A statistical procedure that is relatively insensitive to non-normality in

the original data (or, more generally, to any set of specific assumptions) is

called “robust.” Confidence intervals for the mean, for example, are quite

robust because, as a result of the central limit theorem, the distribution of

the sample mean x will generally be close to normality. On the other hand,

tolerance intervals are likely to be seriously affected by non-normality. We
have seen that nonparametric techniques are available to circumvent this dif-

ficulty.

Suppose that, for a particular type of measurement, tests of normality

on many sets of data always show evidence of non-normality. Since many
statistical techniques are based on the assumption of normality, it would be

advantageous to transform these data into new sets that are more nearly nor-

mal.

Fortunately, the transformations that reduce skewness also tend, in gen-

eral, to achieve closer compliance with the requirement of normality. There-

fore, transformations of the logarithmic type, as well as the square root and

arcsine transformations, are especially useful whenever a nonrobust analy-

sis is to be performed on a set of data that is known to be seriously non-

normal. The reader is referred to MandeF for further details regarding trans-

formations of scale.

Transformations and error structure

It is important to realize that any nonlinear transformation changes the

error structure of the data, and transformations are, in fact, often used for

the purpose of making the experimental error more uniform over the entire

range of the measurements. Transformations used for this purpose are called

“variance-stabilizing” transformations. To understand the principle in-

volved, consider the data in Table 4.10, consisting of five replicate absor-

bance values at two different concentrations, obtained in the calibration of

Table 4. 10. Error Structure in a Logarithmic Transformation of Scale

Original data

(Absorbance)

Transformed data

(logio Absorbance)

Set A“ SetB“ Set A SetB

0.2071 1.6162 -0.6838 0.2085

0.2079 1.5973 -0.6821 0.2034

0.1978 1.6091 -0.7038 0.2066

0.1771 1.7818 -0.7518 0.2509

0.2036 1.6131 -0.6912 0.2077

Average 0.1987 1.6435 -0.7025 0.2154

Standard deviation 0.0127 0.0776 0.0288 0.0199

“Absorbance values for a solution of concentration of 50 mg/dl of glucose.

“Absorbance values for a solution of concentration of 600 mg/dl of glucose.
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spectrophotometers for the determination of serum glucose. At the higher

concentration level, the absorbance values are of course higher, but so is the

standard deviation of the replicate absorbance values. The ratio of the aver-

age absorbance values is 1.6435/0.1987 = 8.27. The ratio of the standard de-

viations is 0.0776/0.0127 = 6. 1 1. Thus the standard deviation between repli-

cates tends to increase roughly in proportion to the level of the measure-

ment. We have here an example of “heterogeneity of variance.” Let us now
examine the two sets of values listed in Table 4.10 under the heading “trans-

formed data.” These are simply the logarithms to the base 10 of the original

absorbance values. This time, the standard deviations for the two levels are in

the proportion 0.0199/0.0288 = 0.69. Thus, the logarithmic transformation

essentially has eliminated the heterogeneity of variance. It has, in fact, “sta-

bilized” the variance. The usefulness of variance stabilizing transformations

is twofold: (a) a single number will express the standard deviation of error,

regardless of the “level” of the measurement; and (b) statistical manipula-

tions whose validity is contingent upon a uniform error variance (homo-
scedasticity) and which are therefore inapplicable to the original data, can be

applied validly to the transformed data.

Presentation of data and significant figures

The law of propagation of errors (see that section) enables one to calcu-

late the number of significant figures in a calculated value. A useful rule of

thumb is to report any standard deviation or standard error with two signifi-

cant figures, and to report a calculated value with as many significant figures

as are required to reach the decimal position of the second significant digit of

its standard error.

An example

Consider the volumetric determination of manganese in manganous cy-

clohexanebutyrate by means of a standard solution of sodium arsenite. The
formula leading to the desired value of percent Mn is

200 (ml)

15(ml)

H'(mg)

where w is the weight of the sample, v the volume of reagent, and / the titer

of the reagent, and the factor 200/15 is derived from taking an aliquot of 15

ml from a total volume of 200 ml.

For a particular titration, the values and their standard errors are found

to be:

V = 23.67

/ = 0.41122

200

0-, = 0.0040

0-, = 0.000015

(T = 0.0040

o- = 0.0040

(Tu, = 0.0060

15

w = 939.77
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The values are reported as they are read on the balance or on the burettes

and pipettes; their standard errors are estimated on the basis of previous ex-

perience. The calculation gives:

Percent Mn = 13.809872

The law of propagation of errors gives:

n SOQQ i
0.0040

^ I

0.000015 0.0040
f

, 0.0040 ^
, 0.0060

f
yj[ 23.67 j 1 0.41122 ) 200 I

^ T 15 ) 939.77 )

= 0.0044

On the basis of this standard deviation, we would report this result as:

Percent Mn = 13.8099; cr^n = 0.0044

It should be well understood that this calculation is based merely on weigh-

ing errors, volume reading errors, and the error of the titer of the reagent. In

repeating the determination in different laboratories or even in the same labo-

ratory, uncertainties may arise from sources other than just these errors.

They would be reflected in the standard deviation calculated from such re-

peated measurements. In general, this standard deviation will be larger, and
often considerably larger, than that calculated from the propagation of

weighing and volume reading errors. If such a standard deviation from re-

peated measurements has been calculated, it may serve as a basis to redeter-

mine the precision with which the reported value should be recorded.

In the example of the manganese determination above, the value given

is just the first of a series of repeated determinations. The complete set of

data is given in Table 4.11. The average of 20 determinations is 13.8380. The

Table 4.1 1 . Manganese Content of Manganous Cyclohexanebutyrate

Determination

number
Result

(Percent Mn)
Determination

number
Result

(Percent Mn)

1 13.81 11 13.92

2 13.76 12 13.83

3 13.80 13 13.73

4 13.79 14 13.99

5 13.94 15 13.89

6 13.76 16 13.76

7 13.88 17 13.88

8 13.81 18 13.82

9 13.84 19 13.87

10 13.79 20 13.89

Average = t = 13.838

Sj- = 0.068

= 0.068/ \/20 = 0.015
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standard deviation of the replicate values is 0.068; therefore, the standard

error of the mean is 0.068/\/^ = 0.015. The final value reported for this

analysis would therefore be:

Percent Mn = x = 13.838; = 0.015

This example provides a good illustration of the danger of basing an esti-

mate of the precision of a value solely on the reading errors of the quantities

from which it is calculated. These errors generally represent only a small por-

tion of the total error. In this example, the average of 20 values has a true

standard error that is still more than three times larger than the reading error

of a single determination .

General recommendations

It is good practice to retain, for individual measurements, more signifi-

cant figures than would result from calculations based on error propagation,

and to use this law only for reporting the final value. This practice enables

any interested person to perform whatever statistical calculations he desires

on the individually reported measurements. Indeed, the results of statistical

manipulations of data, when properly interpreted, are never affected by un-

necessary significant figures in the data, but they may be seriously impaired

by too much rounding.

The practice of reporting a measured value with a ± symbol followed

by its standard error should be avoided at all costs, unless the meaning of

the ± symbol is specifically and precisely stated. Some use the ± symbol to

indicate a standard error of the value preceding the symbol, others to in-

dicate a 95 percent confidence interval for the mean, others for the standard

deviation of a single measurement, and still others use it for an uncertainty

interval including an estimate of bias added to the 95 percent confidence in-

terval. These alternatives are by no means exhaustive, and so far no stand-

ard practice has been adopted. It is of the utmost importance, therefore, to

define the symbol whenever and wherever it is used.

It should also be borne in mind that the same measurement can have,

and generally does have, more than one precision index, depending on the

framework (statistical population) to which it is referred. For certain pur-

poses, this population is the totality of (hypothetical) measurements that

would be generated by repeating the measuring process over and over again

on the same sample in the same laboratory. For other purposes, it would be

the totality of results obtained by having the sample analyzed in a large num-
ber of laboratories. The reader is referred to the discussion in the section on
precision and accuracy.

Tests of significance

General considerations

A considerable part of the published statistical literature deals with sig-

nificance testing. Actually, the usefulness of the body of techniques classi-

fied under this title is far smaller than would be inferred from its prominence
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in the literature. Moreover, there are numerous instances, both published

and unpublished, of serious misinterpretations of these techniques. In many
applications of significance testing, a “null-hypothesis” is formulated that

consists of a statement that the observed experimental result—for example,

the improvement resulting from the use of a drug compared to a placebo—is

not “real,” but simply the effect of chance. This null-hypothesis is then sub-

jected to a statistical test and, if rejected, leads to the conclusion that the

beneficial effect of the drug is “real,” \.t.,not due to chance. A closer exami-

nation of the nature of the null-hypothesis, however, raises some serious

questions about the validity of the logical argument. In the drug-placebo

comparison, the null-hypothesis is a statement of equality of the means of
two populations

,

one referring to results obtained with the drug and the oth-

er with the placebo. All one infers from the significance test is a probability

statement regarding the observed (sample) difference, on the hypothesis that

the true difference between the population means is zero. The real question,

of course, is related not to the means of hypothetical populations but rather

to the benefit that any particular subject, selected at random from the rele-

vant population of patients, may be expected to derive from the drug.

Viewed from this angle, the usefulness of the significance test is heavily de-

pendent on the size of the sample, i.e., on the number of subjects included in

the experiment. This size will determine how large the difference between
the two populations must be, as compared to the spread of both popu-
lations, before the statistical procedure will pick it up with a reasonable prob-

ability. Such calculations are known as the determination of the “power” of

the statistical test of significance. Without indication of power, a test of sig-

nificance may be very misleading.

Alternative hypotheses and sample size—the concept of power

An example of the use of “power” in statistical thinking is provided by
our discussion in the section on sample sizes. Upon rereading this section,

the reader will note that two situations were considered and that a probabili-

ty value was associated with each of the two situations, namely, the probabil-

ity of accepting or rejecting the lot. In order to satisfy these probability re-

quirements, it was necessary to stipulate a value of N, the sample size.

Smaller values of N would not have achieved the objectives expressed by
the stipulated probabilities.

In testing a drug versus a placebo, one can similarly define two situa-

tions: (a) a situation in which the drug is hardly superior to the placebo; and
(b) a situation in which the drug is definitely superior to the placebo. More
specifically, consider a very large, hypothetical experiment in which sub-

jects are paired at random, one subject of each pair receiving the placebo

and the other the drug. Situation (a) might then be defined as that in which
only 55 percent of all pairs shows better results with the drug than with the

placebo; situation (b) might be defined as that in which 90 percent of the

pairs shows greater effectiveness of the drug.

If we now perform an actual experiment, similar in nature but of moder-
ate size, we must allow for random fluctuations in the percentage of pairs
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that show better results with the drug as compared to the placebo. There-

fore, our acceptance of the greater effectiveness of the drug on the basis of

the data will involve risks of error. If the true situation is (a), we may wish to

have only a small probability of declaring the drug superior, say, a probabili-

ty of 10 percent. On the other hand, if the true situation is (b), we would
want this probability to be perhaps as high as 90 percent. These two probabil-

ities then allow us to calculate the required sample size for our experiment.

Using this sample size, we will have assurance that the power of our experi-

ment is sufficient to realize the stipulated probability requirements.

An example

An illustration of this class of problems is shown in Table 4.12. The data

result from the comparison of two drugs, S (standard) and E (experimental),

for the treatment of a severe pulmonary disease. The data represent the re-

duction in blood pressure in the heart after administration of the drug. The
test most commonly used for such a comparison is Student’s t test.^'^ In the

present case, the value found for t is 3.78, for DF = 142 (DF = number of

degrees of freedom). The probability of obtaining a value of 3.78 or larger by
pure chance (i.e., for equal efficacy of the two drugs) is less than 0.0002. The
smallness of this probability is of course a strong indication that the hypothe-

sis of equal efficacy of the two drugs is unacceptable. It is then generally

concluded that the experiment has demonstrated the superior efficacy of E
as compared to S. For example, the conclusion might take the form that “the

odds favoring the effectiveness of E over S are better than M to 1“ where M
is a large number (greater than 100 in the present case). However, both the

test and the conclusion are of little value for the solution of the real problem
underlying this situation, as the following treatment shows. If we assume, as

a first approximation, that the standard deviation 3.85 is the “population pa-

rameter” cr, and that the means, 0.10 for S and 2.53 for E, are also popu-

lation parameters, then the probability of a single patient being better off

Table 4.12. Treatment of Pulmonary Embolism—Comparison of Two Drugs

Decrease in Right Ventricular Diastolic Blood Pressure (mm Hg)

Standard treatment (S) Experimental treatment (E)

Number of patients 68 76

Average 0.10 2.53

Standard deviation 3.15 4.28

Standard error of average 0.38 0.50

True mean Ml M2

t test for Ho: (Hq = null hypothesis)

.^pooled = 3.85 DF = 67 + 75 = 142, (DF = degrees of freedom)

t =
2.53 - 0.10

= 3.78 (P < 0.0002)
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with E than with S is a function of the quantity Q defined by

Q - tJii)lcr. In the present case:

Q = 2.53 - 0.10

3.85
0.63

This can be readily understood by looking at Figure 4.3, in which the means
of two populations, S and E, are less than one standard deviation apart, so

that the curves show a great deal of overlap. There is no question that the

two populations are distinct, and this is really all the t test shows. But due to

the overlap, the probability is far from overwhelming that treatment E will

be superior to treatment S for a randomly selected pair of individuals. It can

be shown that this probability is that of a random normal deviate exceeding

the value I or, in our case (- = -0.45. This probability is
V2 V2

0.67, or about 2/3. Thus, in a large population of patients, two-thirds would
derive more benefit from S than from E. Viewed from this perspective, the

significance test, with its low “P value” (of 0.0(X)2 in our case) is seen to be

thoroughly misleading.

The proper treatment of a problem of this type is to raise the question of

interest within a logical framework, derived from the nature of the problem,

rather than perform standard tests of significance, which often merely pro-

vide correct answers to trivial questions.

Evaluation of diagnostic tests

The concepts of precision and accuracy are appropriate in the evalua-

tion of tests that result in a quantitative measure, such as the glucose level of

serum or the fluoride content of water. For medical purposes, different types

of tests denoted as “diagnostic tests” are also of great importance. They dif-

COMPARISON OF TWO DRUGS

Decrease in Ventricular Diastolic Blood Pressure

(mm Hg)
Fig. 4.3. Comparison of two drugs for the treatment of pulmonary disease, as meas-
ured by the reduction in right ventricular diastolic blood pressure (mm Hg).
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fer from quantitative types of tests in that their outcome is characterized by

a simple dichotomy into positive or negative cases.

As an example, consider Table 4.13, representing data on the alpha-feto-

protein (AFP) test for the diagnosis of hepatocellular carcinoma.® What do
these data tell us about the value of the AFP test for the diagnosis of this

disease?

Sensitivity and specificity

The statistical aspects of this type of problem are best understood by

introducing a number of concepts that have been specifically developed for

these problems.®

Sensitivity is the proportion of positive results among the subjects af-

fected by the disease. Table 4.13 provides as an estimate of sensitivity:

Sensitivity ~ ~ 0.8411 = 84.11%

Specificity is the proportion of negative results among the subjects who
are free of the disease. From Table 4.13:

2079
Specificity = 0.9816 = 98.16%

2 1 1 o

The concepts of sensitivity and specificity are useful descriptions of the

nature of a diagnostic test, but they are not, in themselves, sufficient for pro-

viding the physician with the information required for a rational medical deci-

sion.

For example, suppose that a particular subject has a positive AFP test.

What is the probability that this subject has hepatocarcinoma? From Table

4.13 we infer that among all subjects for whom the test is positive a propor-

tion of 90/129, or 69.77 percent, are affected by the disease. This proportion

is called the predictive value of a positive test, or PV+.

Predictive values—the concept of prevalence

Predictive value of a positive test.—(PV-I-) is defined as the proportion

of subjects affected by the disease among those showing a positive test. The
(PV + ) value cannot be derived merely from the sensitivity and the specifici-

ty of the test. To demonstrate this, consider Table 4.14, which is fictitious

and was derived from Table 4. 13 by multiplying the values in the “Present”

Table 4 . 13 . Results of Alpha-Fetoprotein Tests for Diagnosis of Hepatocellular
Carcinoma

Hepatocarcinoma

Test result Present Absent Total

-
1
- 90 39 129
- 17 2,079 2,0%

Total 107 2,118 2,225

D -41



Table 4. 14. Values for Alpha-Fetoprotein Tests Derived from Table 4.13

Test Result

Hepatocarcinoma

Present Absent Total

+ 900 39 939
- 170 2,079 2,249

Total 1,070 2,118 3,118

column by 10, and by leaving the values in the “Absent” column un-

changed. Table 4,14 leads to the same sensitivity and specificity values as

Table 4.13, However, the (PV-^) value is now 900/939 = 95.85 percent.

It is seen that the (PV-H) value depends not only on the sensitivity and
the specificity but also on the prevalence of the disease in the total popu-

lation. In Table 4.13, this prevalence is 107/2225 = 4.809 percent, whereas
in Table 4.14 it is 1070/3118 = 34.32 percent.

A logical counterpart of the (PV + ) value is the predictive value ofa neg-

ative test, or PV-

.

Predictive value of a negative test .—(PV-) is defined as the proportion

of subjects free of the disease among those showing a negative test. For the

data of Table 4.13, the (PV — ) value is 2079/2096 = 99.19 percent, whereas
for Table 4.14, (PV-) = 2079/2249 = 92.44 percent. As is the case for

(PV-H), the (PV-) value depends on the prevalence of the disease.

The following formulas relate (PV-i-) and (PV-) to sensitivity, specifici-

ty, and prevalence of the disease. We denote sensitivity by the symbol SE,
specificity by SP, and prevalence by P\ then:

(PV+)
1

(1 - SP) (1 - P)

SE • P

(4.62)

(PV-)
1

{\ - SE) P

SPi\ - P)

As an illustration, the data in Table 4.13 yield:

(4.63)

(PV + )

1

(1 - 0.9816) (1 - 0.04809)

(0.8411) (0.04809)

= 0.6978 = 69.78%

(PV-)
1

(1 - 0.8411) (0.04809)

(0.9816) (1 - 0.04809)

0.9919 = 99.19%

Apart from rounding errors, these values agree with those found by direct

inspection of the table.

Interpretation of multiple tests

The practical usefulness of (PV-i-) and (PV-) is now readily apparent.
Suppose that a patient’s result by the AFP test is positive and the prevalence
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of the disease is 4.809 percent. Then the probability that the patient suffers

from hepatocarcinoma is about 70 percent. On the basis of this result, the

patient now belongs to a subgroup of the total population in which the preva-

lence of the disease is 70 percent rather than the 4.8 percent applying to the

total population. Let us assume that a second test is available for the diag-

nosis of hepatocarcinoma, and that this second test is independent of the

AFP test. The concept of independence of two diagnostic tests is crucial for

the correct statistical treatment of this type of problem, but it seems to have
received little attention in the literature. Essentially, it means that in the

class of patients affected by the disease, the proportion of patients showing a

positive result for test B is the same, whether test A was positive or nega-

tive. A similar situation must hold for the class of patients free of the dis-

ease.

In making inferences from this second test for the patient in question,

we can start with a value ofprevalence of the disease [P) of 70 percent, rath-

er than 4.8 percent, since we know from the result of the AFP test that the

patient belongs to the subgroup with this higher prevalence rate. As an illus-

tration, let us assume that the second test has a sensitivity of 65 percent and
a specificity of 90 percent and that the second test also is positive for this

patient. Then the new (PV + ) value is equal to

(PV + )

1

(1 - 0.90) (1 - 0.70)

(0.65) (0.70)

= 0.938 = 93.8%

If, on the other hand, the second test turned out to be negative, then the

probability that the patient is free of disease would be:

(PV-)

I +

1

(1 - 0.65) (0.70)

(0.90) (1 - 0.70)

-= 0.524 = 52.4%

In that case, the two tests essentially would have contradicted each other,

and no firm diagnosis could be made without further investigations.

A general formula for multiple independent tests

It can easily be shown that the order in which the independent tests are

carried out has no effect on the final (PV-H) or (PV-) value. In fact, the fol-

lowing general formula can be derived that covers any number of indepen-

dent tests and their possible outcomes.

Denote by (5£), and (5P), the sensitivity and the specificity of the

ith = test, where i = 1, 2, 3, . . . , N. Furthermore, define the symbols A,

and Bi as follows:

_ I
iSE)i when the result of test / is +

'

I
1 ” iSE)i when the result of test / is

-

Bi = 1 - {SP)i when the result of test i is +
{SP)i when the result of test / is

-

D-43



IfP is the prevalence rate of the disease before administration of any of

the tests, and P' is the probability that the subject has the disease after ad-

ministration of the N tests, then:

P' = _j
Jb[ Bo. . . • Bs){\ - P)

(i4i • A 2 . . .
' A\)P

(4.64)

It is important to keep in mind that Equation 4,64 is valid only if all tests

are mutually independent in the sense defined above.

Quality Control

The remainder of this chapter deals with the fundamental principles of a

quality control and quality assurance program for monitoring and assessing

the precision and accuracy of the data being processed within a laboratory.

The definitions of Quality, Quality Assurance, and Quality Control by

the American Society for Quality Control (ASQC)^ apply to either a product

or a service, and they are quoted here in their entirety.

1) Quality.—“The totality of features and characteristics of a product or

service that bear on its ability to satisfy a given need.”

2) Quality assurance.—“A system of activities whose purpose is to provide

assurance that the overall quality-control job is in fact being done effec-

tively. The system involves a continuing evaluation of the adequacy and

effectiveness of the overall quality-control program with a view of having

corrective measures initiated where necessary. For a specific product or

service, this involves verifications, audits, and the evaluation of the quali-

ty factors that affect the specification, production, inspection, and use of

the product or service.”

3) Quality control.—“The overall system of activities whose purpose is to

provide a quality of product or service that meets the needs of users; al-

so. the use of such a system.

“The aim of quality control is to provide quality that is satisfactory,

adequate, dependable, and economic. The overall system involves inte-

grating the quality aspects of several related steps, including the proper

specification of what is wanted; production to meet the full intent of the

specification; inspection to determine whether the resulting product or

service is in accordance with the specification; and review of usage to

provide for revision of specification.

“The term quality control is often applied to specific phases in the

overall system of activities, as, for example, quality control."

The Control Chart

According to the ASQC,^ the control chart is “a graphical chart with

control limits and plotted values of some statistical measure for a series of

samples or subgroups. A central line is commonly shown.”
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The results of a laboratory test are plotted on the vertical axis, in units

of the test results, versus time, in hours, days, etc., plotted on the horizontal

axis. Since each laboratory test should be checked at least once a day, the

horizontal scale should be wide enough to cover a minimum of one month of

data. The control chart should be considered as a tool to provide a “real-

time” analysis and feedback for appropriate action. Thus, it should cover a

sufficient period of time to provide sufficient data to study trends, “runs”

above and below the central line, and any other manifestation of lack of ran-

domness (see section on detection of lack of randomness).

Statistical basis for the control chart

General considerations

W. A. Shewhart, in his pioneering work in 1939,*® developed the prin-

ciples of the control chart. They can be summarized, as was done by E. I.

Grant,** as follows: “The measured quantity of a manufactured product is

always subject to a certain amount of variation as a result of chance. Some
stable ‘System of Chance Causes’ is inherent in any particular scheme of pro-

duction and inspection. Variation within this stable pattern is inevitable. The
reasons for variation outside this stable pattern may be discovered and cor-

rected.” If the words “manufactured product” are changed to “laboratory

test,” the above statement is directly applicable to the content of this

section.

We can think of the “measured quantity” as the concentration of a par-

ticular constituent in a patient’s sample (for example, the glucose content of

a patient’s serum). Under the “system of chance causes,” this concentra-

tion, when measured many times under the same conditions, will fluctuate in

such a way as to generate a statistical distribution that can be represented by
a mathematical expression. This expression could be the normal distribu-

tion, for those continuous variables that are symmetrically distributed about

the mean value, or it could be some other suitable mathematical function ap-

plicable to asymmetrically or discretely distributed variables (see section on

non-normal distributions). Then, applying the known principles of probabili-

ty, one can find lower and upper limits, known as control limits, that will

define the limits of variation within “this stable pattern” for a given accept-

able tolerance probability. Values outside these control limits will be consid-

ered “unusual,” and an investigation may be initiated to ascertain the rea-

sons for this occurrence.

Control limits

According to the ASQC,® the control limits are the “limits on a control

chart that are used as criteria for action or forjudging whether a set of data

does or does not indicate lack of control.”

Probability limits .—If the distribution of the measured quantity is

known, then lower and upper limits can be found so that, on the average, a

predetermined percentage of the values (e.g., 95 percent, 99 percent) will fall

within these limits if the process is under control. The limits will depend on
the nature of the probability distribution. They will differ, depending on
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whether the distribution of the measured quantity is symmetric, asymmetric

to the left or to the right, unimodal or bimodal, discrete or continuous, etc.

The obvious difficulty of finding the correct distribution function for

each measured quantity, and of determining the control limits for this distri-

bution, necessitates the use of procedures that are not overly sensitive to the

nature of the distribution function.

Three-sigma limits.—The three-sigma limits, most commonly used in in-

dustrial practice, are based on the following expression:

Control limits = Average of the measured quantity ± three standard

deviations of the measured quantity

The “measured quantity” could be the mean of two or three replicate

determinations for a particular chemical test, the range of a set of replicate

tests, a proportion defective, a radioactive count, etc.

The range of three standard deviations around the mean, that is, a width

of six standard deviations, usually covers a large percentage of the distribu-

tion. For normally distributed variables, this range covers 99.7 percent of

the distribution (see section on the normal distribution). For non-normally

distributed variables, an indication of the percentage coverage can be ob-

tained by the use of two well-known inequalities:

1) Tchebychejf s Inequality. For any distribution, (discrete or continuous,

symmetric or asymmetric, unimodal or bimodal, etc.) with a finite stand-

ard deviation, the interval mean ± Ka covers a proportion of the popu-

lation of at least ' "
• Thus for K = 3, the coverage will be at least

1
- =

“^, or roughly 90 percent of the distribution.

2) Camp-Meidel Inequality. If the distribution is unimodal, the interval

mean ± Ka will cover a proportion of at least i - of the popula-

tion. Thus, for K = 3, the coverage will be at least i - or roughly

95 percent of the population.

From the above discussion, it follows that the three-sigma limits cover a

proportion of the population that is at least equal to 90 percent for non-nor-

mal distributions and is equal to exactly 99.7 percent when the distribution is

normal.

Most control charts are based on the mean of several determinations of

the same measured equality. By the Central Limit Theorem, (see section on
the normal distribution), the larger the sample size, the closer to normality

will be the mean of this measured quantity. However, since most clinical

tests are based on single or, at best, duplicate determinations, caution

should be used in interpreting the amount of coverage given by the control

limits for those distributions that are suspected to be skewed, bimodal, etc.

Warning limits.—The warning limits commonly used in practice are de-

fined as:

Warning limits = Average of the measured quantity ± two standard

deviations of the measured quantity.

For interpretation of points falling outside the warning and control lim-

its, see the section on the control chart as a management tool.
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Variability between and within subgroups

The hypothesis o-g = 0

In control charts for variables, the variability is partitioned into two
components: within and between subgroups. To this effect, the sequence of

measurements is divided into subgroups of ri consecutive values each. The
variability within subgroups is estimated by first computing the average of

the ranges of all subgroups and dividing this average by a factor that depends

on A7, which can be found in standard statistical tables. As an example, con-

sider the sequence: 10.2, 10.4, 10.1, 10.7, 10.3, 10.3, 10.5, 10.4, 10.0, 9.8,

10.4, 10.9. When divided into subgroups of four, we obtain the arrangement:

Subgroup Average Range

10.2, 10.4, 10.1, 10.7 10.350 0.6

10.3, 10.3, 10.5, 10.4 10.375 0.2

10.0,9.8, 10.4, 10.9 10.275 1.1

Average 10.333 0.63

In this case n = A, and the average range is ^ = 0.63.

Generally, « is a small number, often between 2 and 5. Its choice is

sometimes arbitrary, dictated only by statistical convenience. More often,

and preferably, the choice of n is dictated by the way in which the data were
obtained. In the example above, the data may actually consist of three sam-
ples, each measured four times. In this case, “within groups” means “with-

in samples,” and “between groups” means “between samples.”

Another possibility is that there were actually 12 samples, but that the

measuring technique requires that they be tested in groups of four. If that is

the situation, the relation of between-group to within-group variability de-

pends not only on the sample-to-sample variability but also on the stability

of the measuring instrument or technique from one group of four to another

group of four. The location of the control limit and the interpretation of the

control chart will depend on the nature and the choice of the subgroup.

If the standard deviation within subgroups is denoted by ctw, and the

standard deviation between subgroups by o-b, a control chart is sometimes,

but by no means always, a test as to whether ag exists (is different from ze-

ro). If o-fi = 0, then the variation between the averages of subgroups can be

predicted from ctw (or, approximately, from R). The hypothesis ctb = 0 can

be tested by observing whether the subgroup averages stay within the con-

trol limits calculated on the basis of within-subgroup variability. Failure of

this event to occur indicates the presence of causes of variability between
subgroups. The nature of these causes depends on the criteria used in the

selection of the subgroups.

The case o-g 0. Baseline data

In many applications, the hypothesis o-b = 0 is not justified by the physi-

cal reality underlying the data. It may, for example, already be known that

the subgroups vary from each other by more than can be accounted for by
within-subgroup variability. Thus, each subgroup may represent a different
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day of testing, and there may be more variability between days than within

days. The initial set of data {baseline data) is then used primarily to estimate

both the within- and the between-components of variability, and control lim-

its are calculated on the basis of both these components (see section on com-
putation of control limits). Data that are obtained subsequent to the baseline

period are then evaluated in terms of these control lines. From time to time,

the control lines are recalculated using all the data obtained up to that time,

eliminating, however, those data for which abnormal causes of variability

were found.

Types of control charts

Depending on the characteristics of the measured quantity, control

charts can be classified into three main groups:

1) Control charts for variables (the X, R Chart). These are used for variables

such as clinical chemical determinations, some hematological parame-
ters, etc.

2) Control charts for attributes (the P-Chart). These are used for proportion

defective, proportion of occurrence of given disease, etc.

3) Control charts for number of defects per unit (the C-Chart). These may be

used for counts, such as the number of cells observed in a given area,

radioactive counts, etc.

Preparing a control chart

Objective and choice of variable

The general objectives of a control chart are: (a) to obtain initial esti-

mates for the key parameters, particularly means and standard deviations.

These are used to compute the central lines and the control lines for the con-

trol charts; (b) to ascertain when these parameters have undergone a radical

change, either for worse or for better. In the former case, modifications in

the control process are indicated; and (c) to determine when to look for as-

signable causes of unusual variations so as to take the necessary steps to

correct them or, alternatively, to establish when the process should be left

alone.

A daily review of the control chart should indicate whether the result-

ing product or service is in accordance with specifications. For example, in

clinical chemistry, if a control chart based on standard samples shows statis-

tical control for the measurement of a given constituent, then one can pro-

ceed with confidence with the determination of this constituent in patient

samples. If the chart shows lack of control, an investigation should be start-

ed immediately to ascertain the reasons for this irregularity.

No general recommendations can be made here about the types of vari-

ables to use for quality control purposes, since they will obviously vary ac-

cording to the various disciplines of the laboratory. Considerations of this

type will be found in the respective specialty chapters of this book. The
same statements apply to the types of stable pools or reagents that should be
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used, and to the methods of handling these materials in normal laboratory

practice.

Selecting a rational subgroup

The generally recommended approach for the selection of a subgroup of

data for control purposes (using a single pool of homogeneous material) is

that conditions within subgroups should be as uniform as possible (same in-

strument, same reagents, etc.), so if some assignable causes of error are pres-

ent, they will show up between subgroups (see Duncan,*^ p. 347, and

Grant, Ch. 6, for further discussions).

When tests on patient samples are performed at regular intervals using

standard laboratory equipment, the subgroup becomes automatically de-

fined, since control samples are, or should be, included in each run. Other-

wise, tests on control samples should be run at regular intervals during the

day in order to detect possible changes in environmental conditions, re-

agents, calibrations, technicians, etc.

Size and frequency of control sample analyses

A minimum of two replicates should be obtained in each run of the con-

trol sample. To account for the possible effects of carryover from other sam-
ples, and to have a better indication of the capability of an instrument to re-

produce itself under normal conditions within a run, the replicate samples
should not be tested back-to-back, but should be separated by patient sam-

ples.

As indicated before, the frequency of the runs on control materials is

generally tied to the frequency of the tests on patient samples. One general

rule is to test the control samples as frequently as possible at the beginning

of a control procedure, and to reduce this frequency to a minimum of two or

three per day when the results of the control chart show a satisfactory state

of control.

Maintaining uniform conditions in laboratory practice

A properly prepared control chart will tend to reflect any change in the

precision and accuracy of the results obtained. To avoid wasting time in

hunting for unnecessary sources of trouble, care should be taken to maintain

laboratory conditions and practices as uniform as possible. These include

sampling procedures, dilution techniques, aliquoting methods, storage meth-

ods, instrumental techniques, calculating procedures, etc.

Initiating a control chart

When meaningful historical data are not available (as is often the case

when a quality control procedure is to be initiated), a plan should be set up to

collect a minimum amount of data for each variable to be controlled during

an initial baseline period.

For a control chart for variables, with a minimum of two replicates for

each run, data should be collected for a baseline period of at least one month
in order to allow sufficient time for the estimation of day-to-day variability.
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Means and ranges should be computed for each run and plotted on separate

charts. Records should be accurately kept, using standard quality control

(QC) forms that are readily available. Any value that appears to be the result

of a blunder should be eliminated, and the source of the blunder carefully

noted. It is recommended that the number of runs or subgroups be at least 25

for the baseline period.

The same considerations apply to control charts of proportions and
counts, except that the number of observations for each subgroup is gener-

ally larger than the corresponding number used in a control chart of vari-

ables. Statistical procedures for determining the sample size, n, for the P-

chart or the C-chart can be found in the literature (see Duncan,'^ pp. 345 and

361). In general, n should be large enough to provide a good chance of find-

ing one or more defectives in the sample.

Determining trial control limits

Based on the initial set of data collected during the baseline period, trial

control limits can be determined using the procedure outlined in the section

on random samples. After plotting these limits in the initial control chart (see

section on the case ctb 0), points that are outside or very near the limits

should be carefully examined, and if some valid reasons are found for their

erratic behavior, they should be eliminated and new control limits should be

computed. In general, it is better to start with control limits that are relative-

ly narrow in order to better detect future trends, shifts in mean values, and
some other types of irregularities. A common experience is that some initial

subgroups of data will not be under control but, in general, after some knowl-
edge is gained in the use of the control chart, the process will tend to reach a

state of statistical equilibrium. After this time period, one generally has an

adequate amount of data to produce realistic estimates of the mean and
standard deviations.

Computing control limits

Two variable control charts should be kept, one for the average value,

and the other for the range of individual determinations in each subgroup. In

all cases in which a non-zero component for between-subgroups is known to

exist, the control limits for the chart of averages will be based on the “total”

standard deviation for subgroup averages.

If the subgroups are of size n, and if 6-^’ and 6-| represent the estimated

components of variance within subgroups and between subgroups, respec-

tively, then the “total standard deviation” for the averages of subgroups is

(4.65)

This quantity can also be obtained by directly calculating the standard devia-

tion of the subgroup averages in the baseline period.

The control chart of the ranges will be used to ascertain whether the

variability among individual readings within subgroups is consistent from
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subgroup to subgroup. The limits for this chart will be based on the within-

subgroup standard deviation.

Calculating the standard deviation

Using the available data for A' subgroups, each of size n, we will have the

layout shown in Table 4.15. The standard deviation within subgroups can be

estimated from

where

(4.66)

(4.67)

and the value of di can be obtained from standard control chart tables (see

Duncan,*^ p. 927). Values of dz for typical sample sizes are given in the fol-

lowing table:

n <^2

2

3

4

5

1.128

1.693

2.059

2.326

The value of Sw can be accurately determined by pooling the variances

from each subgroup (see section on precision and accuracy). However, the

above estimate, based on the average range, is sufficiently accurate if the

number of subgroups is large enough (say, 25 or more).

The standard deviation of the A sample averages is:

5^ = I(A', - ^2
A - 1

(4.68)

The between-subgroups standard deviation is given by:

5B — (4.69)

Table 4.15. Layout for A", R Control Charts

Subgroup Determinations Mean Range

1 Xr R.

2 ^21,^22, • . • ,A2„ A2 R2

3 ^31,^32, . . • ,A3„ /?3

• • • •

• • • •

k X, Rk

X R
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and the total standard deviation for individual determinations is:

+ SI- (4.70)

The total standard deviation for averages of n daily determinations is:

5 (4.71)

Note that 5^, is identically equal to Sj..

Control limits for the chart of averages

The control limits for the chart of averages are given by:

UCLj. + 35i. (4.72)

and

LCLj. =x - 3Sjt (4.73)

where UCL = upper control limit; LCL = lower control limit.

The warning limits are:

UWL^= i + 2S-^ (4.74)

and

LV^Li= -X - IS-, (4.75)

where VWL = upper warning limit; LWL = lower warning limit.

Control limits for the chart of ranges

Based on the three-sigma limits concept (see section on control limits),

the control limits for the chart of ranges are given by ^ ± 2>an. Using stand-

ard control chart notation, these limits are;

UCLfi= D,R (4.76)

and

LCLn = D,R (4.77)

where

£>,= 1 + 34' (4.78)
“2

and

D, = 1 - 3 4 14.79)
“2

and the values of d2 , d^, D 3 , and D, are given in Natrella^ and Duncan. For

n = 2, those values are D, = 3.261, and D 3 = 0.
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The warning limits for =2 are:

VWLr= 1.5\2R

LWL^= 0

The numerical value 2.512 is obtained as follows:

2.512 = 1 + 2 -^ =1 + 2
do 1.128

Examples of average and range (X and R) charts

Initial data

The data in Table 4.16 represent 25 daily, duplicate determinations of a

cholesterol control, run on a single-channel Autoanalyzer I, 40 per hour. It

may appear strange that all 50 values are even. This is due to a stipulation in

the protocol that the measured values be read to the nearest even number.
The data cover a period of two months, with the analyzer run at a frequency

Table 4.16. Example of X, R Chart: Cholesterol Control Run

Day

Run 1 Run 2 Mean
X,

Range

Ri

1 390 392 391 2

2 392 388 390 4

3 392 388 390 4

4 388 388 388 0

5 378 3% 387 18

6 392 392 392 0

7 392 390 391 2

8 398 402 400 4

9 404 406 405 2

10 400 400 400 0

11 402 402 402 0

12 392 406 399 14

13 398 3% 397 2

14 380 400 390 20

15 398 402 400 4

16 388 386 387 2

17 402 392 397 10

18 386 390 388 4

19 386 382 384 4

20 390 386 388 4

21 3% 390 393 6

22 3% 394 395 2

23 384 388 386 4

24 388 382 385 6

25 386 384 385 2

X = 9,810 120
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of three days per week. The two daily determinations were randomly located

within patient samples. The control consisted of 0.5 ml of sample extracted

with 9.5 ml of 99 percent reagent-grade isopropyl alcohol.

Computing trial control limits

From the data in Table 4.16:

Si

X = 9810/25 = 392.4

R = 120/25 = 4.8

_ (^.)yn]/in - 1) = 3850320 - (9810)2/25 /24

= 6.04

The control limits for^ can be computed:

UCL^ = 392.4 + 3(6.04) = 410.5

LCLj, = 392.4 - 3(6.04) = 374.3

The warning limits for^ are:

UWLj. = 392.4 + 2(6.04) = 404.5

LWLj, = 392.4 - 2(6.04) = 380.3

The control limits for/? are:

UCLr = (3.367) (4.8) = 15.7

LCLn = 0

The warning limits ofR are:

UWLk = (2.512) (4.8) = 12.1

36.5

Analysis of data

In Figures 4.4 and 4.5, a graphical representation is shown of the control

charts for the mean and range of the daily runs, together with their appropri-

ate control limits.

The means of the daily runs appear to be under control. Only one point,

day 9, is above the warning limit, and all points appear to be randomly lo-

cated around the central line.

The control chart of the range shows two points out of control, days 5

and 14, and one point, day 12, on the upper warning limit.

Let us assume, for the purpose of illustration, that a satisfactory reason

was found for those two points to be out of control in the range chart, and

that it was decided to recompute new limits for both the^ and the R charts

based on only 23 days of data.

The new values are: ^ = 392.7,^ = 3.57,

=

6.17, and /i = 23.

UCLi = 392.7 + 3(6.17) = 4\\.2;UWLi = 405.0
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CHOLESTEROL
CONTROL CHART FOR THE MEAN

(Two determinations per day)

Fig. 4.4. Control chart for the mean, based on 25 daily duplicate determinations of a

cholesterol control.

LCLi = 392.7 - 3(6.17) - }>lA2\LWLi = 380.4

The new limits for the X chart are practically the same as the previous

limits.

UCLr = (3.267) (3.57) = \\J\UWLn = 9.0

LCLn = 0 LWL« =0

These values establish the final limits, based on the baseline period.

Fig. 4.5. Control chart for the range, based on 25 daily duplicate determinations of a

cholesterol control.
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Additional data

Nineteen additional points were obtained for days 26 to 44, running

through a period of about one-and-a-half months. The values are shown in

Table 4.17.

Figures 4.6 and 4.7 show the results of the 19 additional data points

plotted against the (corrected) control limits based on the baseline period.

The Z-chart shows two points, days 38 and 39, out of control, about 40

percent of the points near the warning limits, and a definite trend toward

large values ofX after day 30. There is a run of seven points above the cen-

tral line after day 37 and, in fact, if one considers day 37 to be “above” the

central line (the mean of day 37 is 392), the run of points above the central

line is of length 12. As indicated in the section on control limits, these consid-

erations are indications of a process out of control.

The -chart shows one point out of control and two points above the

upper warning limit; although the value ofR based on the 19 additional val-

ues, 4.32, is larger than the previous value, R = 3.57, the difference is not

significant.

The new set of points taken by itself produced the following values:

X = 396.5, R = 4.32, and Sj. = 12.17, where n = 19.

Future control limits

It is generally desirable to have a well-established baseline set so future

points can be evaluated with confidence in terms of the baseline central line

Table 4. 17. Additional Values for Cholesterol Control Run

Day

Run 1 Run 2

Xi2

Mean

Xi

Range

Ri

26 392 392 395 6

27 376 376 376 0

28 390 386 388 4

29 394 384 389 10

30 382 378 380 4

31 384 382 381 2

32 384 388 386 4

33 402 392 397 10

34 390 398 394 8

35 402 402 402 0

36 398 394 3% 4

37 390 394 392 4

38 426 428 427 2

39 414 428 421 14

40 402 398 400 4

41 402 400 401 2

42 402 404 403 2

43 400 402 401 2

44 404 404 404 0

1 = 7,533 82
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CHOLESTEROL
CONTROL CHART FOR THE MEAN,

USING CORRECTED LIMITS

(Additional Data)

Fig. 4.6. Control chart for the mean, based on 19 additional data points, plotted

against the corrected control limits.

and control limits. If, in the example under discussion, the additional set

(days 26 to 44) was found to be satisfactorily consistent with the baseline

data, then it would be proper to extend the baseline period by this set, i.e., a

total of 25 + 19 = 44 points. However, we have already observed a number
of shortcomings in the additional set, and the proper action is to search for

the causes of these disturbances, i.e., “to bring the process under control.”

This is of course not a statistical problem.

For the purpose of our discussion, we will assume that an examination

of the testing process has revealed faulty procedure starting with day 37.

Therefore, we will consider a shortened additional set, of days 26 through

36. The following table gives a comparison of the baseline set (corrected to

23 points as discussed previously) and the shortened additional set (11

points).

Baseline Set Additional Set

Number of points,N
Average,Z
Average Range,

^

Standard deviation, s

x

23 11

392.7 389.5

3.57 4.73

6.17 8.15

By using the F test, it is easily verified that the difference between
the two standard deviations is well within the sampling variability that may
be expected from estimates derived from samples of 23 and 1 1 points, respec-
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CHOLESTEROL
CONTROL CHART FOR THE RANGE

USING CORRECTED LIMITS

DAYS
Fig. 4.7. Control chart for the range, based on 19 additional data points, plotted

against the corrected control limits.

lively. The difference between the averages, X, is 392.7 - 389.5 = 3.2. A
rough test can be made to see whether this difference indicates a real shift

between the two sets. The standard error of the difference is approximately

1(6.17)2/23 + (8. 15)2/1 l]i = 2.77. Thus the difference, 3.2, is equal to

= 1.15 standard errors, and this is well within sampling errors.

It is therefore not unreasonable in this case to combine the 34 points of
both sets to construct a new baseline. This results in the following parame-
ters: N = U,X = 391.7, R = 3.95, and 5^. = 6.93.

The new control limits are:

ForX: UCL = 412.5

LCL = 370.9

For;?: VCL = 12.9

LCL = 0

UWL = 405.6

LWL = 377.8

UWL = 9.9

LWL = 0

Using these new parameters, it can be noted that the points correspond-

ing to days 37 through 44 may indicate a potential source of trouble in the

measuring process.

Control chart for individual determinations

It is possible, although not recommended, to construct charts for indi-

vidual readings. Extreme caution should be used in the interpretation of

points out of control for this type of chart, since individual variations may
not follow a normal distribution. When a distribution is fairly skewed, then a

transformation (see section on transformation of scale) would be applied be-

fore the chart is constructed.
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The steps to follow are:

1) Use a moving range of two successive determinations;

2) Compute R =

3) Determine the control limits for^:

For n = 2, d2 = 1.128, and hence the control limits are:

X ± 2.66 R

4)

The upper control limit for/? is D^R = 3.267 R. The lower control limit is

equal to zero.

Other types of control charts

Control charts can also be constructed based on the average standard

deviation, &, of several subgroups of sample data, or on “standard” values

of 0-, called cr' in the quality control literature (See Duncan, Chap. 20).

Control chart for attributes—the P-chart

The fraction defective chart is generally used for quality characteristics

that are considered attributes and are not necessarily quantitative in nature.

To use this chart, it is only necessary to count the number of entities that

have a well-defined property, such as being defective, have a certain type of

disease, or have a glucose content greater than a given value, and translate

this number into a proportion. The data used in this chart are easy to handle,

and the cost of collection is normally not very high. In some instances, the

P-chart can do the job of several average and range charts, since the classifi-

cation of a “defective” element may depend on several quantitative charac-

teristics, each of which would require an individual set of average and range

charts for analysis.

The sample size for each subgroup will depend on the value of the pro-

portion P being estimated. A small value of P will require a fairly large

sample size in order to have a reasonable probability of finding one or more
“defectives” in the sample (See Duncan*^). In general, a value ofw between

25 and 30 is considered adequate for the calculation of a sample proportion.

Control limits and warning limits

Since the standard deviation of a proportion is directly related to the

value of the proportion, an estimate /? ofP is all that is needed for the calcula-

tion of the central line and of the control limits.

The central line is located at the value p. The three-sigma control limits

are;

(4.80)
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where q = \ - p. The estimate p is obtained as follows:

Let the data be represented by the table:

Sample
Number Size

Number of Elements
Having a Certain

Characteristic Proportion

1 n Pi
2 n P2
3 n P3

k n Pk

Total

where p.
=

Average proportion:

The warning limits are:

IPi

P= k

IPi

(4.

f/WLp = p + 2 (4.83)

When the sample size does not remain constant from subgroup to sub-

group, the recommended procedure is to compute control limits using the

average sample size. However, when a point falls near the control limits thus

calculated, then the actual limits for this point, using its own sample size,

should be estimated before a conclusion is reached about its state of control.

Control charts for number of defects per unit—the C-chart

In some instances, it is more convenient to maintain control charts for

the number of defects per unit, where the unit may be a single article or a

subgroup of a given size. The “number of defects” may be, for instance, the

number of tumor cells in an area of a specified size, the number of radio-

active counts in a specified period of time, etc. In all these instances, the

probability of occurrence of a single event (e.g., an individual defect) is very



small, but the unit is large enough to make the average number of occur-

rences (number of defects) a measurable number.

The Poisson distribution

It can be shown that, when the probability P of an event is very small

but the sample size n is large, then the distribution of the number of occur-

rences c of this event tends to follow a Poisson distribution with parameter

nP = c'

.

The mean and standard deviation of c are:

E{c) = c' (4.85)

CTf. =\/c^ (4.86)

The random variable c represents the number of defects per unit, the

number of radioactive counts in a given period of time, the number of bacteria

in a specified volume of liquid, etc.

Control limits.—The upper and lower limits are given by:

UCLc = c + 3 VV (4.87)

LCL(. = c - 3 \/ c (4.88)

Here c is the average number of defects, or counts, obtained using a suffi-

ciently large number, k, of units, c is a sample estimate of the unknown, or

theoretical valuer'.

The warning limits are:

UWL, = c + 2 V'F (4.89)

LWLc = c - 2 \/T~ (4.90)

Detecting lack of randomness

If a process is in a state of statistical control, the observations plotted in

the control chart should randomly fall above and below the central line, with

most of them falling within the control limits. However, even if all the points

fall within the upper and lower control limits, there might still exist patterns

of nonrandomness that require action, lest they lead eventually to points

outside the control limits. Procedures for detecting such patterns will be dis-

cussed.

Rules based on the theory of runs

The most frequent test used to detect a lack of randomness is based on
the theory of runs. A run may be defined as a succession of observations of

the same type. The length of a run is the number of observations in a given

run. For example, if the observations are classified as a or b, depending on
whether they fall above or below the mean, then one set of observations may
look like:

aaababbbaab
Here we have six runs, of length 3, 1, 1, 3, 2, 1, respectively.
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Another criterion for the definition of a run would be the property of

increase or decrease of successive observations. Such runs are called “runs

up and down." For example, the sequence 2, 1.7, 2.2, 2.5, 2.8, 2.0, 1.8, 2.6,

2.5, has three runs down and two runs up. In order of occurrence, the

lengths of the runs are 1, 3, 2, 1, 1.

Returning to runs above and below the central value, it is possible

through use of the theory of probability, and assuming that the probability is

one-half that an observation will fall above the central line (and, con-

sequently, one-half that it will fall below the central line), to determine the

probability distribution of the lengths of runs. Tables are available for sever-

al of these distributions (See Duncan, Chap. 6). Some rules of thumb based

on the theory of runs that are very useful in pointing out some lack of ran-

domness are:

1) A run of length 7 or more. This run may be up or down, above or below
the central line in the control chart. (For runs above or below the median,

the probability of a run of length 7 is 0.015.)

2) A run of two or three points outside the warning limits.

3) Ten out of 1 1 successive points on the same side of the central line.

Distribution of points around the central line

When a sufficient number of observations is available, the pattern of

distribution of points around the central line should be carefully examined.

In particular, if the points tend to cluster near the warning or control limits,

or if they show characteristics of bimodality, or if they show a pronounced
skewness either to the left or the right, then the assumption of normality will

not be satisfied and some transformation of scale may be necessary.

Interpreting patterns of variation in a control chart

Indication of lack of control

A process is out of control when one or more points falls outside the

control limits of either the x or the R-chart, for control of variables, or out-

side the limits of the P-chart, for control of attributes.

Points outside the control limits of the R-chart tend to indicate an in-

crease in magnitude of the within-group standard deviation. An increase in

variability may be an indication of a faulty instrument which eventually may
cause a point to be out of control in the i-chart.

When two or more points are in the vicinity of the warning limits, more
tests should be performed on the control samples to detect any possible rea-

sons for out-of-control conditions.

Various rules are available in the literature about the procedures to fol-

low when control values are outside the limits (see, for example, Haven^^).

Patterns of variation

By examining the x and R-charts over a sufficient period of time, it may
be possible to characterize some patterns that will be worth investigating in

order to eliminate sources of future troubles.

Some of these patterns are shown in Figure 4.8.

D-62



The control chart as a management tool

As indicated in the ASQC definition of quality assurance, . The sys-

tem involves a continuing evaluation of the adequacy and effectiveness of

the overall quality-control program with a view of having corrective meas-
ures initiated where necessary . .

The key words, “continuing evaluation” and “having corrective meas-
ure initiated,” indicate the essence of a quality control program. It is impor-

tant that the results of the control chart be subjected to a daily analysis in

order to detect not only the out-of-control points but also any other manifes-

tation of lack of randomness as shown by a time sequence of daily observa-

tions. It is always better and more economical to prevent a disaster than to

take drastic measures to cure one. Since each test method should be sub-

jected to quality control, the control charts should be prominently displayed

at the location where the test is performed, not only to facilitate the logging

of results as soon as they are obtained but also to give the technician respon-

sible for the test an easy graphical representation of the time sequence of

events. In addition, preprinted forms containing the relevant classification

should be available for easy recording of information such as names, dates,

time of day, reagent lot number, etc.

When all the pertinent data provided by the control charts are available,

the supervisor, or section manager, should have all the meaningful informa-

tion required to take corrective measures as soon as a source of trouble has

been detected. Monthly or periodic review of the results, as performed by a

central organization with the aid of existing computer programs, is impor-

tant to provide the laboratory director with an important management tool,

since the output of these programs may include such items as costs, inter-

and intra-laboratory averages, historical trends, etc. However, as pointed

out by Walter Shewhart^® and other practitioners of quality control, the most
important use of the control chart occurs where the worker is, and it should

be continuously evaluated at that location as soon as a new point is dis-

played on the chart.
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PREFACE

Calibrations and related measurement services of the National Institute of
Standards and Technology provide the means for makers and users of measuring
tools to achieve levels of measurement accuracy that are necessary to attain
quality, productivity and competitiveness. These requirements include the

highest levels of accuracy that are possible on the basis of the most modern
advances in science and technology as well as the levels of accuracy that are
necessary in the routine production of goods and services. More than 450
different calibrations, measurement assurance services and special tests are

available from NIST to support the activities of public and private
organizations. These services enable users to link their measurements to

the reference standards maintained by NIST and, thereby, to the measurement
systems of other countries throughout the world. NIST Special Publication 250,

NIST Calibration Services Users Guide , describes the calibrations and related
services that are offered, provides essential information for placing orders
for these services, and identifies expert persons to be contacted for technical
assistance

.

NIST Special Publication 250 has recently been expanded by the addition of
supplementary publications that provide detailed technical descriptions of
specific NIST calibration services and, together with the NIST Calibration
Services Users Guide, they constitute a topical series. Each technical
supplement on a particular calibration service includes:

° specifications for the service

“ design philosophy and theory

° description of the NIST measurement system

“ NIST operational procedures

“ measurement uncertainty assessment
error budget
systematic errors
random errors

“ NIST internal quality control procedures

The new publications will present more technical detail than the information
that can be included in NIST Reports of Calibration. In general they will also
provide more detail than past publications in the scientific and technical
literature; such publications, when they exist, tend to focus upon a particular
element of the topic and other elements may have been published in different
places at different times. The new series will integrate the description of
NIST calibration technologies in a form that is more readily accessible and
more useful to the technical user.

The present publication, SP 250-31, NIST Measurement Services: Mass Calibration
at the National Institute of Standards and Technology, by R. S. Davis, is one

of the documents in the new series. It describes calibration technology and
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procedures utilized in connection with NIST Service Identification Numbers from
22010C to 22180M listed in the NBS Calibration Services Users Guide 1986-

88/Revised (pages 28-31). Inquiries concerning the contents of these documents
may be directed to the author(s) or to one of the technical contact persons
identified in the Users Guide.

Suggestions for improving the effectiveness and usefulness of the new series
would be very much appreciated at NIST. Likewise, suggestions concerning the
need for new calibration services, special tests and measurement assurance
programs are always welcome.

Joe D. Simmons, Acting Chief
Office of Physical Measurement Services
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1. Description of Service

The National Bureau of Standards maintains the national standard for mass in

the form of the prototype kilogram K20 and its companion K4 and provides
services to support the segments of the national measurement system which rely
directly or indirectly on mass measurements. These services are offered only
to those customers whose requirements cannot be met by state laboratories. In

order to provide prompt and useful service, the acceptance of the items for

calibration or test is based on discussions with each user to determine details

necessary to meet measurement and delivery requirements, and on inspection of

the item at the Bureau to determine its suitability for the usage intended.

Services are available to enable a user to establish a measurement assurance
program for certain measurement processes. This may involve developing
procedures for establishing and maintaining a state of statistical control for

the measurements, the determination of the offset of the process from the

national system, and assisting in the determination of the uncertainty of

measurements made by the user's process.

Arrangements for calibration (or test) must be completed before shipping
apparatus to the Bureau. While all services are on an actual-cost basis,
subject to a $25 minimum charge, a mutual agreement on the work to be performed
generally results in substantial savings for the user. Detailed packing and
shipping instructions are available on request. Items not accepted for
calibration or test will be returned, the cost of inspection or the minimum
charge will be applicable.

The results of a calibration or test will be reported in a National Bureau of
Standards Report of Calibration Test or of Special Test (which in many cases is

prepared by a computer program), a continuation report, or a letter report. In
each of these, the values reported are accompanied by an appropriate estimate
of uncertainty (allowance for random and systematic errors) as determined by an
analysis of the specific measurement process. A continuation report is used
for those items submitted for recalibration on which preliminary tests indicate
that no significant changes have occurred since the last calibration. Usually
a letter report is used to report a test for compliance with a specification
which states limits for the departure of the actual value from nominal.

Charges for these services are listed in the NBS SP250 Appendix. Upon receipt
of a request for services, an estimated cost will be given along with a firm
date for completion. An effort will be made to discuss the measurement
requirement with the customer so as to give proper service at minimum cost and
delay.

The Bureau's calibration of reference standards of mass provides extensions of
the mass unit embodied in the NBS standard of mass. A normal calibration
consists of establishing a mass value and the appropriate uncertainty for that
value for each weight which has been designated to be a reference standard. It

is desirable, but not necessary, that a weight meet the adjustment tolerances
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established for NBS Classes A, B, M, or S-1 prior to submission[ 1 ]
.

^ Normally
weights are available from manufacturers, many of whom can furnish directly
documentation suitable for meeting quality assurance contracts and
requirements

.

Individual weights or sets of weights in the range of 30 kg to 1 mg or 50 lb to

1 /ilb in decimal subdivisions, which are designated as reference standards,
must be of design, material, and surface finish comparable to, but not
necessarily limited to, present NBS Classes A, B, M, S, or S-1.^ Design,
material, and surface finish of large mass standards (from 50 to 50,000 lb)

must be compatible with the intended usage. For these large mass standards an
adjustment with reference to a nominal or desired value can be included as a

part of the calibration procedure.

The values of true mass (and an apparent mass correction) included in the

report will be determined by using computed volumes based on the manufacturer's
statement of density of the material, on the density computed from measured
volumes, or in the absence of this information, on estimated density values.
The apparent mass corrections are computed for 20 ®C with reference to Normal
Brass (density 8.4 g/cm^ at 0 °C, volume coefficient of expansion 0.000054/°C)
and to stainless steel (density 8.0 g/cm^ at 20 °C) in an ideal air density of
1.2 mg/cm^ . Apparent mass corrections to any other basis can be furnished if

requested.

For periodic recalibrations of reference mass standards, the user need measure
only differences between weights or groups of weights within a set and compare
them with computed differences. As long as the agreement is within allowable
limits, the values can be considered constant within the precision of the

comparison process. Mass standards which are submitted to the Bureau for
recalibration frequently are tested in this manner. If these tests indicate
that no significant changes have occurred, a continuation report so stating and
referring to the previous NBS Report of Calibration will be issued.

2. The International System of Units

Virtually all industrialized countries are signatories to a treaty which
establishes a consistent set of measurement units. The convention which has

been agreed to is called the International System of Units. It is frequently
abbreviated as SI (for Systeme International d'Unites, the treaty having been
written in French). An international committee, which was established through

a provision of the treaty, sees to it that the definitions of units in the SI

change to reflect improvements in measurement technology. In the case of the

^New weights are more likely to be adjusted to ANSI/ASTM or OIML tolerance

[2,3]. We will accept ASTM Classes 1, 2, and 3 as well as OIML Classes El, E2

,

FI, and F2
.

(See ASTM E617.)

^We will also accept ANSI/ASTM Grades S and 0 as well as OIML classes El,

E2, FI, or F2.
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unit of mass, however, there has been no change in the definition for almost
100 years.

The unit of mass in the SI is the kilogram. Its value is defined with
reference to an object known as the International Prototype Kilogram (IPK)

.

The definition can be simply stated:

"A kilogram is equal to the mass of the International Prototype of the

kilogram. " [4]

The IPK is kept and used under the supervision of the International Bureau of

Weights and Measures (BIPM) on land provided by the French government in

Sevres, near Paris. [5]

It is then necessary to establish a practical system of mass measurement based
on the simple definition.

3. Mass Standards in Practice

3.1 Kilograms

The first step is the easiest to achieve. Countries, such as the United
States, possess at least one replica of the IPK. These replicas are made of
the same material as the IPK (an alloy of 90 percent platinum/10 percent
iridium; density 21.5 g/cm^) ,

and have the same shape (a cylinder whose height
equals its diameter) . The replicas are only within 1 milligram of the IPK but
differences between the replicas and the IPK can still be measured using the

best balances (such balances have the almost incredible precision of 1

microgram in 1 kilogram, or 1x10"^). Thus each replica must be compared either
directly or indirectly with the IPK in order to establish its mass. The U.S.

bases its mass measurements on the value of replica no. 20 (sometimes referred
to as K20)

,
which is kept at the National Bureau of Standards in Gaithersburg,

MD. The difference between the mass of the IPK and K20 was determined in 1890

and again in 1948. In 1984 K20 was compared indirectly with the IPK. A
detailed account of these latest measurements and a review of previous
measurements involving the replicas can be found in [6]

.

The mass of K20 is

thus known to be 1 kg -0.020 mg with an uncertainty of less than 0.010 mg.

Notice that, while the mass of the IPK is 1 kg by definition and thus has no

uncertainty, the mass value assigned to K20 is not exactly equal to its nominal
value and does have a finite uncertainty.

The IPK and its replicas, such as K20, are made of platinum/iridium for a

variety of reasons chief among which is resistance to chemical attack. The

expense of this alloy has precluded and still precludes the widespread use of

platiniim/iridivun weights. In the first half of this century, brass weights,

usually plated with nickel or rhodium, were the best quality weights

commercially available. More recently, stainless steel has supplanted plated

brass as the material with which the highest quality commercial weights are

fabricated.
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Aside from the fact that plated brass or stainless steel are not as resistant
to chemical attack as is platinum/iridium, the major difference between
kilograms made of Pt/Ir and those of brass or steel is their size, more
specifically their volume. One kilogram of Pt/Ir has a volume of about 46.5
cm^

;
but a typical stainless steel kilogram has a volume of about 125 cm^ and

one of brass has a volume of about 119 cm^ . The difference in volume between a

Pt/Ir kilogram on the one hand and a brass or steel kilogram on the other is so

great that the buoyant effect of the air which surrounds the kilograms cannot
be neglected during weighing. If, for instance, one constructed a stainless
steel kilogram weight which exactly balanced the IPK when the two were compared
on the most precise balance available, the stainless weight would actually have
a mass of about 1 kg + 94 mg. The "extra mass" came about because the

measurements were done in air. Air is a fluid which, like any fluid, produces
a buoyant effect on objects it surrounds. The effect can be as large and
dramatic as the Goodyear blimp. However, when it comes to mass standards and
weighing in general, the effect is small but extremely nettlesome. In the case
of the Pt/Ir and steel kilograms just mentioned, the buoyant force on the steel
exceeded that on the Pt/Ir so that almost 0.1 g extra steel was needed to

balance the two weights. Had the weighing been done in the absence of air,

i.e. in vacuum, there would have been no problems due to air buoyancy: the

mass of stainless steel which would exactly balance the IPK would have been
exactly 1 kilogram. The buoyancy effects are illustrated in figure 1.

Our concept of mass requires that the mass of an object be the same in vacuum
or air (or any other fluid) providing that the total amount of material
comprising the object has not changed (i.e, the weight does not dissolve,
evaporate, react chemically, etc. with the fluid which surrounds it). Thus a

correction must be applied to mass measurements made in air between standards
of different volumes. Let us return to the imaginary measurement in air which
showed that a stainless steel kilogram exactly balanced the IPK. The results
of this measurement can be stated in several different ways:

MASS:

TRUE MASS:

VACUUM MASS:

APPARENT MASS:

The mass of the stainless steel object is about 1 kg + 94 mg.

The true mass of the stainless steel object is about
1 kg + 94 mg (true mass = mass)

The vacuum mass of the stainless steel object is about
1 kg + 94 mg. (vacuum mass = mass).

The apparent mass of the stainless steel kilogram is about
1 kg + 0.0 mg when measured against Pt/Ir standards in air of

density 1.2 g/cm^ at a temperature of 20 °C

.

Note that when specifying apparent mass, one must define the specific weighing
conditions. Whereas the mass of an object is a fundamental attribute, its

apparent mass will depend on its density, the density of the standard to which
it was compared, and the density of air at the time the measurements were made.

(The temperature at which the measurements were made must be specified also

because the density of stainless steel, Pt/Ir, and other materials is a slight

function of temperature.) Because apparent mass is defined through a

particular convention, it is sometimes referred to as "conventional mass."
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B.

Figure 1. A. A stainless-steel kilogram (density 8000 kg/m^) balances a

platinum- iridium kilogram (density 21500 kg/m^) at normal
atmospheric conditions. B. Under vacuum conditions one can
see that the mass of the stainless-steel kilogram actually
exceeds that of the platinum kilogram by about 0.1 g.
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The two conventions in widest use are: density 8.0 g/cm^ at 20 °C in air of
density 1.2 g/cm^; and density 8.39094 g/cm^ at 20 °C in air of density 1.2

g/cm^ [ 7 ]

.

Mass in SI units is truly mass (or "vacuum" mass or "true" mass). When the
National Bureau of Standards (NBS) calibrates a stainless steel kilogram in
terms of its Pt/Ir national standard, a correction of order 0.1 grams must be
made to the raw data. This correction is large compared to the precision of
the mass comparison. Making the correction requires a great deal of effort.
Even doing the best one can, this buoyancy correction can be the major
contributor to the uncertainty in the calibration of the stainless steel
kilogram. If the steel kilogram is then used to calibrate other steel or brass
kilograms, the buoyancy corrections will be small and relatively easy to apply.
The use of stainless steel or other nickel-chrome alloys as "working standards"
also means that K20 can be used very infrequently, thereby minimizing wear and
the chance of accident.

The strategy of NBS was to put great effort into the calibration of two

standards, N1 and N2
,
having a density of 8.35 g/cm^. These two weights, made

of a nickel-chrome alloy, are then used to calibrate other weights of similar
density on a more routine basis. At the present time, errors in assigning
calibration value of N1 and N2 with respect to the IPK are not included in
error budgets. This practice is now in the process of being revised.

At the time N1 and N2 were fabricated, the majority of high-quality weights
were made of plated brass; hence the choice of alloy density. Now virtually
all high-quality weights are made of stainless steel. For this reason, NBS is

in the midst of changing its working standards from N1 and N2 to standards of
stainless steel density of 8.0 g/cm^ . This will be a relatively slow process
because the long-term stability of the new standards must first be established.
In addition, the tie to the SI unit is being carefully established so that a

meaningful uncertainty can be assigned.

3.2 Other Denominations

So far, we have described how the SI mass unit is transferred from the Pt/Ir
prototype in Sevres to a nickel-chrome or stainless steel working standard at

NBS. Obviously, it is essential to calibrate weights at other nominal values
above and below 1 kg.

The concept of how this is accomplished is simple. Once one has a weight which
embodies an SI mass value, it is only necessary to find the ratio of the mass

of the known weight to the mass of the unknown weight. Since a ratio is

dimensionless, these measurements can, in principle, be accomplished by any

laboratory with sufficiently sensitive balances. For instance, if we have a

kilogram weight calibrated in SI units and we need to know the mass value of a

500-g weight, the following simple approach might be taken: The known 1-kg

weight could be used to calibrate a digital electronic balance of 1 kilogram

capacity. The unknown 500-g weight could then be placed on the balance and its

mass value read directly. (It would also be wise to check the balance

linearity and make the necessary corrections for air buoyancy.) Such

E-6



calibrations were, of course, done before the days of electronic balances.
Even today, higher precision can usually be obtained with mechanical balances
although with a great loss in convenience. Using an equal-arm balance, for
instance, one would need an additional 500-g weight. The mass difference
between the sum of both 500-g weights could be found with respect to the
calibrated 1-kg weight. This is enough information to assign mass values to

the two unknown weights. Similar, though more sophisticated, procedures are
used to calibrate weights of all denominations beginning with calibrated
kilogram standards.

Calibration of a set of weights consists of assigning values for the unknown
weights in terms of the known mass of one or more standards. For high
precision work, this involves the use of the balance as a comparator which
measures the difference between two objects (or two groups of objects) which
must have nominally the same mass because of the small "on-scale" range of the

comparator. In deriving units which are subdivisions of the basic unit or

multiples thereof, a variety of different weighing sets have been used because
of convenience or other practical considerations. A typical set is the 5321
series which bridges the range from 10 to 1. In most cases, the calibration
algorithm provides for a check standard, treated as an additional unknown
weight, to be used for monitoring the performance of the measuring process. [8]

Precision weighing is usually done by some form of transposition weighing on a

two-pan balance or by substitution methods on a one-pan balance [7]. For
simplicity, it will be assumed that a well behaved comparator is available and
that measurements of differences in the mass of two objects or groups of
objects are corrected for air buoyancy effects and other environmental or
procedural factors [7]. It is further assumed that the measurements are
uncorrelated in the statistical sense and all are of equal precision. (These

latter two assumptions are non- trivial and special care has to be taken to

insure their validity so that the random error component of the uncertainty is

properly evaluated.)

The schedule of measurements for calibration should include provision for a

check standard and also for within-run redundancy. The decision as to which
one of a number of possible schedules or designs to use for intercomparison of

a set of weights depends on items such as the variance associated with
individual weights or combinations thereof. The least squares analysis from

which the values for the weights and their variances are calculated is

presented in Appendix A.

4. Density Determination of Single-Piece Kilograms Using a Submersible Balance

The buoyancy correction is important in precision weighing. For most cases, an

assumed density (supplied by the manufacturer) will suffice. However, in the

case of 1-kg standards, it is desirable to measure the density of individual

weights. This measurement is now done routinely at NBS for single-piece
kilogram and pound weights sent for calibration. The density measurements we

use are a modification developed in our laboratory of the usual hydrostatic

weighings. A brief description of the technique which we use follows. 19]
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4 . 1 Apparatus

The balance modified for this work is a Mettler PL1200,^ the important
specifications of which are:

weighing range
reproducibility
linearity

0 - 1200 g
<0.005 g
<0.01 g

Significant mechanical and electronic modifications were introduced to the

balance and its enclosure. Specifically, the weighing cell of the balance was
separated from the supporting electronics and placed beneath the surface of an

inert liquid (see fig. 2).

Clearly, the fluid in which an electronic measuring cell is immersed must have
many special properties: it must be electrically insulating, it must be
chemically inert, it must be optically transparent (in order for the servo
optics to function properly), and it should not evaporate quickly. These
characteristics may be found, for example, in FC-75, a fluorinated fluid
manufactured by the 3M Company. A comparison of some of the properties of
FC-75 with those of water is given in table 1. An additionally noteworthy
property of FC-75 is its immense appetite for gases. For example, the fluid is

able to dissolve about 0.3 g of air per kilogram of fluid. This ability to

dissolve atmospheric gases, greatly inhibits bubble formation on immersed
objects--one of the most serious problems in conventional high-precision
hydrostatic weighing. Finally, the fluid is 77 percent more dense than water
at room temperature thereby increasing the signal to noise in comparison to a

normal hydrostatic weighing. The major disadvantages of this fluid as compared
to water are its large coefficient of thermal expansion and its cost. However,
use of FC-75 instead of water for conventional "hydrostatic" weighing has many
advantages .[ 10] The density of FC-75 is usually not known accurately enough
for the liquid to serve as a density standard. Instead, the fluid density is

calibrated at the time of use by including a solid object of known mass and
volume in the weighing scheme.

^ Certain trade names and company products are identified in order to

adequately specify the experimental procedure. In no case does such
identification imply recommendation or endorsement by the National Bureau of

Standards nor does it imply that the products are necessarily the best
available for the purpose.
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I/O ELECTRONIC CABLE

Figure 2. Cross-sectional view of the balance immersed in its
thermostated bath. A conventionally- shaped standard weight is
shown on the pan. Unconventional loads may also be
accommodated by the pan as suggested by the sphere (drawn with
dashed lines).
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Table 1. Comparison of Properties of FC-75 and Water

Property (at 25 °C) FC-75^ Water

Density (kg/m^) 1800 1000

Coefficient of expansion (°C~^) 1.6x10'3 2.5x10'^

Kinematic viscosity (cm^/s) 0.82x10’2 0.89x10-2

Vapor pressure (Pa) 4000 3200

Surface tension (N/m) 0.015 0.072

Heat capacity (J/g-°C) l.O 4.2

Thermal conductivity (W/cm-°C) 1.4x10'3 6.1x10-3

^Values for FC-75 supplied by the manufacturer.

4.2 Principles of Use

We illustrate the use of the submersible balance by finding the volume, V^, of
an object, A, when its mass, M^, is known. Placing the object on the balance
produces a reading, 0^, which is related to the other parameters through the
equation

Oa = K
[ Ma - p(t)VA(t)] (1)

where 0^ is the difference in reading of the loaded and unloaded balance

.

Here p is the density of the fluorocarbon and K is a constant scale-factor
which may be adjusted by turning a potentiometer controlling the calibration of
the balance. Both p and are functions of the ambient temperature, t. In
succeeding equations the functional dependence on temperature is not shown
explicitly.

Normally K is adjusted by the balance manufacturer or user so that the balance
will read directly the mass of an object of density 8 . Og/cm^ in air of density
1.2 X 10“^g/cm^, i.e. K = 1.000150. We found it convenient (though, of course,
not essential) to readjust K to exact unity. Thus we can ignore K in the

succeeding equations. Hence,

V.

P

( 2 )
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The problem with using eq (2) is that the precision with which can be
measured far exceeds the accuracy with which p is known. Thus, for best
results, one should also measure an object whose mass and volume are known.
Placing such an object on the balance essentially calibrates the density of the
fluorocarbon at the time of weighing. Let the known object be called SI. Then

P
»sr °si

SI

and

M.

\ M
SI °S1

SI
(3)

In practice, SI is a stainless-steel kilogram whose volume has been determined
to better than 1 x 10“^ by classical hydrostatic weighing. We also include a

check standard, S2 in the measurements. The check standard is similar to SI

and similarly calibrated.

5. Cleaning of Weights

It is essential that weights being calibrated, as well as the standards used,
be clean if the calibration is to be accurate and meaningful. Therefore, a

cleaning procedure should be a part of every calibration. [ 11

]

5.1 Categories of Weights

For cleaning purposes, weights may be divided into four categories.

1. One-piece weights.

This category will include all one-piece weights except lacquered weights,
sheet metal weights and small wire weights.

2. Screw-knob weights.

This category will include all weights with adjusting cavities except
lacquered weights.

3. Lacquered weights.

This category includes all lacquered or painted weights.

4. Sheet metal weights and wire weights.
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5.2 Cleaning Procedures

5.2.1 One-Piece Weights

One-piece weights, 1 gram and larger, are generally steam cleaned. The weights
are either held or placed in a jet of steam and manipulated so that the entire
surface of the weight is subjected to the cleaning action of the steam long
enough to clean it. A superficial steaming is not enough. The weight is then
dried, either by evaporation or careful wiping with a soft non-abrasive
material free from oil and other substances that will leave a residue on the

weights, such as high grade cheesecloth. Care must be exercised that no water
spots are left on the weights as they dry. Visible particles on the weights
should be brushed or wiped off before steam cleaning them. If a steam
generator is not available, one-piece weights may be cleaned either by
immersing them in a hot or boiling distilled water bath in a non-metallic
container or according to the procedures for screw-knob weights.

Occasionally, a weight will have foreign material adhering to it that requires
the use of solvents. Ethyl alcohol is a good general solvent.^ If alcohol
does not remove the material, other solvents may be used, such as benzene,
1,1,1- trichloroethane

, etc. Alcohol is then used to remove any film left by
the other solvents. The weights are then steam cleaned as outlined above.
Cleaning and, in particular, steam cleaning, may adversely affect some alloys.
For these alloys, only solvent cleaning is used.

5.2.2 Screw-Knob Weights

Weights in this category are usually cleaned by wiping with a soft non-
abrasive material, free from oils or other substances that will leave a residue
of any kind on the weights, such as high grade cheesecloth. Occasionally, a
weight will have foreign matter adhering to it that requires the use of
solvents, applied with a cloth. Ethyl alcohol is a good general solvent. If
alcohol does not remove the foreign material, other solvents may be used.
Alcohol is then used to remove any film left by the other solvents.

To prevent spotting the weights when using solvents, the weights are wiped dry.
Care is taken that no liquid gets under the knobs or especially into the
adjusting cavity.

A modified steam cleaning procedure may be used on screw-knob weights. The
bottoms and sides are steam cleaned, care being taken that no liquid or vapor
gets under the knob or into the adjusting cavity.

^ Some solvents are health hazards and should be
manner

.

used in an approved safe
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5.2.3

Sheet-Metal Weights

First, the weights are placed in an acetone bath agitated to help loosen any
foreign material. A soft brush, such as a camel hair brush, may be used to

agitate the weights. The weights are removed from the acetone, allowed to dry
and then steam cleaned. For steam cleaning, the weights are held in front of a

jet of steam with forceps until the entire surface has been covered with steam.

(See Note on next page.) In order that the portion of the surface under the

forceps may be steamed, the weight is set down and picked up again with the

forceps holding the weight at a different spot than the first time; the weight
is again steamed. The weights are not allowed to touch the steam nozzle. Only
a low ash filter paper is used for drying the sheet metal weights. A circular
disk is folded unsymmetrically . The main body of the weight is placed between
the folds of the paper with the turned edge of the weight protruding. The main
body of the weight is dried by pressing lightly on the top of the paper. The

turned up edge is brushed lightly with a piece of filter paper. In some cases,
it may be necessary to brush the body of the weight with filter paper to remove
drops of water. Care must be exercised that no water spots are left on the
weights as they dry.

Note: The small fractional weights, say smaller than 5 mg, may be placed
in a hot or boiling distilled water bath for the final cleaning
instead of steam cleaning them. A hot or boiling distilled water
bath may also be used for the final cleaning of all sheet metal
weights when a steam generator is not available.

5.3

Temperature Equilibrium

Newly cleaned weights are allowed to come to temperature equilibrium before
they are calibrated. This may take several hours for the larger weights that
have been steam cleaned.

Generally, laboratory weights will come to temperature equilibrium over night.

5.4

Storage

Usually, weights are not placed in the balance immediately after cleaning, but
are stored for varying periods. The weights are stored under cover so that
they will stay clean. Weights 1 gram and larger may be stored on a tray lined
with filter paper and covered with an inverted glass dish. The smaller weights
may be stored in a small glass dish covered with a watch glass. In both cases,
the container is labeled with the weight identification.

When the weights are placed in the balance, they are carefully brushed to

remove any particles that may be on them. A small bulb type rubber syringe is

useful in removing lint and other small particles from weights. The particles
are blown off the weights. Therefore, neither the nozzle nor any other part of

the syringe need touch the weights.
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5.5 Brushes

Brushes require special attention because they are easily contaminated and

often are the last cleaning instrument used before the weights are calibrated.

Only soft brushes, such as camel hair brushes are used on weights.

The brushes are cleaned by washing with soap and water, then rinsing in ethyl

alcohol and allowed to dry in air. New brushes are cleaned before using to

remove any oil or other matter that might contaminate the weights. Used
brushes are cleaned as often as necessary to be sure that the brushes
themselves do not contaminate the weights.

6 . Method of Calibrating Dead Weights

6,1 Measurement Algorithm

The following method of calibrating dead weights --including pressure gage

(piston gage) weights--is routinely used [12]. The method employs simple
weighing designs and includes corrections for the standards and the buoyant
effect of the atmosphere. Calibrations of dead weights are at a lower accuracy
than calibrations of mass standards.

The comparisons are made on several different balances whose precision is

adequate for the requirements of the weights being tested.

In general, the "Mass Value" of the standard means its True Mass value and its

correction means its True Mass Correction unless otherwise indicated.
Measurements are often made on by double-substitution weighing, against the

built-in weights of an appropriate single-pan balance. These weights have, in

turn, been calibrated against NBS standards. The weighing algorithm is:

1) Read the balance with no load:

2) Read the balance with unknown on the pan: + S 2

3) Read the balance with unknown & sensitivity weight: + S 3

4) Read the balance with no load: S4

Here represents a reading of the angle of tilt of the balance relative to an

arbitrary zero and represents the nominal values of the summation of dial
weights which was used when the balance is loaded. Tare weights are placed on
the balance pan as necessary to ensure that the same dial weights are used for

operations 2) and 3) (no dial weights are used if no load is on the balance).
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The mass of the unknown is computed to be:

M =
X

Di - + A - (S2 - + S3 - S^)

S3-S2

1 - p/D
X

Where =

Vi =

A =

P =

the calibrated mass of
the volume of D]^

the mass of the sensitivity weight
the volume of the sensitivity weight
the density of the unknown (supplied by the customer)
the computed density of air in the balance,

6.2 Uncertainty of Value Assigned to Piston Weights

It is presumed that the weighings are being carried out by means of a

measurement process whose parameters (precision, possible systematic errors,
etc.) are known and sufficient evidence is collected to insure that the process
is in a state of statistical control. [13] For each method of weighing there is

a standard deviation associated with a single measurement of mass difference.
This standard deviation is based on considerable history and is used in
preference to a standard deviation based on the results of say one day's work.
Such a value if available provides the means for judging whether or not to
accept that day's measurement as being in control.

The uncertainty of the mass value of the piston weights consists of two parts;
the uncertainty due to random errors of measurement and the systematic
uncertainty due to the uncertainty in the value of the standard. The limit of
the uncertainty due to random errors of measurement may be taken to be three
times the standard deviation, o, where a is the standard deviation of the
process. Therefore:

Uncertainty of value = 3ff + uncertainty of standards

.

7. Method of Calibrating Standard Weights

7.1 Measurement Algorithm

An unusual aspect of mass calibrations is that, although the standard is

defined at one value, one is typically asked to calibrate a set of weights
spanning several decades of mass and, often, not even encompassing the nominal
defining value (that is, 1 kilogram). We approach this problem in the

following way: 1. The weight in the set of unknowns which is closest in value
to 1 kg is calibrated against an NBS standard of the same nominal value . 2

.
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The rest of the weights in the set are calibrated in a self-consistent manner

using the weight calibrated in step 1 as the standard.

It is convenient to calibrate a set of weights a decade at a time, using as a

comparator the most sensitive balance available which will accommodate the

largest weight in the decade. Table 2 shows the set of balances which we use

for nominal values of 1 kg and below, along with their present standard

deviations. Note that we do not calibrate each individual weight in a weight

set against a corresponding NBS standard. This would be inefficient.

Instead, weights, or summations of weights within the decade are intercompared

at several nominal values. The recipe for choosing weights is referred to as a

"design". The designs are chosen so that if one of the weights within the

design has a known mass value, the mass values of the other weights can be

determined. We always pick designs in which we acquire redundant information

and calculate the "least squares" values as the calibration result. The least

squares solution minimizes the sum of squares of deviations of the predicted
minus observed values in much the same way as fitting a series of points on a

graph by the least-squares line minimizes the summation of the distances

squared of the points from the line. (See Appendix A.)

7.2 Uncertainty of Value of Standard Weights

The uncertainties which are assigned to weights which we calibrate result from

uncertainties in our starting standards and uncertainties in the comparison of

the unknown weights with our starting standards. Typically, random
uncertainties dominate the comparison operation. These are usually due to the

balance which is serving as the mass comparator.

The specific design which is used also enters into the assignment of
uncertainty. One can average a set of repeated measurements to find a better
estimated value than from one single measurement. So too, using a weight in

the set in more than one measurement results in a standard deviation of the

value assigned to the weight which is less than that of a single measurement.
How much less depends on the design. Table 3 shows typical calibration
uncertainties based on one commonly used metric weight set and a typical design
for that weight set. Note that large-valued masses are usually in avoirdupois
units (50 lb and above). The avoirdupois pound is defined as 0.45359237
kg.

One complication of using designs to assign mass values is that the
uncertainties assigned to the weights in a set are correlated. This means that
when weights are used in combination, the uncertainty of the combination cannot
be inferred directly from the uncertainties assigned to each weight
individually.

8. Quality Control

In the previous section we noted that the total uncertainty in the assignment
of mass values to unknown weights comes primarily from uncertainties in the

starting standards and random errors in the performance of balances used to
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Table 2. Capacities and standard deviations of balances used

Balance Capacity Standard Deviation

3 g 0,.0005 mg
20 0,.0024
40 0,.0039

160 0,.014

1 kg 0.,032

10 2,.5 mg
30 8,.2

1 lb 0,,031 /ilb

6 0,.46

50 5,,5 mg
2500 0,.002 lb

30000 0,,017 lb
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Table 3. Typical random components of calibration uncertainties

Norn. Val. Uncertainty Nom. Value Uncertainty

1000 g 0.072 mg 1000 g 0.072 mg
500 0.059 2 kg 6.6
300 0.057 3 7.8
200 0.050 5 10.0
100 0.058 10 15.5
50 0.035 20 34
30 0.029 30 55

20 0.024
10 0.026
5 0.013
3 0.0082
2 0.0061
1 0.0049

500 mg 0.0026 mg
300 0.0017
200 0.0012
100 0.0010
50 0.00089
30 0.00087
20 0.00080 1 lb 0.11 /ilb

10 0.00090 50 22.
5 0.00083 500 0.0028 lb
3 0.00085 2500 0.0073
2 0.00079 10000 0.054
1 0.00090 30000 0.11
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intercompare the unknowns with the standards. To control the quality of this
measurement system, we must insure that the mass of the starting standards does
not change and that the random error of the balances used has not deteriorated
from its accepted value. In addition, we must have a way to detect simple
blunders in data entry. We now describe the controls which are presently in

place [14] and outline improvements which are underway.

8.1 F-Test [7,13]

Every calibration includes a means of checking the balance performance. We

assume we know the balance performance based on a large accumulation of data
over a long period of time. Each new calibration provides us with another set
of data which can be compared with those previously collected. We check to see

whether the scatter in the most recent set of data is statistically consistent
with the accepted long-term standard deviation of the balance. Failure of this
test indicates either a blunder or a sudden degradation of the balance

.

Figure 3 shows a control chart of the long-term standard deviation of a

kilogram balance used in the calibration service. Control limits vary
depending on the number of statistical degrees of freedom in a given design.
Similar charts are maintained for all the balances used.

8.2 t-Test [7,13]

Every calibration includes at least two standards along with the unknowns. One
standard is used to calibrate both the unknowns and the second standard, which
is well-known from many previous measurements. The second standard is called
the "check standard" for the following reason: As a result of a calibration,
the reference standard is used to assign mass values to the unknowns and the
check standard. This mass value of the check standard is then compared to the

long-term average of the check standard. A statistically significant
difference in the two values indicates a change in the standard, a change in
the check standard, or a blunder. Figure 4 is a control chart which shows the

long-term variability of the difference in measured mass of our two working
kilogram standards. Control charts are also maintained to look for unsuspected
variability as a function of ambient temperature, barometric pressure, relative
humidity, and air density.

Similar control charts are maintained for all the check standards in use.

Occasionally, a check- standard will show a significant change (usually a loss)

in mass with time. An exsimple of such behavior is shown in figure 5. The
control limits in this case change slowly with time, and are not shown.

Check standards are included in every weighing design. This offers an
additional advantage which is best illustrated by an example. Routine
calibrations of mass at the 1-kg level begin with starting standards N1 and N2

.

We actually use the total mass of N1 and N2 as the starting standard and use

the difference in mass between N1 and N2 as the check standard. This is a

mathematical convenience but is conceptually no different from using N1 as the

standard and N2 as the check. While the check standard is adequate for

detecting catastrophic changes in N1 or N2 , it is obviously insensitive to any
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Figure 3. Control chart for the standard deviation of the kilogram
balance used in routine mass calibrations. The ordinate gives

the measured standard deviation of the balance in milligrams
and the abscissa gives the time of the measurement in years
since 1900. Control limits are not shown.
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Figure 4. Control chart for the measured difference in mass between
kilograms N1 and N2 . The ordinate is the difference measured
in milligrams and the abscissa is the time of the measurement
in years since 1900. Control limits are not shown.
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Figure 5. Control chart for the mass of a 1-g check standard. The
ordinate is the measured correction to nominal (in milligrams)
and the abscissa is the time of the measurement in years since
1900. The check standard is losing mass at the rate of about
0.4 mg/yr. Control limits are not shown.
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processes which change N1 and N2 in nearly identical amounts. However, N1 and

N2 are used to calibrate weight sets which often include the decade from 1 kg
to 100 g. Every time weights in this decade are calibrated, the results are

checked with a 100-g check standard. If there were gross changes in N1 and N2

which nevertheless preserved the value of N1 - N2
,
they would eventually

produce failures of the t-test for the 100-g check standards. The problem,

then, is to devise a system which will check the constancy of the starting
kilogram standards with enough sensitivity to signal a change before its effect
is propagated to other masses.

8.3 Between-Times Components

There is a possibility that the standards we are using and measuring have a

variability which is a function of time. The shortest time of concern to us is

that needed to complete measurements for one design, approximately one hour.

We attribute the variability we see in this time scale to the balance (used as

comparator) and monitor its constancy by the F-test as described above. A much
longer period of interest would be the time between weight calibrations. This
is of the order of months or years. The difference between the short-term
variability and long-term variability of the measurement process is known as

the "between- times" component. We look for the existence of this component by
comparing the long-term and short-term standard deviations associated with the

check- standards . Ideally, the between- times component will be zero. However,
a significant component has been found to exist for calibrations involving the

highest relative precision.

For the cases in which we have detected a non-zero between- times component, we
have propagated its effect through the calibration process by assuming all
weights are subject to the same component as the check standards.

9 . Future Plans

There are two major weaknesses in our quality controls at present. The first
is that the relationship between the SI unit of mass and the unit of mass as

embodied by the values assigned to our working kilogram standards N1 and N2 is

not well-enough determined. Second, the use of the difference in mass of N1

and N2 as the check standard at the 1-kilogram level is dangerously insensitive
to effects common to both kilograms. This is especially disturbing since N1

and N2 are always stored together and receive identical use. A third but less

serious problem is that the alloy of which N1 and N2 are made is closer in
density to brass than to most commonly used stainless steels. This makes the

usual buoyancy corrections more important than they would need to be if the
working standards had a density closer to 8.0 g cm"^.

To improve these three areas, we have completed or are near to completing the

following steps:

1. Six new kilograms weights of nominal density 8.0 g cm'^ have been
purchased. Their densities have been determined to 10 parts per million by
hydrostatic weighing.
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2. An existing kilogram comparator has been reconditioned and partially
automated so that its standard deviation is more than 15 times less than

that of the comparator used for routine calibrations. Thus, if there were

no between- times components, it would require 225 measurements on the less

precise balance to achieve the same uncertainty as one measurement on the

more precise balance.

3. The two platinum- iridium prototype kilograms of the United States have
recently been recalibrated by the International Bureau of Weights and
Measures (BIPM) along with two of our stainless-steel working standards.
Good internal consistency was obtained between measurements made at NBS and
at BIPM. The results show excellent long-term stability of our platinum-
iridium standards with respect to the SI unit as maintained by the BIPM.

4. An exhaustive series of measurements is underway using our best kilogram
comparator. These measurements will establish the long-term stability of
our new stainless-steel weights as well as determine how reproducibly they
can be cleaned. We have also made preliminary measurements of N1 and N2
which can be precisely tied to the SI unit as maintained by the BIPM.

5. When the measurements described in 4. are completed, four of the six
new stainless-steel kilograms will be used as working standards. The
remaining two will not be used but instead, along with the two stainless-
steel weights which have been calibrated at the BIPM, will serve to monitor
the constancy of the working standards thus prolonging the times between
calibrations against our platinum- iridium prototypes.
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Appendix A

LEAST SQUARES ANALYSIS [8]

We begin then with a set of n observations, yi , 72 . • • • Yn involving k
objects where values, 02 ^

determined. The set of
observations can be represented by the equations for their expected values

,

E(yi).

E(yi) = xli;3i + X12/32 • • • (1)

E(y2) = X2i^i + X22^2 • • • X2k^k

E(yn) ~ ^nl^l ^n2^2 • • • ^nk^k

or in matrix form E(y) = where the element, Xj^j , of the X matrix is 0 if the
weight is absent, and 1 or -1 depending on the direction of the comparison. In
this note we shall adopt the convention of using just the signs so that, for
example, all possible comparisons (ignoring direction) of 4 nominally equal
objects will have the representation

02 03 0U

+

+

+

10-1 0

10 0-1
0 0 1-1

+ 0 1 0-1
+ Loo 1 -1 J

In the least squares analysis one forms the normal equations

X'X0 = X'y

where the entries in X'X are merely the sums of squares and sums of cross

products of the columns of X. In the above case, one gets
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3 -1 -1 -1
'

P = 71 + 72 + y3
'

-1 3 -1 -1 -71 +74+75

-1 -1 3 -1 -72 +74+75

.
-1 -1 -1 3 ^ .

-73 + 74 + 76 -

^ ^ A ^ A ^

where /3 is the column vector with elements
, ^2, ^ 3 ,

the caret being
used to denote the fact that the values are functions of the observations, and
not the sought-after values, p.

It can easily be verified in this case that the system of equations is not of

full rank (e.g., the column totals are zero) and this is a property of all

designs where only differences are measured. In mass calibration, one has one

or more standards whose value can be taken as known and these provide the

restraint on the system needed to give a unique set of answers. Usually these
involve a starting kilogram or a unique summation such as 5 + 3 + 2 which has
been determined in a previous series or is the initial unit value for an
ascending series such as the 1, 2, 3, 5 series. One can write the restraint in

the form

ri^l + X2^2 • . • + ri^k = “ (2)

and use the method of Lagrangian multipliers (with multipliers 2A) to minimize
the function

$ = ^(deviations)^ + 22(rj^^i + . . . rj^j^ - m) (3)

The normal equations now contain an additional "unknown," namely A and written
out in full are as follows:

+ IxiX2^2 • (4)

A 2 ^ A

ri^i + . .
• Vk
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where

n

= kSl*lk='k

or in matrix notation

X'X r = 'X'y

0. m
k. /

The solution may be written out formally as follows:

A
' P

'

= r c h
'

' X'y
'I

= CX' h
' r \

y

.
A

^ .
h' 0 ,

mV y V.
h'X' 0 ^

(5)

( 6 )

To facilitate computation it is convenient t9 have the values, written out

as linear functions of the y's and m, i.e., = [CX'

,

h] y. This leads to a

set of multipliers of the observations of the form m

01 = giiYi + sijyj •

\ = Skjyi + Sk25'2
• • •

8kn5'n ^ V
These multipliers, g, , and h^, are given in Appendix B in transposed form for

some of the designs. -^The matrix C is important because the variances and
covariances of the estimates are given by

Variance
,
Covariance ^j) =

The quantity,
, is the variance (square of the long run value of the standard

deviation) associated with the process. In a set of n observations on k items

and r = 1 restraints one has n-k+r=n-k+l degrees of freedom for a

standard deviation, s, formed by
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1

(9)
2

s = ; r y (deviations)

.

n - k + 1 ^ 1

A A A

(deviation)^ =
^i2^2

' ' ' ^ik\^

One can write these deviations a§ a function of the observations by noting that

the predicted values are just X/9 and the deviations are thus

dev = y - = y - X[CX'.h] (m) = y - [XCX' ,0] (m]

= [I-XCX']y

which can be written as

dev,= d^^y^ + . . . d^^y
In-^n

( 10 )

(11)

dev =
n

^
‘'n25'2

• d y
nn'^ n

The array of coefficients, dj^-j
,

is given in Appendix B for some of the designs.
Weights are often used in combination and one needs to kn9w the standard
deviation for the various sums. For a sum of two items, and

,
one has

Var(^i + ^j) = Var(^i) + Var(^j) = 2Cov(fi^, y9j
)

and for a linear combination

L = + i2^2 • • • -^k^k (12)

Variance (L) = 2'Cia^

where i' = (ij . . . i^^) , C comes from the inverse of the matrix of normal
equations (see eq (6)].

DESIGNS FOR WEIGHING

The criteria for good weighing designs depend to some extent on the use
intended for the resulting values. For example, if the weights are to be used
independently of each other, then one would want the standard deviation [a

from formula (8)] for the value for each unknown weight to be the minimum
possible. If the weights are to be used in combination, then one wants the

variance of all appropriate linear functions to be as small as possible.
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Further, the desirability of a design depends somewhat on the restraint being
used. In some cases, one's judgment of a design changes depending on whether
one starts with a summation as known (e.g., 5+3+2) and works down, or with
a unit as known and works up (e.g., by use of a 1, 2, 3, 5 series).
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Appendix B

Sample Calibration Report

The following is a full calibration report for a set of weights with
denominations from 1 g to 1 mg.
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U. S. DEPARTMENT OF COMMERCE
NATIONAL BUREAU OF STANDARDS

NATIONAL MEASUREMENT LABORATORY
GAITHERSBURG, MD . 20899

REPORT
0 F

MASS VALUES
COMPANY X

LOCUS, U.S.A.
SET OF MASS STANDARDS : 500 MG - IMG
SERIAL NUMBER 00001
MANUFACTURER : COMPANY Y
SEPTEMBER 1, 1986

TEST NUMBER DEMOl

FOR THE DIRECTOR,
NATIONAL MEASUREMENT LABORATORY

JOE D. SIMMONS, CHIEF
LENGTH AND MASS DIVISION
CENTER FOR BASIC STANDARDS
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PAGE 1COMPANY X
LOCUS, U.S.A.
SET OF MASS STANDARDS : 500 MG - IMG
TEST NUMBER DEMOl

INTRODUCTION

THIS DOCUMENT IS A COMPREHEN-
SIVE REPORT COVERING THE SEQUENCE
OF OPERATIONS USED TO ASSIGN MASS
VALUES TO THE WEIGHTS IDENTIFIED
ABOVE. IT INCLUDES A COMPLETE
DESCRIPTION OF THE MEASUREMENT
METHODS AND PROCEDURES WHICH WERE
USED, ALL OF THE DATA, AND THE
ANALYSIS OF THIS DATA. THE
RESULTS ARE PRESENTED IN SEVERAL
FORMATS. ASSIGNED MASS VALUES,
DISPLACEMENT VOLUMES, COEFFICIENTS
OF EXPANSION, UNCERTAINTIES, TO-
GETHER WITH THE SUMMED VALUES FOR
LINEAR COMBINATIONS OF THE WEIGHTS
IN EACH DECADE ARE PRESENTED AT
THE END OF THE APPROPRIATE SERIES.
THIS INFORMATION SHOULD BE USEFUL
TO THOSE WHO MUST ASSIGN MASS
VALUES TO OBJECTS OTHER THAN
WEIGHTS. FOR CONVENIENCE, THE
VALUES AND UNCERTAINTIES, TOGETHER
WITH OTHER APPROPRIATE DATA AND
COMMENTS ARE ALSO SUMMARIZED IN
TABLES I AND II AT THE END OF THE
REPORT. CERTAIN INTERMEDIATE
PAGES ARE SUMMARIES OF STATISTICAL
DATA WHICH RELATE TO THE MASS
MEASUREMENT PROCESS USED TO
PERFORM THIS WORK. THESE PAGES
HAVE BEEN LEFT IN THE REPORT TO
RETAIN CONTINUITY. COPIES OF
THESE PAGES BECOME PART OF A
COLLECTION OF STATISTICAL DATA
WHICH REFLECTS THE MEASUREMENT
PROCESS PERFORMANCE OVER A PERIOD
OF TIME. SUCH A COLLECTION HAS
BEEN USED TO ESTABLISH THE CONTROL
LIMITS FOR ACCEPTING THE RESULTS
OF THIS MEASUREMENT. THESE COL-
LECTIONS ARE OPEN FOR INSPECTION
AT OUR FACILITY.

THE MASS MEASUREMENT SYSTEM

THE MASS MEASUREMENT SYSTEM
WITHIN THIS COUNTRY CONSISTS OF
ALL OF THE MEASUREMENT PROCESSES

WHICH RELY, DIRECTLY OR INDIRECT-
LY, ON MASS MEASUREMENTS TO
ACCOMPLISH A WIDE VARIETY OF
ENDEAVORS. IN ORDER FOR THIS
SYSTEM TO FUNCTION PROPERLY,
EVERYONE WHO MAKES MEASUREMENTS
MUST BE ABLE TO VERIFY THAT HIS
MEASUREMENT PROCESS PRODUCES
CONSISTENT RESULTS WHICH ARE
COMPATIBLE WITH HIS PARTICULAR
REQUIREMENTS. THE WEIGHTS COVERED
BY THIS REPORT, TOGETHER WITH THE
ASSIGNED VALUES AND THE APPRO-
PRIATE UNCERTAINTIES FOR THESE
VALUES, PROVIDE IN PART A BASIS
FOR CONSISTENT MEASUREMENTS WITHIN
THIS SYSTEM OF RELATED MEASUREMENT
PROCESSES

.

APPROPRIATE CHARACTERIZATION
OF ANY MEASUREMENT PROCESS IS
FUNDAMENTAL TO VERIFYING THAT
RESULTS ARE CONSISTENT WITH THE
END REQUIREMENT WITH RESPECT TO
CORRECTNESS AND ECONOMY OF THE
MEASUREMENT EFFORT. WITHOUT THIS
INFORMATION, THE BENEFITS OF
OWNERSHIP OF THESE WEIGHTS MAY BE
COMPLETELY ILLUSORY. THE ASSIGNED
UNCERTAINTIES IN THIS REPORT ARE
DESCRIPTIVE OF OUR MASS MEASURE-
MENT PROCESS. EFFECTIVENESS OF
THE TRANSFER OF THE UNIT FROM ONE
FACILITY TO ANOTHER SHOULD BE
VERIFIED BY AN INDEPENDENT TEST.
IT IS PRESUMED THAT THESE WEIGHTS
WILL BE USED IN A SIMILARLY WELL-
CHARACTERIZED MEASUREMENT PROCESS
SO THAT THE STATISTICAL PARAMETERS
OF BOTH PROCESSES CAN BE COMBINED
TO PROVIDE A REALISTIC ESTIMATE OF
THE UNCERTAINTY OF THE MASS UNIT
AS ACTUALLY REALIZED IN ANOTHER
FACILITY. A COMPREHENSIVE SERVICE
DIRECTED TOWARD THE EVALUATION OF
A PARTICULAR MASS MEASUREMENT
PROCESS IS AVAILABLE THROUGH THE
MASS MEASUREMENT ASSURANCE PROGRAM
OF THE NATIONAL BUREAU OF
STANDARDS.
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PAGE 2COMPANY X
LOCUS, U.S.A.
SET OF MASS STANDARDS : 500 MG - IMG
TEST NUMBER DEMOl

WEIGHING DESIGN

ONLY DIFFERENCES IN MASS CAN
BE MEASURED, THEREFORE THE MASS
VALUES FOR THE 'UNKNOWN' WEIGHTS
MUST BE DETERMINED BY COMPARISON
WITH OTHER WEIGHTS WHICH HAVE
ACCEPTED MASS VALUES. THE
'UNKNOWN' WEIGHTS TOGETHER WITH
'CHECK STANDARDS', ARE GROUPED AND
INTERCOMPARED ACCORDING TO THE
DESIGN SCHEDULE GIVEN AT THE BE-
GINNING OF EACH SERIES OF WEIGH-
INGS. THE FIRST SERIES CONTAINS
STANDARDS WHICH PROVIDE THE
STARTING VALUES FOR THE SERIES OF
WEIGHINGS AND PROVIDE THE TIE
POINT FOR CONSISTENCY THROUGHOUT
THE MEASUREMENT SYSTEM. THE
WEIGHING METHOD USED, I.E., DOUBLE
SUBSTITUTION, TRANSPOSITION, ETC.,
IS INDICATED ALONG WITH THE
OBSERVED DATA. IN THE COMPUTA-
TIONS, THE DISPLACEMENT VOLUMES
ARE TREATED EXPLICITLY, USING THE
DATA LISTED IN THE REPORT. IN ALL
CASES, A REDUNDANCY IN THE NUMBER
OF MEASUREMENTS PROVIDES A MEANS
FOR CHECKING ON THE PRECISION OF
THE PROCESS.

WHEN THERE ARE MORE EQUATIONS
THAN 'UNKNOWNS', NOT ALL OBSERVA-
TIONAL EQUATIONS CAN BE SATISFIED
EXACTLY AND THE METHOD OF LEAST
SQUARES IS USED TO PROVIDE
ESTIMATES OF THE 'UNKNOWN' VALUES.
THIS METHOD LEADS TO ESTIMATORS
WHICH ARE LINEAR FUNCTIONS OF THE
DATA AND WHICH HAVE STANDARD
DEVIATIONS READILY CALCULATED FROM
THE COEFFICIENTS OF THE LINEAR
FUNCTIONS AND THE STANDARD DEVIA-
TION OF AH INDIVIDUAL MEASUREMENT.
THE 'CHECK STANDARD' IS ALSO
TREATED AS AN UNKNOWN AND THE
AGREEMENT OF THE CURRENT RESULT
WITH THE ACCEPTED VALUE PROVIDES A
TEST OF THE ADEQUACY OF THE CUR-
RENT DATA. THIS SAME CHECK

STANDARD IS MEASURED WITH EACH
TEST OF UNKNOWNS AND THE COLLEC-
TION OF VALUES OVER TIME IS USED
TO EVALUATE THE PERFORMANCE OF THE
MEASUREMENT PROCESS.

IN THE CASE OF THE SERIES
WHICH INCLUDES THE KNOWN STAND-
ARDS, THE ACCEPTED VALUES OF THESE
STANDARDS SERVE AS A RESTRAINT ON
THE SOLUTION OF THE EQUATIONS FOR
THE VALUES OF ALL OF THE WEIGHTS.
THE RESTRAINT FOR THE SOLUTION OF
SUBSEQUENT SERIES IS PROVIDED BY
THE VALUES ESTABLISHED FOR ONE OR
MORE WEIGHTS INCLUDED IN A
PREVIOUS SERIES.

ESTIMATED VALUES FOR WEIGHTS
WHICH HAVE BEEN GROUPED IN THE
SAME SERIES INVOLVE THE SAME
OBSERVATIONAL DATA AND ARE, IN
ALMOST ALL CASES, CORRELATED. FOR
EACH SERIES THERE IS A TABLE OF
COMBINATIONS TOGETHER WITH THE
APPROPRIATE UNCERTAINTY FOR EACH
COMBINATION.

PROCESS CONTROL

THE STANDARD DEVIATION, AS
COMPUTED FROM THE LEAST SQUARES
SOLUTION, PROVIDES A CHECK ON THE
SHORT TERM, OR 'WITHIN-RUN' PRO-
CESS PRECISION. AN AVERAGE OF A
NUMBER OF THESE STANDARD DEVIA-
TIONS IS TAKEN AS THE ACCEPTED
WITHIN-RUN STANDARD DEVIATION OF
THE PROCESS AND IS USED AS A
REFERENCE VALUE FOR SURVEILLANCE
OF THE PROCESS PRECISION. THE
VALUES OBTAINED FOR THE 'CHECK
STANDARD' PROVIDE, AS TIME GOES
ON, A SEQUENCE OF VALUES THAT
REALISTICALLY REFLECTS THE
VARIATIONS WHICH BESET PRECISE
MEASUREMENTS. COLLECTIONS OF
VALUES FOR BOTH THE WITHIN-RUN
PRECISION AND THE VALUE OBTAINED
FOR THE 'CHECK STANDARD' SHOULD
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SET OF MASS STANDARDS ; 500 MG - IMG
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POSSESS THE PROPERTIES OF RANDOM-
NESS ASSOCIATED WITH INDEPENDENT
MEASUREMENTS FROM A STABLE
PROBABILITY DISTRIBUTION. THE
REPORTED 'F RATIO' AND 'T VALUE'
ARE TESTS OF THE VALUES FROM THE
CURRENT RUN FOR CONFORMITY TO
THEIR RESPECTIVE DISTRIBUTIONS AND
IF SATISFACTORY ARE TAKEN AS
EVIDENCE THAT THE PROCESS IS IN

CONTROL AND THAT PREDICTIVE
STATEMENTS REGARDING UNCERTAINTY
ARE VALID.

CONTROL CHARTS ON THE WITHIN-
RUN PROCESS PRECISION AND THE
VALUES OBTAINED FOR THE CHECK
STANDARD ARE KEY ELEMENTS IN

MONITORING THE STATE OF CONTROL OF
ANY PRECISE MASS MEASUREMENT
PROCESS. IN ADDITION TO PROVIDING
A BASIS FOR JUDGMENT AS TO THE
ADEQUACY OF A GIVEN PROCESS FOR A
PARTICULAR REQUIREMENT, THESE DATA
PROVIDE A MEANS TO JUDGE THE
IMPORTANCE OF LONG TERM, OR
'BETWEEN-RUN' VARIABILITY WHICH
CAN BE CHARACTERIZED BY THE
STANDARD DEVIATION OF THE VALUES
ABOUT THE MEAN. IF THERE IS AN
ADDITIONAL COMPONENT OF VARIANCE
ENTERING FROM RUN TO RUN, THIS
STANDARD DEVIATION WILL BE LARGER
THAN CAN BE ACCOUNTED FOR BY THE
WITHIN-RUN VARIABILITY. CORRELA-
TION STUDIES, AS WELL AS SUPPLE-
MENTAL EXPERIMENTS, ARE USED TO
DETECT AND REDUCE THE MAGNITUDE OF
SIGNIFICANT SYSTEMATIC EFFECTS.
APPROPRIATE ACTION, E.G., ADDI-
TIONAL EMPIRICAL CORRECTIONS OR
CHANGES IN TECHNIQUE, CAN REDUCE
THE EFFECTS FROM KNOWN SOURCES OF
SYSTEMATIC VARIABILITY TO A
MAGNITUDE WHICH IS NO LONGER
IDENTIFIABLE IN THE DATA. IN THE
CASES WHERE A SIGNIFICANT LONG
TERM, OR BETWEEN-RUN, COMPONENT
REMAINS THE UNCERTAINTY BAS BEEN
APPROPRIATELY ADJUSTED.

SERIES OF MEASUREMENTS JUDGED
AS OUT OF CONTROL RELATIVE TO THE
APPROPRIATE PARAMETER ARE CARE-
FULLY EXAMINED. IF RERUNS WERE
NECESSARY IN THE COURSE OF THIS
WORK, THE 'OUT OF CONTROL' SERIES,
WITH REMARKS AS APPROPRIATE, ARE
ATTACHED AT THE END OF THE REPORT
FOR YOUR INFORMATION.

UNCERTAINTY

IT IS ASSUMED THAT THE PRESENT
'ACCEPTED VALUES' OF TWO NBS STAN-
DARDS AT THE 1 KILOGRAM LEVEL,
DESIGNATED N1 AND N2 , ARE WITHOUT
ERROR. ESTIMATES OF THE UNCER-
TAINTY OF THE ACCEPTED VALUES OF
THE NBS STANDARDS RELATIVE TO THE
INTERNATIONAL PROTOTYPE KILOGRAM
CAN BE PROVIDED ON REQUEST.
HOWEVER, THESE ESTIMATES HAVE NO
REAL MEANING IN EITHER NATIONAL OR
INTERNATIONAL COMPARISON. THIS IS

BECAUSE OF THE LACK OF SUFFICIENT
DATA TO PROVIDE A REALISTIC
ESTIMATE OF THE UNCERTAINTY IN THE
VALUES ASSIGNED TO THE PROTOTYPE
KILOGRAMS K20 AND K<i , PARTICULARLY
IN REGARD TO LONG TERM, OR
BETWEEN-RUN VARIABILITY. CHANGES
IN THE ACCEPTED VALUES FOR THE NBS
STANDARDS AT THE KILOGRAM LEVEL,
AS AND WHEN THEY OCCUR, WILL BE
REPORTED IN THE SCIENTIFIC PAPERS
OF THE BUREAU AND WILL BE GIVEN
WIDE DISTRIBUTION. IN CASES WHERE
SUCH CHANGES MAY BE OF IMPORTANCE,
OR WHERE CONTINUITY IS DESIRED,
INSTRUCTIONS WILL BE INCLUDED FOR
UP-DATING PREVIOUSLY REPORTED
VALUES. WHEN THE VALUES REPORTED
ARE BASED ON THE ACCEPTED VALUES
OF STANDARDS OTHER THAN STANDARDS
N1 AND N2 MENTIONED ABOVE, THE
UNCERTAINTY OF THE ACCEPTED VALUE
OF THE STANDARD BECOMES A
SYSTEMATIC ERROR IN THE ASSIGNMENT
OF VALUES TO OTHER STANDARDS AND
IS INCLUDED IN THE REPORT.
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A BALANCE UNDER STABLE OPERA-
TING CONDITIONS WILL EXHIBIT A
CERTAIN CHARACTERISTIC VARIABILITY
WHICH CAN BE DESCRIBED BY THE
STANDARD DEVIATION FOR SUCH
MEASUREMENTS. THE VALUE FOR A
PARTICULAR WEIGHT DETERMINED IN

REPEATED TESTS WITH THE SAME
WEIGHING DESIGN WILL HAVE ITS OWN
STANDARD DEVIATION WHICH WILL BE

SOME FUNCTION OF THE BALANCE
PRECISION AND (POSSIBLY) OF THE
BETWEEN-RUN COMPONENT. AS AN
OUTER LIMIT OF THE DISTRIBUTION OF
RANDOM ERRORS. THREE TIMES THE
STANDARD DEVIATION IS USED.
SYSTEMATIC ERRORS DUE TO THE
PROCEDURES USED OR TO ENVIRON-
MENTAL EFFECTS ARE LARGELY
BALANCED OUT AND CAN USUALLY BE
REGARDED AS NEGLIGIBLE. WHEN A
NON-NEGLIGIBLE BOUND TO THE
POSSIBLE EFFECT FROM KNOWN SOURCES
IS AVAILABLE, IT IS CALCULATED AND
REPORTED SEPARATELY, E.G., THE
UNCERTAINTY OF ACCEPTED VALUE AT
OTHER THAN THE 1 KILOGRAM LEVEL.
THE DISTRIBUTION IMPLIED BY THE
RANDOM ERRORS MAY THUS BE CENTERED
SOMEWHERE IN THE RANGE GIVEN BY
THE BOUNDS TO THE SYSTEMATIC
ERROR. THE TOTAL UNCERTAINTY IS
TAKEN AS THE SUM OF THESE TWO
COMPONENTS

.

THE UNCERTAINTY ASSOCIATED
WITH THE ASSIGNED VALUE CAN BE
THOUGHT OF AS A BOUND TO THE
DEPARTURE OF THE ASSIGNED VALUE
FROM A HYPOTHETICAL AVERAGE VALUE
THAT WOULD BE OBTAINED IF IT WERE
POSSIBLE TO REPEAT THE MEASUREMENT
MANY TIMES OVER A WIDE VARIETY OF
CONDITIONS, E.G.. SUBSTITUTE THE
WEIGHT FOR ONE OF THE CHECK
STANDARDS. THIS MEANS THAT THE
UNCERTAINTY BAND CENTERED ON THE
VALUES OBTAINED FROM EACH OF TWO
MEASUREMENTS OF THE SAME OBJECT
OVER SOME ARBITRARY TIME INTERVAL

SHOULD ALMOST ALWAYS OVERLAP. IN

OTHER WORDS, WHILE A SECOND MEA-
SUREMENT WILL PRODUCE A DIFFERENT
VALUE, THIS VALUE WILL ONLY RARELY
DIFFER FROM THE FIRST VALUE BY
MORE THAN THE SUM OF THE TWO
UNCERTAINTIES. THE UNCERTAINTY
BANDS ARE NOT EXPECTED TO OVERLAP
IF SOME EVENT HAS OCCURRED IN THE
TIME INTERVAL BETWEEN THE TWO MEA-
SUREMENTS WHICH WILL CHANGE THE
MASS OF THE OBJECT, E.G., ABRA-
SIONS. ABUSE, CORROSION, IMPROPER
CLEANING AND THE LIKE.

THE UNCERTAINTY IN ASSIGNED
VALUE CONTAINED IN THIS REPORT
BECOMES A SYSTEMATIC EFFECT FOR
THE MEASUREMENT PROCESS IN WHICH
THESE WEIGHTS ARE TO BE USED. IN

THE ABSENCE OF OTHER SIGNIFICANT
SYSTEMATIC EFFECTS IN THE USER'S
MEASUREMENT PROCESS (A CONDITION
WHICH MUST BE DEMONSTRATED) THE
UNCERTAINTY OF THE VALUE ASSIGNED
BY THE USER IS AN APPROPRIATE
COMBINATION OF THE SYSTEMATIC
ERROR IN THE STANDARD AND THE
RANDOM COMPONENT ASSOCIATED WITH
HIS PROCESS. IF THE MEASUREMENT
PROCESSES ARE IN CONTROL AND
APPROPRIATE UNCERTAINTIES ARE
ASSIGNED. THE VALUES PRODUCED BY
DIFFERENT MEASUREMENT FACILITIES
WILL HAVE OVERLAPPING UNCERTAINTY
BANDS AS DESCRIBED ABOVE. ONE
CANNOT DISCUSS DIFFERENCES IN
VALUES FOR THE SAME OBJECT
OBTAINED BY DIFFERENT FACILITIES
WITH ANY DEGREE OF SERIOUSNESS UN-
LESS EACH VALUE IS ACCOMPANIED BY
A REALISTIC UNCERTAINTY STATEMENT.
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PAGE 6

SERIES 1

8/29/ 86

BALANCE 2

OPERATOR 39

ACCEPTED WITHIN STANDARD DEVIATION OF THE PROCESS 0.00240 MG
ACCEPTED BETWEEN STANDARD DEVIATION OF THE PROCESS 0.00000 MG

CALIBRATION DESIGN 41

RESTRAINT VECTOR 1000
MASS CORRECTION OF RESTRAINT
VOLUME OF WEIGHTS BEING USED IN RESTRAINT AT 22.92
SYSTEMATIC ERROR IN THE RESTRAINT
3 STANDARD DEVIATION LIMIT FOR RANDOM ERROR AFFECTING RESTRAINT

-0.06971 MG
0.11990 CM3
0.00087 MG
0.00000 MG

CHECK STANDARD USED 10

CHECK STANDARD VECTOR 0100
ACCEPTED MASS CORRECTION OF CHECK STANDARD -0.00740 MG
REPORT VECTOR 0000
TEST CONDITIONS
CORRECTED TEMPERATURE IN DEGREES C

CORRECTED PRESSURE IN MM HG
CORRECTED HUMIDITY IN PERCENT
COMPUTED AIR DENSITY IN MG/CM3
TEMPERATURE CORRECTION
PRESSURE CORRECTION
HUMIDITY CORRECTION
OBSERVED TEMPERATURE IN DEGREES C

OBSERVED PRESSURE IN MM HG
OBSERVED HUMIDITY IN PERCENT

BEFORE AFTER AVERAGE
22.85 23 .00 22 . 92

759.028 758.828 758.928
27 . 50 27 . 30 27 . 40

1.1883 1 . 1874 1 . 1879
0 . 00 0 . 00
-0.172 -0 . 172
0 . 00 0 . 00

22.85 23.00
759.200 759.000
27 . 50 27 . 30

WEIGHTS BEING
TESTED

NOMINAL DENSITY COEFFICIENT ACCEPTED
VALUE G G/CM3 AT 20C OF EXPANSION CORRECTION MG

NB 1 G
AA 1 G

1 G
SUM 1 G

1.0000
1.0000
1.0000
1.0000

8.3406
7.8704
8.4000
16.6000

.000040

.000045

.000054

.000020

-0 . 06971
-0 . 00740
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PAGE 7

SERIES 1

8/29/ 86

BALANCE 2

OPERATOR 39

CALIBRATION DESIGN 41

GRAMS
1 1 1

A 1 + -

A 2 + -

A 3 +

A 4 + -

A 5 +

A 6 +

R +

OBSERVATIONS IN DIVISIONS
DOUBLE SUBSTITUTION ONE PAN BALANCE

A 1

A 2

A 3

A 4

A 5

A 6

8.1660
8.1680
8.1690
8.2160
8.2200
8.2010

8.2200
8.2030
8.1500
8.2060
8.1500
8.1460

13.2310
13.2160
13 . 1650
13.2150
13 . 1620
13 . 1630

13 . 1810
13 . 1840
13 . 1840
13.2340
13.2350
13.2100

E -B9
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SERIES 1

8/29/ 86

COMPANY X

LOCUS, U.S.A.
SET OF MASS STANDARDS : 500 MG - IMG
TEST NUMBER DEMOl

BALANCE 2

OPERATOR 39

CALIBRATION DESIGN 41

SENSITIVITY WEIGHT
MASS 4.99198 MG
VOLUME 0.00185 CM3 AT 20 C

COEFFICIENT OF EXPANSION 0.000069
S*-S-PV(S)- 4.98978 MG

AVERAGE OBSERVED
A(I) DELTA(I) SENSITIVITY DRIFT(I) SENSITIVITY
(MG) (MG) (MG/DIV) (MG) (MG/DIV)

A 1 -0 . 05177 -0.00087 0.99558 0.00199 0 . 99616
A 2 -0 . 03335 0 . 00062 0 . 99558 0 . 00149 0 . 99567
A 3 0.01892 0.00025 0 . 99558 0.00000 0 . 99497
A 4 0 .01444 -0 . 00249 0 . 99558 0 . 00448 0 . 99706
A 5 0 . 07118 0.00162 0 . 99558 0 . 00149 0 . 99587
A 6 0 .05077 -0.00187 0.99558 -0 . 00398 0 . 99378

VOLUME SYSTEMATIC 3 S.D. UNCERTAII
ITEM CORRECTION (AT T) ERROR LIMIT LIMIT
(G) (MG) (CM3) (MG) (MG) (MG)

1.0000 -0 . 06971 0 . 11990 0.00087 0.00000 0 . 00087
1.0000 -0 .01029 0 . 12707 0 . 00087 0.00509 0 . 00596
1 . 0000 -0 . 03673 0 . 11906 0 . 00087 0 . 00509 0 . 00596
1.0000 -0.15925 0 . 06023 0.00087 0 . 00509 0 . 00596

TEMPERATURE T- 22.92 C

RESTRAINT FOR FOLLOWING SERIES
RESTRAINT VECTOR 0 0

MASS CORRECTION
VOLUME AT 20 C
SYSTEMATIC ERROR
3 STANDARD DEVIATION LIMIT

-0
. 15925 MG

0.06023 CM3
0.00087 MG
0.00509 MG

E - BIO



COMPANY X
LOCUS, U.S.A.
SET OF MASS STANDARDS : 500 MG - IMG
TEST NUMBER DEMOl

PAGE 9

SERIES 1

8/29/ 86

BALANCE 2

OPERATOR 39
MAXIMUM LOAD 1.0000 G
STARTING RESTRAINT NUMBER 4

CALIBRATION DESIGN A1

PRECISION CONTROL

OBSERVED STANDARD DEVIATION OF THE PROCESS 0.00212 MG
ACCEPTED STANDARD DEVIATION OF THE PROCESS 0.00240 MG
DEGREES OF FREEDOM 3

F RATIO 0.782

F RATIO IS LESS THAN 3.79 (CRITICAL VALUE FOR PROBABILITY - .01).

THEREFORE THE STANDARD DEVIATION IS IN CONTROL.

CHECK STANDARD VECTOR 0100
CHECK STANDARD USED 10

ACCEPTED MASS CORRECTION OF CHECK STANDARD
OBSERVED CORRECTION OF CHECK STANDARD
STANDARD DEVIATION OF THE OBSERVED CORRECTION
T VALUE -1.70

-0.00740 MG
-0.01029 MG
0.00170 MG

ABSOLUTE VALUE OF T IS LESS THAN 3.

THEREFORE CHECK STANDARD IS IN CONTROL.

TEST CONDITIONS
CORRECTED TEMPERATURE IN DEGREES C
CORRECTED PRESSURE IN MM HG
CORRECTED HUMIDITY IN PERCENT
COMPUTED AIR DENSITY IN MG/CM3
TEMPERATURE CORRECTION
PRESSURE CORRECTION
HUMIDITY CORRECTION
OBSERVED TEMPERATURE IN DEGREES C

OBSERVED PRESSURE IN MM HG
OBSERVED HUMIDITY IN PERCENT

BEFORE AFTER AVERAGE
22.85 23 . 00 22.92
759.028 758.828 758.928
27.50 27.30 27 . 40

1.1883 1 . 1874 1.1879
0.00 0.00

-0.172 -0.172
0.00 0.00

22.85 23.00
759.200 759.000
27.50 27.30

E-Bll



COMPANY X
LOCUS, U.S.A.
SET OF MASS STANDARDS : 500 MG - IMG

TEST NUMBER DEMOl

PAGE 10

SERIES 2

8/29/ 86

BALANCE 13

OPERATOR 39
ACCEPTED WITHIN STANDARD DEVIATION OF THE PROCESS 0.00050 MG
ACCEPTED BETWEEN STANDARD DEVIATION OF THE PROCESS 0.00000 MG

0 . 15925 MG
0.0602A CM3
0.00087 MG
0.00509 MG

CALIBRATION DESIGN 62

RESTRAINT VECTOR 111000
MASS CORRECTION OF RESTRAINT
VOLUME OF WEIGHTS BEING USED IN RESTRAINT AT 23.28
SYSTEMATIC ERROR IN THE RESTRAINT
3 STANDARD DEVIATION LIMIT FOR RANDOM ERROR AFFECTING RESTRAINT

CHECK STANDARD USED 12

CHECK STANDARD VECTOR 000010
ACCEPTED MASS CORRECTION OF CHECK STANDARD -0.00854 MG
REPORT VECTOR 111100
TEST CONDITIONS
CORRECTED TEMPERATURE IN DEGREES C

CORRECTED PRESSURE IN MM HG
CORRECTED HUMIDITY IN PERCENT
COMPUTED AIR DENSITY IN MG/CM3
TEMPERATURE CORRECTION
PRESSURE CORRECTION
HUMIDITY CORRECTION
OBSERVED TEMPERATURE IN DEGREES C

OBSERVED PRESSURE IN MM HG
OBSERVED HUMIDITY IN PERCENT

BEFORE AFTER AVERAGE
23.25 23 . 30 23.28
758.828 758 . 429 758 . 629
27.30 24 . 10 25.70
1.1863 1.1859 1 . 1861
0.00 0.00

-0 . 172 -0.171
0 . 00 0.00

23.25 23 . 30
759.000 758.600
27 . 30 24 . 10

WEIGHTS BEING NOMINAL DENSITY COEFFICIENT ACCEPTED
TESTED VALUE G 1G/CM3 AT 20C OF EXPANSION CORRECTION

500MG 0.5000 16.6000 .000020
300MG 0.3000 16.6000 .000020
200MG 0.2000 16.6000 . 000020
lOOMG 0.1000 16.6000 .000020

AN/ lOOMG 0.1000 8.4100 .000039 -0.00854
SUM lOOMG 0.1000 8.1788 .000049



PAGE 11

SERIES 2

8/29/ 86

COMPANY X
LOCUS, U.S.A.
SET OF MASS STANDARDS : 500 MG - IMG
TEST NUMBER DEMOl

CALIBRATION DESIGN
MG

500
+

A 10

A 11

62

300 200 100
+

OBSERVATIONS IN DIVISIONS
DIRECT READING

BALANCE
OPERATOR

A 1

A 2

A 3

A 4

A 5

A 6

A 7

A 8

A 9

A 10

A 11

13

39

20.4000
-16.5000

6.8500
4 . 1000

-28.8500
8.8000

-26.7000
14.2500

-25.3000
-45.2000
-28.3000

10020.4004

9971.7002

100 100

+
+

+

+

E-B13



COMPANY X
LOCUS, U.S.A.
SET OF MASS STANDARDS ; 500 MG - IMG
TEST NUMBER DEMOl

BALANCE 13

OPERATOR 39

CALIBRATION DESIGN 62

SENSITIVITY WEIGHT
MASS 10.00000 MG
VOLUME 0.00000 CM3 AT 20 C

COEFFICIENT OF EXPANSION 0.000000
S*-S-PV(S)- 10.00000 MG

ACCEPTED SENSITIVITY - 0.00100 MG/DIV
OBSERVED SENSITIVITY - 0.00100 MG/DIV
T-TEST - 0.000

Ad) DELTA(I)
(MG) (MG)

OBSERVED
SENSITIVITY
(MG/DIV)

A 10

0 . 02040
0 .01650

. 00685

. 00410

. 02885

. 00880

. 02670

.01425
0 . 02530
0.04520

. 00081

.00016

.00003

. 00018

. 00083
0 . 00019
-0 . 00073
-0 . 00029
-0

. 00038
•0.00003

0 . 00100

11 -0

,

.02830 -0. 00042 0 .00100

VOLUME SYSTEMATIC 3 S.D.
ITEM CORRECTION (AT T) ERROR LIMIT
(G) (MG) (CM3) (MG) (MG)

0 . 5000 -0.07767 0 . 03012 0 . 00043 0 . 00257
0.3000 -0.04280 0.01807 0 . 00026 0.00159
0.2000 -0.03879 0.01205 0.00017 0.00109
0 . 1000 0.00171 0.00602 0.00009 0 . 00074
0.1000 -0.00862 0.01189 0.00009 0 . 00074
0 . 1000 0.01204 0.01223 0.00009 0 . 00074

TEMPERATURE T- 23.28 C

RESTRAINT FOR FOLLOWING SERIES
RESTRAINT VECTOR 0 0

MASS CORRECTION
VOLUME AT 20 C

SYSTEMATIC ERROR
3 STANDARD DEVIATION LIMIT

0 1

0.01204 MG
0.01223 CM3
0.00009 MG
0.00074 MG

PAGE 12

SERIES 2

8/29/ 86

UNCERTAINTY
LIMIT
(MG)

0 . 00300
0 . 00185
0.00127
0 . 00082
0 . 00082
0 . 00082

E-B14



IMG

COMPANY X
LOCUS, U.S.A.
SET OF MASS STANDARDS : 500 MG
TEST NUMBER DEMOl

PAGE 13

SERIES 2

8/29/

BALANCE 13

OPERATOR 39

CALIBRATION DESIGN 62

SUM WEIGHTS USED Fl

(MG) MG
500 300 200 100

1000 + + +

900 + + +

800 + +

700 + +

600 + +

500 + +

400 + +

300 +

200 +

100 +

100 100

VALUES AND UNCERTAINTIES FOR COMBINATIONS OF WEIGHTS
(UNCERTAINTY IS 3 STANDARD DEVIATION LIMIT PLUS ALLOWANCE FOR
SYSTEMATIC ERROR.)

3 S.D. UNCERTAINTY
SUM CORR SYSTEMATIC ERROR LIMIT
(MG) (MG) (MG) (MG) (MG)

1000 -0 . 15925 0.00087 0.00509 0 . 00596
900 -0 . 11875 0.00078 0 . 00463 0 . 00542
800 -0.12046 0.00070 0 . 00409 0 . 00479
700 -0 . 11646 0.00061 0 . 00359 0 . 00420
600 -0.07595 0.00052 0.00312 0.00364
500 -0.08159 0 . 00043 0 . 00257 0.00300
400 -0.04108 0.00035 0 . 00216 0 . 00251
300 -0.04280 0 . 00026 0.00159 0.00185
200 -0.03879 0.00017 0 . 00109 0.00127
100 0.00171 0.00009 0.00074 0.00082

86
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COMPANY X
LOCUS, U.S.A.
SET OF MASS STANDARDS : 500 MG - IMG
TEST NUMBER DEMOl

PAGE 14

SERIES 2

8/29/ 86

BALANCE 13

OPERATOR 39
MAXIMUM LOAD 0.6000 G

STARTING RESTRAINT NUMBER 4

CALIBRATION DESIGN 62

PRECISION CONTROL

OBSERVED STANDARD DEVIATION OF THE PROCESS 0.00063 MG
ACCEPTED STANDARD DEVIATION OF THE PROCESS 0.00050 MG
DEGREES OF FREEDOM 6

F RATIO 1.584

F RATIO IS LESS THAN 2.81 (CRITICAL VALUE FOR PROBABILITY « .01).

THEREFORE THE STANDARD DEVIATION IS IN CONTROL.

CHECK STANDARD VECTOR 000010
CHECK STANDARD USED 12

ACCEPTED MASS CORRECTION OF CHECK STANDARD -0.00854 MG
OBSERVED CORRECTION OF CHECK STANDARD -0.00862 MG
STANDARD DEVIATION OF THE OBSERVED CORRECTION 0.00025 MG
T VALUE -0.34

ABSOLUTE VALUE OF T IS LESS THAN 3.

THEREFORE CHECK STANDARD IS IN CONTROL.

TEST CONDITIONS
CORRECTED TEMPERATURE IN DEGREES C

CORRECTED PRESSURE IN MM HG
CORRECTED HUMIDITY IN PERCENT
COMPUTED AIR DENSITY IN MG/CM3
TEMPERATURE CORRECTION
PRESSURE CORRECTION
HUMIDITY CORRECTION
OBSERVED TEMPERATURE IN DEGREES C
OBSERVED PRESSURE IN MM HG
OBSERVED HUMIDITY IN PERCENT

BEFORE AFTER AVERAGE
23.25 23 . 30 23.28

758 . 828 758.429 758 . 629
27.30 24 . 10 25 . 70

1.1863 1.1859 1 . 1861
0 . 00 0 . 00

-0.172 -0.171
0 . 00 0 . 00

23.25 23 . 30

759.000 758.600
27 . 30 24 . 10

E- B16
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SERIES 3

8/30/ 86

COMPANY X

LOCUS, U.S.A.
SET OF MASS STANDARDS ; 500 MG - IMG
TEST NUMBER DEMOl

BALANCE 13

OPERATOR 39

ACCEPTED WITHIN STANDARD DEVIATION OF THE PROCESS 0.00050 MG
ACCEPTED BETWEEN STANDARD DEVIATION OF THE PROCESS 0.00000 MG

CALIBRATION DESIGN 62

RESTRAINT VECTOR 111000
MASS CORRECTION OF RESTRAINT
VOLUME OF WEIGHTS BEING USED IN RESTRAINT AT 23.00
SYSTEMATIC ERROR IN THE RESTRAINT
3 STANDARD DEVIATION LIMIT FOR RANDOM ERROR AFFECTING RESTRAINT

0.01204 MG
0.01223 CM3
0 . 00009 MG
0.00074 MG

CHECK STANDARD USED 14

CHECK STANDARD VECTOR 000010
ACCEPTED MASS CORRECTION OF CHECK STANDARD -0.00046 MG
REPORT VECTOR 111100
TEST CONDITIONS
CORRECTED TEMPERATURE IN DEGREES C

CORRECTED PRESSURE IN MM HG
CORRECTED HUMIDITY IN PERCENT
COMPUTED AIR DENSITY IN MG/CM3
TEMPERATURE CORRECTION
PRESSURE CORRECTION
HUMIDITY CORRECTION
OBSERVED TEMPERATURE IN DEGREES C

OBSERVED PRESSURE IN MM HG
OBSERVED HUMIDITY IN PERCENT

BEFORE AFTER AVERAGE
22.95 23 . 05 23 . 00

760.227 760 . 027 760 . 127
30 . 00 30 . 70 30.35
1 . 1895 1 . 1886 1 . 1891
0 . 00 0 . 00

-0 . 173 -0 . 173

0 . 00 0.00
22.95 23.05

760 . 400 760.200
30 . 00 30 . 70

WEIGHTS BEING NOMINAL
TESTED VALUE G

DENSITY COEFFICIENT ACCEPTED
G/CM3 AT 20C OF EXPANSION CORRECTION MG

NEW 50MG
30MG
20MG
lOMG

AN/ lOMG
SUM lOMG

0.0500 16.6000 . 000020
0.0300 16.6000 . 000020
0.0200 2.7000 . 000069
0.0100 2.7000 . 000069
0.0100 8.4100 . 000039 -0 . 00046
0 .0100 2.7000 .000069

E-B17



COMPANY X
LOCUS, U.S.A.
SET OF MASS STANDARDS : 500 MG - IMG
TEST NUMBER DEMOl

PAGE 16

SERIES 3

8/30/

BALANCE 13
OPERATOR 39

CALIBRATION DESIGN 62
MG

50 30 20
A 1 + - -

A 2 + - -

A 3 + - -

A 4 + - -

A 5 + -

A 6 + -

A 7 + -

A 8 + -

A 9 +

A 10 +

A 11 +

R + + +

10 10 10

+
+

OBSERVATIONS IN DIVISIONS
DIRECT READING

A 1

A 2

A 3

A 4

A 5

A 6

A 7

A 6

A 9

A 10

A 11

9.1000 10009.1006
-43.2000
- 0 . 1000

-11.4000
-59.6000
-13 . 8000
-55.7000

8.4000
-11.8000
-43.8000
-24.0000 9976.0000

86
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COMPANY X
LOCUS, U.S.A.
SET OF MASS STANDARDS : 500 MG - IMG

TEST NUMBER DEMOl

BALANCE 13

OPERATOR 39

CALIBRATION DESIGN 62

SENSITIVITY WEIGHT
MASS 10.00000 MG
VOLUME 0.00000 CM3 AT 20 C

COEFFICIENT OF EXPANSION 0.000000
S*-S-PV(S)- 10.00000 MG

ACCEPTED SENSITIVITY - 0.00100 MG/DIV
OBSERVED SENSITIVITY - 0.00100 MG/DIV
T-TEST - 0.000

Ad) DELTA(I)
(MG) (MG)

OBSERVED
SENSITIVITY
(MG/DIV)

A 10

0.00910
-0.04320
0.00010
-0.01140
-0 . 05960
-0.01380
0.05570
0.00840
-0.01180
0.04380

. 00003

.00032

.00016

.00017

.00068

. 00058
-0.00005
0.00015
0.00054
0.00049

0 . 00100

11 -0

,

.02400 -0. 00035 0,. 00100

VOLUME SYSTEMATIC 3 S.D.
ITEM CORRECTION (AT T) ERROR LIMIT
(G) (MG) (CM3) (MG) (MG)

0.0500 -0.00346 0.00301 0 . 00004 0.00051
0.0300 0.00198 0.00181 0.00003 0.00050
0.0200 0.01351 0.00741 0 . 00002 0.00042
0.0100 0.02325 0.00371 0 . 00001 0.00054
0.0100 -0.00039 0.00119 0 . 00001 0 . 00054
0.0100 0.03457 0.00372 0 . 00001 0.00054

TEMPERATURE T» 23.00 C

RESTRAINT FOR FOLLOWING SERIES
RESTRAINT VECTOR 0 0

MASS CORRECTION
VOLUME AT 20 C
SYSTEMATIC ERROR
3 STANDARD DEVIATION LIMIT

0 1

0.03457 MG
0.00372 CM3
0.00001 MG
0.00054 MG

PAGE 17

SERIES 3

8/30/ 86

UNCERTAINTY
LIMIT
(MG)

0 . 00055
0 . 00053
0 . 00044
0 . 00055
0 . 00055
0 . 00055

E-B19



COMPANY X
LOCUS. U.S.A.
SET OF MASS STANDARDS : 500 MG - IMG
TEST NUMBER DEMOl

PAGE 18

SERIES 3

8/30/

BALANCE 13

OPERATOR 39

CALIBRATION DESIGN 62

SUM
(MG)

100
90

80

70

60
50

40

30

20
10

50
+

+

+

+

+

WEIGHTS USED FOR THE LINEAR COMBINATIONS
MG

10 10 1030
+

+

+

20
+

VALUES AND UNCERTAINTIES FOR COMBINATIONS OF WEIGHTS
(UNCERTAINTY IS 3 STANDARD DEVIATION LIMIT PLUS ALLOWANCE FOR
SYSTEMATIC ERROR.)

3 S.D. UNCERTAINTY
SUM CORR SYSTEMATIC ERROR LIMIT
(MG) (MG) (MG) (MG) (MG)

100 0.01204 0.00009 0 . 00074 0.00082
90 0.02178 0.00008 0 . 00096 0 . 00104
80 -0.00147 0.00007 0 . 00071 0 . 00078
70 0.01006 0.00006 0 . 00068 0.00074
60 0 .01980 0.00005 0 . 00078 0.00083
50 0 .01550 0 . 00004 0.00051 0.00055
40 0.02523 0 . 00003 0.00077 0 . 00081
30 0.00198 0.00003 0.00050 0.00053
20 0.01351 0.00002 0 . 00042 0.00044
10 0.02325 0.00001 0 . 00054 0.00055

86
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PAGE 19

SERIES 3

8/30/ 86

COMPANY X
LOCUS, U.S.A.
SET OF MASS STANDARDS : 500 MG -

TEST NUMBER DEMOl

BALANCE 13

OPERATOR 39

MAXIMUM LOAD 0.0600 G

STARTING RESTRAINT NUMBER 4

CALIBRATION DESIGN 62

PRECISION CONTROL

OBSERVED STANDARD DEVIATION OF THE PROCESS 0.00052 MG
ACCEPTED STANDARD DEVIATION OF THE PROCESS 0.00050 MG
DEGREES OF FREEDOM 6

F RATIO 1.083

F RATIO IS LESS THAN 2.81 (CRITICAL VALUE FOR PROBABILITY = .01).

THEREFORE THE STANDARD DEVIATION IS IN CONTROL.

CHECK STANDARD VECTOR 000010
CHECK STANDARD USED 14

ACCEPTED MASS CORRECTION OF CHECK STANDARD -0.00046 MG
OBSERVED CORRECTION OF CHECK STANDARD -0.00039 MG
STANDARD DEVIATION OF THE OBSERVED CORRECTION 0.00018 MG
T VALUE 0.41

ABSOLUTE VALUE OF T IS LESS THAN 3.

THEREFORE CHECK STANDARD IS IN CONTROL.

TEST CONDITIONS
CORRECTED TEMPERATURE IN DEGREES C

CORRECTED PRESSURE IN MM HG
CORRECTED HUMIDITY IN PERCENT
COMPUTED AIR DENSITY IN MG/CM3
TEMPERATURE CORRECTION
PRESSURE CORRECTION
HUMIDITY CORRECTION
OBSERVED TEMPERATURE IN DEGREES C

OBSERVED PRESSURE IN MM HG
OBSERVED HUMIDITY IN PERCENT

BEFORE AFTER AVERAGE
22.95 23 .05 23 . 00

760.227 760.027 760 . 127

30.00 30 . 70 30 . 35

1.1895 1.1886 1. 1891

0.00 0 . 00
-0 . 173 -0 . 173

0.00 0 . 00

22.95 23 . 05

760.400 760.200
30 . 00 30.70

E-B21



COMPANY X
LOCUS, U.S.A.
SET OF MASS STANDARDS : 500 MG - IMG
TEST NUMBER DEMOl

PAGE 20
SERIES A

8/30/ 86

BALANCE 13

OPERATOR 39
ACCEPTED WITHIN STANDARD DEVIATION OF THE PROCESS 0.00050 MG
ACCEPTED BETWEEN STANDARD DEVIATION OF THE PROCESS 0.00000 MG

CALIBRATION DESIGN 62
RESTRAINT VECTOR 111000
MASS CORRECTION OF RESTRAINT
VOLUME OF WEIGHTS BEING USED IN RESTRAINT AT 22.95
SYSTEMATIC ERROR IN THE RESTRAINT
3 STANDARD DEVIATION LIMIT FOR RANDOM ERROR AFFECTING RESTRAINT

0.03«57 MG
0.00372 CM3
0.00001 MG
0.0005A MG

CHECK STANDARD USED 139
CHECK STANDARD VECTOR 000010
ACCEPTED MASS CORRECTION OF CHECK STANDARD -0.00216 MG
REPORT VECTOR 111100
TEST CONDITIONS
CORRECTED TEMPERATURE IN DEGREES C

CORRECTED PRESSURE IN MM HG
CORRECTED HUMIDITY IN PERCENT
COMPUTED AIR DENSITY IN MG/CM3
TEMPERATURE CORRECTION
PRESSURE CORRECTION
HUMIDITY CORRECTION
OBSERVED TEMPERATURE IN DEGREES C
OBSERVED PRESSURE IN MM HG
OBSERVED HUMIDITY IN PERCENT

BEFORE AFTER AVERAGE
22.90 23 . 00 22.95
759.527 759.327 759.427
31.60 32.60 32. 10

1 . 188A 1.1875 1 . 1879
0 . 00 0.00

-0.173 -0 . 173
0.00 0.00

22.90 23.00
759.700 759.500
31.60 32.60

WEIGHTS BEING NOMINAL DENSITY COEFFICIENT ACCEPTED
TESTED VALUE G 1G/CM3 AT 20C OF EXPANSION CORRECTION 1

5MG 0.0050 2.7000 . 000069
3MG 0.0030 2.7000 . 000069
2MG 0.0020 2.7000 .000069
IMG 0.0010 2.7000 .000069

T IMG 0.0010 8.5000 .000039 -0 . 00216
SUM IMG 0.0010 2.7000 .000069



COMPANY X
LOCUS, U.S.A.
SET OF MASS STANDARDS : 500 MG - IMG
TEST NUMBER DEMOl

BALANCE 13

OPERATOR 39

CALIBRATION DESIGN 62
MG

5 3 2 1 1

A 1 + - - + -

A 2 + - - +

A 3 + - - -

A A + - -

A 5 + - - -

A 6 + - + -

A 7 + - - +

A 8 + - - -

A 9 + - -

A 10 + -

A 11 + -

R + + +

PAGE 21
SERIES A

8/30/

1

+

+

OBSERVATIONS IN DIVISIONS
DIRECT READING

A 1

A 2

A 3

A A

A 5

A 6

A 7

A 8

A 9

A 10

A 11

8.AOOO 10008. AOOA
2. AOOO
-8.8000
1.1000
7.2000
6.0000

-9. 1000
- 11.2000

7.6000
8.0000
17.8000 10017.7998

86
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COMPANY X
LOCUS, U.S.A.
SET OF MASS STANDARDS : 500 MG - IMG
TEST NUMBER DEMOl

BALANCE 13

OPERATOR 39

CALIBRATION DESIGN 62

SENSITIVITY WEIGHT
MASS 10.00000 MG
VOLUME 0.00000 CM3 AT 20 C

COEFFICIENT OF EXPANSION 0.000000
S*-S-PV(S)“ 10.00000 MG

ACCEPTED SENSITIVITY “ 0.00100 MG/DIV
OBSERVED SENSITIVITY - 0.00100 MG/DIV
T-TEST - 0.000

OBSERVED
A(I) DELTA(I) SENSITIVITY
(MG) (MG) (MG/DIV)

A 1

A 2

A 3

A A

A 5

A 6

A 7

A 8

A 9

A 10

A 11

0 . 008A0
0 . 002 A 0

-0 . 00880
0 . 00110
0 .00720
0 . 00600

-0 . 00910
- 0.01120
0 . 00760
0.00800
0 .01780

-0.00028
0 . 00039

-0.000A6
0 . 00032
0 . 00003

-0 . 00059
0 . 00011
0 . OOOA6

-0.00009
-0 . 00092
0.00098

0 . 00100

0 . 00100

VOLUME SYSTEMATIC 3 S.D.
ITEM CORRECTION (AT T) ERROR LIMIT
(G) (MG) (CM3) (MG) (MG)

0.0050 0.01768 0 . 00186 0.00000 0 . OOOAA
0 . 0030 0.00600 0 . 00111 0 . 00000 0 . 000A8
0.0020 0.01089 0 . 0007A 0 . 00000 0 . OOOAl
0.0010 0.00555 0 . 00037 0.00000 0.0005A
0 . 0010 -0.00265 0 . 00012 0 . 00000 0 . 0005A
0 . 0010 -0.00358 0 . 00037 0 . 00000 0 . 0005A

TEMPERATURE T- 22.95 C

PAGE 22
SERIES A

8/30/ 86

UNCERTAINTY
LIMIT
(MG)

0 . 000A5
0 . OOOA8
0 . OOOAl
0 . 0005A
0 . 0005A
0 . 0005A

E-B2A



COMPANY X
LOCUS, U.S.A.
SET OF MASS STANDARDS : 500 MG - IMG
TEST NUMBER DEMOl

PAGE 23
SERIES A

8/30/

BALANCE 13

OPERATOR 39

CALIBRATION DESIGN 62

SUM
(MG)

10

9

8

7

6

5

A

3

2

1

WEIGHTS USED FOR THE LINEAR COMBINATIONS
MG

3 2 111

VALUES AND UNCERTAINTIES FOR COMBINATIONS OF WEIGHTS
(UNCERTAINTY IS 3 STANDARD DEVIATION LIMIT PLUS ALLOWANCE FOR
SYSTEMATIC ERROR.)

3 S.D. UNCERTAINTY
SUM CORR SYSTEMATIC ERROR LIMIT
(MG) (MG) (MG) (MG) (MG)

10 0 . 03A57 0 . 00001 0 . 0005A 0 . 00055
9 0 . 02923 0 . 00001 0 . 0008A 0.00085
8 0 . 02368 0.00001 0 . 00058 0 . 00059
7 0.02857 0.00001 0 . 00058 0.00059
6 0 . 02322 0 . 00001 0.00072 0 . 00073
5 0 .01689 0.00000 0 .OOOAA 0 . 000A5
A 0.01155 0.00000 0.00075 0 . 00075
3 0 . 00600 0.00000 0 . 000A8 0 . 000A8
2 0.01089 0 . 00000 O.OOOAl 0 . OOOAl
1 0.00555 0 . 00000 0 . 0005A 0.0005A
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COMPAHY X
LOCUS, U.S.A.
SET OF MASS STANDARDS : 500 MG - IMG
TEST NUMBER DEMOl

BALANCE 13

OPERATOR 39
MAXIMUM LOAD 0.0060 G
STARTING RESTRAINT NUMBER 4

CALIBRATION DESIGN 62

PRECISION CONTROL

OBSERVED STANDARD DEVIATION OF THE PROCESS 0.00070 MG
ACCEPTED STANDARD DEVIATION OF THE PROCESS 0.00050 MG
DEGREES OF FREEDOM 6

F RATIO 1.955

F RATIO IS LESS THAN 2.81 (CRITICAL VALUE FOR PROBABILITY - .01).

THEREFORE THE STANDARD DEVIATION IS IN CONTROL.

CHECK STANDARD VECTOR 000010
CHECK STANDARD USED 139
ACCEPTED MASS CORRECTION OF CHECK STANDARD -0.00216 MG
OBSERVED CORRECTION OF CHECK STANDARD -0.00265 MG
STANDARD DEVIATION OF THE OBSERVED CORRECTION 0.00018 MG
T VALUE -2.77

ABSOLUTE VALUE OF T IS LESS THAN 3.

THEREFORE CHECK STANDARD IS IN CONTROL.

TEST CONDITIONS
CORRECTED TEMPERATURE IN DEGREES C
CORRECTED PRESSURE IN MM HG
CORRECTED HUMIDITY IN PERCENT
COMPUTED AIR DENSITY IN MG/CM3
TEMPERATURE CORRECTION
PRESSURE CORRECTION
HUMIDITY CORRECTION
OBSERVED TEMPERATURE IN DEGREES C

OBSERVED PRESSURE IN MM HG
OBSERVED HUMIDITY IN PERCENT

BEFORE AFTER AVERAGE
22.90 23 . 00 22.95
759.527 759.327 759.427
31.60 32.60 32.10
1.1884 1.1875 1.1879
0.00 0 . 00

-0.173 -0 . 173
0.00 0 . 00

22.90 23 . 00

759.700 759.500
31.60 32.60
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COMPANY X
LOCUS, U.S.A.
SET OF MASS STANDARDS : 500 MG - IMG

TEST NUMBER DEMOl

SUMMARY

FOR CONVENIENCE, THE RESULTS
OF THIS WORK ARE SUMMARIZED IN

TABLES I AND II. THE VALUES
ASSIGNED ARE WITH REFERENCE TO THE
STANDARDS IDENTIFIED ON THE DATA
SHEETS. THE UNCERTAINTY FIGURE IS

AN EXPRESSION OF THE OVERALL
UNCERTAINTY USING THREE STANDARD
DEVIATIONS AS A LIMIT TO THE
EFFECT OF RANDOM ERRORS OF THE
MEASUREMENT ASSOCIATED WITH THE
MEASUREMENT PROCESSES. THE MAGNI-
TUDE OF SYSTEMATIC ERRORS FROM
SOURCES OTHER THAN THE USE OF
ACCEPTED VALUES FOR CERTAIN
STARTING STANDARDS ARE CONSIDERED
NEGLIGIBLE. IT SHOULD BE NOTED
THAT THE MAGNITUDE OF THE UNCER-
TAINTY REFLECTS THE PERFORMANCE OF
THE MEASUREMENT PROCESS USED TO
ESTABLISH THESE VALUES. THE MASS
UNIT, AS REALIZABLE IN ANOTHER
MEASUREMENT PROCESS, WILL BE
UNCERTAIN BY AN AMOUNT WHICH IS A
COMBINATION OF THE UNCERTAINTY OF
THIS PROCESS AND THE PROCESS IN
WHICH THESE STANDARDS ARE USED.

THE ESTIMATED MASS VALUES
LISTED IN TABLE I ARE BASED ON AN
EXPLICIT TREATMENT OF DISPLACEMENT
VOLUMES, E.G., 'TRUE MASS', 'MASS
IN VACUO', MASS IN THE NEWTONIAN
SENSE. THE DISPLACEMENT VOLUME
ASSOCIATED WITH EACH VALUE IS

LISTED AS WELL AS THE VOLUMETRIC
COEFFICIENT OF EXPANSION. THESE
VALUES SHOULD BE USED, TOGETHER
WITH APPROPRIATE CORRECTION FOR
THE BUOYANT EFFECTS OF THE
ENVIRONMENT, TO ESTABLISH CONSIST-
ENT MASS VALUES FOR OBJECTS WHICH
DIFFER SIGNIFICANTLY IN DENSITY
AND/OR FOR MEASUREMENTS WHICH MUST
BE MADE IN DIFFERING ENVIRONMENTS.
THE RELATION ILB AVDP- . 45359237KG
IS USED AS REQUIRED.

PAGE 25

8/30/ 86

THE ESTIMATED MASS VALUES
LISTED IN TABLE II ARE BASED ON AN
IMPLICIT TREATMENT OF DISPLACEMENT
VOLUMES, E.G., 'APPARENT MASS',
'APPARENT MASS VERSUS BRASS',
'APPARENT MASS VERSUS DENSITY
8.0'. THE VALUES ARE LISTED AS
CORRECTIONS TO BE APPLIED TO THE
LISTED NOMINAL VALUE (A POSITIVE
CORRECTION INDICATES THAT THE MASS
IS LARGER THAN THE STATED NOMINAL
VALUE BY THE AMOUNT OF THE
CORRECTION). THESE VALUES ARE
COMPUTED FROM THE VALUES BASED ON
AN EXPLICIT TREATMENT OF DISPLACE-
MENT VOLUMES USING THE FOLLOWING
DEFINING RELATIONS AND ARE
UNCERTAIN BY THE AMOUNT SHOWN IN
TABLE I.

THE ADJUSTMENT OF WEIGHTS TO
MINIMIZE THE DEVIATION FROM NOMI-
NAL ON THE BASIS OF 'NORMAL BRASS'
(IN ACCORDANCE WITH COR. A BELOW)
IS WIDESPREAD IN THIS COUNTRY AND
IN MANY PARTS OF THE WORLD.
VALUES STATED ON EITHER BASIS ARE
INTERNALLY CONSISTENT AND
DEFINITE. THERE IS, HOWEVER, A
SYSTEMATIC DIFFERENCE BETWEEN THE
VALUES ASSIGNED ON EACH BASIS, THE
VALUE ON THE BASIS OF 'DENSITY
8.0' BEING 7 MICROGRAMS /GRAM LAR-
GER THAN THE VALUE ON THE BASIS OF
NORMAL BRASS. THIS SYSTEMATIC
DIFFERENCE IS CLEARLY DETECTABLE
ON MANY DIRECT READING BALANCES.

CORRECTION A - 'APPARENT MASS
VERSUS BRASS' OR 'WEIGHT IN AIR
AGAINST BRASS' IS DETERMINED BY A
HYPOTHETICAL WEIGHING OF THE
WEIGHT AT 20 CELSIUS IN AIR HAVING
A DENSITY OF 1.2 MG/CM3, WITH A
(NORMAL BRASS) STANDARD HAVING A
DENSITY OF 8.4 G/CM3 AT 0 CELSIUS
WHOSE COEFFICIENT OF VOLUMETRIC
EXPANSION IS 0.000 054 PER DEGREE
CELSIUS, AND WHOSE VALUE IS BASED

E-B27



COMPANY X

LOCUS, U.S.A.
SET OF MASS STANDARDS ; 500 MG - IMG

TEST NUMBER S

ON ITS TRUE MASS OR WEIGHT IN

VACUO.

CORRECTION B - 'APPARENT MASS
VERSUS DENSITY 8.0' IS DETERMINED
BY A HYPOTHETICAL WEIGHING OF THE

PAGE 26

8/30/

WEIGHT, IN AIR HAVING A DENSITY OF
1.2 MG/CM3, WITH A STANDARD HAVING
A DENSITY OF 8.0 G/CM3 AT 20

CELSIUS, AND WHOSE VALUE IS BASED
ON ITS TRUE MASS OR WEIGHT IN
VACUO

.
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COMPANY X
LOCUS, U.S.A.
SET OF MASS STANDARDS : 500 MG - IMG
TEST NUMBER DEMOl

PAGE 27
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TABLE I

MASS UNCERTAINTY VOL AT 20 COEF OF
ITEM (G) (G) (CM3)

500MG . «9992233 0.00000300 0 . 03012 0 . 000020
300MG .29995722 0 . 00000185 0 .01807 0 . 000020
200MG . 19996121 0 . 00000127 0 .01205 0 . 000020
lOOMG . 10000171 0 . 00000082 0 . 00602 0 .000020
50MG . 0499965A 0 . 00000055 0 . 00301 0 .000020
30MG .03000198 0.00000053 0 . 00181 0 . 000020
20MG .02001351 0 .00000044 0 . 00741 0 . 000069
lOMG .01002325 0 . 00000055 0 . 00371 0 . 000069
5MG . 00501768 0 . 00000045 0 . 00186 0 . 000069
3MG . 00300600 0 . 00000048 0 . 00111 0 . 000069
2MG . 00201089 0 . 00000041 0 . 00074 0 . 000069
IMG . 00100555 0.00000054 0 . 00037 0 . 000069
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COMPANY X

LOCUS, U.S.A.
SET OF MASS STANDARDS ; 500 MG - IMG
TEST NUMBER DEMOl

PAGE 28
8/30/

TABLE II

ITEM COR. A (MG) COR.B (MG)

500MG -.04231 -
. 03881

300MG -.02158 -.01948
200MG - . 02465 -

. 02325
lOOMG .00879 . 00948

NEW 50MG .00008 . 00043
30MG .00410 . 00431
20MG .00748 . 00762
lOMG .02023 . 02030
5MG .01616 .01620
3MG .00510 . 00512
2MG .01028 .01030
IMG .00525 . 00525

E -B30
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Appendix C

Surveillance Test

The following is the report of a surveillance test [7]. Subsequent to a

calibration such as that shown in Appendix B, weights may be resubmitted
for periodic surveillance. Surveillance is a more rapid and less costly
procedure than calibration. The surveillance test can provide assurance
that the values of mass previously assigned to a set of weights are still
valid.

E-Cl



UNITED STATES OEPAPTMENT OF COMMERCE
National Bureau of Scandarda
GaitlTersDurg. Maryland 20B99

September 18, 1986

In reply rerer to;

Subject:

Items:

The above items have been intercompared In sums. The differences as measured
have been compared with the differences computed from the vailues under
22571 6-B. One or more of the items have been checked against national
standards. The results of this test Indicate that there Is no significant
change since the last calibration. This test assures the continuing accuracy
of the values under 22571 6-B.

flt)E D. SIMMONS, Deputy Director
Center for Basic Standards

Attachment
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Appendix D

Calibration of Dead Weights

The following is a typical report of calibration for a set of dead
weights

.
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U.S. DEPARMENT OF COMMERCE
MAT10MAL SUREAU OF STANOARDt

OAfTNCRSMJRO. MARYLAND lORM

REPORT OF OMIBRATION

NBS Test Number:

For:

Items:

The above items have the mass values shown with reference to the NBS standard
of mass.

Item
Mass

(g)

Uncertainty
(g)

Density
(g/cm3)

1kg-1 999.9968 0.0033 7.92

1kg-2 999-9985 0.0033 7.92

lkg-3 1000.0007 0.0033 7.92

1kg-i< 999.9969 0.0033 7.92

lkg-5 999.9960 0.0033 7.92

1kg-6 999.9952 0.0033 7.92

The uncertainty figure is an expression of the overall uncertainty using three
standard deviation as a limit to the effect of random errors of measurement
plus the systematic errors, assuming the density is correct within 1%. Test
conditions: mass computed using air density I.175mg/cm3 for all items.

E- D2



The National Bureau of Standards uses the following relationship between the
metric unit of mass and the U.S. customary unit of mass: one pound
(avoirdupois) equals 0.^5359237 kilogram.

For the Director,
National Measurement Laboratory

Joe D. Simmons, Chief
Length and Mass Division
Center for Basic Standards

completed: September 3, 1986

Note: Mass and associated density values listed above are appropriate
for Mjjj and pjj in Equation (2^4) from NBS Monograph 65,

"Reduction of Data for Piston Gage Pressure Measurements."
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FOREWORD

When the National Bureau of Standards was established more than 80 years ago,
it was given the specific mission of aiding manufacturing and commerce. Today, NBS
remains the only Federal laboratory with this explicit goal of serving U.S. industry
and science. Our mission takes on special significance now as the country is respond-
ing to serious challenges to its industry and manufacturing— challenges which call
for government to pool its scientific and technical resources with industry and
universities.

The links between NBS staff members and our industrial colleagues have always
been strong. Publication of this new Industrial Measurement Series, aimed at those
responsible for measurement in industry, represents a strengthening of these ties.

The concept for the series stems from the joint efforts of the National Confer-
ence of Standards Laboratories and NBS. Each volume will be prepared jointly by an

industrial specialist and a member of the NBS staff. Each volume will be written
within a framework of industrial relevance and need.

This publication, A Primer for Mass Metrology , represents the first of what we
anticipate will be a long series of collaborative ventures that will aid both
industry and NBS.

Ernest Ambler, Director

F-iii
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A Primer for Mass Metrology

K. B. Jaeger
Measurement Standards Laboratory

Lockheed Missiles and Space Company, Inc.

Sunnyvale, CA 94086

and

R. S. Davis
Center for Basic Standards

National Bureau of Standards
Gaithersburg, MD 20899

1. INTRODUCTION

Much of the mass program at the National Bureau of Standards has been documented

during the last two decades [1-8]. What we attempt here is to explain the relevance

of these publications to mass metrology conducted at laboratories whose standards are

calibrated by NBS. We try to begin with basic physics concepts deriving the essential
results with a minimum of rigor. The reader should always consult the appropriate
reference for a more sophisticated treatment.

We have also tried to use a consistent notation. Consequently, our notation may
vary slightly from that found in the references cited above.

Many examples are provided in the belief that understanding of a general case is

much easier if a special case is understood well. Cautionary statements are provided
at places in the text where important practical complications may exist.

In general, we have strived to be understandable rather than scholarly where the
combination was elusive.

CAUTION : This document is incomplete. Many extremely important topics--manu-
facture, specification, cleaning, handling, and storage of weights being among
them—have been omitted. The first two of these subjects are treated in ref. [14].

Our ultimate goal is to outline the way in which mass measurements can be made
to acceptable metrological accuracies. There are three major concepts which must be

explored but which are somewhat interrelated - what one means by "mass;" how one can
use a measuring device to determine the mass of an unknown object in terms of an

accepted unit, for example, the kilogram; and how to assign a realistic uncertainty
to the results. It will be useful to introduce some basic equations of physics in

order to make our arguments precise. The first major step is to explore the basic

properties of a mass-measuring device, or balance, and then see how the device can be

put to the service of metrology. Mathematically, this means that the first step is

to derive the basic equations of weighing. The remainder of our efforts modify the
basic equations in order to make them practical. We also show their relevance to

mass metrology.
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2. BASIC MASS EQUATIONS

In order to derive the basic equations of weighing, we need a precise notion of

mass. For the purpose of this discussion we will introduce mass through the familiar

equation:

r = Ma

(Force = Mass x Acceleration) (1)

That is, each object possesses a property called "mass" which appears in eq. (1) as

the constant of proportionality between a force applied to that object and the result-

ing acceleration of the object. Note that both force and acceleration are vector
quantities: they have a direction associated with them. One should also note that

mass is always a positive number (that is, for example, the acceleration is always in

the same direction as the gravitational force, never opposite to it). These comments

about mass are consistent with the qualitative idea of the mass of an object being a

measure of the "amount of substance" in the object.

Unfortunately, our intuitive notions of "mass" are often confused with "weight."
Such confusion is unacceptable for science and metrology. Therefore we will now see

how the notion of weight differs both logically and practically from that of mass.

We can take it as an experimental fact that over a small plane area of the
earth's surface (^uch as the space occupied by a metrology laboratory) the accelera-
tion of gravity, g, is essentially constant. Since g is a vector quantity, constant

^ implies that, over a small area of the earth's surface, the direction of ^ is also
practically constant. That is, the acceleration vectors are all parallel and define
the direction "down." In this approximation, we can replace ^ by a numerical con-
stant, g.

The gravitational force on an object of mass M is then:

= Mg . (2)

The weight of an object of mass M is defined as F, That is, weight is a force, not
a mass.

Using W = F^ we have

W = Mg . (3)

From what was said about g, it is clear that weight is not a constant property
of matter, but depends on location. Consider, for example, a body of mass M taken
out into deep space such that the gravitational forces are negligible (they are never
zero). In this case, we can approximate (3) as

W = Mg 0

which holds since

g 0; (M 0)

Hhis definition was adopted for international use by the General Conference for
Weights and Measures (C.G.P.M.) In 1901.



Hence* the body still hes mass M but its weight is zero. It is only because most

people live exclusively on the surface of the earth that weight and mass are often

confused.

Let us now consider the action of a scale or balance - the device which we will

use to measure mass. There are a great many schemes in use for constructing scales

and balances. All have their strengths and weaknesses but most are designed to

approximate the workings of the following hypothetical device.

This device is a "black box" which has a pan on which to place an object and an

indicator which reads zero when the pan is empty and some other number when an

object is placed on the pan (fig. 1). Our ideal scale has the following two de-

sirable properties:

1) The indicator always reads the same amount to any desired precision when

the same object is put on the pan at the same conditions of temperature*

barometric pressure* relative humidity* etc. ...
2) If any two objects are put on the pan* the indicator reading is the sum of

the readings for each object placed individually.

The first property means that the imprecision of the balance readings is zero. The

second property means that the balance is perfectly linear. Later we will show how

to use real balances which only approximate these two important features.

A final property of our idealized balance* which it shares with actual scales

and balances is that the indicator responds to a force on the pan* not a mass. In

other words* our balance would give different readings on the moon than on earth

(though properties 1) and 2) would be unaffected).

When the balance has reached an equilibrium condition* the sum of all forces
acting on the system must be zero. We then have

n

E ^ = 0

i=l
’

and since the forces acting on the system are known to act in one direction and its

exact opposite (i.e. up and down) we can once again ignore the vector notation and
wri te

E F, = 0 (4)

i=l

where n = total number of forces acting on the system.

The forces acting on the object placed on the pan of the balance are:

F-j = Mg gravitational force

Fp* balance force exerted by the balance via deflection of a beam, stretching of a

spring* or some other method. Obviously this force has to be opposite to F.|

.

Since ^2 opposite to F.j * we adopt the convention

^2 ^
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Figure 1. An idealized scale. The indicating dial is marked in equally spaced
increments. The number pointed to by the needle can be resolved to any desired
precision.
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where e-, is the balance reading and k is a positive constant (yet to be evaluated)
which converts balance readings to mass units.

In addition to these main forces, we have to consider buoyant, electrostatic,
and electromagnetic forces on the object. Of these three only the first one plays a

significant role in usual metrology and we now look at the effect.

Under the influence of gravity, the force on a body submerged in a fluid is
equal in magnitude but opposite in direction to the weight of the displaced medium.
This upward force is known as the "buoyant force." From the definition we see that

Fj = -tni

where m = mass of displaced medium. The buoyant force was first quantified by
Archimedes in the third century B.C. We also can write

so that

where
^3

=
-''PmS

V = volume of the displaced medium
= volume of object
= density of medium = m/V .

With these three forces, we can now write eq. (4) as

(6)

or

Substituting from eqs. (2), (5)

Mg

(M

or
(M

and (6) yields

- P^V.g = ke,i

- P^v)g = k6,g

- pj) = ke^ .

(7a)

(7b)

It is very important to realize from eq. (7a) that if the weighing is done in a

vacuum chamber then the term drops out and eq. (7a) reduces to

Mg = ke^g . (7c)

Furthermore, the medium or environment can be any fluid--air, water, oil, etc.

For most applications and for practical purposes, the medium is usually air. Even

though air is a mixture of gases and the density is quite small compared to densities

of objects usually measured, the correction term, F~, cannot be ignored by metrolo-

gists, as we shall see.

Let us now consider the weighing of two objects of mass Ml and M
2

under the same

conditions, i.e. in the same medium. We then have from eq. (7a)

9(Mi“P|^V^) = kS-jg

= kSji .
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The density of an object is its mass devided by its volume. That is.

Pi
= M^/V^

where p-^ is the density of object 1. We can, therefore, always replace a quantity
such as

by the identical quantity

Mid - p„/Pi) .

The choice of representation is completely optional, although the proper choice can

often simplify a calculation. For the present, we will continue with the volume

representation.

Subtracting eq. (7e) from 7(d) yields

9^^1 Pm'^l^
" 9(^2

- = g ke^ - g ke
2

(7f)

and by setting

B-j -
02

= A6

we have

g(Mi -
pJi)

- g(M2 - p^Vj) = gkAe . (8)

Cancelling g yields

- M
2

= kAB + (V^ - V
2

) . (9)

Equation (9) is one of the fundamental equations in mass metrology and is known
as the "Weighing Equation." Its importance will become evident in Section 3. For

now we simply point out that, using the best balances available, one can determine
A0 to much higher accuracy than either B-, or 62 . Thus eq. (9) turns out to be more
useful than eq. (7b).

In most cases, the laboratory conditions are such that the medium is air, in

which case

Pa ^ Pm ^ density of air

and eq. (9) becomes

M^ - M
2

= kAB + p^(V^ - V
2

) (10)

Note: When we refer to "weighing" in this text, we will always mean the process
which determines the product k • 0. It should be clear from the above
paragraphs that finding the mass of an object involves more than just
weighing the object. Also, we have no future need to refer to "weight" as

defined by (3). From this point on, the term "weight" will be reserved
solely to designate an object manufactured to have particular nominal
mass. For example, a "1-g weight" is an object whose mass is close to 1 g.
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From eqs. (9) and (10) it is obvious the condition

- M2 = kAe

can exist if and only if

pjv, - v^) E 0 .

This can only hold if

1) p E 0 i.e., the measurement is done in vacuum
or

2) V, E V
2 .

The first case is usually not encountered in metrology. The second case can be

approximated quite easily. Consider for example two weights of nearly equal mass,
such that

M^ « M
2 ,

made from the same billet of alloy. In this case, the densities are equal so that

Pi
“ P

2
“ P

Since

we have from (10)

Ml M
2

and V
2

= ~
Pi P2

Ml M

M^ - M2 = kAe + p^l ~ —

2
M.J

- M2 = kAe

/m^-m

'^aI—

-

(M^ - M
2

) (1 > —
)

= kAe

p

-
«2

= kAe

I-Pft/P

M^ - M2 - kAe

because p^ « p and M.j - M
2

is already known to be a small number.

Relations such as that expressed by eq. (1) or (10) are of use to metrology
only if all variables are expressed in a consistent set of units. In what follows,
we will assume that we are working in the International System of Units
(also known as the Systfeme International des Unites, or simply, the S.I.).
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The unit of mass in the S.I. is the kilogram. By definition, one kilogram is

exactly equal to the mass of an object known as the International Prototype Kilogram,

or I.P.K. This object is made of a platinum-iridium alloy and is stored at the

International Bureau of Weights and Measures in Sevres, France. All laboratory mass
standards must ultimately be traceable to the I.P.K.

2.1. True Mass and Apparent Mass

So far, the "mass" we have considered is that found in Newton's basic equation
(i.e., eq. (1)). For that reason, this concept of mass is sometimes called "true
mass". It is a quantity intrinsic to the object alone and not to its situation. We
have also seen that, in a vacuum, the force registered by the balance is exactly
proportional to the Newtonian mass. For this reason the "true" mass is also known as

the "vacuum" mass.^ The terms "mass", "true mass" and "vacuum mass" are interchange-
able.

The need to apply buoyancy corrections to mass measurements has led to the

adoption of so-called "apparent" masses. As explained below and in Appendix A, use

of apparent mass can simplify the job of both the weight manufacturer and the metro-
logist. The drawback, however, is that one must learn a new concept (that is,

apparent mass).

Of limited scientific significance, the apparent mass approach nevertheless
often simplified calculations for the metrologist at a time when exact computations
were tedious (either done by hand or through nomographs) and difficult to check.
Today, when every metrologist has access, at the very least, to a digital pocket-
calculator, the argument for apparent masses is less compelling. Nevertheless, both
for completeness and because cormercial weights are still manufactured on the basis
of apparent mass, we cannot avoid this topic.

The fact is that most mass metrology is carried out: (1) in air; (2) in

laboratories near sea level; and (3) at a temperature of 'v^20 °C.

Air at such conditions has a density nearly equal to 1.2 mg/cm . Fluctuations
about the mean density are known rarely to exceed 3 percent. Thus 97 percent of the
buoyancy correction can be "built into" the calibration of a weight so that small
deviations from the correction are all that need be considered.

Let

Let us carry through an example by defining a reference metal of density pj^.

mI = the true mass of an object made of reference material R.

(This object need not actually exist.)

pp
= the density of the reference material

3
pQ

= 1.2 mg/cm = the reference density of air. (This is very
nearly the density of air at 20 ®C, 50% humidity, and 760

nm Hg pressure.)

tQ = 20 ®C = reference temperature.

2
If one actually were to weigh an object under vacuum conditions to determine its

mass, one would have to be certain that the object weighed was sufficiently stable--
that is, no gasses normally adsorbed on the surface at atmospheric pressure are
vacuumed off, the weight itself does not "out-gas," etc. The equality between vacuum
mass and true mass assumes that the object being weighed is stable.
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We now define the "apparent" mass of an object as follows: The "apparent" mass

of an object X is equal to the "true" mass mJ of just enough reference material to

produce a balance reading equal to that produced by X if the measurements are done at

temperature tQ in air of density Pq (see fig. 2).

Stated another way, we first define specific, unique weighing conditions:

3
i. the air density is 1.2 mg/cm

ii. the temperature is 20 °C (it is necessary to specify temperature because
the volume of a weight depends slightly on temperature.)

Next we imagine a mass comparison between an object X and an assembly of known
objects R. The definition specifies that the R objects shall all have a density
equal to The mass of the R objects is then adjusted until

Ae = = 0 .

When these conditions are all satisfied, is by definition equal to the apparent

mass of X. We never really have to carry out the experiment because from eq. (9) we
have

^X ^R
^ PQ

^'^X
"

'^R^

where is given by We can rewrite this relation using density nota-
ti on

:

^X
"

^O^X
”
^R ^O^R

”

^X
”

^O^^X^
""

^R
”

^O^^R^
~

A© = 0

so that

and with

My (I-Pq/Px)
_ ^

(I-Pq/Pr)

( 11 )

Note that the denominator is simply a constant whose value is the same for any
3 A

weight, X. Also, for
pj^

greater than Ig/cm (the density of water), will be

within 0.2 percent of mT. Furthermore, eq. (11) states that the apparent mass can be

obtained by multi plying^the true mass by a buoyancy factor.

The usefulness of apparent mass and hence eq. (11), as well as the subtle
distinctions between true and apparent mass are shown in the next five subsections.
We begin with an example.
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2.1.1. Example

Using the ideal balance described earlier, we wish to measure the mass of^^an

unknown weight, X, in terms of standard weights, S, of known apparent masses Mc's.
During the actual measurement, done in air of temperature t and air density p^T it

was found that a summation of standards produced the same reading on the balance as
the unknown mass.

Under what conditions can we set

?

Solution:

Starting with the balance equation for two masses (eq. (10)).

-
1^2

= Pa ^''l

we have

Mx -
^3

= k(ej^ - 63) + - V3)

since the measurement yielded 6
^^

= 63 .

Finally, we can write this as

Similarly, we have for the apparent masses, using eq. (11):

M
A
X

M
3

(I-PQ/P
3

)

(I'Pq/Pr) ^^"Pq^PR^

By setting

(I-Pq/Pr)

- =
Vso 20 °C

Ps

we simplify to

*^S^
~ PQ ^^XO

~
^SO^

( 1 -Po/Pr)

(El)

(E2)
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T T
Substituting for from (El), we have

(I-Pq/Pj^)

(E3)

Volumes have a slight temperature dependence but if the temperature of the

measurement is close to 20 °C (generally true in the laboratory), then

and

so that (E3) reduces to

V
SO

=
^Pa~P0^^V^S ^_ ApAV

(I-Pq/Pr)

(E4)

The term l/(l-pQ/pf^ can be approximated by 1 for the following reason: Via a

Taylor expansion

Now since pq is the density of air and
pj^

is the density of a reference metal, we
have

Pr

< 10
-3

so that

— = ApAV + ApAV (p^/Pr) + ...

(I-Pq/Pr)

_3
and since ApAV is already a small number, a correction of 10 (or 0.1 percent) is

insignificant. Hence only the first term has to be retained. This argument is

important in that it is used time and again in estimating buoyancy corrections.

With these approximations, we finally arrive at the equation for apparent mass
differences

- M
5

= ApAV (E5)

F-12



We now would like to find the conditions for which

This implies that ApAV =55 0.

When one encounters such a relation, one must always decide its precise meaning.
In this particular case the meaning is: ApAV is smaller than the acceptable un-

A
certainty of

A
For example, suppose My needs to be known to one part per million. Then

really means that

ApAV ~ 0

< 10 (E6)

A T
But we already know that Mj^ does not differ from Mj^ by more than a fraction of a

percent (see comments after eq. (11)). We can therefore approximate

by

Now (E6) becomes

< 10
-6

The volume ratio AV/Vj^ can be written as

(E7)

In the case of different alloys of stainless steel (SS), Vy will be close to Vq, so

that
^ ^

< 10
-1
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We now have

X 10"^ < 10"^ (E7'

The density ratio can be written as

^A'PQ

PX

=: 8.0 g/cm^ for SS

p« = 1 .2 X 10’^ g/cm^

where

and

so that

Pj^ 8.0

The inequality (E7') now reduces to

^-3
Pa-1.2x10

8.0
X 10"^ < 10'^

which is satisfied as long as

1 .28 X 10’^ g/cm^ 1 P/^ 1 1 • 12 x 10"^ g/cm^.

This indicates that the air density during the measurement can be off by as much as

0.08 from 1.20 mg/cm^ and still satisfy condition (E6).

In contrast, the buoyancy correction for true masses is much more critical.
From eq. (El), we want to satisfy the condition that

PflAV

< 10
-6

or

AV
< 10

-6

Using the same material as before, we have

— X 10'^ < 10"®

8.0

p^
< 0.08 X 10’^ g/cm^

Fi4

so that



Note that in order to keep the desired accuracy, the air density during the measure-

ment can only be ignored if it is very small, i.e. vacuum.

This has been a long example in which several generally useful techniques have

been introduced. It is, therefore, worthwhile to look back and summarize what this

example also teaches about apparent mass. The most important inference we can draw
is that, for true mass comparisons, we almost always need to account for air buoyancy
even though we might be able to use an assumed value for the air density (recall that

air density is usually constant in a given laboratory to about ±3 percent). For
apparent mass comparisons, the air buoyancy correction is much less important and

can, therefore, sometimes be ignored. Apparent mass works the way it does^because
the formalism already has an assumed value for air density (i.e. 1.2 x 10”'^ g/cm^)
built into it. In measurement situations where this assumed value is not accurate
enough, the buoyancy term in eq. (E5) becomes important. This eventuality occurs at

precisely the same point when p« in eq. (El) can no longer be sufficiently well
-3 ^3

approximated by 1.2 x 10 g/cm .

2.1.2. Reference Materials

So far we have not yet defined a reference material. At present, two different
apparent mass bases are utilized by the NBS. One of them, the older one, is called
"normal brass" and was the logical choice when most laboratory weights were made of
brass.

Normal brass is defined by

3

Pgo
= 8.4 g/cm at 0 °C

-5
ag = 5.4 X 10 /°C = coefficient of cubical expansion

3
Pq = 1.2 mg/cm = air density at 20 °C.

These parameters together with the expression for volumetric expansion

VB(t) = VBQ[l+ag(t-0 "C)] (12)

and the corresponding density correction

completely determine the parameters at 20 °C. Note from above that pgQ
is given at

0 ®C and therefore has to be determined for 20 ®C via eq. (13) to yield

Pb(20)
= 8.4

[l+5.4xl0"^x20]

= 8.390938 g/cm^ (13')

The second apparent mass basis is referred to an arbitrary material with the
following density:

pQ
= 8.0 g/cTi? at 20 ®C .

Once more,

Pq = 1.2 mg/cm^ at 20 ®C.

Note that this basis does not require any expansion coefficient since all
parameters are defined at 20 ®C. It is therefore comparable to the basis defined for
normal brass via eq. 03' ).
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It has now become common practice to report masses and their uncertainty in the

true mass basis and then quote corrections to nominal values for "normal" brass and
3

for Pq = 8.0 g/cm bases. Clearly, the latter apparent mass basis is beginning to

be preferred by many laboratories since most weights used in a set are made of
stainless steel which has a density very close to 8.0 at 20 ®C. Thus the correction
term in eq. (11) is small, making the apparent mass close to the true mass (see

Appendix A.

)

We are now in a position to write eq. (11) in the "normal brass" (pp) and
in the "8.0" (pq) basis. Starting with eq. (11), we have

and substituting for pp with pB
from (13) , we obtain

.,A „T (I-Pq/Px*
My = My
* Pg[l+ag(t-0 °C)]

(1- r

pbo

.,A „T (l-Po^Px'

”x
-

”x
Pf)

1
- -y- [l+20ag]

Pbo

(14)

where the denominator is just a constant equal to 0.9998569886.

Similarly, we use

3
for the 8.0 g/cm basis to yield

(I-Pq/Px)

(I-Po/Pq)

(15)

where the denominator is once again a constant exactly equal to 0.99985000. It is

interesting to note that apparent masses in the two bases we have examined, eqs.

(14) and (15), have a constant ratio

<>^>8.0
1.00000699

That is, the apparent masses of the same weight in the two bases differ by only
'^XD.OOO? percent.
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Equation (15) indicates a verv important point. If the object being weighed
has a density equal to 8.0 g/cm^ (i.e. = Pq) at 20 ®C then

For the brass basis, eq. (14), a similar argument has to be treated with more
caution. In this case, if

pj^
is equal to the density defined by eq. (13'), then

Mj, - Mx .

2.1.3. Reporting Apparent Mass

Sometimes the apparent mass correction in a given basis is required. This is

defined as

Correction (M^) e mJ - (16)

where is the nominal value of the weight.

2.1.4. Comparing Two Apparent Masses

We now derive an equation similar to (10), appropriate for apparent mass differ-

ences. Using eq. (11) we have for mass 1

„A ^1 ^o'^Ol
Ml

=

1 -Po/pR

where we have used M-j/p-j = Vq-j.

Similarly we have for mass 2

^ ^
^2 'P0^02

1-Po/pR

Subtracting the second from the first yields

fA '^T”2'Po*''or''o2^
- ”2 ;—;

1-Po/pR

From eq. (10), we have the true mass difference of the two weights

= kae + (V^-Vj)

SO that, upon substitution, we obtain

Now, employing eq. (12), we can use

( 17 )
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and

^1
“

^Q-j [l+Ot-j (t-tQ)3

V
2

= Vq
2

[l+a2(t-tQ)]

where Vq-j and Vq
2

the respective volumes at tQ = 20 °C.

Substituting for V-j and V
2

into (17) yields

^1
"

^2
" ‘

^0 ^'^0l'’’'^0l“l
’ VQ2-VQ2a2(t-20)]

where we have set

tQ = 20 °C

and have approximated (I-Pq/Pr) ^ ^ (see derivation of (E5)).

Simplifying further gives

= kA6 + (p^“Pq) (Vqi (^01^1 ”^02*^2^^ *

Equation (18) is a fully corrected formula for calculating mass differences in the

apparent mass basis, except for the one approximation mentioned above. At this

point it is worthwhile to consider a specific example in order to get a feeling for
the magnitude of the terms in eq. (18). Assume that two weights of nominal value 2g
have the following properties:

Vq^ = 0.2564 cm^

Vq
2

= 0.1884 cm^

also, a-j S5 a
2

= 4.5 x 10 ^/°C;

3
= 1.17 mg/cm

3
pQ

= 1.2 mg/cm .

We then find that

(pA - Po)(''oi ^^02^
" ^ ^

and

p^(t - 20)(VQ^a^ - VQ
2
a
2

)
= 117 (t - 20) x 3.06 x lO"^

= (3.58 X 10'^) (t - 20) .

Considering an extreme condition such that t is 10 ®C. we have for the latter term

= -3.58 X 10
”^

mg .

Combining this term with the first we have

-2.04 X 10'^ - 0.0358 x 10'^ = -2;08 x 10"^ mg
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so that the second term (under extreme conditions) contributes only 0.04 ug to the
overall buoyancy correction. Usually the (t - 20) term is of the order of 0 ®C to
4 ®C so that the effect of the second term on the overall buoyancy correction of the
above weights is even less. Hence in most cases the second term can be safely
ignored and eq. (18) can be approximated by

M-j “ M
2

~ kA6 + (p^ -
^^01

~ ^02^ * ( 1 ^3 )

For true masses we start with eq. (10) and write

- kJ = kAe + (V^-Vj) .

Employing the same volume expansion formulae used for the apparent masses (after eq.

(17)), we derive

Mj - mJ = kAe + (Vq^ - Vq2) + p^(t-tQ)

X ^
02

*^
2

^ ' (^0 )

Once again the second term is very small compared to the first (see arguments above)

and the relation can usually be approximated by

m| - = kA6 + (Vq^ - V(j2) . {19b)

A quick comparison between eqs. (19a) and (19b) shows that the apparent mass differ-
ence has a correction term which contains the factor

(p^^
- Pq) whereas for true

masses the corresponding factor is p/\. This then shows^that the former correction
is much smaller. In both cases the unknown parameter is p^.

2.1.5. Sources of Error in Buoyancy Corrections

It is important to determine the sources of error in buoyancy corrections in

order to make the best measurements possible with the least amount of effort and
expense. Let us look back to eqs. (19a) and (19b) and write the most important
buoyancy terms:

True Mass Apparent Mass

^A^'^Ol
" '^02^ ^^A

'
^^02^

Since pq is defined exactly, uncertainties in the mass difference measurements
arising^from buoyancy corrections are due to errors in p^, Vq-j

,
and Vq2. Let us

denote the uncertainty in a quantity by a preceding 6 (i.e., the uncertainty in p«

is ^Pp^) ’ Then, from eqs. (19a) and (19b) the sources of uncertainty in the buoyancy

corrections are

True Mass Apparent Mass

‘^^A^'^Ol ^^02^

^''01 Pa <5Voi(pa
- Pq)

'SV02 '^'^02 ^^A *^0^

where we will assume that 5 Vq-j , 6Vq 2» and 6p^ are uncorrelated.
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In the calculation of true mass differences, uncertainty in the volume of the
masses is much more important than it is for differences in apparent mass as can be

seen by comparing similar terms:

(6Voi
+ <5Vq2)p^ > (6Vq^ + '5Vq2)(P;^-Po)

Also we see that any uncertainty in Vq^ or Vq
2

will lead to systematic uncertainty

in mass measurements (even i ^
'^01

" ^02^*

Example :

Two weights produce the same reading on an ideal balance in air of p^
= 1.17 mg/

and t = 20 ®C. Both weights are said to be of density 7.89 g/cm^. Find

1) their true mass difference
3

2) their apparent mass difference against Pq = 8.0 g/cm

3) the errors in these numbers due to uncertainty in the volumes.

The weights are marked "1 kg".

Answers:

1

)

From eq. (19b)

T Pa t
M (1- -^) - (1- -^) = k-Ae = 0

' 7.89 ^ 7.89

because Ae is given as 0.

Hence wj - = 0.

I

1
1

I

I

2) From eq. (19a)

- M* =
(pa

- PoXVqi - V(,2) + kAe = 0

since Ae = 0 and = Vq
2

(because m| = and Pq^ = Pq
2
)-

3) the weights could have come from different lots of metal. Since no uncer-
tainty is given for density, we must assume that

p^
= 7.89 ± 0.005 g/cm^ ,

i.e. the density is uncertain in the first unreported decimal place.

As a worst case, let

pQ^
= 7.895 and Pq2

= 7.885 .



1

M

Pa
7.885 7.895

0.00117 X 1000 (

PA^i

1

0.00003 X 1000

7.885 7.895

^
1 1

7.885 7.895

7.895

0.270 mg

0.005 mg

Note that the nominal mass value of each weight is accurate enough to use in esti-

mating the uncertainties in question.

CAUTION : In calibration certificates, it is normal practice not to include in

the assignment of systematic errors any contribution from volume uncertainties: The
volumes, usually calculated from densities provided by the weight manufacturers, are
assumed to be without error. For the most critical work, volumes of individual
weights must actually be measured. (Since 1982, NBS has been routinely measuring the
volume of single-piece 1-kilogram weights which require the best possible mass
calibration.)

We have yet to examine the effects on mass measurements of uncertainty in p..

For mass differences, we have shown above that the errors are approximately

(SPaCVqi - Vq
2
)- Therefore, unless = Vq

2
» we mst be concerned with uncertainty

in p^. The calculation of
p^^

along with an analysis of the attendant uncertainties

are presented in the next section.

2.2. Air Density

We have seen from the derivations in Section 2.1 that the correction to the mass
determination requires the precise knowledge of the air density (p^) if the weighing

is done in an air environment. (We will assume from now on that we are always work-
ing in air.) The buoyancy correction in eq. (19b) requires p^ for true masses,

whereas for apparent masses we require (p^^'Pg) (19a). It should be remembered

that
pQ is defined as pg

= 1.2 mg/cm^ which is the approximate value for 20 ®C with

1 atmosphere of pressure with 50% relative humidity.

The usual approach to determining p. is to calculate the density of air based on

an "equation-of-state." To use this equation, one must supply ambient values for
temperature, barometric pressure, and relative humidity. For extremely exacting
work, the concentration of carbon dioxide in the laboratory ambient is also required.
Appendix B contains a derivation of the equation-of-state based on the work of Jones

[2J. This formulation is close to those which are found in handbooks or older
references but has three unique virtues:



1. It is based on the most recent reference data available.

2. It has been derived in such a way that uncertainties associated with the

equation itself are known and stated.

3. Virtually the same equation has been endorsed for international use by the

Consultative Committee for Mass of the International Committee of Weights

and Measures (C.I.P.M.).^

The interested reader is urged to consult Appendix B and especially Ref. [2] for

the complete derivation. We state here that^

Pa

cm

0.0034848

(t+273.15)
(P - 0.0037960 • U (20a)

where t = temperature in °C

P = barometric pressure in pascals

(133.322 Pa = 1 nin Hg)

U = relative humidity in %

e^ = saturation vapor pressure.

= 1.7526 X 10^^

^ is an excellent approximation.
ec- = 1.7526 X 10" exp (-5315.56/(273.15 + t))Pa

If barometric pressure is measured in mm Hg, then

Pa
(!!12__) = 0.46460

cm'
(t+273.15)

(P-0.0037960 U (20b)

where e^ = 1.3146 x 10^ exp (-5315.56/(273.15 + t)) mm Hg is an excellent approxi-
]

mation.^ I

2.3. Sensitivity Arguments

The major correction normally required for mass determination is due to air
buoyancy. As is evident from eqs. (19a) and (19b) the only parameter that has to be

determined very carefully, aside from the volumes of the weights being compared, is

the air density. Equation (20) clearly indicates that three parameters affect the
air density, namely humidity, barometric pressure, and temperature. We will see in

Section 2.3.5 that an overall uncertainty in of '\/).0030 mg/cm"^, i.e. '^.25 percent

of near sea level, is usually acceptable. In Appendix C we see that the total

uncertainty in p^ is the square root of the sum of the squares of the individual

uncertainties arising from measurements of humidity, temperature and pressure, (U, t

and P). Thus one way of assuring that the total uncertainty of p^ is within accept-

able limits is to make sure that the individual uncertainties from U, t and P are
each less than 1//3 of the total acceptable uncertainty. That is, we set a goal that ^

the contribution to uncertainty in p^ from U, P, or t should be less than 0.0017 mg/cm'

We will see in Section 2.4 that this goal can be met or exceeded with a modest invest-
ment in equipment. We now show the relative importance of measurements of humidity,
3
The COM recommends that this equation referred to as "Euqation for the determination

of the density of moist air (1981): in anticipation of improved reference data. There
are some stylistic differences in the COM version of [2] but the calculated values are
completely consistent at meaningful levels of precision.

Equations (20a) and (20b) are somewhat simplified (see Appendix B). Weighing errors
due to the simplifications are usually very small and are estimated in Table 5, p. 427
of ref. [2].
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temperature, and pressure to the uncertainty in air density; we also indicate now

accurately these must be measured to achieve our goal of 0.0017 mg/cm^ for each one.

2.3.1. Humidity

It is easiest to discuss the effects of humidity (U) via examples. For practi-
cal purposes we can consider as standard a condition when t = 20 ®C, P = 760.00 mm Hg,

and U = 50 percent.

Example 1

Consider t = 20 °C, P = 760.00 mm Hg, U = 50 percent (i.e. standard con-

dition). Using eq. (20b), we find

= 1.2045 - 0.0053 = 1.1992 mg/cm^ .

3
We note that the humidity correction, 0.0053 mg/cm , corresponds to a

correction of only 0.44 percent in p^.

Example 2

Same conditions as in Example 1 except t = 30 ®C. We calculate

p^
= 1.1648 - 0.0093 = 1.1555 mg/cm^

and the humidity corrections is 'vO.8 percent of p^.

Example 3

Same as Example 1 except U = 60 percent.

P^ = 1.2045 - 0.006330 = 1.1982 mg/cm^

so that the humidity correction is 0.5 percent.

Summarizing the results on humidity we can make the following observations:

i. The magnitude of the humidity correction to the air density at standard
conditions is M3. 4 percent.

ii. By increasing the temperature from 20 °C to 30 ®C, the humidity correction
amounts to 0.8 percent of the air density. Thus even under these high
temperatures, very unlikely in a temperature-controlled laboratory, the
humidity correction term is still quite small,

iii. A change of 10 percent in the relative humidity (i.e. U = Ur,+10) changes
1 1992-1 1982

^

the air density by only 0.08 percent (i.e. -'y )•

We can conclude, therefore, that if we want to know the air density to within

0.0017 mg/cm then the relative humidity should be known to ±16 percent. (If a

safety factor of 4 is required then the relative humidity should be known at the ±4

percent level).
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2.3.2.
Temperature

The effects of temperature on the humidity term were already demonstrated in

Example 2. In particular we note that a 10 ®C change, yielded a humidity correction

of 0.8 percent.

The most sensitive effect of temperature on calculated air density, however,

occurs in the first term

0.46460 n
Pa ” “

^
(t+273.15)

From Example 1, we note that at standard conditions the first term yields <

3
p = 1.2045 mg/cm

^

1

Example 4 '!

P = 760.0 nm Hg, t = 21 °C
||

In this case the first term of eq. (20b) gives

3
= 1.2004 mg/cm

3 '

and p^ has changed from p by 0.0041 mg/cm or 0.34 percent.

3 '

To achieve an uncertainty of 0.0017 mg/cm , we must measure the temperature
i

accurately to '^'±0.4 °C (which reduces to ±0.1 for a safety factor of 4.)

2.3.3.

Pressure

The arguments for the pressure uncertainty follow those of the temperature.
,

Once again we only have to consider the first term of the density equation

^ 0.46460
p

^ (t+273.15)

For standard conditions of t = 20 °C, and P = 760.0 mm Hg

p = 1.2045 mg/cm^

Example 5

P = 764.00 mm Hg
t = 20 °C

In this case
p^^

= 1.2108 and has changed from p by 0.53 percent.

3
Thus in order to know p« to 0.0017 mg/cm we will need to have accurate baro-

metric measurements to ±1.1 ^ Hg (which reduces to ±0.3 mm Hg for a safety factor of

4).

2.3.4.

Overall Uncertainty of Air Density

We have seen in eq. (20) that the air density is a function of the temperature,
pressure, and humidity
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~ >P jU)

To evaluate the overall uncertainty of p^, we assume uncorrelated errors and develop
a final value in Appendix C:

<5 Pa
'x. 0.25 percent .

Pa

Note in particular that this value was obtained using the errors established in

Sections 2.3.1, 2.3.2, and 2.3.3 of this section (with no safety factor).

2.3.5. Effects of Small Changes in Air Density on the Mass Value

Having established the sensitivities of U, t, P on p^, the air density, we can

now proceed and see what effect a small change of p^ has on the mass determination.

The arguments can best be carried through with the following example:

Assume that we are comparing the masses of two 1 kg weights.

3
Weight #1 has density of 8.4 g/cm

Weight #2 has density of 7.5 g/cm^
3

Air density
pp^

= 1.20 mg/cm

If the air density is known to an accuracy of 0.25 percent, what uncertainty does
this cause in the mass difference calculations?

Answer : We found in Section 2.1.5 that the uncertainty for true as well as apparent
mass was given as

uncertainty = ±6p^ ^'^or'^02^

= ±6p^N (i- -

P, P2

where we have approximated the volumes by

'x. N/p^; V2 'x^ N/P2

with N being the nominal mass of each weight.

Substituting numerical values, yields

Uncertainty = ±0.0025 x p. x 1000 (-^ —)
^

8.4 7.5

= ±0.0025 X 1.2 X 1000 {— —)
8.4 7.5

= ±0.043 mg.
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1

This is about one-half the calibration uncertainty limit provided by the NBS for
|

3 .

high-quality 1-kg weights. The span 7.5 to 8.4 g/cm includes the densities of 1-kg *

weights used in routine fine work.
|

It is usually true that the most stringent requirements placed on buoyancy I

measurements are in the precise comparison of kilograms. An uncertainty in p. of
'

0.25 percent is usually sufficient even in this case.

CAUTION : Some weights are manufactured for purposes other than general mass
metrology. For instance, a scientist may have a 1-kg aluminum weight which needs the
best calibration possible. In such special situations, the requirements and limita-
tions placed on buoyancy work must be examined on a case-by-case basis.

j

2.4. Measuring Equipment for Air Density

The previous section yielded information on the accuracies required for the
three parameters needed for the air density. In this section we discuss briefly the '

types of equipment required to meet our accuracy goals.
I

2.4.1. Humidity

This parameter is usually measured with a psychrometer or hygrometer. Several i

comnercial instruments can provide accuracies of ±Z% relative humidity over a wide ,

range such as 10-80%. The calibration of such instruments can be verified at fixed '

points by the user by means of an in-laboratory calibration station. Since an

accuracy of ±16% (or ±4% using a "safety factor of 4") is required for mass metrology

j

these instruments are more than adequate.

2.4.2. Temperature

An accuracy of ±0.4 °C (or ±0.1 °C for a "safety factor of 4") is required.
Simple, mercury-filled, glass thermometers can provide reading accuracies up to ±0.1 >

°C. More elaborate units can yield ±0.01 ®C.
|

The user should be very careful in taking temperature readings. Generally, the

physical presence of the metrologist tends to warm up the balance with respect to the i

rest of the room. It is therefore essential that, no matter what form of thermometer
is used, its sensor be placed as close as possible to the balance pan. Also, every
attempt should be made to ensure that objects being weighed are in thermal equilib- 1

rium with the balance. The latter requirement is especially important when comparing
weights of large surface area or of different geometries.

2.4.3. Barometric Pressure

The required accuracy is ±1.1 rrri Hg (or ±0.3 mm Hg for a "safety factor of 4").

One can obtain mercury manometers or aneroid barometers with reading accuracies of i

±0.05 mm Hg. Since this is sufficient for usual mass calibrations, one does not have

to push for higher accuracy instruments.
I

Present technology can provide defining instruments with overall uncertainty of
]|

±0.01 mm Hg. Since such devices are the most accurate on the market, they are
|

generally used in calibration of other manometers or aneroid barometers which con- ,

sequently would have greater uncertainty.
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Many laboratories possess either Fortin- type or aneroid barometers. These
require calibration against some defining instrument--such as a mercury manometer or
a piston gage; but such defining instruments are costly and may not be available in

the laboratory. On the other hand, aneroid and Fortin-type barometers are best
calibrated in place.

A solution to this problem has recently been demonstrated [9]. Two weights of
well-known and nearly-equal mass but having very different volumes are compared in

the laboratory on a sensitive balance. The measured difference in balance readings
between these two weights, kA©, determines the air density in the balance enclosure
via eq. (9). The air density is also calculated from eq. (20) using a calibrated
thermometer, a calibrated hygrometer, and the uncalibrated barometer. The difference
in the two measurements of air density serves to calibrate the barometer. Calibration
uncertainties of less than 1 mm Hg (three standard deviations plus known systematic
errors) have been demonstrated.

In summary, we note that all the requirements for air density measurements can
be met with presently available instrumentation. If, however, the accuracy of ±0.25
percent for pa has to be improved, then the limiting instrument will be the pressure
gage. (It does not make sense to improve temperature and humidity resolution by an

order of magnitude, if the pressure cannot be read with higher precision.)
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3. WEIGHING METHODS

Until this point, we have assumed that all mass comparisons have been carried

out on the idealized balance defined in Section 2. In this section we develop the

means of evaluating the constant, k of eq. (8). We also extend our analysis to

actual balances currently in use. Just as one need not be a mechanical engineer to

drive a car, so one need not have a detailed knowledge of balance design in order to

carry out successful mass measurements. Nevertheless, a general knowledge of balance
design is often useful. The review paper by Schoonover [10] provides an excellent
introduction to this subject.

The idealized balance of Section 2 had no imprecision. Unfortunately, this is

not the case for real balances. By saying a balance has imprecision, we mean two
distinct contributions to uncertainty:

1) Resolution. A balance observation can be no more certain than one's
ability to resolve the least-significant digit of the read-out.

2) Reproducibility. A balance observation can be no more certain than the

tendency of the balance to produce identical read-outs under identical
conditions. The lack of this property is called "scatter."

For balances used in the best metrology, scatter is by far the more important of
the two. What we loosely term the scatter of the balance is not entirely intrinsic
to the balance. That is, it may depend on the type of table on which the balance is

placed, the type of air-conditioning in the laboratory, the skill of the balance
operator, etc. We need a measure of the scatter which includes all these effects.
Such a measure is provided by the "process standard deviation" [7,8].

The standard deviation for a particular weighing process is easily estimated by

repeating the process a number of times. (Ten repetitions are usually sufficient to

give a respectable estimate.) Two weights, representative of the weights normally
measured on a particular balance, are intercompared n times by one of the methods
described below. The n values obtained are a-,, a«, a.,, ..., a ,

,

a . The average
of the n values is

i ^ ^ n-i n

I

n

.E a.

g = ihJ—L

n

and the standard deviation (a) of the balance is estimated to be

s =

n-1

1/2

( 21 )

with s ^ a as n (The estimate s approaches the actual standard deviation a as

n is made larger.)

The standard deviation should be estimated in this way at regular intervals in

order to spot trends or shifts in the evolution of s with time. A slow rise in s

could signal, for example, a slow deterioration of the balance. An abrupt shift
could signal a problem with the balance, a change in the air-conditioning system of
the laboratory, or some other problem which requires attention.
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Before actually discussing various types of weighing procedures, we have to

define some terms required in the descriptions. The following symbols will be

utilized.

M = any unknown weight with true mass whose value has to be determined

C = a counterpoise (or counterweight) with true mass c"^.

This weight is usually required on beam balances. It can be of any stable
shape, form and composition. However, it has to be adjusted so that the

scale (balance) does not deflect past its maximum allowable value when
loaded with a weight. This mass appears in equations which are combined in

such a way that drops out of the final result.

S = a standard weight with true mass S^.

This is a known mass against which the unknown is measured. It is always

assumed that in any process is known and is traceable to the NBS. In

the following description S can be of a single unit or can be made up of

T T T
S = Z S. such that the sum S roughly equals M or C .

i=l
^

A = a sensitivity weight with true mass a"^

This mass is usually of very small magnitude. In principle it is only used

to measure the deflection of the scale per unit mass. This mass is very
critical. It must be well calibrated and traceable to the NBS, although
such calibration is a relatively simple matter.

Of the various weighing procedures, we will mention Direct Weighing, Direct-
Reading Weighing, and discuss Substitution and Transposition Methods.

3.1. Direct Weighing

This type of weighing is seldom used in the mass calibration program. It

requires the use of an equal -arm balance. Essentially, the reading steps are as

follows:

1. Release brake and take null reading with both pans empty.
2. Load one pan with M and balance with S masses on the opposing pan until the

null position is once again reached.

We have as final result, if buoyancy corrections are insignificant.
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3.2. Direct-Reading Weighing

This weighing procedure requires a one-pan balance that reads directly in S.I.

mass units or some other commercially recognized unit (e.g. pounds or carats). The

procedural steps are as follows:

1. Null the balance without any load on the pan.

2. Place M on pan and record the mass directly.

This method is obviously quite simple but usually is not accurate enough for metrol-
ogy. It is appropriate for scales most commonly used in stores. Nevertheless, the

method is quite similar in principle to that described in Section 3.4.5., below.

3.3. Substitution Weighing

This weighing procedure is the usual one employed for both single pan or equal

-

arm balances. The basic idea is the comparison of an unknown mass with a standard
mass and a sensitivity mass.

3.3.1. Single Pan Balance

Known as "direct-reading analytical balances," they contain built-in weights
which are usually manipulated by external knobs or dials. These we will refer to as

"dial weights." The remaining balance reading is indicated by the rest point of a

moving optical screen or by an automatic electronic display. This part of the
balance output is called the "screen reading." Thus each balance indication is the
sunmation of the dial weights and the screen reading. Calibration of the dial

weights is unnecessary for the measurements described below. The majority of balance
operations outside metrology (e.g., chemistry, metallurgy, etc.) do rely on the
accuracy of the built-in dial weights, however. For calibration of these weights the

reader is referred to Ref. [11] and Appendix A.

3. 3. 1.1. Single Substitution

i

1

I

I

I

1:

To find the mass difference between two weights of nominally equal value, we
will first describe the method of "single substitution". For the moment, let us

assume that the weights are matched closely enough so that, when placed on the

balance, they both require the same setting of dial weights. Therefore they differ
only in their screen readings. If we look into the balance (fig. 3), we see that the

pan is suspended from a beam which pivots about a very good bearing (the fulcrum,
usually a knife on a flat). On the end of the beam opposite to the pan, is a fixed

counterpoise C. (There will also be either a servo-motor on this end or a dashpot to

damp the beam oscillations. These details are unimportant to our derivation.) Also
suspended from the pan-end of the beam are the built-in dial weights. Thus when an
object is placed on the pan, dial weights are removed so that the force of the total
apembly on the pan side (object being weighed plus remaining dial weights) balances
the counterweight as closely as possible. The remaining imbalance causes the beam to
rock slightly out of its horizontal position. The angle of tilt is proportional to
the remaining force imbalance. In a mechanical balance, this angle is directly
proportional to the screen readings. In a servo-controlled balance, a motor is used
to drive the beam back to horizontal. The screen readings are then proportional to
the average force generated by the motor.

I

I



F-31

Figure

3.

One

type

of

single-pan

balance.

One

dial

for

removing

built-in

weights

is

shown.



I

In the balances just described, we can define the following quantities:

ZdT = the true mass of the dial weights removed I

EV^. = the volume of the dial weights removed

e-j = the screen reading

©Q
= the screen reading when the pan is empty and the dial weights are replaced

(this was always zero for the ideal balance of Section 2)
^

k = the proportionality constant between screen reading and mass.

(Recall the previous definitions for M, S, A.) We also recall from eq. (8) that
for two weights, and M

2
with volumes and V

2
, the weighing equation can be

written as (using true masses)

g (h/-pJi) = 9 + g k(Ae) .

With

Pm = Pa = density;

(Ae) =
6^

- 62;

and setting

M2 = edT

we arrive at^

g(Mj - p^V^) = (EdT - zv.)g + gk(e^ - 6^)

where ©q e ©2 in this notation.

The following observations can be made:

t The counterpoise weight does not_enter into the final result.
• The gravitational acceleration, g, can be cancelled from both sides of the

above balance equation.
t The above equation is identical to that for the true mass difference

between weight #1 and the removed dial weights (see Appendix A).

In single substitution, we compare a weight M with a standard weight S. Either M
or S may actually be a summation of weight pieces. A small calibration weight,
sensitivity weight A, is also required.

5
A full derivation would involve a balance equation for each weighing operation (i.e.
the pan unloaded and the pan loaded). These equations would each involve the counter-
poise C. Combining these relations would then give the desired result.

i
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The steps in single substitution are:

1) Load M and record screen reading e-j

2) Remove M

3) Load S and record screen reading ©2
4) Add A to S and record screen reading

In general we adjust S and choose A so that

• The same dial weights are used in steps 1, 3, and 4.

t
j

©2 - ©
2
|is at least four times as large as

|©2 - e-jj

• (©2 - 62 ) 1/5 the total range of the screen.

From the above steps 1, 3 and 4, we have the following relations:

ke, = - (edT-p^iv,) + kep (22)

ke^ = (s’^-P^Vj) - (edT-p^^iv,) + kep (23)

kOp = ( 5'^-P;^V
3
) + {A^-P;^v^) - (JcTp^rv.) + kep • (24)

The symbol = indicates that we are now assuming that some or all of the measured
values have a non-negl igible uncertainty.

Subtracting (23) from (22) yields

Subtracting (24) from (23) yields

k = 7-^
(® 3

‘®
2
)

(25)

(26)

Finally, substituting for k from (26) into (25) yields

T T a'^-P.V.

m‘-s' = Pa(V„-V5) + f - " f (6,-63) .

(83-^2)

(27)

Note that this equation is identical to (10), the crucial difference being that
we have found the value for the proportionality constant k.

One may wonder why k must be evaluated for every measurement if it is a con-

stant. The answer is that for most sensitive balances, k is truly constant only for

short periods of time and only over reduced regions of the range of the screen.

In the derivation above we choose A so that 63-62 about 20 percent of the

screen range (fig. 4). In this reduced region, k will be sufficiently constant for
metrology if one is using well-made balances.
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BALANCE

READING

FORCE ON BALANCE

Figure 4. Balance Indications as a function of the force on the pan. The response
shown is that of the screen when the dial weights are not changed.
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3. 3. 1.2 Double-Substitution

In the derivation of single-pan substitution given above, we have treated ©q as

a constant. This is the same as assuming that the balance indication does not drift
with time. But this is rarely the case. Usually, however, the zero-drift in the

balance will be approximately linear over a short period of time. The method known
as single-pan doubi e-subs tijtui on has the following two advantages over single-
substitution:

• linear drifts in the balance zero are eliminated if there is an equal time
between successive observations;

• a second estimate of the mass difference between M and S is obtained.

Both benefits are obtained by a single additional measurement:

5) Remove S from pan, leave A where it is

6 ) Place M on the pan and record secreen reading 6^. The last step gives the

additional balance relation

ke^ i
(m^-pa^h) + + ke^ . (28)

Substracting (24) from (28) yields

= Pa(V''s> >‘(64-63) •

Substituting for k from eq (26) then gives

" - s" = * 17-rr <^4-63) • (2s)

Finally, by adding (29) and (27) we obtain

(a^-paV^)
= Pa(VVs) * (0^-62-63+64) (30)

One might wonder how eq. (30) would have to be changed if 0
q
were drifting

linearly with time instead of being constant. The answer is: the term ( 0 ^-62
-
93+64 )

would still be strictly correct; the term ( 63
-
62 ) would not be strictly correct.

However, provided that the drift among readings is small compared to ( 62
-
62 ). the

error from this source will be negligible. This will in actuality always be the
case. If it were not, the balance would be drifting so badly that no stable readings
could be obtained. If instead of (63

-
62 ) one substitutes the term ( 363 - 362+61

-
64 ) 72 ,

linear drift in the sensitivity calculation will be removed [12]. This more com-
plicated formulation is generally used when data are being analyzed by digital

-

computer software.
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CAUTION : If
©i

or 62 is very close to zero, balance drift may cause readings to

become negative or to go off scale. To avoid this problem, a small, uncalibrated
"tare weight" can be added to the pan during all measurements. Mathematically, this
is equivalent to changing Gq by a constant amount and so has no effect on the final

results.

3.3.2. Two-Pan Equal-Arm Balance

This is the oldest type of precision balance. Its basic design is represented
by the "scales of justice" or by the zodiac sign for Libra.

3 . 3 . 2 . 1 . Single Substi tuti on

This method is very similar to single-substitution on a single-pan balance. The
read-out provided by an equal -arm balance corresponds to just the screen-reading of
the single-pan balance. An uncalibrated counterpoise which has nearly the same mass

as M and S is placed on one of the pans throughout the measurement sequence. The
size of the counterpoise is selected to ensure that the balance indication will be on

scale with M on the second pan. The weights M, S and a sensitivity weight A are
placed on the second pan in nearly the same sequence used in the one-pan case.

The required steps are as follows:

1) Place C on first pan, M on second pan and record indicator reading e,

.

2) Remove M

3) Place S on second pan and record indicator reading (Recall that S is

a summation of calibrated weights which is chosen to^be near the scale
indication of M.

)

4) Place the sensitivity weight A on that pan which will cause the indicator
to move toward the center of the scale. Record indicator reading e^-

It is convenient to choose as the second pan (i.e. the one on which M and S are
placed) the one for which increasing increments of load give increasingly positive
indicator readings.

Going through detailed arguments similar to those for single-pan, single substi-
tution, we arrive at

(a'^-PaV.)

pa^V^s) ^ |—:¥
®3‘®2

(31)

The absolute value |63'02| about because the A weight might be placed on

either of the two pans. Note that if the arms of the balance are not equal, the
sensitivity weight must be placed on the second pan.

3. 3. 2. 2. Double-Substitution

As in the case of the single-pan balance, one additional reading is taken for
double substitution.

5) Remove S from the balance; leave A where it is,
6 ) Place M on the second pan and record the indicator reading 6^.
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By obvious extension of the preceding arguments, we arrive at the equation for

double-substitution on an equal-arm balance:

(A
(^i

63-62

(32)

Again, to be strictly correct in the presence of linear drfit, the term 63-62 can

be replaced by (363-362+61 -6^)/2. Double substitution in this case has the same

advantages as weighing on a single-pan balance.

In summary, we have derived the following equations for the four types of
substitution weighing we have discussed:

Balance Type Substitution Type Equation

Single-Pan Single (27)

Single-Pan Double (30)
Two-Pan Single (31)
Two-Pan Double (32)

3.4. Transposition Weighing

Two-pan, equal-arm balances can also be used to do transposition weighing.

This method does not require a separate counterpoise and also doubles the balance
sensitivity.

3.4.1. Single Transposition

The following steps are required:

1. Place M on one of the pans, e.g., the left pan and S on the right pan. S

should be adjusted so that the indicator reads on scale. Record the indication
®

1
*

2. Remove M and S.

3. Replace M and S on the balance but in transposed position (that is, M on the
right pan and S on the left pan). Record the reading 62.

4. Add A to that pan which will cause the indicator to deflect towards the center
of the reading scale. Record the indication 63.

The three indications give the relations:

(33)

s'^ - = pa^^s-Vm) + Kej-eo) (34)
and

:
Pa(''s‘''m'

-

Here again, 6
q

is the balance indication when both pans are empty. The ± sign

is used to indicate that, in the last equation, the sign of (A^-p.V.) depends on
which pan held the sensitivity weight.
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Subtracting (34) from (35) yields

( 36 )

where, once again, the absolute value was used to take account of whichever pan the

sensitivity weight is placed on.

By subtracting (34) from (33), we have

- s’’’ = Pft(v„-V5) + I (e^-ej) . (37)

Finally, we can substitute from (36) into (37) to obtain

= Pa(V„-Vs) +
(a (61*62^

63-62

(38)

CAUTION: In transposition weighing, attention has to be paid to the sense of

the balance scale. We have assumed above that the balance indication becomes more

positive as the mass on the left pan is increased. For scales of opposite sense,
the plus sign of eq.(38) should be changed to minus. Also, if the arms of the
balance are insufficiently "equal," transposition weighing will result in error.

3.4.2. Double Transposition

The procedure for this method follows that outlined above but with the follow-
ing additions:

5) Remove M and S, leaving A where it is.

6) Place M on the left pan and S on the right pan. Record indication 6^.

These steps provide us with the additional equation

= Pa(V''s> * * k(04-9o) (39)

where the ± sign is needed once again since the location of the A weight is ambigu-
ous.

By subtracting (35) from (39) we have

^ ( 64
-
63 )

and substituting for k from (36) yields

T T 1 (^^-Pa^)
M ' - = Pa(V''s) + -T V- (94-63)

^ 2 63-62

(40)
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Adding (40) to (38) finally results in

(©I
62"02‘*’6^) (41)

Again the reader is cautioned that: the plus sign in front of the second term applies
only to balances whose indications become more positive as the mass in the left pan
is increased; in the presence of linear drift, the term can be replaced by

(3e3-3e2+eie^)/2.

3.5. Weighing on Electronic Balances

The most recent development in mass technology is the appearance of the com-
pletely electronic balance. This can be thought of as a single-pan balance whose
screen span has become so large that dial weights are no longer necessary. These
balances are rugged, easy to use, and most are directly interfaceable to computers or
data loggers. Unfortunately at present they rarely attain the precision achieved by
the best mechanical balances. For metrology purposes, these balances are used just
as the single-pan balances discussed above and the same equations apply. If and only
if experience verifies that the constant k is indeed constant , can weighing pro-
cedures be simplified so that the sensitivity weight need not be measured for every
substitution or double substitution.

The results we have just derived can be generalized. First, although only true
mass has been dealt with, the reader should by now be able to generate the corre-
sponding equations for apparent mass. Next, since S is assumed to be an assembly of
calibrated weights, all the measurements described in this section provide an esti-

mate for M^, although they do not constitute an actual calibration.

Recall that we had (eq. (10))

= s''' + (V^-Vj) + kAe

or equivalently

l-Pft/P

Usually, the manufacturer of a weight supplies the buyer with the weight's density so

that formulation (10") is more appropriate. Equation (10') is often used in computer
analysis of data, however. In this case, one estimates Vj^ as Vj^ N/p, where N is

the nominal mass value of M. Equation (10') then gives a first order approximation

for M^. This first estimate can be used to find a better value for and the

process repeated until convergence is reached.

If S and M are both unknown and not sufficiently close in mass, known weights
can be added to either S or M. These added weights are then included in the weighing
equations.

( 10 ')

( 10 ")
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Example

Sometimes M itself will be a summation of weights. Let us say, to take a

specific example, that M is the sum of three weights whose nominal values are 50 mg,

30 mg, and 20 mg. Furthermore, the weight manufacturer specifies that the 50-mg and
3 -6

30-mg weights are made of tantalum (p = 16.6 g/cm ; a = 20 x 10 /®C) but the 20-mg
3 -6

weight is made of aluminum (p = 2.7 g/cm ; a = 69 x 10" /°C). What is the effective
density of the summation and what is its effective coefficient of expansion?

Answer:

As a first approximation, assume the mass of each weight is equal to its nominal
value. Therefore, the total volume is approximated by

050 ^0.030 0.020
= 0.012227 cm^

The effective density is then approximated by

p = M/V
.050 + .030 + .020

0'.QT2'227
= 8.18 g/cm^ .

The effective coefficient of expansion is a weighted average--the coefficients of
each weight are added in proportion to the volume of the weight to the total volume:

a =

20 X 10”^ X + 20 X 10"^ X + 69 X 10"^ X

16.6 16^,6 2^
. 050

^
0.030

^
0.020

16.6 16.6 2.7

= 50 X 10"^/®C

After mass values for the weights comprising M have been found, the metrologist
should verify that the approximations used to estimate p and a were adequate. Only
very rarely will this not be the case, requiring an iteration: the mass values
obtained for the weights comprising M are used to find new effective values of p and
a; these latter two values are then used to calculate improved mass values.
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4. PROGRAM TYPES

We will discuss two distinct programs in mass metrology: surveillance and
calibration. As the name implies, surveillance attempts to monitor a calibrated
assembly or set of weights. Surveillance looks for signs that one or more members
of the set may have changed since the last calibration. Calibration, of course,
attempts to assign the best possible value of mass to a weight by relying on a

chain of traceability to universally recognized standards. Assignment of a realis-
tic uncertainty to a calibration value is equal in importance to the calibration
value itself. Several additional definitions will be useful.

A standard mass S^ was already defined in Section 3. We also have:

SC: Check standard weight with true mass (SC)^.

This mass is basically required to monitor in-house procedures and accuracies.
Usually (SC) is a calibrated standard S that has been added to a set during cali-
bration. By measuring (SC) (treated as an unknown M) versus S and comparing the

results with the known value one can then determine if the measuring process is

either in or out of control. This type of self check should be done periodically
and the values for (SC) should be monitored continuously via trend charts (see

below)

.

Set: A group of weights in a specific order. To be of maximum utility, sets usually
cover several decades of nominal mass; e.g., 1 mg to 100 g. Further smaller groups
(called subsets) of the complete set can be selected to produce any nominal value
within the span of the set in increments of the smallest set members. What this
means is that, taking the example of a 100 g to 1 mg set, any of the nominal values
0.001 g, 0.002 g, 0.003 g, ..., 99.998 g, 99.999 g, 100 g can be obtained by select-
ing appropriate weights from the set. Usually a set will employ the smallest
number of weights possible to cover each decade. A set with a sequence 5, 3, 2, 1

could for instance range from 100 g to 1 mg with the sequence repeated for each
decade (e.g. 500 mg, 300 mg, 200 mg, 100 mg).

Design: This specifies explicitly how and in what order a set of weights is to be
compared (measured). It states in detail what weights of the set have to be used at
a particular step.

ST: Transfer standard weight with true mass (ST)"*^.

As mentioned under "Set" above, in many cases a number of weights, e.g. from
1 kg to 10 g must be calibrated. These are usually divided into decade groupings;
that is, weights from 1 kg to 100 g are calibrated at the same time using one design
(A standard kilogram is also included in the design). Next the weights from 100 g
to 10 g are cal ibrated--possibly using a different balance. In this procedure, it

is common for the 100 g weight which was calibrated as a result of the first series
of measurements to become the standard for the second series. The 100 g weight thus
serves as a "transfer standard" because it is used to transfer our knowledge of a

standard kilogram to weights of smaller denomination.

4.1. Surveillance

Two distinct types are outlined below as Type I and Type II. (For more com-
plete detailed discussions of many different designs, the reader is referred to ref.

[4]).
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The basic idea of surveillance testing is to ensure the self-consistency of the

weight set. For example, the 20 g, 30 g, and 50 g weights can be checked against

the 100 g weight to see if the difference is within expected limits. It is also

advantageous (though not essential) to compare one weight of the set (usually the

largest) against an independent standard, S. The latter operation establishes

whether the entire weight set has undergone a change--even though there may still be

self-consistency within the set. The basic motivations for surveillance testing
are:

• to verify the values of newly calibrated weights

• to establish the stability of a new weight set

• to determine if an accident (such as being dropped on the floor) has damaged

the weights involved.

Buoyancy corrections may not be needed in surveillance testing. One should
check the magnitude of such corrections compared to the surveillance limits (see

below) to see whether it is worthwhile to make the buoyancy corrections.

4.1.1. Type I

The object of this surveillance method is to perform an intercomparison of all

weights in a set using a minimum number of steps. It is preferable to have one
standard weight as a member of the set. We will denote it as S for this discussion.
The standard S should always be as large as the largest member of the set; or as

large as is convenient.

For the comparison measurement one always starts out with the largest weight
and compares it with a summation of weights next in magnitude such that the sum is

equivalent to the largest. Next, a weight from the first summation is compared with
a lower summation, and the process is continued until all the weights have been
used. If a standard is included in the set, then the S has to be compared first
with the largest mass. An example will help to visualize the procedure.

Example:

The set contains a standard weight S whose nominal value is 100 g and weights
of 100, 50, 30, 20, 10, 5, 3, 2, 1, 0.5, 0.3, 0.2, 0.1, 0.05, 0.03, 0.02, 0.01,
0.005, 0.003, 0.002 and 0.001 g; called to M21 , respectively. Such a set is

known as a set with mass ratios of 5, 3, 2, 1 from 100 g to 1 mg. For the measure-
ment sequence, we start out with the standard S versus M<j = 100 g and work down to 1

mg such that all masses are included via a minimum number of steps. The designation

refers to the nominal value of the ith weight whereas mT refers to the true mass

value of the ith weight.

1st Meas : Mj - = 6-j , where M-j = 100 g, S = 100 g

2nd Meas : M
j

- =62* where M2' = (M2 + M^ + M^)

= (50 + 30 + 20) g

= 100 g
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3rd Meas : " ^^3' “ ‘53» where M2'= (M^ + Mg + My + Mg)

= (10 + 5 + 3 + 2) g

= 20 g

4th Meas : Mg - mJ' = 6^, where M^' = (Mg + M^q + M^^ + M^ 2)

= (1 + 0.5 + 0.3 + 0.2) g

= 2 g

5th Meas : m
|2

" ^*^5' " '^5> where Mg' = (^13 + M^g + M^g)

= (0.1 + 0.05 + 0.03 + 0.02) g

= 0.2 g

6th Meas : Mjg - Mg' = 6g, where Mg' = (^17 ^19 ^20^

= (0.01 + 0.005 + 0.003 + 0.002) g

= 0.02 g

7th Meas : Mjg - Mj' = 6y, where My' = (M2Q + M2^)

= (0.002 + 0.001) g

= 0.003 g

Note that the last measurement is amended because only M21 is left to measure.

With a very simple software routine, the differences (6's) can then be compared
against the known (accepted) values. These new differences should then be plotted
and compared chronologically with previous tests. Together with predetermined
uncertainty limits one can then monitor the particular weight set. Usually one
devotes one chart for each 6. For example, fig. 5 shows a survellance chart for 6^.
The horizontal line is the value of 6^ inferred from the most recent calibration

report of the set. The points represent values of 6^ which were derived from

surveillance testing. As long as the points remain within the upper and lower
horizontal lines, (known as the surveillance limits), we have no evidence that any
of the weights involved in the measurement of 6^ has changed from its reported

calibration. If an obvious trend is apparent, however, a recalibration can be done
before the surveillance limit is exceeded. Two questions remain to be answered:

(1) How are the surveillance limits determined?; and (2) If a point lies outside the
surveillance limits, how does one determine which of the weights (that is 2 g, 1 g,
500 mg, 300 mg, or 200 mg in the case of fig. 4) has changed? The answers to these
questions will be deferred until after the description of Type II Surveillance.

4.1.2. Type II

For Type II surveillance, a more sophisticated approach to the mass comparisons
is taken. Again, the procedure is best described by an example.

Suppose we consider the following three weight groupings from the set used in

the example for Type I.
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Weight Grouping Designation

3 g M7

2 g + 1 g

2 g + 500 mg + 300 mg + 200 mg

For Type II surveillance, the following three mass differences are measured.

M3 = Mg + Mg

«3' '
'’s

^ ”10 ^
«11

^ ”12

1. M^-mJ" =6,

2. = 62

3. M^" - M^- = 63

(Note that 6^ cannot be measured by transposition weighing because Mg is common to

Mg" and Mg'" .)

The three weighing operations shown above form a simple "design". The concept
of weighing designs is crucial to calibration operations and will be discussed at
length in Section 4.2.2. Here we may simply note that we are working with a "O-l's
design" (i.e., 3 different weight groupings with 1 nominal mass).

If the weighing process had no scatter (standard deviation equal to zero), then

6g
= 62“ 6^. In that case we would derive no additional information from the (5g

measurement and its inclusion would, in fact, be a waste of time. Of course, the
process does have some scatter and the 6g which we measure has only a slight prob-

ability of being equal to the measured value 62
- 6-j . Therefore, far from being

useless, the measurement of the trio 61, 6^, 63 can be used to good advantage in two

First, a statistical technique known as "least squares" fitting [3,8] of the
data provides better estimates of the three mass differences than can be gotten with
a single measurement.

1. M^ - mJ" = 1/3(26^ +
62

- 6g) = 6
\

2. M^ - M^"' = 1/3(6^ + 262 + 6g) = 6^

3. M^" - Mg'" = l/3(-6^ + 62 + 26g) =
6^ .

The least-squares estimates 6-| , 6^, and 6g can be checked against the calibration

report as in Type I surveillance (see refs. [3] and [8]).

differences between the least-squares estimates and the observa-

163' -a

process.^ If one of these differences is markedly higher (say three times higher)

2I
and 153' -<53! » are related to scatter in the measurement

Second, th

tions, [<S]-'5i

”lt is characteristic of the least squares solution to a 3-1 's design that

= |<52"'^2| ” !^3”*^3|* feature cannot be generalized to other designs.
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than the measured standard deviation of the balance, one should redo the measurements
of 62, and 62- If trouble persists, it is a good indication that the precision

of the balance (eq. (21)) has deteriorated.

As another example we will use a set similar to the one discussed under Type I,

i.e. mass ratios 5, 3, 2, 1 from 100 g to 1 mg with S = 100 g.

The first 3 - I's weighing series consists of

la. -Mj == where 1^1
= 100 g

lb. -mT' = 62 , where Mg = (M2 +
”3

* M4)

= (50 + 30 + 20)g

Ic. < -mT' = '3

= 100 g

lext 3 - I's weighing series is

2a. -mT' = «4. where «3 = 30 g

«3
' = (M4 + Mg)

= (20 + 10)g

= 30 g

2b. where «4
' = (M4 + M7 + Mg)

= (20 + 5 +

;

i + 2)g

= 30 g

2c. mT. = ^6

This is followed by the third 3 - I's series as

3a. - hJ' = &y, where = 3 g

«5' ' * ”9)

= (2 + 1)9

= 3 g

3b. - Mg' = 6g. where Mg' = (Mg + M,g + M^, + M^g)

= (2 + 0.5 + 0.3 + 0.2) g

= 3 g

3c.



For the fourth sequence we have:

4a. - My' = 6 ^q,
where M-j^ = 0.3 g

«7' ' '«12 ^ '^13>

= (0.2 + 0 . 1 ) g

= 0.3 g

4b. Mj^ - Mg' = <5 -

1
^. where Mg' = (M

12 + M^^ + M^g + M^g)

= (0.2 + 0.05 + 0.03 + 0.02) g

= 0.3 g

4c. M^' - mJ' = 6
^ 2

-

For the fifth series we measure:

5a. Mjg - Mg' = 6 -

12
, where M-jg = 0.03 g

Mg' = (M^g + M^y)

= (0.02 + 0 . 01 ) g

= 0.03 g

= 6 ^^, where M^q = (M^g + M^g + M^g + M
2q)

= (0.02 + 0.005 + 0.003 + 0.002) g

= 0.03 g

5b. Mjj-Mjo'

5c. mJ'
-

Mjo' = 6,5.

Finally, we arrive at the last series with

6a. Mjg - m|^ “ *^16 ^19
“ ^*003 g

^11' " ^^20 ^21^

= (0.002 + 0.001) g = 0.003 g

6b. Mjg - Mj
2

' = fi-jy where M
^2

= (M2Q + M22)

= (0.002 + 0.001*) g = 0.003 g

6c. Mjj - Mj' = 6^g.

Note that in the last series a known (standard) 0.001-g weight was added in order
to complete the design.



Once again the least squares fitting technique provides better estimates such

that eqs. (la), (lb), and (Ic) yield

la') 1 / 3 ( 26
^

+ 62-63) = S-,'

2 b') 1 / 3 ( 6
^

+ 262 + 63) = 6^

3c') l/ 3 (- 6
^

+
62 + 2 63) = 6 'y

If for any reason a suitable standard, S, is unavailable, then any uncalibrated
weight or summation of weights of the correct nominal value can be used in eqs. (la)

and (lb). However, in this case only 63 can be checked against the reported (known)
calibration and only internal consistency of the entire set can be determined.

We also have

2 a') 1 / 3 ( 26
^

+
65

- 6g) = 6^'

2 b') 1 / 3 ( 6
^

+ 265 + 6g) = 65'

2 c') l/ 3 (- 6
^

+
<53

+ 26g) = 6g'

and
3a') 1/3(267 + 6g

- 6g) = 6)

3b') 1/3(67 " ^8

3c') 1/3(-67 + 6g + 269) = 6^

as well as

4a') l/ 3 ( 26
^g

+
6^^

- 6
^^)

= 6^q

4b') 1 / 3 ( 6 ^q
+ 26

^^
+ 6^2)

=

4c') 1 / 3 (- 6
^q

+
6^^

+ 26
^ 2

^
= '^

12
-

Final ly

5 a' ) V 3 ( 26
.j 3

+ 6^^
- 6^3) =

6^3

5 b ) 1 / 3 ( 6-13 ^*^14 ^ 15 ^
~

*^14

5c') 1/3(-6
i3

+
6-1^

+ 26-13) ^
*^15

and

6a') 1 / 3 ( 26-|3 + 6-17
- 6-jg) =

6]g

6b') l/ 3 ( 6 ^g
+ 26^7 + 6^g) =

6^7

6c') l/ 3 (- 6
^g

+
6^7

+ 26 ^g)
= 6^g.

The differences obtained for the first two results of each 3- 1 's series (i.e. a

and b) should be compared to accepted values derived from the most recent calibration
report.
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The above examples of surveillance measurements for Type I and Type II present
a simplified picture of the equations. All 6's must contain any necessary buoyancy
corrections for true mass differences. Different 6's are obtained if apparent
masses are used. From the simplified eq. (19a), one finds

M* - s'' = kAB + (p^ - Pq) {V(j„ - Vqj) = «

where we assumed that the mass of the standard is given in apparent mass units, S^.

Deviations of the measurements from values inferred from the most recent cali-
bration report are evident from the previously mentioned surveillance charts.

4.1.3. Surveillance Limits

Upon carrying out a surveillance test of either Type I or II it will become
evident that, after any necessary buoyancy corrections have been made, the measured

values 6^. (Type I) or the predicted values (Type II) do not exactly agree with

those values, 6^, calculated from the calibration certificate accompanying the set.

To judge how serious the disagreement is, one must also calculate surveillance
limits. The surveillance limits associated with each 6^. or 6^1 define the limits of

credibility that the difference 6^
- 6^. or 6^ -

6| could be due to a combination

of calibration uncertainties of the weight set and the random error of the measure-
ment which is associated with the balance used in the surveillance measurements.

Let us designate to random and systematic error limits by SL;

(SL) = U + E (42)

U = systematic error as determined from the calibration report
E = limit to random error = 3a
a = standard deviation of the measurement (refer to Appendix D for

information on estimating this number).

Then any value 6. or 6! should fall between 69±SL, as shown in fig. 5. The value of
3a gives a 99.7 percent confidence level for the random error (i.e. if the measure-
ments were repeated a great many times there is a 99.7 percent chance the average
would be within ± E of the result of a single surveillance test).

For surveillance, U is the root-sum-square of the individually reported cali-
bration uncertainties such that

where

and

U - (lU?)^''^ (43)

Combining the uncertainties in this way is strictly valid only if they are uncorre-
lated. It is the nature of calibration designs, however, that the uncertainties of
weights within the set generally are correlated. Thus one should view eq. (43) as an

approximation which is adequate for surveillance limits. The reader is referred to
the discussion of calibration uncertainties below for a fuller explanation.

The standard deviation used is known from many previous measurements (eq.(21)).
It is a measure of the random errors in the balance being used.

At this stage it is worthwhile to quote a couple of examples and step through
the process. From Type I surveillance, we have



S = 10 g

= 100 g

= 100 g = 50 g + 30 g + 20 g = M2 + M3 +

Assume the following previously reported calibration:

Mass Value

= 100.0010196 g

Mj = 100.0009407 g

mJ = 50.0004628 g

M3 = 30.0002926 g

mJ = 20.0001578 g

Also assume that o = 0.026 mg.

Since the first measurement is

Uncertainty

U3 = 0.015 mg

= 0.020 mg

= 0.011 mg

= 0.012 mg

U|^ = 0.010 mg

Mj -
6^

= -0.0000789 g
= -0.079 mg

and we have

= V

= \ (0.015)^ + (0.020)^ = 0.025 mg

and (SL) = U + 3a

= 0.025 + 3 X 0.026

= 0.103 mg.

Hence (Mj - S**^) values should fall in the range of (-0.079 ± 0.103) mg.

For the second measurement we have

m| - mJ' = 62*, 62
= 0.028 mg

so that

+ U"
“m,

= 0.019 mg

= y (0.019)^ + (0.020)^

= 0.028 mg

F-50



and (SL) = 0.028 + 3x0.026

= 0.106 mg

and nj - mJ' should fall in the range

0.028 ± 0.106 mg.

Next, we consider the example from Type II. The first series of the design consists
of S, M-j , and with = M

2
+ + M^. Let us assume the same calibration report

as above, with the scale standard deviation at a = 0.026 mg. In this case we have
three measurements

- Mj =
6,

- mJ' = S2

m| - mJ’ = 63

Because we have used a 3 - I's design, the standard deviation of our result is not
simply the standard deviation of a single measurement, a, but is instead /TTZ a. A
proof of this conclusion is beyond the scope of this text but is explained fully in

ref. [3].

There are several surveillance limits that can be calculated. For the three
differences, we follow the calculations in Type I (^t we have to remember that we
are in Type II so that the standard deviation is a).

Limits for - m|

We then have

so that

U = =^.01^ +^0.02^ = 0.025 mg

(SL) = U + 3 X (yf73 a) = 0.025 + 3/^ x 0.026

= 0.089 mg

- Mj) = (0.079 ± 0.089) mg.

Limits for - mJ'

U = Vu| +

where Um' =
M
2

V(O.Oll)^ + (0.012)^ +

0 .019 mg
so that

U = V(0.015)^ + (0.019)^ = 0.024 mg .

Hence

(SL) = U + 3y^ a = 0.024 + 3vOT 0.026 = 0.088 mg

and (S^- •) = (0.106 ± 0.088) mg.
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I

4.1.4. Identifying Weights Which Have Changed

If a measurement falls outside the surveillance limits, it becomes necessary tol

determine which individual weights are responsible. Simple deductive reasoning is
'

all that is required, although a few extra weighing combinations may also be needed

if Type I surveillance was used.

j

As an example, suppose that In the Type I measurements shown earlier (4.1.1) the
value for 6^ was outside but the value for 63 was inside the surveillance limits. 1

All we know at this point is that there is some change in the subset = 1 g + 0.5 J

+ 0.3 g + 0.2 g. Three additional weighings are now required to pinpoint the cause

of the discrepancy. Recall that Mg = l g, MiQ = 0.5g, M-j-j = 0.3g, Mi 2
= 0.2g, 1

= 0-1 9 -

We then measure

|

4'
) mJ - mJ" =

6);, where M); = M,;, +

4"
)

- hJ" = 6^, where

4-) m|, - mJ" = 6^. where Mg = M,^ - M^j

After the surveillance limits for 6;[, 6^, 6g are calculated one investigates the

results:

|

1.

) If
6;[

lies outside the surveillance limits but 6g and 6g do not, then it is

probable that Mg has changed since its last calibration.

||

2.

) If and <55 lie outside the surveillance limits by opposite amounts and <5g
is '

inside, then it is probable that the M^q (0.5 g) weight has changed.
||

3.

) If and 6^ lie outside the limits by about the same amount and is outside
j

also by the same amount but in the opposite direction, then it is probable that i
the M^^ (0.3 g) weight has changed. Ij

4.

) If 6)j, 6g, and 6g all lie outside the limits by about the same amount in the |
same direction, then it is probable the M12 (0.2 g) has changed. ,

If none of the above conditions are met, then it is probable that more than one
|

weight has changed. The reader should then consult ref. [4] for a more thorough Q
analysis of surveillance methods.

4.2. Calibration I

The process of "calibration" assigns mass values to weights by comparing the
unknown weights to recognized standards. An uncertainty limit— 3 times the standard
deviation of the measurement process, plus estimated uncertainties systematic to the

measurement process--accompanies each calibrated value. To an even greater degree
than in Type II surveillance, redundant information is gathered in order to determine
whether the measurement scatter is acceptable. A powerful self-consistency check of
the calibration process is also included.

I
1

I

b|

I
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Most of the following information can be found in much greater detail in refs.[1]

and [3]. It is repeated here mainly for explaining the overall approach of the
program.

Weight sets come in various denominations. The following groupings are fre-
quently calibrated:

1. Nominally Equal Groups

These sets consist of weights, all of which have the same nominal value. The
number of weights can go from 3 to as high as 13 or more. (Sets of up to 50

members have been utilized.) For large sets, subsets are usually analyzed.
Otherwise the number of weighing operations would become impractically large.

2. Groups for 2, 2, ... 1, 1 . . sets.

Several combinations are in use such as 2, 1, 1, 1, or 2, 2, 1, 1, 1, or 2, 1,

1, 1, or 2, 2, 1, 1, 1, etc. Here 2 and 1 imply the same decade of mass such
as 2 kg and 1 kg.

3. Binary and Miscellaneous Groups

These sets are usually comprised of pound units. Many combinations are available,
the use of which is slowly diminishing. A few examples provided in ref. [3]
are 4, 3, 2, 1, 1, or 10, 5, 2, 2, 1, 1, or 6, 5, 4, 3, 2, 1, etc. Note that a

combination of the lower masses always sums to the value of a higher mass unit.

4. The 5, 3, 2, 1 and 5, 2, 2, 1 Groups

These are the sets most widely used. In general a set of weights in this group
can span many decades with each decade comprising, for example, the 5, 3, 2, 1

sequence. In many cases standards or "check standards" (see below) are added
to the sets. Examples of such groups could be 5, 5, 3, 2, 1, 1, or 5, 3, 2, 1,

1 , etc.

4.2.1. Trend Elimination in Direct Reading Balances

If a sinqle-pan, direct reading balance has truly constant sensitivity and is
subject to only a slight linear drift, the following simplification is possible:

Suppose there are four nominally equal weights, designated A, B, C, and D to be
compared in a particular calibration scheme, the following eight "direct" weighings
are done:

H) Place A on balance and read 0,

(2) Remove A
(3) Place B on balance and read 0^
(4) Remove B

^

(5) Place C on balance and read 0,
(6) Remove C

^

(7) Place D on balance and read 0.

(8) Remove D

(9) Replace D on balance and read 0^

(10) Remove D

(11) Place C on balance and read 0^
(12) Remove C

°

(13) Place B on balance and read 0^
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(14) Remove B

(15) Place A on balance and read ©g.

We have taken the weights in the following order: A,B,C,D,D,C,B,A. We then

make the following calculations:

6^
= 1/2(6, + eg)

0g
= 1/2(02 *

II

9c
= 1 /2(03 + eg) '

6p
= 1 /2 ( 0^

+ eg) I

Then the estimated difference in mass between any two weights (say C and D) is

= Pg(Vc - Vg) + k(ec - 6g) 1

where we assume k is well-known and constant. The symmetry of the weighing sequence -

removes problems caused by any linear drifts in the balance or weighing conditions. I

"i

The above example is an instance of "trend elimination." (Double substitution
|

is another instance.) When weighings are subject to large air buoyancy corrections, li

drifts in temperature or barometric pressure may lead to errors if those quantities |

are only read once during all the measurements required by the design. Some cali-
|

bration schemes, however, have the property of "trend elimination" even for this i‘

problem [3J. 1:

4.2.2. Designs
'

Sets or subsets of weights are calibrated together by means of a weighing de- *

sign. A design simply prescribes what weighings are to be made. Each weighing is

used to estimate a mass difference between two nominally equal weights or groups of I

weights in the set. |

A typical design for a group, say 5, 3, 2, 1, 1, 1, could be as follows:

Mass

Observation Mg Mg Mg M^ M^i SC I
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Here +/- signs indicate the weight starts out on the left/right pan, for transposi-
tion weighing, or that the weight is the first/second in substitution weighing. We
notice that in this group there are six masses, which must be determined (k = 6), 11

measurements (N = 11), and suppose 1 restraint (e.g. the mass of the 5+3+2 summation
is known from previous measurements, L = 1). We can then calculate the number of
degrees of freedom (D.F.) for this design as

D.F. =N-K+L= 11 -6+1=6.

From the 11 observations and the given value of the restraint one can then use the
least squares method to solve all equations to obtain best values of all differences
and therefore all masses, standard deviations, and variances. Such fitting techniques
are well described in literature available from the NBS [3]. (See Appendix D.)

In general the more degrees of freedom provided by a particular design, the
lower the estimates of standard deviation. Recall the previous section on surveil-
lance testing. Each measurement in Type I surveillance had no degrees of freedom.
That is, we needed to determine a quantity 6^. and we had only one measurement of that
quantity (K = 1, N = 1, L = 0; D.F. = 0). In Type II surveillance, however, we used
a simple 3-1 design: Three quantities were determined, for example 6^', 6^, 6^

(N = 3), three measurements were made (d-j, 62* '^3* so that K = 3), and there was one

restraint (6^ =
6^

- 6-j). Thus D.F. =3-3 + 1 =1. The appearance of a degree of

freedom allowed a crude statistical check (e.g., whether -
’1

deviation) and also led to a slightly reduced standard deviation
a).

< balance standard

o instead of

The design illustrated in this section is much more sophisticated than the 3-1

but is motivated by the same twin desires for good statistical analysis and small
standard deviation of the calibrated masses. The design in the above example is
shown in figure 6, where it is designated C.2. This figure is reproduced from ref.

[ 3 ]. Note that two different restraints are considered: restraint A is that the

mass of the summation of the 5, 3, and 2 weights is known restraint B is that the
g

mass of a single "1" weight is the known standard. We will discuss the results
based on restraint A in detail. That is, we will assume that the true mass of

In the 532111 design shown above, we have labeled one of the weights as Zl.

This indicates that we could calibrate the 5+3+2 summation of the next lower decade
of the same weight set which could then serve as a transfer standard for a subsequent
design. By “SC" we designate a weight which is external to the set being calibrated
and which will serve as check standard.

+M2 is known. Let us designate this mass as R .

This would be useful, for instance, if the 5+3+2 summation had been calibrated in a

previous design. In this case, the 5+3+2 summation would be a transfer standard.
This restraint is used in working down in mass from 1 kg.

®Thi s would be useful in working up in mass from 1 kg.
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The least-squares solutions for the five unknown weight are [3]:

(1/920) {100(6^+62+63+64)+6065 - 20(6^+67+63+65+6^3+6^^ )+460r’’’}

M
3 = (l/920){-68(6^+62+63+64)-465+124(63+67+6g)-60(65+6^Q+6^^)+276R'^}

|

^2 = (l/920){-32(6^+62+63+64)-5665-104(6g+67+6g)+80(65+6,Q+6^^)+184R'’^}
||

m| = (1/920){1 196^+462-1 1163+464-10865+1286g-102(67+6g)-125(6g+6^Q)-106^^+92R'^} 1

mJ^ = (l/920){-1116^+11962+4(63+64)-10865-1026g+12867-1026g-1256g-106^Q-1256^^+92R'’’} *|

In addition, the least-squares solution provides a value for the check standard:
jj

(SC)**’ = (l/920){46^-11162+11963+46^-1086g-102(6g+67)+1286g-106g-125(6^Q+6^^)+92R'^}.,

The metrologist must determine the values 6^ 62 * ... 6
j^

and the value of R*** by
|

experiment. The least-squares solution shows how to combine the observations with 1

the value of the restraint in order to arrive at mass values for the weights used in I'

the design.
I

In addition to mass values, the least-squares solution provides fitted values
for the observations* which when compared with the measured values give:

'^x

^ _ /s _ /s

62
- 6

^
= 62-MT+mJ+mJ-M^|+(SC)‘*'

" '53.Mg+M2+Mj+M^'’'-(SC)'''

<54-'54 = <54-^5^+^^+^^

/nT/nT/sT/sT ^ ^

^6-^6 °

6^- 6
^

= 67-mJ+«2+m|-mJ^+(SC)^

6g-6^
=

r rl r ^T^'T'^T
69-6^ = {g-Mj+M^+Mg,

/\— /s

*^10"*^10^ 6^q-mJ+mJ+(sc)'*^

*^11”^11~ *5.| .|
-M2+Mj^ + (SC)
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These deviations are useful for two reasons. First, the estimated standard deviation
of the least-squares fit is equal to

1

N-K+1

1/2

( 6 ^- 6 ;)-

Second, a glance at each of the eleven values of <5^-6^ can often pinpoint the source

of a blunder in entering the raw data into a computer--that is, if a blunder has
been made, the value of affected by the mistake will often appear much larger
than all the other values.

Finally, the least-squares solution also provides estimates of the standard
deviation for each computed mass and each combination of mass. Below the design

in fig. 6 is a table called "Factors for Computing Standard Deviations." Suppose
the standard deviation of the measurement process is a. Then if design C.2 is used
to calibrate the mass of the "5" weight, for example, the table tells us that the
standard deviation assigned to this mass, a^, will be:

0.2331 X a if restraint A were used

1.7846 X 0 if restraint B were used.

Also from the table we see that the standard deviation of the sum of the 5 and 3

weights, Og, is given by:

0.2638 X a if restraint A were used
2.8284 X a if restraint B were used.

It is typical of least squares results that, for example,

a.

In this case.
Ma 2 + a 2)1/2

m+n ^ ^ m n
'

2 2 1/2
Ob < (05 ^ ‘^0’^ restraint A

2 2
*^8 ^ ^ ^3 ' restraint B.

Thus the metrologist must choose both design and restraint carefully to minimize the

resulting standard deviations.

4.2.3. Statistical Checks

Computer programs, such as those developed by NBS, are routinely utilized in

mass calibration laboratories. The user supplies all the measured data for the set,
all environmental conditions, and other necessary data. The program then provides:

1 . a detailed listing of data provided
2 . the least squares fit, i.e. the desired mass values
3. the "F ratio" and the "t value".

Two crucial assumptions underlie the calibration of unknown weights by least-
squares fitting of design data:
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DESIGN C.l

oesEBVAT IONS
V( I I

Yl 2)
VI 3 )

V<*»
VI5I
V(6i
YI T I

Y I »*l

restraint a

restraint e

5 . 3 . 2.

1

. 1

I MA YEORD)

3 2 11

K= 5

N= 8

D .F .= A

FACTORS FOR computing ST DEVS
•T RESTRAINTS

A e 5 3 2 1

1 .41 75 .0000
1 .41 75 .5345 4

2 .3546 .9258 4

3 .3338 1.3093 4-

4 .5237 1 .6903 4
m .2673 2. 0702
6 .5237 2.4495 4

7 .3338 2.9277 4

e .3546 3.3381
9 .5632 3. 7033 4 4

to .0000 4.1748 4> 4 4

CESIGN C.2

CBSEPVAT IONS
VI 1 t

V(2)
YI 3»
V<4 )

YI 5)
VI6I
YI7)
VIS)
V49>
YI 10)
VIII)

restraint a

RESTRAINT B

5. 3.2t 1. ti 1 K* 6
Nsl 1

O.F.> 6

FACTORS FOR COMPUTING ST DEVST RESTRAINTS I

design C.3

CESERVAT IONS

YI I )

TI2)
YI 3)

YI A )

YI 5 )

YI6 )

YI 7)
YIB)
YI<S )

YI 10 )

VIII)

restraint a

RESTRAINT 8

5 . 3 . 2 . 2 . 1 •

1

K= 6
N=1 1

.F .= 6

factors fcr computing st oevs
restraints
A B

6
7

e

s

10

.3592

.3592

.A259

.3625

.3835

.6116

.6130

.2266

.A790

.3835

. 3625

.4711

.0000

.0000

.A71A

.7553

.7553
1.2536
1. 1 123
1 .A25A
1.7412
2. 0893
2.4199
2.9493
3. 2708
3.5922

DESIGN C.4

CBSEfiVATICNS
YI 1 )

YI2>
YI3)
YI4)
YI5 )

YI6)
Y17)
YI 8)
VI9 )

YI 10)
VI 1 1 )

VI 12 )

restraint a

restraint e

5 . 3 . 2 . 2 . 1 .

1

K= 6
N=1 2

O.F.= 7

FACTORS FCR COMPUTING ST OEVS
A B 5 3 2 1 1 1 WT restraints

1 .3551 .0000 4 A B 5 3 2 2 1

1 .3551 .5000 4 1 •4796 .0000
1 .3551 .5000 4 1 .4796 .8165 4
2 .2638 .7802 4 2 •4065 1.0541 4
3 . 298 5 1.0885 4 2 .3127 1.0541 4
4 .4778 1.4781 4 4 • 2646 1.4530 4
5 .2331 1.7846 4 3 .6173 1.7638 4 4
6 .4299 2.1 644 4 4 4 .4372 2.0276 4 4
7 .2985 2.5216 4 4 5 • 2687 2. 3805 4
6 .2638 2. 8284 4 4 6 • 5666 3.1091 4 4
9 .46 16 3.2016 4 4 4

¥ 7 • 5606 3.3830 4 4
10 .0000 3.5509 4 4 4 e .3127 3. 8006 4 4

9 .6119 4.5216 4 4 4
10 • 0000 4. 7958 4 4 4

Figure 6. Least squares information for the design described in the text.qure b. Least squares into
(Reproduced from ref. [3]).
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1. The scatter in the data just taken is typical of the scatter found in pre-
vious measurements.

2. The mass of the standard weight used in the calibration design has not
changed from its accepted value.

The F ratio and t value provide important tests of these two assumptions.

The F ratio essentially monitors the precision of the measuring process. A
detailed discussion is presented in Appendix D. We note that

2
where a is the variance of the particular balance being utilized (based on a large
collection of previous measurements). Generally, we expect F to be close to 1, but
we must not be surprised if a particular value of F is somewhat larger than 1.

In particular, a simple check for F can be (and has been) established for most
mass metrology laboratories. By comparing F with a fixed ratio F , which could be

defined at the 99 percent confidence level one can then easily monitor whether the
measured ratio F is greater than F^

i.e. F>F^.

If this check holds true, then the measurement process is considered "out of control"
and further studies have to be conducted. The quantity F^ depends only on the

2 ^
degrees of freedom (k-j) in s and on the probability level at which we wish to con-

duct the test. The calculations are outlined in Appendix D.

The second test is called the "t test" which monitors the accuracy of the mea-
surements. For this test, an extra mass, the check standard, is included in the
particular design. A simple check is then performed to see whether the mass value
assigned to the check standard by the calibration agrees with the accepted value.
The t test thus monitors the systematic errors of the measuring process.

In particular one calculates

tc =
1(50)"*^ - accepted (SC)^|/a^

where

^ T
(SC) = observed mass of the check standard as found by least-squares fitting;

accepted (SC)^ = accepted mass of the check standard;

and

a/ = 4 .
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Here

Oj = accepted variance of the measurement process between runs (see below)

i = multiplier which is determined by the least squares process.

o = "process" standard deviation of the balance

^ = the nominal value of the check standard
sc

Nj^ = the nominal value of the standard or transfer standard used asthe
restraint In the least squares solution

Op = the standard deviation of the value of the restraint. Op is taken as
^ zero unless the restraint is a transfer standard, whose value was de-

termined as part of the calibration of the complete weight set [1].

For simplicity, we will discuss a case for which Op = 0. In general one checks to

see that

The probability is less than one in 100 that this inequality will be violated by

chance. Thus t = 3 is taken as the control limit. Any measurement for which t > 3

is considered "8ut of control" and is repeated.

CAUTION : The t test is one of the best statistical measures of systematic
errors available. Nevertheless, by their very nature, systematic errors are diffi-

cult to detect. If, for instance, buoyancy corrections were not important in assign-

ment of mass to the check standard but were important in assigning mass values to

the weights being calibrated, the t test will not detect systematic errors in the

buoyancy correction. Also, the t test cannot detect an identical change in the

standard and check standard. We have taken a very simple example of a t test. The

most general case is shown in ref. [1].

2
The variance of the measurement process between runs, Oj , is an important

concept [1,8]. Recall that the process standard deviation, a, is a measure of

scatter over the period of time it takes to make a mass measurement: i.e., a few
minutes to a few hours. There may, however, be sources of random uncertainty which
fluctuate more slowly (i.e., over days or months); but still rapidly compared with
intervals between recalibration of a given weight. How can we estimate the process
standard deviation for this longer period of time? The easiest way is to monitor
the values of mass assigned to the check standard each time it is used in a run.

After many runs, over a span of many months, we can estimate the variance, a 2, of
the observed values of the check standard about their mean value.

^

If the process standard deviation has no "between-run" component, then

(o^ 0)

2
where a is the process variance which was found by pooling variances estimated from
the least squares fits to many individual runs. That is, a is the within-run pro-

2
cess variance based on combining calculations of s from many runs.
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It will generally be true, however, that

indicating that there is an additional source of scatter from run to run. We define
this between-run variance for the measurement process as

2
If Oj is not negligible, the source of between-run scatter should, of course,

be sought and eliminated if possible.^ Failing this< the process standard deviation
must be expanded so that the over-all uncertainty assigned in the calibration report
includes the between-run component.

The cautionary statement given above for the t test also applies to the use of
the check standard in estimating between-run scatter. That is, if a weight being
calibrated differs markedly in its construction from the weight(s) used in the check
standard, a Oj component may go undetected if one relies only on check-standard
behavior.

•

Suppose a series of design data is "in control." True mass values have been
assigned to the unknown weights and uncertainty limits have been given. What do

these uncertainties mean? In a practical sense, the meaning is that the uncertainty
bands assigned to each mass calibrated by the methods of ref. [1] should almost
always overlap the uncertainty bands which would have been obtained had the masses
been calibrated at NBS.

Note that this specification, while satisfying the expectation of the overwhelming
majority of users, is somewhat less stringent than asserting that: the true mass as

defined in eq. [1] and reported in S.I. units is almost surely within the uncertainty
band provided by the calibration.

9
^T

has been found to be negligible for the NBS calibration process.
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5. CONCLUSION

This document has been less of a complete treatise on mass metrology than a

guide for the mass metrologist. We have indicated appropriate references where the

various topics touched on are treated in greater detail.

What we have tried to offer is a coherent development of the fundamental con-

cepts of mass metrology as a means of explaining the relevance to the metrologist of

the references found at the end of this publication.

In brief, starting with the basic law of classical mechanics, we derived:

° Relations for the true mass differences between nominally equal weights

(eqs. (lO') and (19b))

° Relations for apparent mass differences between nominally equal weigr.cs

(eqs (18) and (19a))

We stressed the importance of measuring or calculating air density in order to make
proper buoyancy corrections.

We then provided:

° An explanation of how the basic mass relations apply to measurements on
several types of conmonly used balances.

° A demonstration of how these relations are used in two types of surveil-
lance testing.

® A brief sketch of how these relations are used in mass calibrations.

We concluded with a discussion of the statistical checks crucial to a calibration.

In a document such as this, there is a danger of losing the basic outlines of a

mass measurement program in the many details essential to carrying out a successful
program. Every program must have a goal --for example, the calibration of weights in

a certain range of masses to a desired uncertainty.

One must then acquire balances equal to the task and house them in a room which
will not degrade their performance. Control charts should be used to establish the
longterm reliability of the balances. Calibrated sets of weights to be used as

working standards should be acquired. Surveillance testing can establish the stabil
ity of these weights to within the surveillance limits.

Anticipated levels of buoyancy correction should be estimated. Auxiliary equip
ment such as barometers, hygrometers, and thermometers should be acquired, if necess-
ary, to achieve adequate capability in determining the density of air. These instru
ments must be calibrated periodically.

When calibrating weight sets, weighing designs should be used. These are
selected on the basis of providing the necessary accuracy with the least number of
weighing operations. Great care must be exercised in assigning a total uncertainty
to calibration results.

The techniques outlined in this document form the core of such a mass program.
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APPENDIX A

APPARENT MASS OF BUILT-IN BALANCE WEIGHTS

Balance manufacturers almost always adjust the built-in dial weights of single-
pan balances so that their apparent masses equal the value of the dial position.
No matter of what density material the manufacturer has actually made his weights,
the user generally assumes that the true masses equal the dial values and the
densities of the built-in weights equal Pj^, the basis density.

Let us see why this scheme works and what its limitations are. These consider-
ations can be demonstrated by referring to a single dial-weight (of density p^)
that exactly balances a weight X, which is on the pan.

We begin, since we are discussing a balance of the type shown in fig. 3 with
eq. (22):

ke, = (mJ-pa^x)
- + keg,

where we have renamed M by and Vj^ by Vj^. We will assume that 0
q

was adjusted to

zero before X was placed on the balance. We have chosen a special case: after X

was placed on the balance, the screen reading e-j returned to zero with the removal

of a single dial weight. Let us refer to this dial weight as "D" and say that it

has a true mass and a volume V at the balance temperature. In this special
case, with 6

q
= Q-j

= 0, eq. (22) becomes

0 = - (d'^-p^V) .

Since pp
= DvV, we can rewrite (A1) as

mJ-PaVx = D^d-P^/Pp)

or,

mJ = o'^^d-p^/pp) + p^Vj^ E M^ .

Now we ask the question, "What if one assumes the mass of D is equal to Nq, its

nominal value, and the density of D is equal to pj^, the basis density of the appar-

ent mass scale to which the balance weights have been adjusted?" This assumption
is not correct because

(Al)

(A2)

Pr * Pd

and

D
T
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Nevertheless, the incorrect assumption would tell us that

mJ = Np(l-p^/P|^) + p^Vj( = Mg •

We can next ask ourselves "Under what conditions does M-j = Mg?'

Recar ^ ^

(A3) from

(A3)

ling that Mn is made equal to Nn» the nominal dial value, we subtract eq.

(A2l.
° °

= D (1-p^/pp) - HjjCl-p^/Pij)

Also, by definition, (see eq.( 11) in the main text).

(A4)

(A5)

where the subscript zeros refer to the standard' conditions specified in the defini-

tion of apparent mass. Substituting (A5) into (A4),

Mg-Mi =
d'^[(1-Po/Pdo^^^"Pa/Pr^/^^‘^0^‘^RO^

‘ ’

The first approximation we will make is that P|^q = pj^
and pqq = p^. That is,

the temperature is sufficiently close to 20 °C that the expansion in volume of the
balance weights is negligible. Thus

Mj-M, = d'^[(1-Po/P[j) (1-P;^/P|,)/(1-Po/pr) - (I-P^/Pd)] •

Next, we use the relation developed in the main text:

(I'Pq/pr) ~ ^ Pq^Pr ^ ^Pq^^r^ ^Pq^^R^
^ ***

so that

Mg-Mi = d"*^[( 1 -Pq/Pjj)( 1 -p^/P|^) (I+Pq/Pr'^'^Po/Pr)^ (Pq/Pr^^ ‘ *

2 2
Finally, we multiply out but throw away all terms of order (pq/P|^) » (p^Pq/pj^),

2 3 3
Pq/PdPr* ^nd smaller. Since pq p^ £ 1.2 mg/cm and p^ pj^

> 7.5 g/cm (the

balance manufacturer has seen to this), then neglecting these terms leads to errors

of 3 X 10'^ percent or less.

Thus, we now have

Mg-M-j = (Pq/Pr " Pq/Pd Pa'^Pr Pa^^D^

or, more simply

M
2
-H, = d''' (pq-p^) (I/Pr-I/Pq) • {A6)
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The balance manufacturer has selected the metal for his weights from stock
having a density sufficiently close to

pj^
so that, near sea level, M-i-Mo will not

exceed the balance^tolerance.

In recent years, balance manufacturers have been making weights of stainless
steel. Equation (A6) shows why it is, therefore, desirable for these weights to be

adjusted on the 8.0 basis.

The chief virtue of the apparent mass scheme is that, even though different
balance manufacturers may make their weights of different alloys, a user can be

completely unaware of these subtleties and still derive reasonably accurate true

mass results on any balance so long as the correct basis density is used.

Example :

A balance has 20 g of built-in dial weights. The density of these weights is

3
actually 7.8 g/cm . The weights have been adjusted so that the dial readings
correspond to apparent mass on the brass basis. What is the value of M

2
-M

1
at

maximum load if p^
= 1.16 mg/cm^? What if the laboratory is at high elevation so

that p^
= 1.00 g/cm^?

Answer :

a) M
2
-M^ = 20 g (0.00120 - 0.00116) = -7 yg.

b) = 20 g (0.00120 - 0.00100) = -37 yg.

By comparison, the calibration uncertainty for high-quality 20 g-weights as measured
by NBS is about 10 yg; the tolerance for 20-g, Class 1, metric weights is 74 yg
[14].
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APPENDIX B

OUTLINE OF THE DERIVATION OF p^, THE DENSITY OF AIR

In order to find p^, an equation of state involving temperature, humidity, and
barometric pressure has-been developed. We will follow the definitive derivation of
F. E. Jones [2] and briefly describe his arguments to arrive at a simplified re-

lation sufficiently accurate for our applications. The reader is urged to consult

[2] for full details.

In order to derive the density for a mixture of two gasses, let us start with
the ideal gas law.

pV = nRT

n = number of moles
m = mass of gas
M = molecular weight of gas
R = universal gas constant
T = temperature in kelvins = (273.15 + t) for t in degrees Celsius.

From the above, we can rewrite

pV = ^
RT so that m =

and

where

and

— = — = — since Pn = -
•

RT pV p
^ V

Specifically, consider air consisting of dry air and water vapor. For the dry air,
we have

"’d

^
PdVMd

RT

and for the water vapor, we have

m =
w

p VM
%/ w

RT

Since the total density is given by

Pa =
m-, + m
D w

f-bi



we obtain

Pa
=

PqVMq
,

PwVMw
/V

RT RT

= ^ (Pd^D * Pw”w>

Using Dalton's Law for partial pressures

p =
Pi

+ P2

we can substitute for

Pd ' Pw

SO that

and using

Pa Pw^D Pw'^^w^

e =
M.

Mr

Pn = — (P + Pu(£ - 1)) •

M
RT

w

At this point it is important to consider for a moment the correction necessary for

a gas which is not ideal. To do so we rewrite the last relation as

P =
P^RT

1

1 - 1)

p

For an ideal gas the ratio

RT 1

^A ^

1 + ^ (c - 1 )

p
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has to be equal to 1 . If we want to consider non-ideal gas corrections, then we
have to incorporate Z into our formalism. Hence,

P =
PaRTZ

1

1 + ^ (e - 1)

P

where Z is called the "compressibility factor,"

Rewriting this relation for the mixture density, we now have

K
Pa

= 'D

RTZ
[(P + (c - l)p^] .

Let us now turn to the dependence of this relation on the relative humidity. We

define

where

U =
Pw

X 100

e
S

U = relative humidity in percent

P|^
= effective vapor pressure of water in moist air

e^ = effective saturation vapor pressure of water in moist air.

Furthermore, we know that

where

> e
s

e^ = the saturation vapor pressure of pure-phase water.

The ratio of the two pressures is called the "enhancement factor" for saturated
water vapor and is given by

so that

and since
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we have

Substitution into the mixture density relation yields

Pa [P + (e - 1)

RTZ

-e^'f

100
]

where U must be given in %.

This relation constitutes the final formula. The parameters P, T, and U must

be measured by the user.

Substituting the best available values for R anf and choosing reasonable

values for Mq, Z, and f, which are approximated as constant parameters, we have

R = 8.31441 = 8,314.4
mole-K kmole-K

Mj^ = 28.964 g/mole

Z = 0.9996
f = 1.0042

Myj = 18.0152 g/mole.

Since

18.0152
e = — =

,

Mp 28.964

we obtain

^
(P - 0.0037960 UeJ x 10"^

T
^

0
.

- 003
.

4848
, _ 0.0037960 UeJ .

(t+273.15)
^

where
t is in °C
P is in pascals (133.3224 Pa = 1 nin Hg) .

Converting to mm Hg pressure, we have

Pa
/mS_\ 0.46460

. _ 0.0037960 Ue.) .

W) ^^^273 . 15 )
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The parameter e^ has been determined by fitting measured data between 288.15 K and

301.15 K. The relationship developed is

-5315.56

e^ = (1.3146 X 10^) mm Hg.

It should also be noted that the value for the enhancement factor used above, i.e.
f = 1.0042 can be approximated more accurately by

f = 1.00070 + 4.150 X 10”^ X P + 5.4 X 10‘V .

In the above final equation, the relative humidity is given in percent

U = % (e.g. 51.2, 43.7 etc.)

and the pressure P in mm Hg.

Mq (and, therefore, c) depends on the mixture of gases, other than water vapor,

which makes up ambient air. The chief variability in this mixture comes from CO
2

and O
2

levels. These are assumed perfectly correlated--that is, CO
2

levels can only

increase locally at the expense of O
2

and vice versa--as in processes of combustion,
respiration and photosynthesis.

Fortunately, the variation has little effect on Mp. In eqs. (20a) and (20b)

(main text) we have assumed the ambient level of CO
2

typically found in the NBS mass

laboratories (0.00042 mol of C02/mol of air). A 100 percent increase in this level

would raise by less than 0.02 percent.

Z is slightly dependent on barometric pressure, temperature and relative
humidity [2]. Between 19 ®C and 26 °C; 525 mm Hg and 825 mm Hg; and 0 and 100%
R.H., Z varies by less than 0.03 percent.
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APPENDIX C

PROPAGATION OF ERROR THROUGH THE AIR DENSITY EQUATION

Using eq. (20b) (developed in Appendix B), we have

p = (P-0.0037960-U-eJ .

^ (t+273.15)
^

For ease of writing, we will set

p = Pa

a = 0.46460

b = 273.15

c = 0.0037960

e =

such that

p = —^P - c-U-e) . (Cl)

(t+b)

We want to determine the uncertainty for p using
/

dp = le. dt + ^ dP + ^ dU . (C2)
9t 3P 9U

9£:

9t

Using (Cl ) , we find

a(P - c-U-e) ^ (-L)
at at t+b

= (—) P (C3)

t+b

9P

Using (Cl ) , we find

9p _ a

9P t+b

and since

'\j

p '\^
aP

(t+b)

F-Cl



where we ignored the second term in (Cl) since it is only a secondary source of

error, we have

. (C4)

8P P

9U

From (Cl), we obtain

aP aceU
p

t+b t+b

so that

^ _ ace

3U (t+b)

and again using p

we have

. (C5)

3U P

Next, we have to estimate the combined uncertainties due to t, P, and U. In Section
2.3.2 (main text) we asserted that the temperature should be known to ±0.4 °C so
that

dt = ±0.4 ®C .

Similarly,

dP = ±1 . 1 mm Hg

and
dU = ±16% .

3
All these values assume that we want to know the air density to 0.0017 mg/cm .

Substitution of all terms into (C2) yields

dp = ^ (±0.4) + ^ (±1.1) - — p (±16) .

t+b P P

In the worst case, these uncertainties would add linearly. However, we assume
the errors are uncorrelated so that a better estimate of the total uncertainty is

given by

F-C2



J p^-(0-4)^

^ (t+b)2

V
0.16

2
(t+b)2

+

+

+ cVa^( 16 )

1.21 ^
C^e^256

2

At standard conditions we have

t = 20 “C

P = 760 mm Hg .

We now have

6p
0.16 ^

(20+b)^

L2I_,

(760)^

C^e^256

(760)^

Substituting P = P/^ and replacing b and c with their numerical values, we have

!fA , J 0.16 ^ UL. ,(0-0037960)^ • 256-6^

(20+273.15)^ (760)^ (760)^

Also e^ at 20 ®C is 17.54 mm Hg, so that finally

<Spa— == 0.0024

Pa

or

6 Pa— ==0.24% .

Pa
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APPENDIX D

SOME STATISTICAL CONCEPTS

We start out with an infinitely large population of a random variable; to be
practical, let us say a very large number of similar balance observations. We
assume that this population is normally distributed with a mean of y and a variance
of o2 .

Let us take a random sample of size n from the population. Then the mean of the
sample is defined as

n i=l
'

with an estimated variance for a single observation of

n «

I (X.-X)^

,2 . i°1

n-1

(Dl)

(D2)

2 2
As n grows infinitely large % ^ u and s a . (This, in fact, defines what we mean
by y and a).

The treatment of least squares data is more complicated than analysis of repeat-
ed measurements of the same quantity. In this case, average values of several dif-
ferent masses are calculated at the same time from data obtained during one weighing
design. If N measurements were necessary to complete the design, the metrologist has
in hand the results of these N mass comparisons: 6^ 62 * ... 6

|^.
The least squares

analysis provides a set of "best" estimates: 6
-j , 62 ,... 6

|||,
as well as a set of

"best" estimates: m|, M
2 ,...mJ,

of the K unknown masses calibrated by means of the

design. These "best" estimates are linear combinations of the measured values

62 *... with the mass of the known standard used as the restraint. The linear

combinations are uniquely determined by the choice of design and restraint. Least
squares solutions to the most useful weighing designs are tabulated in ref. [3].

The standard deviation of the least squares fit to the design data is estimated

from the formula^

s
2

2: (6.-6I)
i=l

^ ^

N-K+1

(D3)

where the denominator is- given by the degrees of freedom (= number of observations -

number of unknowns number of restraints). If the same measurement design were

repeated m times, a better estimate for the standard deviation of the process could

be obtained:

\east squares is so named because the least squares solution: 6 -j, 62 »... 6
j||,

minimizes the value of s^ in (D3).
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s2 =

2 2 2
s; + s« +...+ s„12 m

m
(D4)

where sf is the estimated variance of the i^^ run.
' 2

what we mean by o in the case of least squares. Note:

2

2 2
As m-x», s -Kj , This defines

the number of degrees of

freedom (D.F.) in s^ as defined by (D4) is m(N-K+l). Also, this a is the same a

discussed in the text, the "process standard deviation."

Besides a, we would also like to know the standard deviation of each individual
mass, M., computed from the least squares analysis. The answer involves matrix

algebra'^and depends both on the design and restraint which were used, as well as on
a. All of the commonly used cases are^tabulated in ref. [3]. In general, the

standard deviation of a measured mass M. is some value J-.c, where is a number that
w 0 J

depends only on the particular design and restraint. This number can be found in

ref. [3]; o is defined above.

When two or more weights--j and p for example--are used in combination, their
2 2 1/2

combined standard deviation is not simply (£• + £ )
' a but is often somewhat

w r

greater. This is because data taken from a design are usually correlated. Both the

recipe for handling weight summations and tabulated values for many special cases can

be found in ref. [3].

From the above discussion, it should be evident that care must be taken in

choosing the design and restraints for any set of weights to be calibrated. Some
choices will minimize individual £. values but weight summations may have large
uncertainties.

2
Assume that an estimate of a has been computed from m designs by application of

2
eq. (D4). Future designs will produce individual values s- which will also be

2
estimates of a as long as the measurement process remains stable. An F statistic

s?

(05)

can be computed for each new s^. Its purpose is to test the agreement between s^

2 0

and s --or more precisely to test whether or not s- comes from the same distribution
2

of measurements that produced s .

Given a large number of F statistics, each of which is based on the same design,
a histogram of these F statistics will fall very nearly on the universal curve known
as the F distribution. The theoretical calculation of this curve depends only on the

degrees of freedom in each s., i.e. N-K-1, and on the degrees of freedom in s , i.e.

m(N-K-l). The distribution is scaled so that the area under the curve is equal to 1,

making it possible, for example, to find the point F^ such that 99 percent of all F

values will be less than F^. As a consequence, the next time that we carry out the

weighing design, we expect that there is a 99 percent chance that the F statistic
computed from that particular design will be less than the percent point F

fact, it turns out that the F statistic is greater than the percent point F

f
t’

If, in

the

F-D2



precision for that design is poorer than is expected, and the design should be
repeated.

The percent point is often represented in tables as F(v, , v^jl-a) because it
depends on:

2
= the degrees of freedom in Sj which is N-K+1

V
2

= the degrees of freedom in s^ which is m(N-K+l)

a = the significance level such as a = 0.01 (i.e. 99 percent)

For mass calibrations at NBS, the significance level is chosen to be a = 0.01,
and because the measurement process has been tracked for a long time resulting in an

2
estimate of a that has a very large number of degrees of freedom, the value that is

used for the test is

Ft
= F(v-j ,«, 0.99)

In this special case, F^ can be well -approximated by*:

F^ =
[ 1 + 2.32635

^ ^

9(N-K+1) V 9(N-K+1)

for

and

for

> 2

F^ = 6.64

Tables and detailed discussion on the F value and t ratio can be found in ref. [13].

A derivation of this result is well beyond the scope of this work. The interested
reader may wish to consult: Paulson, Edward. An approximate normalization of the
analysis of variance distribution. Annals of Mathematical Statistics. 13: 223-235;
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Good weighing practice usually dictates

that, when using double-substitution

weighing to determine the mass differ-

ence between two weights, the nominal

value of the sensitivity weight used to

calibrate the optical scale of the mass

comparator be at least four times greater

than the difference of the two weights

being compared. However, there are

times when other considerations must

override this rule. We examine the theo-

retical basis for the rule and the penalty

for violating it. Finally, we propose a

modi-fied weighing scheme which im-

poses a much less stnngent rule for the

size of the sensitivity weight. The new
scheme requires an additional balance

reading, but does not increase the over-

all measurement time significantly.
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1. Introduction

Many precision mass comparisons, especially in

the realm of metrology, still rely on mechanical

balances. These balances may be either one-pan or

two-pan. In both cases, however, weighing is done

by double substitution between the unknown and

an external standard. The procedure in use in most

metrology laboratories is shown in table 1.

Table 1. Four observation scheme.

Operation Load on

Balance

Balance

Indication

1 Y /,

2 X
3 X^d h
4 Y+ d U

The difference in mass between Y and X, AAf,

(ignoring buoyancy corrections) is sometimes com-

puted as [1]';

AM = I, -1,-1, + 1,

2{h-h)
mj = U

A/,
nij . ( 1 )

We may think of eq (1) as the product of the differ-

ence between Y and X in scale units,

— multiplied by the balance sensi-

tivity, rrij/il,-!,). The sensitivity is the propor-

tionality factor which converts differences in scale

indication to units of mass. Here rrij is the known
mass of d.

where Y represents the standard, X the unknown,

and d the sensitivity weight. We are assuming that

for two-pan balances double substitution has been

used rather than double transposition. The argu-

ments that follow apply with modification to the

latter technique.

About the Author: R. S. Davis is a physicist in the

Length and Mass Division of NBS’ Center for

Basic Standards.

'Figures in brackets indicate literature references.
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Most balance indications drift with time. Often

the time dependence of the drift can be assumed to

be linear. Based on this assumption, one usually

tries to make the time intervals between the four

weighing operations equal. If this is done, the esti-

mate of A/, the difference between Y and X in scale

units, will be unbiased by the drift. This will not be

true of 73-/2 however. The latter quantity esti-

mates A7rf, the value of the sensitivity weight in

scale units.

In order to remove the bias, a modified equation

is used:

AM = 7,-/2-/3 + /4

7 , -3/2 + 3/3
-74"'" (2 )

This is the equation found in the NBS MASS-
CODE [2] and has been advocated for general use

if the added computational complexity can be han-

dled by computer [3].

would be impractically small. We choose 1.31 be-

cause it is the de facto choice of the NBS MASS-
CODE. The important point is that we now have a

rational criterion by which to compare various

weighing procedures with respect to their demands

on the value of the sensitivity weight.

The absence of a term linear in AJ/Mj in eq (4)

shows that the estimate of A7 is uncorrelated with

the estimate of AJj. It is also evident that the vari-

ance of AM increases monotonically as the ratio

Al/AJj becomes larger. In particular, if AJ/Al^ is

of the order of 0.5 then the variance of AM in-

creases to 2.25 times its minimum value. This is

unacceptably large in many cases. A value of 0.5

for Al/ AJj was the unavoidable case, however, for

a series of important measurements made several

years ago on our best kilogram comparator [4]. In

order to cope with such a large value of Al/ Al^ it

was necessary to use a modified weighing scheme.

2. Variance of M/ 3. The Five Observation Scheme

There is a general rule [1,3] which states that the

metrologist should take care that

< 0.25 . (3)

If the rule is violated, the NBS MASSCODE
prints a warning message along with the final cal-

culation [2]. Since the author has not found a rigor-

ous theoretical basis for the rule in the literature,

one will now be given.

Each reading of scale indication is subject to ran-

dom error. Let us assume this error can be charac-

terized by a variance erf which is the same for all

measurements. Then the variance of AM as com-

puted by eq (2) using first order propagation of

error techniques is

var(AAf) = S'erf (4)

where S — — is the nominal

value of the balance sensitivity (the quantity is

treated as a constant in this computation since its

variance is usually much smaller than erf). There-

fore, the rule represented by eq (3) implies that the

variance in a single measurement of AM should not

be allowed to increase by more than a factor of

1.31 above its minimum value. The choice of 1.31

is, of course, somewhat arbitrary. Reasonable peo-

ple might all agree that a factor of 2, for instance,

would be intolerably large, while a factor of 1 1

The weighing scheme used is identical to that of

table 1 except for the addition of a fifth operation

which is a repeat of the first. ^ The scheme is shown
in table 2.

Table 2. Five observation scheme.

Operation Load on

Balance

Balance

Indication

1 Y
2 X h
3 X + d h
4 Y + d h
5 Y /.

The apparent difference in mass between Y and X is

then estimated as follows;

AM = 7
|

— 72 — 73+ 74

-72+ 73 + 74-/5
‘‘ (5)

Equation (5) is also unbiased for a linear drift

between measurements (though eq (5) is not the

least squares solution for a linear drift model). The
real virtue of eq (5) is that it is also an unbiased

solution for a model which assumes only that the

drift between operations 1 and 2 equals the drift

between operations 3 and 4; and that the drift be-

^To the author’s knowledge, the first reported use of this

weighing scheme was in a 1967 paper by Bowman, Schoonover,

and Jones [8]. These authors used a five-observation scheme to

compare an external object with the built-in weights of a single-

pan. mechanical balance.
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tween operations 2 and 3 equals the drift between

operations 4 and 5 [5]. The first drift occurs be-

tween operations which exchange the test weights

on the balance pans. The second drift occurs when
the sensitivity weight is added or removed. This

model frees the operator from having to wait equal

times between all measurements. Since the addition

or removal of the sensitivity weight is a faster oper-

ation than the exchange of test weights, it is usually

possible to accomplish the scheme of table 2

(where one need not wait equal intervals between

operations) in about the same time as it takes to

carry out the scheme of table 1 (where one must

take measurements at equally spaced intervals).

When one computes the variance of AAf based

on eq (5) one discovers a remarkable result:

4. Averaging

One of the ways to lessen the dependence of re-

sults obtained from table 1 on the ratio AZ/A/^ is by

averaging. For N double substitutions at the same

nominal load, one can average the N estimates of

sensitivity and use the average value in the calcula-

tions of the various AM’s. The NBS MASSCODE
takes this approach and amends the rule for the

ratio of A//A/j to:

1 A/
A/,

< 0.25
(7 )

to cover cases where A> 1.

var(AM) = SV/^ 1 ^ /A/y
2 A/, l^A/J

(6)

where S — —

The amended algorithm leads to the following

variance:

var(A/V/) = ( 8 )

The appearance of a term linear in A/ZA/^ indi-

cates that, unlike eq (2), the estimate of A/ in eq (5)

is not independent of the estimate of A/^. The re-

sult of a negative term in eq (6) is that the variance

of AM is insensitive to the ratio A/ZA/^ for ratios

between 0 and 0.5. Within this range, the variance

of AM is actually below what it would be if the

ratio A/ZA/^ were zero (table 3). The minimum

Table 3. Companson of variances with respect to for

results derived from eqs (1, 2, and 5).

M/Md

var(AAf) =
k

eq (1)

k5V/2

eq (2) eq (5)

0 1.00 1.00 1.00

1/4 1.12 1.31 0.94

1/3 1.22 1.54 0.94

1/2 1.50 2.25 1.00

1 3.00 6.00 1.50

value for the variance of AM occurs for the ratio

A/ZA/j=0.25, although this minimum is only 6

percent below the variance for a ratio of zero. Fi-

nally, if we want to ensure the variance of AM not

exceed (1.31) we would make the rule that

^ < 0.86
Ad

This should be compared with eq (3).

There are two possible objections to this approach.

First, although the quadratic term in eq (8) is a

factor of \/N smaller than the same term in eq (4),

it has been converted from a “within” to a “be-

tween-time” component [6]. Second, and more se-

rious, the sensitivity of precision mechanical

balances may be a function of time. This is cer-

tainly the case for NBS-2, the kilogram comparator

which was designed and built at NBS and is now in

use at the International Bureau of Weights and

Measures (BIPM) [7]. In such cases, use of an aver-

age value for the sensitivity is unjustified.

5. Conclusion

The usual admonition that the ratio A/ZA/^ not

exceed 0.25 ensures that the variance of a double

substitution does not grow by more than 3
1
percent

above its minimum value. We have examined a

five-operation weighing scheme and have shown

that use of this scheme relaxes the rule to the ratio

A/ZA/d not exceeding 0.86. We have also argued

that the five-operation scheme can usually be per-

formed in the same amount of time as the more

usual four-operation scheme.

As a final comment, we emphasize that this anal-

ysis applies to un-servoed mechanical balances. For

balances under servo control, the linear range of

the scale is usually so large that it is never a prob-

lem to meet the conventional ratio rule. In addi-
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tion, the sensitivities of servo-controlled balances

are usually very stable over the course of a series of

measurements.
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Realistic Uncertainties and the
Mass Measurement Process

An Illustrated Review

Paul E. Pontius and Joseph M. Cameron

This paper gives a review of the concepts and operations involved in measuring the mass of an object.

The importance of viewing measurement as a production process is emphasized and methods of eval-

uating process parameters are presented. The use of one of the laboratorv 's standards as an additional

unknown in routine calibration provides an accuracy check and. as time goes on. the basis for precision

and accuracy statements.

Key Words: Measurement, measurement process, uncertainty, mass measurement, precision,

accuracy, statistical control.

Introduction

This paper is a condensed version of a lecture on

“Error of Measurement" presented by Paul E.

Pontius and Joseph M. Cameron at the Seminar on

Mass Measurement, held at the National Bureau of

Standards, Washington, D. C., November 30, De-

cember 1 and 2, 1964, and is essentially as presented

by Paul E. Pontius at the 20th Annual ISA Con-

ference held at Los Angeles, California, October

4-7, 1965.

It is a review of the mass measurement process

from the initial basic concept to the statement of a

measured mass value, examining in more or less

detail certain important elements which are apt to

be misunderstood, or perhaps misused. The im-

portance of viewing measurement as a production

process is emphasized and methods of evaluating

process parameters are presented. The use of

one of the laboratory's standards as an additional

unknown in routine calibration provides an accuracy

check and, as time goes on, the basis for precision

and accuracy statements.

Mass Measurement Requirements

One role of the Bureau is to provide an extension

of the mass measurement unit into the facilities of

those who must use mass values to do other useful

work. . . . These large weights, for example, are

for use by another part of the Bureau to calibrate

force measuring devices.

The calibration service provides values for single,

selected groups, and ordered sets of standards,

the values being with reference to the national

H-1



standard of mass. These values, together with a

value for their uncertainty, allow each user to de-

termine, in combination with his measurement
process, the uncertainty of his measurements.

The three photographs above started with a

group of standards whose cumulative total mass was
in excess of one million pounds, and ends with a

micropound standard, a range in excess of ten to

the twelfth power (lO*^).

The aiming point for our measurement is to

establish the mass, or true value, of a particular

object for it is, in concept at least, unique and

invariant. If, for example, accuracy within .01

percent is sufficient for our purpose, the target

center is the area within the next to the last circle.

Our measurements may group on either side of

dead center, or may be randomly scattered across

the center of the target, but as long as the spread

is essentially within the target circle, the process

is satisfactory for its intended use. Troubles arise

when realistic requirements are divided by large

arbitrary constants as specifications pass through

various groups of people in a complex organization.

Measurements accurate to better than .01 percent

require attention to many details under more or less

ideal conditions, and may not be obtainable under
adverse conditions, consequently the entire meas-

urement effort may be lost if the end use involves

measurement processes of questionable precision.

In the case of calibration, for example, in order to

utibze the accuracy inherent in a good calibration,

the user must work just as hard in his measure-

ment process as the calibration facility did to de-

termine the value of the standard originally.

The importance of incorporating the properties

of the measurement process in setting up require-

ments or specifications is illustrated by the problem
of adjustment tolerances for different classes of

weights.

The accuracy requirements for a measurement
are set partly by experience, partly by discussions

with others, and partly by analysis. For a par-

ticular purpose, the accuracy requirement must be
established with care, as it provides a point of de-

parture for the entire measurement process. Fre-

quently we tend to lose perspective in regard to

what we are measuring, or what the measurements
mean, particularly if we concentrate on routine

procedures or are remote to the actual measure-
ment.

TYPICAL PROCESS PARAMETERS CLASS ADJTDL.

NOMINAL UNCERTAINTY S O. OF SINGLE SINGLE MEAS CLASS CLASS

VALUE (SYS ERROR)

OF STD.VALUE

MEAS. PROCESS

UNCERTAINTY*

M

(mg)
S

(mg)

10 g .0087mg .0074mg .031mg .074

5g .0050 .004 .017 .054

ig .0047 .004 .017 .054

500mg .0024 .0007 .005
1

.025

100mg .0009 .0007 .003 JOlO .025

10 mg .0008 .0007 .003 .010 .014

*3 S.D.+ SYS. ERROR

The Class M and Class S adjustment tolerance
limits for selected weights are shown in the two
right hand columns. The uncertainty associated
with the stated value for standards of the same
nominal value is shown in the 2d column and the

precision for a single measurement is shown in

the 3d column. If one tries to establish the com-
pliance with Class M adjustment tolerances by
a single weighing against a known standard, the

uncertainty of the process would be as shown in

the 4th column. This uncertainty, compared with

the quantity we are trying to detect, is such that in
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the first 4 cases the measurement uncertainty is

a large fraction of the tolerance so that only those
items well inside of tolerance have a good chance
of being passed. A measurement procedure more
sophisticated than a single comparison with a
known standard may be desirable.

TYPICAL PROCESS PARAMETERS CLASS ADJTOL

NOMINiU. UNCERTAINTY OF S.D. OF SINGLE MEAS. CUSS aAss

VALUE CLASS M SINGLE PROCESS s S-l

(WITHIN TOD MEAS. UNCERTAINTY (mg) (mg)

10 g .050 .0074 .072 .18

5g .034 .004 .048 .18

ig .034 .004 .048 .10

500mq .010 .0007 .012 X25 .08

100mg .010 .0007 .012 .025 .05

10 mg .010 .0007 .012 -ll4l .03

We would be in greater difficulties if we were to

try to establish compliance with Class S adjustment
tolerances in the same manner with reference to

Class M standards, which are known only to be
within the Class M tolerance limits. In 4 of the 6
examples, the process uncertainty is of the same
order of magnitude as the quantity we are trying
to check. These examples illustrate the necessity
for a careful evaluation before venturing a commit-
ment on the performance of a particular measure-
ment process.

The Unit of Mass

By practically universal agreement, the mass of
the International Prototype Kilogram is the basic

unit for mass measurement. It is a particular

object, defined to have an exact invariant mass of

one kilogram, that is to say, the true value is one
kilogram. The volume and the coefficient of volu-

metric expansion are necessary to determine the

best estimate of the true value of other objects

compared with this standard.

With the unit defined, we can logically construct
a true value scale which has the property that some
point on the scale will correspond to the mass of
any chosen object. We call the major subdivisions
of this scale nominal values. Other customary
units, such as the pound, are not ambiguous if they
have an exact definition relative to the basic unit.

An intermediate point on the scale can be described
either relative to the whole scale, as for example,
9.995 grams, or relative to the closest nominal
value, in which case the point would be described
as 10 grams minus 5 milligrams. The minus 5
milligrams may be called a correction or error,

depending on one’s viewpoint. The use of a nom-
inal value and a correction is often convenient in

computations, however, the word “correction”,
or “error”, overly emphasizes the importance of
the nominal value. Interpretation of tolerance
limits on the value of the standard as the error
automatically disregards the primary benefits of

a good calibration. Only an ideal measurement
method or process can produce true values of

multiples and subdivisions of the basic unit which
will exactly coincide with nominal values on the
true value scale. It should be emphasized that,

from a measurement standpoint, adjustment to

nearly coincide with a nominal value is necessary
only to assure an “on scale” condition when inter-

comparing equal nominal summations.
In our previous example, we elected to interpret

the adjustment tolerance hmits associated with

our Class M set as the uncertainty of the value.

While this may be appropriate with respect to the

nominal value, such an interpretation raised serious

doubts as to our ability to test the Class S weight

set. If we had used the actual value and its un-

certainty as a basis for our tests, the doubt essen-

tially disappears. With minor modification at the

10 g level, the uncertainty of the values estafilished

for the Class S weights by our single measurement
is clearly suitable for the task at hand. It must be

emphasized that our apparent increase in measure-
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TYPICAL PROCESS PARAMETERS CLASS AOiTOL

NOMIN&l. UNCERTAINTY S.D.0F SINGLE SINGLE MEAS. CLASS CLASS

VALUE (SYS. ERROR)

OF STO VALUE

MEAS. PROCESS

UNCERTAINTY*

S

(mg)

S-l

(mg)

lOg .0087 mg .0074 mg .031 mg .18

5g .0050 .004 .017 .054 .18

<g OOAT .004 .017 .054 .10

SOOmg .0024 .0007 .005 .025 .08

100 mg .0009 .0007 .003 .025 .05

10 mg .0008 .0007 003 .014 .03

*3 S.O. + SYS. ERROR

ment capability did not require any change in our

process hardware. It has been achieved, for the

most part, by a change in philosophy.

UNCiJiTAWjy /y valuewr ks R0.20

Our access to the true value scale as established

by the international standard is through prototype

kilogram number 20. The estimated true value of

number 20 is 1 kilogram minus 19 micrograms,

based on several measurements. We can construct

an accessible true value scale by setting off from

the value of kg 20 an amount equal to the correc-

tion. Practically, the stated value is assumed to be

exact, the uncertainty of the value introducing

only a slight systematic error in our reconstructed

scale.

By comparing other objects with kilogram 20,

either singly or in combination, we can assign

values relative to our accessible scale. A sufficient

number of well calibrated standards which can be

intercompared, and which may occasionally be

compared with our prototype standard, serve to

maintain our scale with perhaps a greater precision

than was available in the starting measurements.
All mass values on NBS Reports of Calibration are

with reference to a minimum number of selected

mass standards. For example, practically all sets

TRUE VALUE OR IDEAL SCALE

of metric weights are calibrated with reference to

a pair of 1 kg or a pair of 200 g or a pair of 100 g
weights. The national reference standards group

does not include weights of all denominations.

Measurement Method

a
s .TS. MEASUREMENTJyiETHOD

.Sr

r.'s'-s

CONCEPT
PHYSICAL LAWS
INSTRUMENTS
STANDARDS
OPERATORS
PROCEDURES
ENVIRONMENT
COMPUTATION

PERFORMANCC PARAMETERS

A practical measurement method is easy to vis-

uabze in the form of a broad outbne of the elements

of the method such as, the concept of the quantity

to be measured, pertinent physical laws, various

instruments, standards, the operators, procedures

to be used, the environment in which the measure-
ments are to be made, the computations which are

to be made, and a means of estabhshing some
parameters of performance. As we briefly review

some of these elements, we will find that every

mass measurement facility has many things in

common.
Mass is an inertial property of an object, which,

within the framework in which our measurements
apply, is considered to be proportional to the

amount of material. Mass is generally thought of

as being measured through some application of



F - ATTRACTIVE FORCE
m,.m2- MASS OF BODIES

r - DISTANCE BETIEEH C.C.'s

G - UNIVERSAL CONSTANT

Newton’s law of gravitational attraction, however,
it is perhaps more precise to say that measurements
are made by comparing the forces attracting sus-

pended bodies toward the earth— that is the net

vertical forces including the effects of G, air

buoyancy, rotation of the earth, etc.

variety of requirements. Modern computation
equipment ranging from desk calculator to elec-

tronic computer are now widely available so that

laborious long hand computations are no longer

necessary.

The environment in which the measurements are

made does not vary substantially between calibra-

tion facilities. Weighing rooms are almost uni-

versally clean, with restricted access, and relatively

free of vibration. With the possible exception of

freedom from vibration, these desirable features are

easily obtained.

People operate the equipment, following pre-

scribed procedures. Operator skill increases with
practice, and in time, operators in a given group
approach a uniform level of skill.

Each comparison, or weighing, consists of a se-

quence of operations, more or less formalized.

Detailed procedures and weighing designs, ranging
from simple to complex, are available for a wide

2^.4-

44%
751 AZ

•iwmmoM vocMMc
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While perhaps not generally considered so,

analysis is a part of the measurement method.
Whether done by machine . . .

. . . or by hand, the analysis verifies that such

parameters continue to be applicable.

IRBME
"

INSTRUMENT

STANDARDS

PROCEDURES

OPERATOR

ENVIRONMENT

COMPUTATION

ANALYSIS

. Al

. 200|,2002,IOO|

. CLEAN A WEIGH

USING 52- 1 SERIES

. P. CRONE

. ROOM I, SOUTH

. COMPUTER PROGRAM

. F-TEST,t-TEST

A particular measurement method is like a

specification for a particular measurement. The
specific instrument, the standards to be used, the

specific operations to be performed and the planned
sequence in which they are to be carried out, the

operator, the location, and the method of computa-
tion and analysis, collectively define a particular

measurement method. Until the measurement has
actually been made and analyzed, the performance
is only “on paper” and therefore ideal.

A MEASUREMENT PROCESS

PRODUCES:

I .A USEFUL

MEASURED VALUE

2. AN ESTIMATE OF

UNCERTAINTY FOR

THAT VALUE

A measurement process involves the actual

physical operation of the specified equipment fol-

lowing the procedures as closely as possible. It

is subject to the many variations that can and do
occur during the operation. The end result is an

estimated best value, which, in order to be useful,

must be accompanied by the uncertainty with ref-

erence to known performance parameters.

Changes in any one or in a group of elements of

the method constitutes, in effect, a different par-

ticular method and a different process which will

in turn produce a different result and a different un-

certainty. Small changes can make the difference

between a useful value or a wasted effort.

Because we must establish the mass of the object
in question by measuring the mass difference be-

tween it and some known standard, the comparator
is a vital element in the process. The inherent
ch£U'acteristic of the comparator is precision — not

accuracy. The fundamental question is whether
the indicated difference is really a mass difference,

or an indication of some other variability. While
we may be able to identify large sources of vari-

ability, in the limit, we cannot differentiate between
instrument precision, variability from extraneous
sources, or variability of the standard.

K-6



We start by determining the indicated difference

between two objects that are nearly alike.

OBSERVATION EQUATIONS

I, -I2 a, (i = 1.2 n)

o

From our first comparison, it appears that the

round knob weight on the left is clearly heavier

than the flat knob weight by one sc2ile division. If

we stop here, we would simply state the value of

one object in terms of another, however, we have no

way of knowing the uncertainty to associate with

this value.

OBSERVATION EQUATIONS

'1
-

12 * 0,

If we repeat the comparison at some other time,

we are quite likely to obtain a different result.

This raises a serious question — which of the two
results is correct?

We repeat the comparison again . . .

. . . and again. Now there are four different

values, none of which alone can be considered

the best measure of the difference, but considered

as a group they can tell us something about the

OBSERVATION EQUATIONS

I. - U -n. fl:

OBSERVATION EQUATIONS

l| “ I? Ql

instrument. Continuing to record the indicated

difference between two similar objects, and pref-

erably making the comparisons in the environment
in which the instrument is to be used, a plot is made
against time of the differences which may look like

this.

WDICATIOIIS FROM REPEATED OBSERVATIONS

K-7
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The first plot indicates a severe rounding off,

which may be from several causes. Such a re-

sponse clearly lacks the appearance of randomness.
The second plot at least appears to be random.
The third plot, while perhaps appearing to be

random, obviously lacks the precision of the sec-

ond plot. The range of the differences as plotted

gives us an idea of the smallest mass difference

that can be detected with assurance, and is ob-

viously related to the requirements our measure-
ments must meet. Repeated independent meas-
urements of the same mass difference are essential

to the evaluation of the instrument.

direct reading device, requires linearity only in the

neighborhood of the actual load.

PROBLEMr

V OBSERVED DIFFERENCES
\ TO MASS DIFFERENCES

METHOD:

REASONABLY CONTINUOUS RESPONSE

*••••

••
CO »

THIS
...•••

•••

TIME— -.•••

NOT
,

THIS I

I

*••••

The operator, or manufacturer, must search for

cause and effect until repeated indications for the

same load, or differences are reasonably con-
sistent. Effects which are periodic in nature, but
with a period significantly longer than the period
of the instrument, can be minimized in the design
of the weighing method.
One additional requirement, generally beyond

the control of the operator, is that of linearity. An
instrument, used as a comparator rather than a

\ 1. SUBSTITUTION
\ 2. TRANSPOSITION

\ 3/^DIRECT READING^^

The problem of establishing the correspondence

between observed differences and mass differ-

ences is a part of the weighing method. The first

two methods, substitution and transposition, are

comparative methods. That is to say, the method
requires observations relative to a suitable stand-

ard along with the unknown. With these methods,

the measurement equipment need be continuous

only over the time interval required for making a

group of observations and linear only over the range

of the difference between the standard and the un-

known. Most direct reading equipment is in a

sense a substitute standard, that is. at some point

in time it is calibrated with reference to a stand-

ard, and from that point until recalibration, it is

generally assumed to have a long term constancy
approaching that of the standard. Most mass
measurement equipment can be used either way.

The smallest uncertainties invariably will be asso-

ciated with the comparative mode of operation.

Weighing Method

REASONABLY LINEAR IN THE
NEIGHBORHOOD OF THE LOAD

SUBSTITUTION METHOD

K -8



To illustrate the principle, the double substitu-

tion method is performed as follows: We start with

a simulated equal arm balance, a tare weight —
the white cylinder near the base of the balance,

a sensitivity weight of known value immediately
in front of the dark weight near the center, and two
nearly equal brass weights, one with a flat knob in

the center and one with a round knob on the left.

The scale indication is in arbitrary numbers and
the tare weight is necessary to establish an “on
scale” condition.

(DA— 0|

The first observation is that produced with the

round knob weight on the pan.

(I) A— 0,

The second observation is that produced with
the flat knob weight, which might be a standard,
replacing, or substituted for, the round knob
weight.

The third observation is that produced by re-

peating the previous step and adding the sensitivity

weight to the pan load.

(DA—0|

^ The fourth observation is a repetition of the
first step including the sensitivity weight.

"aH2M4)-(3)^

-(^^0^0^

!

5+m-B^K

m£kK(Os -O2)
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Using the requirement for continuity, a relation

can be established for A minus B from the average

of the two sets of differences as shown. Using the

linearity requirement, the constant of proportional-

ity K, or the mass value of the indicating scale

division can be determined from the second and
third observation. Finally, the difference A minus
B is expressed as a function of the observations,

in ratio form and the value of the sensitivity

weight.

All usueil methods result in very similar relations

expressing the difference between two objects

being compared. In all cases, A minus B is ex-

pressed as a ratio between sets of observations

multiplied by the value of the sensitivity weight.

Obviously requirements for knowledge of the value

of M are minimized when the size of the ratio in-

volving the observation is smaU. The constant of

proportionality, K, is reedly the ratio in front of

the bracket terms which we call the vfdue of the

division. The strange equal sign is used to indi-

cate that the relations shown are observational

equations and not mathematical identities.

With the measurement method agreed upon, let

us now discuss its performance — we put it into

production and see how it works out as a measure-

ment process.

Measurement as a Process

^ MEASUREMENT
PROCESS

OUTPUT MEASUREMENT

PROCESS AV6 LIMITING MEAN

VARIABILITY PRECISION

BIAS SYSTEMATIC ERROR

PROCESS LIHITS..UNCERTAiNTy or

ACCURACY

A measurement process is essentially a produc-

tion process, the “product” being numbers, that

is, the measurements. A characteristic of a meas-
urement process is that repeated measurements of

the same thing result in a series of non-identical

numbers. To specify a measurement process in-

volves ascertaining the limiting mean of the proc-

ess; its variability due to random imperfections in

the behavior of the system, that is, its precision;

possible extent of systematic errors from known
sources, or bias; and overall bmits to the uncer-

tainty of independent measurements.

H- 10



The chart shows measurements on a 200 g weight,

plotted in the order in which they were taken.

Despite the presence of one or two stragglers, the

measurements tend to cluster around the central

line — the process average or limiting mean. Our
confidence that the process has settled down to a

single limiting mean is strengthened as the length

of the record is increased. We may have satisfied

ourselves regarding the mean but what about the

next measurement?

WHERE WILL THE NEXT MEASUREMENT FALL?

O'
E-22

(DATA ON 200g STANDARD)

NOW

•

. 18
-

independent MEASURE-

MENTS FROM A WIDE
VARIETY OF WEIGHING

CONDITIONS

FAIRLY CERTAIN THAT

NEXT VALUE WILL FALL

IN THIS INTERVAL

It seems clear that we cannot give an exact

answer but will have to content ourselves with a

statement that allows for the scatter of the results.

Our goeil is to make a statement with respect to a

new measurement that is independent of all those

that have gone before. As indicated in the chart,

if we had a sufficiently long record of measurements
we could set limits within which we were fairly

certain that the next measurement would lie. Such
a statement should be based on a collection of

independent determinations, each one similar in

character to the new observation, that is to say, so

that each observation of the collection and also the

new observation can be considered as random draw-

ings from the same probability distribution. These
conditions will be satisfied if the collection of points

is independent, that is free of patterns, trends and
so forth: and provided it is from a sufficiently broad

set of environmental and operating conditions to

allow all the random effects to which the process is

subject, to have a chance to exert their influence on
the variability. Suitable collections of data can be

obtained by incorporating an appropriate measure-

ment into daily routine weighing procedures, for

example, a daily measurement of the difference

between two laboratory weights, or in the regular

calibration of the same weight.

If the measurements tend to cluster when taken

close together in time, like the results shown on the

chart, some systematic effect is present and cer-

tainly the results are not independent. This may

be due to some as yet undetermined cause, and the

group means may have the appearance of random-
ness of the previous chart.

CONTROL LIMITS BASED ON GROUP VARIABILITY

The group means mav tend to a limit and the

process may have all the properties of a good meas-
urement system, once the allowance is made for

the grouping. It is important that grouping be
properly handled in determining the precision of

the process. By modifying the process or changing
the schedule of measurements to give the effect

of independent measurements, we can arrive at a

situation like the values on the 200 g standard.

The shaded band is meant to suggest a limit, not

an artistic slide.

From a study of a sequence of such independent
measurements, we can use control chart techniques
to set up limits within which the next value should

lie. In the case where we have an extremely long

sequence, a bar, as illustrated in the chart, can be
marked off on either side of the mean so that some
suitable fraction, say 99 percent, of the observations

are within the interval represented by its length.

K -11



PREDICTION FOR NEH POINT REATIVE

OF THE LIMITING MEAN N0Sr(99%) OF THE TIME

'ttt<^ -riir ur«i nAitrr miiiit ahi lur

" c:E2ifs¥
i-fc

^ •

fITH JOST THE MEWPOINT.fHAT CAN WE SAY

jH£ j^IHUING mean ? ^

w.a • • To - 'Jr •

•• , / V ' P
• •

I S ^41-^^FOR MOST«9%)flFiEll(EASUREHEIlTS.

f
-

. . Wn-L BE WITHIN BAR lEMCTH OFTHE POINT
>*

We can reverse the process and say that the prob-

ability is 99 percent, that the true value, or limiting

mean, will not be more than the width of the bar

from any observation chosen at random. This
will be true of the next observation as well, provided

it is an independent measurement from the same
process. The probability statement attaches to the

sequence of such statements. For each individual

new observation the statement is either true or

false but in the long run 99 percent of such state-

ments will be true.

Assuming that the limits on the chart are based on
large numbers of observations, we would find that

very nearly the intended percentage of all such
bars, centered on the observed values, would in

fact overlap the mean. Only in those cases, such
as the points in the area outside of the control

limits, will the bar fail to overlap the mean. This

is expected in only 1 percent of the cases. More
frequent occurrence is a clear indication of either

loss of control or that the limits were not properly

set. Once we are satisfied that the process has a

limiting mean value and is stable enough to permit

prediction we turn our attention to evaluating its

precision.

Process Precision

Let us now take a look at the situation in weighing
to see what is involved in the study of the precision
of the process.

OBSERVATION EQUATIONS

A characteristic of a measurement process is

that it produces non-identical results. In our
previous charts we had measurements of a 200 g
weight, here are shown four measurements of the
difference in mass. Through the redundancy —
here 3 extra measurements — we get our grip on
precision. In weight calibration we do not rely

on repeated measurements of the same quantity
but achieve the same result in another way.
When we intercompare four objects, for example,

four 1-kg standards, we could use six observations.
Weight S is compared with A for Ci, S with B for

02 and so on. If S were a standard and the rest



THIS NOTATION MEANS

COMBINATIONS OF FOUR OBJECTS

1ST iV£/GH/A/G

2m W£/GH/NG

OBSj-CALCj

OBS2-CALC2 = 0^
// /

// // // //

n TH WG/GH/A/G OBS^ -CAL d;^

S /S AM ESTIMATE Of cr, T/TE
LONG-RUN STANDARD DEI//AT/ON

unknowns, we again have 3 more measurements known weights do. (The quantity. A, is the number
than we need and these serve to tell us of the pre- of unknowns in the system.)
cision of the process.

s A B

+ -
l
-fS-A:Q:2.0 UNITS

+ - a2-^S-B:£l:3.0UNITS

+ - units

IF OBSERVATIONS WERE EXACT.

A-B
WOULD EQUAL 1.0

STANDARD DEVIATION ON A-

^.03 r

BALANCE AT 200g LOAD

LIMIT VALUE FOR THE STANDARD DEVIATION

/

A simple example, using only three of the observa-

tions of the previous series, with S as the standard,

A as the unknown, and B as the check standard,

might give rise to the values shown. If everything

were perfect, all equations representing the weigh-

ings would be satisfied exactly. Their lack of

agreement would give a measure of the variability.

In general, for such weighing, there will be a

discrepancy between the observed value and the

best value calculated from the data, ‘‘best" meaning
in most cases the value obtained in the method of

least squares. If all is going well, none of these

deviations will be too large, and also certain combi-

nations of them, such as the sum of the squares,

will also be well behaved. For statistical analysis

the standard deviation, 5, is used as the measure
for describing variabihty. The quantity, S, is a

function of the observational errors and will change
with each set of data just as the values for the un-

If the process is in a state of control these values

of 5 will scatter about some value which is the true

or long run standard deviation of the process.

SHOULD PRECISION ESTIMATE BE BASED ON TODAY'S

_ VALUE OF STANDARD DEVIATION?

I'.os

.02

.011-

lEiCHINCS lORSEONTHISOAYp

-4..^
t - • • _ •• ^

• /
• /• •
• • z

WERE WEIGHINGS BETTER ON THIS DAY?
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The argument that the uncertainty should be
based on the internal agreement of today’s values

on the grounds that each day is unique or that

weighing conditions are better on one day than on
another may well be true. However, it will be
expensive to make enough measurements on a given

day to be sure that the variability has indeed
changed from its long run average or to provide a

reliable enough value to represent today’s results.

If the process did not change, using today’s value

would be analogous to keeping the last value of a

sequence rather than using the mean represented
by the dotted line. It is a sign that weighing con-

ditions are not being reproduced, i.e., that the

process is not in control if the standard deviation

does not stay within predicted limits. Lei us now
look again at the check standard.

Process Mean

PROCESS IN CONTROL CHECK
ON A 200 g STANDARD

ACCEPTED VALUE

Each value obtained for the check standard serves

not only a check on the process mean, but also can
be used for evaluating the process variability. The
same check standard, perhaps one of a group re-

served for this purpose, is used consecutively in a

given procedure until many independent values are

obtained.

The importance of randomness cannot be over-

emphasized. As the collection of independent
measurements on the check standard grows, it

must be continually re-evaluated with reference to

predicting the band within which the next point will

lie. Slow drifts or sharp discontinuities are cause
for concern until corrected, or satisfactorily ex-

plained.

If vedues return to normal after cleaning, one can
rest easy, knowing the process is behaving properly.

Indication of permanent changes are sometimes
harder to explain, and even the most careful lab-

oratories must occasionally repeat measurements
because of troubles with foreign material adhering to

or falling off the standard. If the new mean value

persists over a sufficient number of measurements.

it is proper to assume the standard has changed
for some reason.

Process Control

C/>

CO

.20

.18

• • • •

.
“ •'.: •.•••
• • •

.02
-

t

.01
-

• •

• •• • • •

•• , .A ^

TODAY’S VALUE

OF THE STANDARD

MUST BE IN CONTROL

AND

STANDARD

DEVIATION

MUST BE

IN CONTROL
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A check on just the value of the standard or just

the precision is not enough. It turns out that the

value for the precision and the value for the check
standard are generally independent, that is, when
s is small the deviation of the value determined for

the check standard from the accepted value is

equally often big and small. For control we need
both conditions.

200g STANDARD CORRECTION

k-

For a given set of observations the precision must
be proper as shown on vertical scale and we must
have a check on a known weight to establish that

the limiting mean has not changed as shown on
horizontal scale. Until these conditions are ful-

filled, we cannot be sure exactly what it is that we
are measuring. These are necessary conditions,

and in perhaps most cases, also sufficient condi-

tions to proclaim that the measurement process is

in a state of control, as indicated by points within

the central rectangle.

Because the check on the standard is spread over

a considerable time interval, the variability will

include the proper diversity of environmental and
other factors and the sequence will, in the absence
of seasonal or other systematic trouble, approximate
a sequence of independent values. If the weighing
conditions are reproducible, then the daily standard
deviation, s, and the variability as computed from
the values of the check standard will be in agree-

ment, i.e., the long run average of the variability

as estimated from the control chart on the standard
deviation should approach the corresponding value
from the control chart based on the variability of

the values of the check standard. Frequently, one
is not in as good a shape as that indicated on the

slide. When the measurements are spread out in

time or space, an additional component of variation

enters so that the lower chart gives an overly opti-

mistic view of the process. A realistic estimate of

process variability has to be based on that from the

upper chart which reflects the total variation to

which the measurements are subject. One would
still use the within occasion variability for check-
ing on control of the process, of course.

DETERMINING THE Mass OF AN;
OBJECT AND THE ASSOCIATED
UNCERTAINTY IS A CAUBRATION.

If in calibration we could measure the difference

between the standard and the unknown again and
again we could make an uncertainty statement

similar to those just discussed for the case of

measurements of a fixed difference, but in fact, we
cannot routinely make enough measurements of

this type to permit reliable estimates of the un-

certainties.

Process Parameters and Uncertainty

of Calibration

If we could be sure that our measurements of the

difference between the unknown and the standard

came from a process in a state of statistical con-

trol, that is to say a stable process with a known
variability, then we could transfer the properties

of the process to the individual measurement and

be correct a stated percentage of the time.
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THE MEASUREMENT
PROCESS REMAINS

,
AND

IS, IN A SENSE , A CAPITAL
INVESTMENT.

THE MEASUREMENTS

,

LIKE PRODUCTS , PASS ON
TO OTHER DESTINATIONS.

All who weigh, or make other measurements,
should concentrate on the properties of the meas-
urement process — the degree to which the process

re-creates the same value for its standards and
exhibits the same level of variability. These are

the properties that remain. The weights that are

calibrated pass on to other destinations.

"'•f- i^andom

ERROR

LIMIT

^"CALimTIO

LABAtiy 3Sa

CABB^ 3Sb

S.Sa and Sb can be nearly equal, if so, then lab a and

LAB B CAN CALIBRATE THIER OWN SET FROM SELECTED

STANDARD WEIGHTS

At every stage in the extension of a measurement
unit from an accepted standard to the ultimate user,

there are three items of interest — a standard item,

or items, with announced values and associated un-

certainty, an assembly of equipment and procedures
necessary for making the necessary comparisons,
and the items which must be measured to accom-
plish some useful task. The uncertainty of the

values established for the user are of paramount im-

portance. This uncertainty has two components —
one associated with the value of the starting stand-

ard and one reflecting the contribution of the local

measurement process. The total uncertainty at

any particular place becomes the systematic error

for those who must use the service provided.

row lockbuzhcalifouxa cotpjjn
rjuaix. c.u.iPOiur]A

ITD nr OT HaftS STaMIUMM lOKC TD 10 OUlUaTB) BT C
ITR. SO L*L ID. 7B1163
STaTID OOSm lOtO TO 10 T.S9 0 CX3 aT WOC

faSUMCTOI, D.C. TOiyi

Any report of calibration or report of test must
state a realistic uncertainty based on actual process

performance. All of the pertinent data must be
included so that the local processes can minimize
the introduction of additional systematic errors.

The random component of the uncertainty is a func-

tion of the measurement effort in the local process,

reflecting the actual performance of that particular

measurement process.

There is no substitute for the evidence provided
by the repeated calibration of the same object,

over an extended time period, in demonstrating
what the measurement process can do. These
measurements should be independent repetitions,

made under all the diversity of condition by which
the method is affected so as to represent the set of

conditions to which we wish our prediction to apply.
The internally based precision estimate is applicable
only to a narrower range of conditions, and it is

only when the measurement conditions are highly
reproducible that the two estimates of precision

become equal.

H-16



The routine calibration of one of the laboratory's

weights, used as check standard, tells us what the

process can do — it is not just a simulation of the

calibration process — it is the real thing— without the

need for any assumptions. It provides the basis for

the precision statement or gives us a check on any
internally based statement. We can say to our
clients: “If we calibrate your weight a large number
of times the results would look like those on the

chart. We did it only once so that your value is

like one of these points. Which one, we cannot say

but we are fairly certain that it is within the in-

dicated uncertainty.”
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SURVEILLANCE TEST

PROCEDURES

H . E . Aimer

Abstract

Surveillance tests are designed to monitor the values of

mass standards between calibrations. T\i70 types are
described; both consist of comparisons of the weights of an
ordered set of mass standards with each other. The

differences found are compared with those computed from the

reported mass values. Surveillance limits based on the

precision of both the calibration and the surveillance test

processes are computed. These limits are estimates of the

departure of the measured differences from the expected, or
predicted, differences as computed from the reported values.
A larger change is considered significant. Additional
measurements to identify individual weights which have
changed are required when a given comparison indicates that
the mass of one or more of the weights involved has changed.
Buoyancy corrections are used to correct for the difference
in the buoyant effect on weights of differing densities.
Records document the surveillance test results, and control
charts help detect trends. Judgments concerning
recalibration can be made based on the constancy of the
weights relative to the use requirements.

Key words: Apparent mass; buoyancy; buoyancy correction;
change; comparison; difference; mass; records;
set; surveillance limits; surveillance test;
test interval; true mass; value; weighing
design; weights.
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1 . INTRODUCTION

Surveillance test procedures are designed to monitor the values of
mass standards between calibrations. This is important because
the problem of the continuing validity of the values contained in

the report of calibration is always present, and especially so for
those who look to others for calibration service. Surveillance
test procedures, if properly implemented, so provide a means of
detecting gross changes as soon as possible with a minimum expend-
ture of time and effort.

Two types of surveillance tests are described. The first type,
designated Type I, uses a minimum number of measurements that in-
volve all of the weights in the set. The second type, designated
Type II, requires a larger number of measurements which are
grouped so that they are a series of 3-1' s weighing designs} This
method has some redundancy.

Included in the surveillance test procedures are methods of

identifying any weights whose mass values may have changed since
they were calibrated, and methods of correcting for the buoyant
effect of the atmosphere.

2. MEASUREMENT PROCEDURES

A surveillance test consists of a series of comparisons of the

weights of an ordered set of mass standards with each other,
according to an appropriate weighing design, and comparing the

differences in mass value found by these comparisons with those
computed from the values contained in the report of calibration

[1]*

*. Ideally a suitable known weight, other than one of the

weights in the set being tested, is used as the standard on which
the values found by the surveillance test are based. This also
establishes whether or not the whole .set has changed
proportionally. For sets where the largest weight is one
kilogram or less, the nominal value of the weight used as a

standard should be that of the largest weight in the set. For

example, a set whose largest weight is lOOg is being tested. For
this set, a lOOg weight v'hose mass value is knovm would be

suitable for use as a standard. For sets having weights greater

than one kilogram, a suitable one kilogram, weight may be used as

the standard. For sets in the avoirdupois system having weights
greater than one pound, a suitable one pound weight may be used
as the standard. Generally the uncertainty of the mass value of

a one kilogram, or a one pound standard, is less than the

uncertainty of the value of a larger standard.

^ A title given to the three intercomparisons of three objects

A, B, and C, namely the measurements of the differences A-B,

A-C, and B-C.

* Figures in brackets refer to similarly numbered references

at the end of this paper.



If a \^’eight of the suggested denomination is not available, a

suitable known weight of a different denomination, if available,

may be used to establish whether or not the whole set has

changed. The nominal value of this weight should be equal to

that of one of the larger weights in the set being tested, say

not less than 20g for a set beginning at lOOg, or less than lOOg

for a set beginning at 1kg. Where the weight used as the

standard has the same nominal value as the largest weight in the

test set, up to one kilogram, the comparison between the standard
and the largest weight of the set is a part of the surveillance
test vreighing design. Where the nominal value of the weight used
to establish whether the whole set has changed is not the same as

the largest weight of the test set, the comparison between it and

the corresponding weight of the test set is a side measurement
and not a part of the surveillance test weighing design.

Wliere a suitable kno^^m weight, other than the v;eights in the set

being tested, is not available, the usual procedure is to base
the values found by the surveillance test on the largest weight
of the set under test, up to one kilogram. Weights larger than
one kilogram may be based on the largest weight of the set. The
weighings may be made by either the substitution or the

transposition method of weighing [2].

In general, the capacities of the balances selected for surveil-
lance tests should be the smallest available that will accommo-
date the maximum load to be placed on it. For example, when
testing a set of vreights ranging from lOOg to Im.g, a balance
having a capacity of from lOOg to 200g would be used for loads
from lOOg to 20g, and a balance of 20g capacity for loads under
20g. If a balance of say Ig and 2g capacity were available, it

would be used for the fractional weights.

2.1 Tyne I Surveillance Test

In a type I surveillance test, the first measurement is

the comparison between the largest weight of the set and
a summation of the next smaller weights, from the set,
the sum of whose nominal values is equal to that of the
largest v;eight. The next comparison would be between a

selected weight from the summation, that is, the
summation used in the first comparison, and another
summation vrhose nom.inal value is equal to that of the
selected weight.

This procedure of selecting a weight from each summation
and comparing it with a summation of the next smaller
weights is repeated until all of the v/eights of the set

have been involved in a comparison. Any given comparison
should Involve the fewest weights that will permit all of

the weights of the set to be included in the chain of

com.parisons

.
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If a suitable weight having the same nominal value as the
largest weight of the set is available for use as a

standard, then the first comparison would be between this
weight and the largest weight of the set.

If, for example, a set of weights ranging from lOOg to
Img is to be tested using the Type I surveillance test
procedures where another lOOg weight is to be used as a
standard, the ratios of the weights to each other are 5,

3, 2, 1. The first comparison would be:

lOOg - SlOOg = ai

The second comparison would be:

lOOg - ElOOg = a2

where IlOOg = 50g + 30g + 20g

The third comparison would be:

20g - Z20g =

where J120g = lOg + 5g + 3g + 2g

This procedure is continued until all of the weights have
been compared.

In this example the last comparison vjould be:

3mg - Z3mg = a^^

where J^3mg = 2mg + Img.

The observed differences in mass values (ai,ao,....a )^ ^ n
found by these comparisons are compared with the accepted
differences, as computed from the reported values, to

determine the degree of agreement between the observed
and the accepted differences. If the agreement is within
the limits for surveillance (see section 3) any indicated
changes may be regarded as being Insignificant, and the

continuing validity of the reported values may be
assumed. If the agreement between the observed and the

accepted differences is not within the surveillance
limits, the indicated changes should be regarded as

significant, and the weights exhibiting a significant
change should be recalibrated. When the result of a

comparison indicates that one or more of the weights has

changed significantly, additional measurements are made

to identify the weight, or weights, that have changed.

I - 3



2.2 Type II Surveillance Test

In a Type II surveillance test, the measurements of the

first 3-1's weighing design series are between the

largest weight of the set, another weight of the same

nominal value, and a summation of the next smaller
weights from the set also having the same nominal value
as the largest weight of the set. The comparisons of the

next 3-1 ’s weighing would be between a selected weight
from the summation, used in the first 3-1's series, and

two other summations, of the next smaller weights, whose
nominal values are the same as that of the selected
weight. This procedure of selecting a weight from a

summation and comparing it with other summations of the

next smaller weights according to the 3-1's weighing
design is repeated until all of the weights of the set

have been involved in the com.parisons

.

For example, a set ranging from lOOg to Img is to be

tested using the Type II surveillance tost procedures,
where another lOOg weight^ is to be used as a standard.
The ratios of the weights to each other are 5, 3, 2, and
1. The first series according to the 3-1's v'eighing

design would be:

SlOOg - lOOg = ai

SlOOg - IlOOg = a 2

I

lOOg - ZlOOg = a 3

where SlOOg is the standard

lOOg is the lOOg of the set being tested

ZlOOg = 50g + 30g + 20g

If a suitable kno\xm lOOg weight is not available for use as a
standard, the first series according to the 3-1 's weighing design
v^ould be:

lOOg - lOOg' = ai

lOOg - ZlOOg - 32

lOOg'- ZlOOg 33

where

lOOg' is any lOOg weight, or a summation whose nominal value is
lOOg, used to fill the series ZlOOg = 50g + 30g + 20g. The other

series remain as indicated.
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The second series would be:

30g - ZBOgi » aj

30g - Z30g2 = ^2

Z30gj- Z30g2 = ag

where £30gi 20g + lOg

Z30g2 = 20g + 5g + 3g + 2g

This procedure is continued for each decade until all of the
weights in the set have been compared. Unless the set con-
tains an extra Img weight or another Img weight whose mass
value is known is available, the 3-1 *s weighing design cannot
be used for the last decade. Where the set has only one Img
weight and another is not available to fill the series, the

comparisons for the last decade are:

5mg - 3mg - 2mg = a^

3mg - 2mg - Img =

These two comparisons are treated as the comparisons in Type
I surveillance test. Where the set has two Img weights, or
another Img weight whose value is known, is available, the

last series is:

3mg - I3mgj “ a

3mg - 2^3mg2 = a.

I3mgj- 23mg2 ** a

23mgj'= 2mg + Img

Z3mg2*= 2mg + B00

The lmg
2

may be either the second Img weight of the set or

another Img weight whose mass value is known.

If a weight other than one of the same denomination as the

largest weight in the set is used to establish whether or not

all the weights of the set have changed proportionately, then

some other known weight must be compared to a weight of the

set or (e.g. in this case) a known 30g is compared with the

30g of the set.

30g - S30g “ a

I- 5



If this difference agrees with the expected difference as

computed from the reported values of the two weights,
within the surveillance limit, (see section 3), and the

observed differences of the other comparisons are in
agreement with the predicted differences, it may be
assumed that the set as a whole has not changed
significantly

.

Because in most of the series used in a Type II

surveillance test one of the weights is part of both
summations used in a given series, the weighings are made
by the substitution method of weighing. For example, in

the series involving the 30g weight, Z30g^, and I30g2,

the 20g weight is part of both summations.

3. SURVEILLANCE LIMITS

3.1 Uncertainties of Each of the Summations from the Calibration
Process Known [l], [3]

Ideally the surveillance limits are calculated from the
standard deviations of the calibration process and
surveillance test process as follows:

si = U + 3a^ (1)
c d

where = uncertainty of calibration process

Oj = standard deviation of one weighing

of the surveillance test process

si = surveillance limit

3.2 Uncertainties for Individuals but not Summations from the
Calibration Process Known

Sometimes only the uncertainties associated with the mass
values of the weights, as reported in the Calibration
Report, are available for estimating the uncertainties of
the summations. In this situation, an approximate esti-
mate of the uncertainties is found by taking the square
root of the sura of the squares of the uncertainties of
the values of the weights in a given comparison [4].

I - 6



Suppose that the comparison is between a selected weight,

Wj
,
and a summation consisting of three weights, W2

,
and

,
whose nominal value is equal to that of the selected

weight, Wj. The uncertainty of each value is Uj
,

U2 , U3

and U4 respectively.

An approximate estimate of the uncertainty,
, for these

weights is:

Uc ^ ^ ^ ^4 (2)

where is the uncertainty of the calibration mass
measurement process and

Uj is the uncertainty for the individual weights
as reported on the Report of Calibration.

With this procedure, the expression for the surveillance
limit is:

si = + 3oj ( 3 )

where is the uncertainty as defined above, and

si and Ojj have the same meaning as in equation (l).

This process is equally applicable for any number of weights.

For most designs, this procedure gives a somewhat smaller
uncertainty than the uncertainties from the calibration
process.

3 . 2.1 Numerical Example

Assume that

certainties

the following weights and their

are involved in the comparison

Weight Uncertainty

lOOg 0,015

50g 0.011

30g 0.012

20g 0.010

associated

lOOg - i:ioog.

un-

1-7



Uc
= -^0.015^ + 0.011^ + 0.012^ + 0.010^

= yjo. 00025 + 0.000121 + 0.000144 + 0.0001

= y[o. 00059

= 0.024 mg

This is an approximate estimate of the uncertainty of the
calibration process for this comparison.

Now let us assume that the standard deviation of one
weighing of the surveillance test process is 0.015 mg.

Then the surveillance limit, si, is:

si = 0.024 + 3(0.015)

si = 0.024 + 0.045

= 0.069 mg

4. Identifying the Weights WTiich Have Changed

If, in any comparison, the observed difference differs from the

predicted value of the difference by more than the surveillance
limits for that comparison, the weight, or v^eights, that have
changed must be identified so that they can be recalibrated. The
identity of the weights that have changed may be established by
additional measurem.ents . In general, these additional
measurements are comparisons between the weights making up the

sum.m.ation that w’as compared with the selected weight.

Suppose, for example, that the observed difference of

20g - f20g = a

where 1^20g = lOg + 5g + 3g + 2g

differs from the predicted value of the difference by more than
the surveillance limits. Assume, also, that the observed
differences in the com.parison in which the 20g weight was a part
of the summation, lOOg - IlOOg, and the comparison in which the 2g
weight was the selected weight, 2g-Z2g, are in good agreement
with their predicted, or accepted, differences as computed from
the reported values. This indicates that neither the 20g weight
nor the 2g weight have changed significantly. The following
measurements are made and their results analyzed to identify the

v;eight, or weights, whose masses have changed:

1-8



lOg - (5g + 3g + 2g) = a’

5g - (3g + 2g) = a”

3g - ( 2 g + ] g) = a'
'

'

A.l Analysis of Measurement Results

If a' differs from the predicted value by more than the

surveillance limits and a'' and a’*' agree with the

predicted value within the surveillance limits, it is

probable that the lOg weight has changed. If both a’ and

a’* differ from the corresponding predicted values by

more than the surveillance limits by about the same

amount, numerically, but with opposite signs, and a’*'

agrees with the predicted value within the surveillance
limit, it is probable that the 5g weight has changed. If

a’ and a’’ differ from the corresponding predicted values
by markedly difference amounts which are greater than the

corresponding surveillance limits, and a''' agrees with
the corresponding predicted value within the surveillance

limit, it is probable that both the lOg and the 5g
weights have changed.

If a', a'', and a'** all differ from the corresponding
predicted values by more than the surveillance limits,
but by about the same amount, it is probable that the 3g
weight is the one that has changed. If a' and a'' differ
from the corresponding predicted values by about the same
amount, but a'*' differs from the corresponding predicted
value by a markedly different amount, it is probable that
both the 5g weight and the 3g weights have changed.

If the results of all three measurements differ from the
corresponding predicted values by more than the
corresponding surveillance limits, by markedly different
amounts, it is probable that all three weights have
changed and may require recalibration.

If all three (a', a’’, and a*’’) of the observed
differences are in good agreement with the predicted
differences, it is still possible that the weights in-
volved in either of the comparisons

lOOg - riOOg = ai or 2g - I2g = a
3

experienced compensating changes in mass, even though the

agreement between the observed differences and the

predicted differences were within the surveillance
limits. However, this is an unlikely situation. But, if

it does occur, the weights that have changed may be
identified in the manner described for the comparison
between the 20g and I 20g weights, as may the weights
involved in any measurements where the observed
difference does not agree with the predicted difference
within the surveillance limits.
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In any event, if it is determined that several weights of

a given set require recalibration (more than, say, three

or four weights in a lOOg to Img set, or more in a larger

set) the entire set should be recalibrated.

4.2 Numerical Example

The following numerical example, using difference

measurement 20g - I20g, discussed above, illustrates the

procedure.

The observed value of the difference:

20g - E20g «= -K).084mg

The predicted value is +0.052mg. The surveillance limit

is +0.028mg. The difference between the observed value

and the predicted value is:

+0.084mg - 0.052mg = 0.032mg

This difference exceeds the surveillance limits and

indicates that the mass of one or more of the weights

involved has changed. Three weighings were made to

determine which weight, or weights, have changed. The

results of these measurements are:

Observed Predicted
Value of Value of Surveillance

Observation Difference Difference Limit

a’ lOg - (5g + 3g + 2g) •=

a” 5g - (3g + 2g)

a' " 3g - (2g + Ig)

-0.025 mg -0.057 mg 0.024 mg

-0.065 mg -0.032 mg 0.018 mg

+0.031 mg +0.034 mg 0.015 mg

Examining these results, we find that the agreement
between the observed value and the predicted value for

a'*' is well within the surveillance limit, thus
virtually ruling out any change in the masses of the 3g
and 2g weights. But, the observed values for a* and a*’

do not agree with the predicted values within the

surveillance limits. Further, the observed values for

both a’ and a'* differ from the predicted values by about
the same amount, but with opposite signs.

For a' -0.025 - (-0.057) « +0.032 mg

For a*' -0.065 - (-0.032) = -0.033 mg

I - 10



Had it been only for a' that the observed value did not
agree with the predicted value, within the surveillance
Unit, it would be logical to conclude that the mass of
the lOg weight had changed. But, for both a* and a'',
the observed values of the differences do not agree with
the predicted values by about the same amount,
numerically, though with opposite signs. Therefore,
the conclusion is that the mass of the 5g weight has

changed because it is involved in both a' and a’*, while
the lOg weight is involved only in a’. Further, the 5g
weight is in opposed positions in the two equations.

5. BUOYANCY CORRECTIONS

Buoyancy corrections are used to account for the difference in

the buoyant effect of the air on weights of differing densities
[5]. In some instances it will be necessary to apply buoyancy
corrections to the measured differences between weights in sur-
veillance tests because the buoyant effect on the weights may
masV; real changes in their masses, or apparent changes in mass
may be indicated when there is no change. This is true whether
the computations of the results are made on the true mass or the
apparent mass basis. In general, the buoyancy corrections
computed on the true mass basis are numerically greater than
buoyancy corrections computed on the apparent mass basis when
weights having widely different densities are involved in a given
comparison.

It is always good practice to compute, at least roughly, the
magnitude of the correction to establish the order of magnitude
with reference to the uncertainty of the surveillance test
measurement [1]. If the correction is not significant, it can be
ignored

.

5.1 Buoyancy Corrections Computed on True Mass Basis

VsTien the results of the surveillance test weighings are
computed on the true mass basis, the expected differences
being computed from the reported mass (true mass) values,
the true mass buoyancy correction term, pAV, for the
measured difference may be derived from the weighing
equation for the difference between two v?eights.

I - 11



1

(M^ - pV^)g - (Mp - pVp)g = ag weighing equation (1)

where: and = the masses of weights C and D, respectively

and = the volumes of C and D, respectively, from
the Report of Calibration

p = air density when weighing was made

a = the indicated difference in mass units

g = acceleration of gravity

The derivation of the buoyancy correction term, pAV, for
the true mass difference between the two masses C and D
is

:

<”c
- p\)s weighing equation (1)

- PV^ - Mj, + pVp - a dividing by g (2)

- Mp = a + p(V^ - Vp) transposing and
collecting terms (3)

- hL = a + pW substituting AV

for (V^ - V^) (4)

It is better to use the form of the buoyancy correction term,

p (Vc - Vp) » equation (3) above when computing the buoyancy
correction because its sign is more readily apparent. The
following example illustrates this.

The measured difference, a, between 2g and r2g is

0 .0388mg

.

Weight Volume

2 g 0.2564 cm3 from Report of Calibration

1 g 0.12820 cm3 tl tl ft II

500 mg 0.03012 cm3 It tl It II

300 mg 0.01807 cm3 It It II M

200 mg 0.01205 cm3
ft tl tl II

I2g 0.1884 cm3

p = 1.17 mg/cra3

1-12



The true mass difference:

2g - L2g = +0.0388 + 1.17(0.2564 - 0.1884)

= +0.0388 + 0.0796 = +0.1184 mg

If volumes are not listed on the Report of Calibration,

they may be computed from:

Volume = Mass
Density

5.2 Buoyancy Corrections Computed on Apparent Mass Basis

VTien the results of the weighings are computed on the
apparent mass^ basis [5], the expected differences being
computed from the reported apparent mass values, the
apparent mass buoyancy correction term, ApAV, for the
measured differences may be derived from the expression
for finding the apparent mass when the true mass and the
volume are known.

n? ' - ^(''w
-

''r)
(5)

where

«w

apparent mass value of weight "W” versus the refer-

ence material (R)

mass (true mass) of weight "W"

density of normal air

volume of weight "W" at 20 ®C

volume of equivalent mass of the reference material
(R) at 20 “C

The derivation of the buoyancy correction term, ApAV, for the

apparent mass difference between the weights C and D is:

"'c
'
«c

-
^<''c

-
''b>

(6)

^<''d -
''b^

(7)

1 In the United States, the apparent mass is usually expressed as

apparent mass versus normal brass in normal air. Normal brass is

defined as brass having a density of 8.4 g/cm^ at 0 C and a co-

efficient of cubical expansion 0.000054 per degree C. Normal air

is defined as air having a density of 1.2 m.g/cm.^ at 20 "C.
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AM,

AM,

- n '
«C

- -
''b^

-
«D

^ -
''b>

- AMp = Me - Mj, - P„V(, + p/t,
+ P„Vp - P„V^,

a + P (Ve
- Vp) - P„(Ve - Vj,)

substituting a + P “ Vj^)

(see equation (3))

AM, AMjj - a + (P ~ P^) (Vj, - Vjj)

= a + ApAV substituting ApAV for

(0

where AM^ and AM^ = the apparent mass of weights C and D

and = the masses of weights C and D

V and Vp = the volumes of C and D, respectively,

from the Report of Calibration

= the volume of equivalent mass of

normal brass, the reference m.aterial

p = the air density when the weighing was
made

n
the density of normal air at 20 ®C.

( 9 )

combining terms (10)

( 11 )

It is better to use the form in equation (10) above when computing
the buoyancy correction term because its sign is more readily
apparent

.

The following example illustrates this:

The measured difference, a, between 2g and E2g is 0.0388 mg.

Weight Volume

2 g 0 .2564 cm ^ from Report of Calibration

1 g 0.12820 cm^
ft If It II

500 mg 0.03012 cm^
II It If II

300 mg 0.01807 cm^ ft II •• If

200 mg 0.01205 cm^
II II II II

12 g 0.1884 cm^ II 11 II 11

p = 1.17 mg/cm^

pj^= 1.20 mg/cm^

- lAI



The apparent mass difference

2g - I2g = + 0.0388 + (1.17 - 1.20)(0.2564 - 0.1884)

= + 0.0388 + (-0.03)(0.0680)

= + 0.0388 - 0.0020

= + 0.0368 mg

5.3 Application of Buoyancy Correction

The buoyancy correction terms derived above are correct
when the mass difference and the volume difference of the

weights are taken in the same direction. That is, if the
difference between the masses of weights C and D is taken
as - Mj) then their volume difference must be taken as

or the buoyancy correction w^ill have the wrong
sign.

If, when assigning a mass value to one of the two weights
being compared v^ith each other, the other weight being
used as the standard, a buoyancy correction is used, it

is essential that the correct sign be used for the

buoyancy correction term.

5.3.1 Buoyancy Correction Application for True Mass

Consider the relationship

C - D = a + p(V^ - Vp) (1)

If D is the standard then

C = a + p(V^ - V^) + D (2)

substituting for a, p, V
, and and D their values, we

get the true mass value or C, provided the true mass

value of D was used.

If C, the first v/eight in the difference, C - D, is the

standard (this is the situation in many weighing designs)

then

,

-D = a + p(V^ - ^

and
D = -a - p(V^ - + C (3)
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Substituting for a. p. V^, Vp and C their values, we get

the true mass value of D, provided the true mass value o.

C was used.

Note that the sign of the buoyancy correction term in (3)

above is minus. This application is illustrated on the

computation sheet for the 3“l*s weighing design.

5.3.2 Buoyancy Correction Application for Apparent Mass

Consider the relationship

C - D = a + (p - p )(V - V ) (4)
n L u

If D is the standard, then

C » a + (p - p )(V„ - V^) + D (5)
n L u

Substituting for a, p, p^^, V^, Vp, and D their values, we

get the apparent mass value of C, provided the apparent

mass value of D was used.

If C, the first v;eight in the difference, C - D, is the

standard (this is the situation in many weighing designs)
then.

-D - a + (p - P„)(V- - V^) - C
n L D

and

D = -a - (p - P„)(Vp - V ) + C (6)
n L D

Substituting for a, p, Pj^, V_, Vp and C their values, we
get the apparent mass value or D, provided the apparent
mass value of C was used.

Note that the sign of the buoyancy correction term in (6)

above is minus. This application is illustrated on the
computation sheets for the 3-1 *s weighing design as used
in the example for the Type II surveillance test (see

appendix 2)

.
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6. RECORDS

Records are an essential part of any measurement program. In a

surveillance test program, adequate records are necessary to

document the continuing validity of the reported mass values and
to realize the full value of the program. Such records may be
simple, or elaborate, as long as they contain the information
needed to document the claimed validity of the mass values. A
notebooV: or card file should be maintained containing a descrip-
tion of the test system. This should include a statement of the
procedures, a list of standards (if any) and weighing
instruments, test intervals, and a tabulation of the accumulated
results of tests. The records should also include the identity
of the weights, the expected, or predicted, values of the

differences measured as computed from the reported values, and

the surveillance limits. The calibration report should be an

integral part of the records. In addition, where the Type II

Surveillance Test is used, the estimate of the standard deviation

should be compared for each 3-1 's series, compared with the long

term estimate of the standard deviation and recorded. This

Information, combined vjith the original data sheets, forms an

adequate record. A large operation m.ay require a more elaborate

record keeping system.

Control charts [3] similar to the one illustrated on page 18 are

a useful addition to the surveillance test records. Control
charts show more readily than tabulations whether a trend in the

values of the differences being measured is developing. Such
trends, when detected, can signal the need for recalibration be-
fore the values of the mass standards become invalid.

7 .SURVEILLANCE TEST INTERVAL

The purpose of surveillance test procedures is to assure continu-
ing validity of the values contained in the calibration report
and to prevent, or at least minimize, the possibility of using
the weights as standards when their reported values are no longer
valid. But, when and how frequently should the surveillance test

procedures be used in order to achieve this goal? Because of the

many variables affecting the stability of the weights, such as

the type of weights, the use to which the weights are put, the

care they receive, etc., a categorical answer covering all situa-

tions cannot be given.
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SURVFILLANCE TEST
CONTROr. CHART

SET RANGE f lOOg - Ig

CALIBRATION TEST NO. NBS 200390
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The following suggestions, where they are applicable, may serve

as general guide lines for the use of surveillance tests and the

interval between surveillance tests.

1. Immediately upon the receipt of a newly calibrated

set of weights, comparisons should be made to verify

the values reported.

2. If this is a set for which no history exists, the

comparisons should be repeated monthly, or bimonthly

until the degree of stability of the weights has

been demonstrated.

3. Where sufficient information about a set of weights

has been developed to predict their performance with

some degree of certainty, this information may be

used in determining the interval between surveil-

lance tests.

4. If there has been an accident with the weights, such
as dropping them on the floor, at least the weights
involved in the accident should be given a surveil-
lance test before being used as standards to be sure
that their reported values are still valid.

5. If a facility performs a large number of calibra-
tions, its procedures should provide "built-in"
checks on standards and if the standards checked on
are part of the set in question, the information de-
veloped from these "built-in" checks can be used to

determine when a surveillance test is needed.

6. Where the number of calibrations performed is small,

the standards may be given a surveillance test just

prior to using the standards in the calibration of

other weights.
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APPENDIX I. WEIGHING DESIGNS FOR SURVEILLANCE TESTS

The weighing design used in a given surveillance test depends on
the range of the set and ratio of the weights in the set to each
other. Some suggested weighing designs for weight sets having 5,

3,2,1; 5, 2, 2,1 and 5,2,1,1,11 ratios are sho\>m for various
ranges. Other designs may be developed by using the principles
outlines in section 2 for situations where the suggested weighing
designs do not apply. The surveillance test weighing designs are
shown with metric units of mass. But with a given design,
customary units of mass can be substituted for the metric units,

provided the ratios of the weights to each other are the same in

both systems.



Weighing Designs for Type I Surveillance Test

Design 1

Set - Range: 1kg to Ing Ratio 5, 3, 2, 1

1kg - Slkg =

Slkg = Standard 1kg

1kg - Zlkg =

Zlkg = 500g + 300g + 200g

200g - Z200g =

Z200g = lOOg + 50g + 30g + 20g

20g - Z20g = aj^

Z20g = lOg + 5g + 3g + 2g

2g - Z2g = aj

Z2g “ Ig + 500mg + 300ing + 200mg

200mg - Z200ng = a
6

Z200ing = lOOmg + 50nig + 30mg + 20ing

20mg - Z20ng = a^

Z20ng = lOmg + Sng + 3ing + 2mg

3mg - Z3rag = a^

Z3ing = 2mg + Img

* If a known 1kg weight suitable for use as a standard is not
available, this "a" is omitted and 1kg - Zlkg becomes the
first "a”, 200g - Z200g = a^, 20g - Z20g = a^, etc.
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Design 2

Set - Range: lOOg to Img Ratio: 5, 3, 2, 1

lOOg - SlOOg = aj*

SlOOg = Standard lOOg Weight

lOOg - ZlOOg = a^

ZlOOg = 50g + 30g + 20g

20g - Z20g = ^3

Z20g = lOg + 5g + 3g + 2g

2g - Z2g = a^^

Z2g = Ig + SOOmg + 300mg + 200mg

200mg - Z200mg = ap

Z200mg = lOOmg + SOmg + 30mg + 20mg

20ing - Z20ing = a^

Z20ing = lOmg + 5mg + 3mg + 2mg

3mg - Z3mg =

3mg = 2ing + Img

For sets in which the smallest weight is Ig, the last "a” would
be

:

3g - Z3g = a

Z3g = 2g + Ig

* If a known lOOg weight suitable for use as a standard is not
available, this "a" is omitted and lOOg - ZlOOg becomes the

first "a", 20g - Z20g = a
2 , etc.
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Design 3

Set - Range: 1kg to Img Ratio: 5, 2, 2, 1

1kg - Slkg = aj*

Slkg = Standard 1kg Weight

1kg - Ilkg = ^2

Ilkg = 500g + 200gj + 200g2 + lOOg

lOOg - ZlOOg = a
3

ZlOOg = 50g + 20gj + 20g2 + lOg

lOg - ElOg = a^

ZlOg = 5g + 2gj + 2^2 Ig

Ig - Zlg = a^

Zlg = 500i?.g -! 20Cmgj + 20(hng
2
+ lOOmg

lOOmg - ZlOOmg = a^

ZlOOmg = SOmg + 20ingj + 20mgp + lOmg

lOmg - ZlOmg = ay

ZlOmg = 5mg + 2mgj + 2ing
2 + Ing

* If a knovTi 1kg weight suitable for use as a standard is not
available, this "a" is omitted and 1kg - Zlkg becomes the

first "a", and lOOg - ZlOOg = ay, lOg - ZlOg = 03 , etc.
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Design 4

Set - Range: lOOg - Img Ratio: 5, 2, 2, 1

lOOg - SlOOg = a^*

SlOOg = Standard lOOg Weight

lOOg - ZlOOg = a^

ZlOOg = 50g + 20g^ + 20g^ + lOg

lOg - ZlOg = a^

ZlOg = 5g + 2g^ + 2g^ + Ig

Ig - Zlg =

Zlg = 500mg + 200mg^ + 200mg^ + lOOmg

lOOmg - ZlOOmg =

ZlOOmg = 50mg + 20Tng^ + 20mg^ + lOmg

lOmg - ZlOmg = a
6

ZlOmg = 5mg + 2mg^ + 2mg^ + Img

For the set in which the smallest weight is Ig, the last "a"
would be

:

5g - Z5g = a

Z5g = 2gj + 2g2 + Ig

* If a known lOOg weight suitable for use as a standard is

not available, this "a" is omitted and lOOg - ZlOOg be-
comes the first "a", and lOg - ZlOg = a

2 , etc.
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Design 5

Set - Range; 30kg - Irag Ratio: 5, 3, 2 , 1

30kg - Z30kg = Sj

Z30kg = 20kg + 10kg

10kg - ZlOkg “ a2

nOkg *= 5kg + 3kg + 2kg

2kg - Z2kg ' a3

Z2kg = 1kg
j
+ lkg2

Ikgj- Zlkg = a^

Zlkg = 500g + 300g + 200g

200g - Z200g = a^

Z200g = lOOg + 50g + 30g + 20g

20g - Z20g = ag

Z20g «= lOg + 5g + 3g + 2g

2g - Z2g = a^

Z2g = Ig + SOOmg + 300iQg + 200ng

200nig ” Z200ing “ ag

Z200iiig = lOOmg + 50mg + 30mg + 20mg

20mg - Z20tng = a^

Z20mg = lOmg + Smg + 3ing + 2ing

2mg - Z2mg = a^Q

Z2ng = Img^ - lmg
2
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Weighing Designs for Type I Surveillance Tests

Design 6

Set - Range: lOOg - Img Ratio: 5, 2, 1, 1, Z1

lOOg - SlOOg

SlOOg

ai*

Standard lOOg weight

lOOg - IlOOg

ZlOOg

lOgi - IlOg

JlOg

Igl
-

ng

= 32

= 50g + 20g + lOgi 4- 10g2 + llOg

^3

= 5g + 2g + Ig^ + lg2 + Elg

= SOOmg + 200mg + lOOmgj^ + 100mg2 + ZlOOmg

lOOmgj - ZlOOmg = a^

llOOmg = 50ing + 20ing + lOmgj + 10mg2 + ElOmg

lOmgj - ZlOmg = a^

ZlOmg = 5mg + 2mg + Imgj + ling
2 + Img^

I'/hen comparing the unit of weight of a given decade of weights
with summation of smaller v;eights from a weight set in which the

ratio of the weights to each other 5, 2, 1, 1, 1, it is

necessary to include all of the set's weights smaller than the
unit weight to which summation is being compared. For example:
in the comparison lOOg - IlOOg, the ZlOOg includes all of the

weights in the set smaller than lOOg; and in the comparison lOg -

IlOg the IlOg includes all of the weights smaller than lOg and so

on

.

If a known lOOg weight suitable for use as a standard is

not available, this "a" is omitted and lOOg - TlOOg
becomes the first "a" and lOg - llOg = 32, etc.

I- 27



Weighing Designs for Type TI Surveillance Tests

Design 7

Set - Range: 1kg to Img Ratio: 5, 3, 2, 1

Series 1 Slkg - 1kg ^1*

Slkg - Elkg = a2

1kg - Elkg = ag

Slkg = Standard 1kg

Zlkg = 500g + 300g + 200g

Series 2 300g - noogi

300g - E300g2 =

I300gj - I300g2 =

i:300gi = 200g + lOOg

E300g2 = 200g + 50g + 30g

Series 3 30g - ^:30gj B

30g nog2 = a2

E30gi £30g2 = ^3

Z30gi = 20g + lOg

E30g2 = 20g + 5g + 3g + 2g

Series A 3g - I3gj = a^

3g - E3g2 “ a2

E3g2 ~ E 3g2 ~ a^

E3gi = 2g + Ig

E3g2 = 2g + 500mg + 300mg + 200ing
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Series 5

Series 6

Series 7

300mg - Z300mgj ^1

300mg

Z300mgj

- Z300mg2 = ^2

- Z300mg2 = a^

Z300mgj = 200ing + lOOmg

Z300mg2 = 200mg + 50mg + 30ing + 20ing

30ing - Z30ingj =

30nig - Z30mg2 = 3-2

Z30mgj - I30ing2 = ^3

Z30mg

j

= 20mg + lOmg

Z30mg2 = 20mg + 5mg + 3mg + 2mg

3mg -- ^3mg^ = ^1

3mg - Z3mg2 = 32

Z3mgj - Z3mg2 =

Z3mgj = 2mg + Imgi

Z3mg2 = 2mg + lmg2**

* If a known 1kg weight, suitable for use as a standard is not
available, any 1kg or Elkg may be used to fill the series.
Then the 1kg of the set is used as the standard and the first
series of measurements is:

1kg - 1kg' = aj

1kg - Zlkg = a
2

1kg' -Ilkg = a
3

where 1kg' is either the 1kg weight or the Zlkg used to complete
the series.

** The Imgp is extra Img weight used to fill the last series.
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Design 8

Series - Range: lOOg to Img Ratio: 5, 3, 2, 1

Series 1 SlOOg - lOOg “ aj*

SlOOg - ZlOOg = Si2

lOOg - IlOOg = a
3

ZlOOg = 50g + 30g + 20g

Series 2 30g - Z30gi = aj

30g - Z30g2 = 32

Z30gj — Z30g2 — 83

Z30gi «= 20g + lOg

Z30g2 “ 20g + 5g + 3g + 2g

Series 3 3g - E3gi = aj

3g - Z3g2 = 32

Z3gi - Z3g2 = 33

Z3gi = 2 g + Ig

Z 3g2 = 2g + 500mg + 300mg + 200rag

Series A 300mg - I300mgj = 3
^

300mg - Z300mg2 = 32

Z300mgj- Z300mg2 = 33

r300mgi = 200mg + lOOmg

£300mg2 = 200rag + 50mg + 30ing + 20mg
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Series 5

Series 6

30mg - Z30mg
1

= ^1

30mg - Z30mg.
2

~ ^2

Z 30mg| - Z30mg.
2

^ ^3

Z30mg^ = 20mg + lOmg

Z30mg2 = 20mg + 5mg •

3mg - 23mgj

3mg - r3mg2 = ^2

Z3mgj - L3mg2

E3ingj = 2mg + Iragl

Z3mg2 = 2mg + lmg2**

* If a known lOOg V7eight suitable for use as a standard is not
available, any lOOg weight or ZlOOg weight may be used to fill

the first series. Then the lOOg of the set is used as the
standard and the first series of measurement is:

lOOg - lOOg' = aj

lOOg - IlOOg = a2

lOOg' - IlOOg = ag

where lOOg' is either the lOOg or the ZlOOg used to complete
the series.

** The lmg2 is an extra Img weight used to fill the last series.
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Design 9

Set - Range:

Series 1

Series 2

Series 3

Series 4

1kg to Img Ratio: 5, 2, 2, 1

Slkg - 1kg = a^*

Slkg - rikg =

1kg - Zlkg = aj

Zlkg = 500g + 200gj + 200g2 + lOOg

200gj - 200g2 = aj

200gj - Z200g = a2

200g2 - i:200g = a3

Z200g = lOOg + 50g + 20gj + 20g2 + lOg

20gj- 20g2 = aj

20gj - Z20g * a2

20g^ - J:20g = a3

E20g = lOg + 5g + 2gj + 2g2 + Ig

2gi
- 2g2 = a^

2gi
- ^2g = a^

2^2 ~ ^2g = Sj

Z2g = Ig + 500mg + 200mgj + 200mg2 + lOOmg
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Series 5 200mgj - 200ing2 = aj

200mg| - Z200ing = 32

200mg2 ~ Z200mg =

Z200mg = lOOmg + 50mg + 20mgj + 20mg2 + lOmg

Series 6 20mgj - 20mg2 =

20mgj - E20mg = 32

20mg2 - Z20mg =23

Z20ing = lOmg + 5 ingj + 2 ingi + 2mg2 + Img

Series 7 2mgj - 2mg2 = aj

2mgi - Z 2mg = 32

2ing2 - J2nig = 33

Z2mg = Iragj + lmg2**

* If a known 1kg weight suitable for use as a standard is not
available, any 1kg weight or Zlkg weight may be used to fill

the series. Then the 1kg of the set is used as the standard
and the first series of measurements is:

1kg - 1kg’ = aj

1kg - Zlkg = 32

1kg' - Zlkg =33

where 1kg' is either the 1kg weight or the Zlkg used to

complete the series.

** The Img^ is an extra Img weight used to fill the last series.
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Design 10

Set - Range:

Series 1

Series 2

Series 3

Series 4

30kg to Img Ratio: 5, 3, 2, 1

30kg - £30kg^ “

30kg - £30kg2 “ a2

E30kgi - r30kg2 -

Z30kgi - 20kg + 10kg

Z30kg2 20kg + 5kg + 3kg + 2kg

3kg - Z3kgi = aj

3kg - Z3kg2 = a2

Z3kgi - Z3kg2 = aj

Z3kgi » 2kg + 1kg.

Z3kg2 » 2kg + 1kg..

1kg. - 1kg.. «= aj

1kg. - Zlkg - a2

1kg.. - Zlkg = a3

Zlkg » 500g + 300g + 200g

300g - Z300gi = aj

300g - Z300g2 = a2

Z300gj - Z300g2 = a3

Z300gj => 200g + lOOg

Z300g2 * 200g + 50g + 30g + 20g
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Series 5

Series 6

Series 7

Series 8

Series 9

30g - 230gj ^

30g - J:30g2 =

2:30gj - i:30g2 = 33

I30gi = 20g + lOg

Z30g2 = 20g + 5g + 3g + 2g

3g - Z3gj = aj

3g - Z3g2 = 32

ngj - Z3g2 = 33

E3gj = 2 g + Ig

E 3g2 = 2g + 500mg + SOOmg + 200ing

300mg - S300ingj = a^

300mg - I300mg2 = 32

I300mg2 “ ^300mg2 = 33

I300mg2 = 200mg + lOOmg

r300mg2 = 200mg + 50mg + 30ing + 20mg

30ing - Z30mgj =

30mg - r30mg2 = 32

rSOmg^ - Z30mg2 = ^3

230mgj = 20mg + lOmg

r30mg2 = 20mg + 5mg + 3ing + 2nig

3mg - I3mgj = a^

3mg - Z 3ing
2 = 32

Z3mgj - Z3mg2 = 33

r3mgj = 2mg + Iragj

Z 3rag
2

= 2mg + lmg
2
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Appendix 2. Surveillance Test Examples

Type I Surveillance Test Example

Example of a Type I surveillance test for a set of metric mass
standards according to design 2, appendix 1. This set was cali-
brated by the National Bureau of Standards. The National Bureau
of Standards Report of Calibration Test No. 200390 is reproduced
on pages 43-48. The standards used (other than the set) are listed
below together with their apparent mass corrections and
uncertainties. The balances used and their standard deviation
for one double substitution weighing are also listed. The double
substitution weighing method is used. The standard deviation of
the calibration mass measurement process is not known, so an
estimate is computed from the reported uncertainties, as
described in section 3.2, and used in computing the surveillance
limits

.

Standards
Apparent Mass
Corr. (mg)

Volume Uncertainty
(mg)

SlOOg - 0.019 12.822 0.015

h lOmg + 0.0450 0.0037 0.0006

h 5mg + 0.0045 0.0018 0.0005

Standard
Balance Deviation Capacity

Laboratory Designation (mg) (g)

H - 200 0.015 200g

M - 10 0.003 20g
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Computation of Surveillance Limits (si)

In the following, "Ug" will denote the uncertainty of the
standard and "S.D.” the standard deviation of the process:

For lOOg - SlOOg

Ug = O.OlSmg

S.D. = 0.013ing

si = 0.015 +3(0.015) = O.OeOmg

In the following, "U^," will denote the uncertainty (see
Equation (2) Page 7, and "S.D." the standard deviation
of the process:

For lOOg - ZlOOg

Uj, = yfoi5^ + .011^ + .012^ + .0102

= yj^000225 + .00012r+ .000144 + .0001

= y[.Q0059

Uj. = 0.024mg

S.D. = 0.015Tng

si = 0.024 + 3(0.015) = 0.069mg

For 20g - E20g

Uc = 0102 + .0132 + .007^ + .004^ + .003^

= yJ.OOOl + .000169 + .000049 + .000016 + .000009

= \/. 000 34 3-

Uj, = 0.019mg

S.D. = 0.003mg

si = 0.019 + 3(0.003) == 0.028mg
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For 2g - ^2g

Uc = y[.0032^ + .0030^ + .00162 + .001l2 + .00082

» yj.00001 + .000009 + .00000256 + .0000012 + .00000064

= -^.00002 341

Uc = 0.0048

S.D. = 0.003ing

si = 0.0048 + 3(0.003) - 0.014mg

For 200ing - Z200mg

Uj. = -^.00082 + .00082 + .00052 + .00052 + .00052

= *^0000064 + .00000064 + .00000025 + .00000025 + .00000025

= V* 00000203

Uj, = 0.0014nig

S.D. = 0.003mg

si = 0.0014 + 3(0.003) = O.OlOmg

For 20mg - E20mg

Uj, = -^000422 + .000592 + .000492 + .000522 + .000452

= *^.000000176 + .000000348 + .000000240 + .000000270 + .00000020

= -^.000001234

Uj, = O.OOllmg

S.D. = 0.003mg

si = 0.0011 + 3(0.003) = O.OlOmg
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For 3mg FBmg

= *^.000522 + .000452 + .000592

= y].000000270 + .000000202 + .000000349

= ^.00000082

Uc = 0.00091mg

S.D. = 0.003mg

si = 0.00091 + 3(0.003) = 0.0099mg

For the weighings made on the smaller balance, the uncertainty of

the values of the weights is small compared to the standard devi-
ation of that balance. Therefore, for all practical purposes,
three times the standard deviation of the balance may be taken
as the surveillance limit for these weighings.
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Computation of Buoyancy Corrections

The buoyancy corrections, ApAV, are computed according to the proce-
dure set forth in section 5.2, using the formula:

buoyancy correction = (b “ P ) (V - V )
n L U

Consider the weighing lOOg - SlOOg = a

where p = 1.17mg/cm^ air density at time of weighing

p = 1.20mg/cm^ density of normal air
n

= 12.821cm^ volume of lOOg weight of set under
test, from Report of Calibration

Vjj = 12.822cm^ volume of SlOOg standard

buoyancy correction = (1.17 - 1.20) (12.821 - 12.822)

= (-0.03) (-0.001)

= +0.00003mg

This amount is insignificant compared to the surveillance limit of O.ObOmg
and may be ignored. Similarly, the differences in the volumes in the

weighings lOOg - ^lOOg and 20g - I20g are small enough sc that the buoyancy
corrections are negligible. But, in the weighings 2g - ^2g and 200mg -

I200mg weights of differing densities are involved. Consequently, the vol-
umes of the individual weight and the summation of weights are different.

The volumes are:

For the weighing 2g - Z2g:

Weights

2g

Volumes

0 . 256Acm^

Ig 0.1282cm3
500mg 0.0301cm^
300mg 0.0181cm^
200mg 0.0120cm ^

0. 1884 cm^

The actual air density, p, is the same as for lOOg - ZlOOg.

buoyancy correction = (1.17 - 1.20) (0.2564 - 0.1884)

= (-0.03) (+.0680)

= -0.0020mg

This buoyancy correction, while relatively small compared to the sur-
veillance limit, is not insignificant and must be applied to the
measured difference between 2g and r2g.
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For the weighing 200ing - E200mg:

Weights Volumes

200mg 0.01205cm

lOOmg 0 .00602 cm^

50mg 0 .00301cm^
30mg O.Ollllcm^
20mg 0.00741cm3

Z200mg 0.02755cm^

buoyancy correction = (1.17 - 1.20) (0.01205- 0.02755)

= (-0.03) (+0.01550)

= -0.00046mg

This buoyancy correction is small compared to the surveillance limits
for this comparison and in most Ccises can be ignored.

For the weighing 20mg - E20mg:

Weights Volumes

20mg 0.00741cm

lOmg 0.00371cm3
5mg 0.00185cm3
3mg O.OOlllcm^
2mR 0.00074cm3

Z20mg 0.00741cm3

The volumes of the two masses are equal, therefore the buoyancy correc
tion is zero.

For the weighing 3mg - Z3mg:

Weights Volumes

3mg

Z3mg

O.OOlllcm^

2mg 0.00074cm^
Img 0.00037cm ^

O.OOlllcm^

The volumes of the two masses are equal, therefore the buoyancy correc

tion is zero.
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Computation of Predicted or Expected Differences

The expected differences are computed from the reported values as

follows: (see report on page A7).

For the weighing lOOg - SlOOg:

Weights Values

100 g

100g SlOOg

-0.058mg

SlOOg -0.019mg

Sums -0.058mg -0.019mg

Expected Diff. = -0.039mg

For the weighing lOOg - ZlOOg:

Weights Values
lOOg ZlOOg

lOOg -0.0589mg

50g -0.01 3 3mg

30g -0.013^mg

20g -K).0330Tng

Sums -0.0589mg -K).0063mg

Expected Diff. = -0.065 mg

For the weighing 20g - Z20g;

Weights Values
20g 220g

20g +0.0330mg

lOg -0 .0378mg

5g -0.0065mg

3g +0.0191mg

2g +0 .0066mg

Sums +0 .0330ing -0.0186mg

Expected Diff. = -K).05l6mg
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For the weighing 2g - L2g:

Weights Values

2g J:2g

2g +0.0066mg

Ig -0.0216mg

500mg -0.0005mg

300mg -0.004lmg

200ing -0.0049mg

Sums +0 .0066mg -0.0311mg

Expected Diff. = +0.037 7mg

For the weighing 200mg - I200mg:

Weights Values
200mg Z200mg

200mg -0.0049mg

lOOmg +0.0008mg

50mg +0. 0074mg

30mg -0.0049mg

20mg -0 .0020 mg

Sums -0.0049mg +0.00 13 mg

Expected Diff. = -0.006 2mg

For the weighing 20mg - E20mg:

Weights Values
20mg Z20mg

20mg -0.0020mg

lOmg +0.0028mg

5mg +0 .0065mg

3mg +0.0030mg

2mg -0 .0142mg

Sums -0.0020rag -0. 0019mg

Expected Diff. = -O.OOOlmg

I - 43



For the weighing 3mg - Z3mg:

Weights Values
3mg I3mg

3mg +0 . 00 30mg

2mg -0. 0142mg

Img +0.009 Img

Sums -K).0030mg -0 .005 Img

Expected Diff. = +0.0081mg
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COrPANY X
NEW YORK, NEW YORK
SET OF MASS STANDARDS
TEST NUMBER

SUMMARY

FOR CONVENIENCE, THE RESULTS OF THIS
WORK ARE SUMMARIZED IN TABLES I and II.

THE VALUES ASSIGNED ARE WITH REFERENCE TO
THE STANDARDS IDENTIFIED ON THE DATA
SHEETS. THE UNCERTAINTY FIGURE IS AN
EXPRESSION OF THE OVERALL UNCERTAINTY
USING THREE STANDARD DEVIATIONS AS A LIMIT
TO THE EFFECT OF THE RANDOM ERRORS OF THE
MEASUREIENT ASSOCIATED WITH THE MEASURE-
MENT PROCESSES. THE MAGNITUDE OF
SYSTEMATIC ERRORS FROM SOURCES OTHER TH.^
THE USE OF ACCEPTED VALUES FOR CERTAIN
STARTING STANDARDS ARE CONSIDERED
NEGLIGIBLE. IT SHOULD BE NOTED THAT THE
MAGNITUDE OF THE UNCERTAINTY REFLECTS
THE PERFORMANCE OF THE MEASUREMENT
PROCESS USED TO ESTABLISH THESE VALUES.
THE MASS UNIT, AS REALIZABLE IN ANOTHER
MEASUREMENT PROCESS, WILL BE UNCERTAIN
BY AN AI-IOUNT \JHICH IS A COMBINATION OF
THE UNCERTAINTY OF THIS PROCESS AND THE
PROCESS IN WIICH THESE STANDARDS ARE
USED.

THE ESTIMATED MASS VALUES LISTED IN

TABLE I ARE BASED ON AN EXPLICIT TREAT-
MENT OF DISPLACEMENT VOLUMES, E.G.,
"TRUE MASS", "MASS IN VACUO", MASS IN
THE NEWTONI/iN SENSE. THE DISPLACEMENT
VOLUME ASSOCIATED WITH EACH VALUE IS

LISTED AS VJELL AS THE VOLUMETRIC
COEFFICIENT OF EXPANSION. THESE VALUES
SHOULD BE USED, TOGETHER WITH APPROPRIATE
CORRECTION FOR THE BUOYANT EFFECTS OF THE
ENVIRONMENT, TO ESTABLISH CONSISTENT MASS
VALUES FOR OBJECTS \JHICH DIFFER SIGNIFI-
CANTLY IN DENSITY AND/OR FOR MEASUREMENTS
^vTHICH MUST BE R\DE TO DIFFERING ENVIRON-
MENTS. THE RELATION 1 LB AVDP =

.45359237KG IS USED AS REQUIRED.

THE ESTIMATED MASS VALUES
LISTED IN TABLE II ARE BASED ON AN
IMPLICIT TREATMENT OF DISPLACEMENT
VOLUMES, E.G., "APPARENT MASS",
"APPARENT MASS VERSUS BRASS",
"APPARENT MASS VERSUS DENSITY 8.0".
THE VALUES APR LISTED AS CORRECTIONS
TO BE APPLIED TO THE LISTED NOMINAL
VALUE (A POSITIVE CORRECTION INDICATES
THAT THE MASS IS LARGER THAN THE
STATED NOMINAL VALUE BY THE Al-IOUNT

OF THE CORRECTION) . THESE VALUES
ARE COMPUTED FROM THE VALUES EASED
ON AN EXPLICIT TREAT>ENT OF DISPLACE-
MENT VOLUMES USING THE FOLLOWING
DEFINING RELATIONS AND ARE UNCERTAIN
BY THE AMOUNT SHOtTN IN TABTE! I.

THE ADJUSTME^rr OF WEIGHTS TO
MINIMIZE THE DEVIATION FROM NOMINAL
ON THE BASIS OF "NORMAL BR/ES" (IN
ACCORDAInICE WITH COR. A BELOW) IS
WIDESPREAD IN THIS COUNTRY AND IN
MANY PARTS OF THE V/ORLD. VALUES STATF
ON EITHER BASIS ARE INTERN'iLLY CONSIS-
TENT AND DEFINITE. THERE IS, HOWEVER,
A SYSTEMATIC DIFFERENCE BETI-7EEN THE
VALUES ASSIGNED ON EACH BASIS, THE
VALUE ON THE BASIS OF "DENSITY^ 8.0’

BEING 7 MICROCRAMS /GRAM LARGER T1LAI^:

THE VALUE ON THE BASIS OF NORMAL
BRASS. THIS SYSTEMATIC DIFFERENCE
IS CLEARLY DETECTABLE ON MANY DIRECT
READING BALANCES.

CORRECTION A - "APPARENT MASS
VERSUS BRASS" OR "VJEIGHT IN AIR
AGAINST BRASS" IS DETERMINED BY A
HYPOTHETICAL WEIGHING OF THE WEICrlT

AT 20 CELSIUS IN AIR HAVING A DENSITY
OF 1.2 KG/CM3, WUTH A (NORM-VL BRASS)
STANDARD HAVING A DENSITY OF 8.

A

G/CM3 AT 0 CELSIUS V7HOSE COEFFICIENT
OF VOLUMETRIC EXPANSION IS 0.000 05A
PER DECREE CELSIUS, AND \fflOSE VALUE
IS BASED ON ITS TRUE MASS OR WEIGHT
IN VACUO.

I-A3



1/30/70COMPANY X

NEW YORK, NEW YORK
SET OF MASS STANDARDS lOOG TO IMG

TEST NUMBER 232.09/200390

CORRECTION B - ’APPARENT MASS
VERSUS DENSITY 8.0' IS DETERMINED
BY A HYPOTHETICAL WEIGHING OF THE
WEIGHT, IN AIR HAVING A DENSITY OF
1.2 MG/CM3, WITH A STANDARD HAVING
A DENSITY OF 8.0 G/CM3 AT 20
CELSIUS, AND WHOSE VALUE IS BASED
ON ITS TRUE MASS OR WEIGHT IN

AIR.

SAMPLE REPORT (CONTINUED)
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COMPANY X
NEW YORK, NEW YORK
SET OF MASS STANDARDS
TEST NUMBER

TABLE I

MASS UNCERTAINTY VOI AT 20 COEFF OF EXP
ITEM (G) (G) (CM3)

lOOG 100.00102471 .00001506 12.82064 .000045
50G 50.00052848 .00001128 6.41032 .000045
30G 30.00031168 .00001166 3.84619 - .000045
20G 20.00024971 .00000996 2.56413 .000045
lOG 10.00007056 .00001287 1.28206 .000045
5G 5.00004767 .00000667 .64103 .000045
3G 3.00005156 .00000446 .38462 .000045
2G 2.00002831 .00000325 .25641 .000045
IG .99998924 .00000296 .12820 .000045

500MG .49996408 .00000155 .03012 .000020
300MG .29997469 .00000107 .01807 .000020
200MG .19998090 .00000079 .01205 .000020
lOOMG .09999375 .00000076 .00602 .000020
50MG .05000386 .00000054 .00301 .000020
30MG .03000416 .00000054 .01111 .000069
20MG .02000406 .00000046 .00741 .000069
lOMG .01000583 .00000059 .00371 .000059
5MG .00500803 .00000049 .00185 .000069
3MG .00300395 .00000052 .00111 .000069
2MG .00198636 .00000045 .00074 .000069

IMG .00100943 .00000059 .00037 .000069
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COMPANY X
net; YORK, NEW YORK
SET OF MASS STANDARDS
TEST NUMBER

TABLE II

ITEM COR. A (MG) COR. B (Ml

lOOG
50G
30G
20G
lOG
5G
3G
2G
IG

500MG
300MG
200MG
lOOMG
50MG
30MG
20MG
lOMG
5MG
3MG
2MG
U-IG

-.05893
-.01333
-.01342
.03298

-.03781
-.00651
.01905
.00664

-.02160
-.00055
-.00409
-.00495
.00032
.00740

-.00488
-.00198
.00282
.00652
.00305

-.01424
.00913

.64003
I

.33615 I

.19627

.17277 I

.03209

.02844

.04002

.02062
-.01461 •

• .00294

-.00199
I

-.00356 I

.00152

.00775
j

-.00468
I

•-.00184
.00289 I

.00656

.00307
'

-.01423
.00913

SAMPLE REPORT
(continued)
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Type II Surveillance Test Example

This example of a Type II Surveillance Test is for a set of metric
mass standards according to Design 7 , appendix 1. This set was
calibrated by the National Bureau of Standards and reported under
National Bureau of Standards Report of Calibration, Test No. 200390.
The report is reproduced on page A7. This is the same set which
was used for the example of the Type I Surveillance Test. The only
standards (other than the set under test) used in this example are
the sensitivity weights listed below, with their apparent mass cor-
rections and uncertainties. The balances used and their standard
deviation for a double substitution weighing are also listed. The
double substitution method of weighing is used. The standard devi-
ation of the calibration mass measurement is not known, so an esti-
mate is computed from the reported uncertainties of the weights
being tested, as described in section 3.2, and used in computing the

surveillance limits.

Sensitivity
Weight

Apparent Mass Uncertainty
Corr. (mg) (mg)

hlOmg

h 3mg

+ 0.0450 0.0006

+ 0.0045 0.0005

Balance
(Laboratory Designation)

Standard Deviation
(mg)

Capacity

J
H-200

M-10

0.015

0.003

200g

20g
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Computation of Surveillance Limit (si)

In the following will denote the uncertainty (see Equation (2)

Page 7) and "S.D." the estimate of the standard deviation. Og de-
notes the standard deviation of the balance used.

For series 1: lOOg, lOOg*
,

Z lOOg

Weight Uc(mg)

lOOg 0.015
lOOg’ UNKNOWN MASS USED TO FILL SERIES
50g 0.011

30g 0.012

20g 0.010

Standard deviation of balance H-200 = 0.015rag

Uj. = yj.015'^ + .011^ + .012^ + .010^

= yj. 000225 + .000121 + .000144 + .0001

= -^.00059

= 0.024mg

S.D. = 3/273ag

= 3»/2/T( .015)

= 3/.66666 ( .015)

= 3( .81649)( .015)

S.D. = 0 .037rag

si for IlOOg = 0.024 + 0.037 = O.Oblmg

Since lOOg' is assumed to be an unknown weight, a surveillance limit
for it cannot be computed.
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For series 2: 30g ,
Z30gj, E30g2

Weight

30g

20g
lOg

5g

3g

2g

Uc ( rag

)

0.012
0.010
0.013
0.0067
0.0045
0.0032

Standard deviation of balance H-200 = 0.015mg

Uj. = ‘^. 012 ^ + .010^ + .013^

= -^.000144 + .0001 + .000169

= V* 0004 13

Uj. = 0.020mg

S.D. = SAME AS IN SERIES 1 (0.037mg)

si for DOgj = 0.020 + 0.037 = 0.057rag

Uc = y[.0l2^ + .010^ + .0067^ + .0045^ + .0032^

= “^.000144 + .0001 + .0000448 + .00002025

= yj. 000319

U = 0.01 8mg

S.D. = SAME AS IN SERIES 1 (0.037mg)

si for I30g2 = 0.018 + 0.037 = 0.055rag

.00001024
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For series 3: 3g, I3gj, Z3g2

Weight Uf, (mg)

3 g .0045

2 g .0032

1 g .0030

500rHg .0016

300mg .0011

200mg .0008

Standard deviation of balance M-10 = 0.003mg

Uc =‘^.0045^ + .0032^ + .0030^

= yj. 00002025 + .00001024 + .000009

= yj. 000029^9

Uj;. = 0.0063mg

S.D. = 3/273ag

= 3/^/3(.003)

= 3/7^66 (.003)

= 3( .81649)( .003)

S.D. = 0.0073mg

si for I3gj

U
c

0.0063 + 0.0073 = 0.0l4ing

^J.00^5^
+ .0032^ + .0016^ + .0011^ + .0008^

*^.’06002025 + .00001024 + .00000256 + .00000121 +

V.0000349

U
c

S.D.

si for Z3g2

0 . 0059mg

SAME AS FOR Z 3g j (0 . 007 3mg

)

0.0059 + 0.0073 = 0.013mg

.00000054
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For series 4; 300mg, ZSOOragj, r300mg2

Weight Uq ( rag

)

300rag 0.0011
200mg 0.0008
lOOrag 0.0008
50mg 0.0005
30rag 0.0005
20mg 0.0005

,

Standard deviation of balance M-10 = 0.003rag

Uc = + .0008^ + .0008^

=
yf.

00000 111 + .00000064 + .00000064

= '^.00000249

Uj, = 0.0016rag

S.D. = SAME AS IN SERIES 3 (0.0073mg)

si for Z300gj = 0.0016 + 0.0073 = 0.0089rag

Uc = ^.0011^ + .0008^ + .00052 + .00052 + .00052

= -^.00000121 + .00000064 + .00000025 + .00000025 +

= V- 0000026

U c
“ 0 .001 6rng

S.D. = SAME AS FOR Z300rag ^ (0 . 0073mg)

si for Z300rag2= 0.0016 + 0.0073 = 0.0089rag

1

i

.00000025
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For series 5: 30rng, E30mgj, I30mg2

Weight (mg)

30mg 0.00054
20mg 0.00046
lOmg 0.00059

5mg 0.00049
3mg 0.00052
2rag 0.00045

Standard deviation for balance M-10 = 0.003mg

= YOOO542 + .000462 + .000592

= -^.00000^291 + .0000002116 + .0000003481

= -^.0000008513

= 0.00092rag

S.D. = SAME AS IN SERIES 4 (0.0073rng)

si for Z30Tngj = 0.00092 + 0.0073 = 0.0082mg

Uc = “^.000542 + .000462 + .000492 + .000522 + .000452

= V-0000002916 + .0000002116 + .0000002401 + .0000002704 +

= V.0000012162

U(^ = O.OOllmg

S.D. = SAME AS FOR Z 30mg ^ (0 . 0073mg)

si for Z30mg2 = 0.0011 + 0.0073 = 0.0084mg

.0000002025
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For 5mg - J^5mg:

We ight Uc (mg)

5rag 0.00049
3ing 0.00052
2ing 0.00045

Standard Deviation of Balance M-10 = O.OOSmg

Uc =
“J.00049^

+ .00052^ + .00045^

= ^.0000002401 _ .0000002704 + .0000002025

= ^.000000713

Uj, = 0.00084rag

si = .00084 + 3( .003)
= .00084 + .009 = 0.0098mg

For 3mg - l^3mg

Weight Uc (rag)

3mg 0.00052
2mg 0.00045
Img 0.00059

Standard Deviation of Balance M-10 = 0.003mg

Uc = ^.00052^ + .00045^ + .00059^

= Y000000270A + .0000002025 + .0000003481

= ‘^.000000821

Uc = 0.00091mg

si = 0.00091 + 3( .003)
« 0.00091 + .009 = 0.0099mg
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Buoyancy Corrections

The buoyancy corrections ApAV are computed according to the procedure
set forth in section 5.2 using the formula:

Buoyancy Correction = (p - p ) (V - V )
11 vf L/

In this example, only two of the comparisons, 3g - ^'^^2 300mg -

I300mg, are between weights having different densities. A buoyancy
correction need be computed only for these two comparisons. All of
the other comparisons are between weights having the same density, so
their volume differences are virtually zero and the buoyancy correc-
tions are also virtually zero.

The buoyancy correction for the comparison 3g - a.^ of series 3,

is

:

P

Pn

Weights Volumes

3g

2g 0.2564cm ^

500mg 0.0301cm

3

300mg 0 . 0181cm ^

200mg 0.0120cm ^

0. 3846cm ^ from Report of
Calibration

0. 3166cm ^

1.16mg/cm^ Air density at time of weighing

1.20mg/cm^ Normal air density

Buoyancy correction = (1.16 - 1.20) (0.3846 - 0.3166) = -0.0027mg

This is the figure entered on the 3-1 *s computation sheet under the
Z3g2 column on the -ApAV line. Sheet 2, Series 3. Note that it is
-ApAV that is called for and the buoyancy correction is -0.0027mg,

therefore, the buoyancy correction is entered as -K).0027mg. (See

section 5.3.2).

The buoyancy correction for the comparison 300mg - Z300mg2, a
2

of

series 4, is:

1-58



Weight

300mg

ZBOOmg

Volume

0.0181cm3
From Report of
Calib ration

200mg 0.0120cm

3

II

50mg 0.0030cm ^ II

30mg 0.0111cm

3

II

20mg 0.0074cm ^ It

0.0335cm3

n

1.16mg/cm^ Air density at time of weighing

1.20mg/cm^ Normal air density

Buoyancy Correction = (1.16 - 1.20) (0.0181 - 0.0335) = -K).0006mg

This is the figure entered on the 3-1 ’s computation sheet under the
^300mg2 column on the -ApAV line. Sheet 2, Series 4. Note that it

is -ApAV that is called for and that the buoyancy correction is

+0.0006mg, therefore the buoyancy correction is entered as - 0.0006

mg. (See section 5.3.2).
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Computation of Predicted or Expected Values

The expected differences are computed from the reported values
follows

:

(See report on page 47)

.

Series 1: ZlOOg

Weight
Apparent Mas:

Value

50g -0.0133mg

30g -0 .0134mg

20g +0 .0330mg

IlOOg Expected Value +0.0063mg

Series 2: Z30gj

20g -K).0330mg

lOg -0.0378mg

Z30gj Expected Value -0.0048mg

Series 2:

20g +0 .0 3 30mg

3g -0. 0065mg

3g +0.0l91mg

+0 .0066m£

i:30g2 Expected Value +0.0522mg

Series 3: 23g^

2g +0 . 0066mg

JL^ -0 .0216mg

^3gj Expected Value -0 .0150mg

Series 3: J:3g2

2g +0 . 0066mg

SOOmg -0 .OOOSmg

300mg -0 .OOAlmg

200mg -0 . 0049mg

I3g2 Expected Value -0 . 0029mg

as
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Series 4: Z300mgj

Weight
Apparent Mass

Value

200mg -0.0049 mg

lOOmg +0.0008inK

Z300nigj Expected Value -0 .0041mg

Series 4: EBOOmg^

200ing -0 .0049ing

50mg +0.0074mg

30mg -0 .0049mg

20inK -0 .0020mR

Z300ing2 Expected Value -0 .0044mg

Series 5: E30mg^

20mg -0.0020mg

lOmg +0.00 2 8mg

Z 30ingj Expected Value +0.0008mg

Series 5; I30mg2

20ing -0.0020mg

5mg +0.0065mg

3mg +0 .0030mg

2mg -0 .0142mg

Z30mg2 Expected Value -0.0067mg
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Series 6: For weighing 5mg - Z5mg

Series 6:

Weight
Apparent

5mg
Mass Value

Z5mg

5mg +0.0065mg

3mg +0 .0030mg

2mg -0.0142me

Sums -K).0065rag -0.0112mg

Expected Difference -0 . 0047mg

For weighing 3mg - Z3ing

3mg E3mg

3mg +0 . 0030mg

2 rag -0 . 0142mg

Img +0 .0091mE

Suras +0. 0030mg -0 .OOSlmg

Expected Difference “0 . 0021mg
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DESIGNS FOR THE CALIBRATION OF SMALL GROUPS OF STANDARDS
IN THE PRESENCE OF DRIFT

by

Joseph M. Cameron and Geraldine E. Hailes

The process of calibrating a small nvimber of "unknown" standards
relative to one or two reference standards involved determining dif-
ferences among the group of objects. Drift, due most often to temperature
effects, or a "left-right" polarity effect Cem bias both the values
assigned to the objects and the estimate of the effect of random errors.
This note presents schedules of measurements of differences that eliminate
the bias from these sources in the assigned value eind variances and at the
same time gives estimates of the magnitude of these extraneous components.
The use of these designs in measurement process control is discussed and
a computer program in BASIC is presented.

Key Words: Calibration; calibration design; experiment design;
instrumental drift; measurement process; statistical analysis; trend
elimination

1 . Introduction

In very few processes can the effect of time be ignored. Instability
in the object being measured, inability to maintain constant conditions
or procedures, and variations in the detector or comparator all con-

tribute to changes with time. A number of approaches have been
suggested for reducing or eliminating the effects of these temporal
effects on the validity of one's measurements. One way is to make
measurements far enough apart in time (usually with some formal

randomization procedure to guaurantee statistical independence of the

measurements) that the cumulative effects from the veurious sources

appear in the random error component. At the other extreme, one Cein go

to great lengths to eliminate these time dependent effects by achieving
better environmental control, better instruments, better procedures,

etc. If the measurements are to be transferred, as with instrument
calibrations, then the first procedure leads to error bounds in which
the random error limits include a between-time component whereas the

latter procedure suppresses such a component. Neither of these repre-

sent the conditions of use adequately.
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A compromise consists of arranging the experiment under its normal

conditions so that it is as nearly as possible free of time dependent

effects. The classic example of this is afforded by the calibration of

thermometers in a bath with a gradually rising temperature using the

schedule whose structure is as follows for a standard S, and 4 unknowns,

1 ' T^, T3, •

4
‘

S S S

If the measurements are evenly spread in time , then the average of the

bath temperature for all thermometers are the same (see [ 3 ]
for a

discussion of this practice). A similcu: procedure has been followed in

weighing where in the substitution method one measures in scale units

A, B, B+S, A+S

to obtain the difference A-B emd the deflection corresponding to the

sensitivity weight, S.

The calibration of a small number of "unJcnown" objects relative to

one or two reference standards involves determining differences among

the group of objects. Instrumental drift, due most often to temperature
effects, or a "left-right" poleurity effect Cem bias both the values
assigned to the objects and the estimate of the effect of random errors.
This note presents schedules of measurements of differences that elimi-
nate the bias from these sources emd at the same time gives estimates
of the magnitude of these extremeous components. The use of these
designs in measurement process control is discussed and a computer
program in BASIC is presented in this report.
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2. Measurement as a Process

A single isolated measurement, like a single event in history, is
difficult to interpret unless it can be regarded as a part of a continuing
process. When the measurement is looked upon as the output of a process

—

a production process whose output is the measured values—then one can
attribute to the single measurement the properties of the process from
which it arose (for a discussion of this approach, see Eisenhart [ 2 ] )

.

Just as with any production process, the operating characteristics are
determined by building some redundancy into the system. Redun-
dancy is needed to assure oneself that he has indeed measured the
sought after quantity, uncontaminated by extraneous factors related to

the operator, instrument, environment, or other items.

Among the characteristics of the process are those associated with
the cdDility to repeat a measurement both in the short term and in the

long term. Repetitions made within a few hours, such as with designs
having more observations than unknowns, usually exhibit less variation
than those made at long time intervals. This additional long-term
component of vari 2mce can be measured from the agreement among repeated
measurements on the same quantity. In addition to these properties
related to variability, one needs to incorporate checks on the systematic
errors which may possibly affect the process, and, if possible, measure-
ments that provide information as to the adequacy of the assumptions in

the underlying physical model.

In calibration it is often convenient to measure a check standard
along with the calibration of one or more vmknowns. One thus has a

value for monitoring the process that is on an equal footing with the

\inknowns. By tracking its long-run performance, one can determine not
only the presence of components of variance, but also by recording
ancillciry information on environmental and other factors one can develop
information for assessing the adeqxiacy of the assumed physical model and
for setting bounds to the effect from known sources of possible systematic
error. This "check standard" need not be the value of a single item but
may tcdce the form of a difference between two such items or some linear
combination of several.

The effect of some so\irces of systematic error can be eliminated by
"balancing out" the effect by repeating the measvirement of a difference,
(x - y) in the reverse order, (y - x) . Time dependent effects can be

balanced out by using the techniques of this report. For others, it is

sometimes possible to alter the conditions to levels of a factor beyond
that known to have been in effect at the time of the measurement and to

use the chemges produced in the output at these extremes as a bounds to

the effect of the factor.

In all cases one has to continually monitor the process output just as

one does with an industrial production process if he is to have assurcmce

that the calibrations are correct.
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3 . Substitution Weighing

Consider first the simple situation of scale deflections produced on

a balance by adding weights A and B and a sensitivity weight S. One

could use either of the following sequences.

Sequence 1

A

A+S

B

B+S

Sequence 2

A

B

B+S

A+S

In high precision wor)c one invariaUsly finds a change in balance response
with time so that the value for the difference (A-B) will obviously be

contaminated by whatever time effects exist for Sequence 1. If

Sequence 2 is used, it may be represented as follows.

Quantity Effect of Drift Scale Divisions

A -3A

B - A ^2

B+S A ^3

A+S 3A

and the quantity

1/
j(Xi ” ^2 " ^3 ^4^

can be seen to give an unbiased value for (A-B) because the drift
effect (a 2A ch2mge in scale reading between each observation) cancels
out. The least sqUcures values for A-B, S, emd A in scale divisions
are

(A-B)

Ak

S

A,

A

i'*i

i(Xi

2

3x.

4<-*l
* *2

*3 * *
4

’

+ 3X3 - x^)

- X3 + x^)
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4 . Thermometry

At NBS, the calibration of liquid in glass thermometers is usually
carried out in a controlled bath which is continually heated so as to

give a slight temperature increase with time. The temperature of the

bath is measured by resistance thermometry at the start, middle, and

end of the run with the test thermometers being run once each in the

first interval and once again in reverse order in the second. The time

sequence for the resistance measurements R^, R2, R3 and the two series

of test thermometer values denoted by T^ T2 • • • Tj^ are as follows:

'l ^1 ^^2
T R T'
k 2 k

t' t'
2 1

R
3

If equal time intervals are maintained between readings of the test

thermometers, then one would expect an increase, AT in temperature with
each interval except perhaps the middle one in which the resistance
thermometer reading, R2, is made. The analysis of this form of data is

given in Appendix A.

5 . Polarimeter Data

In determining the optical rotation of a quartz control plate used
as reference standards in polarimeters , one measvires the voltage response
of a synchronous detector as the angle is varied. However, the response,

y, of the system has a nearly linear drift with the angle so that one can
represent this drift effect relative to the centroid of the data as being
either • • • -3A, -2A, -A, 0, A, 2A, 3A, • • • with A being the increment
to the response added in each time interval. [For even n it is convenient
to use • • • -3A, -A, A, 3A • • • or 2A increment per time interval.]

In the polarimeter experiment the response is a linear function of
angle so that the observation becomes

y. = a + 6x. + (i - + rcmdom error
1 1 2

where the Xj^ cire evenly spaced deviations from the nominal angle, e.g.,
X = 0", 10", 20", 30", • • • If the usxial estimate of a and 6 are to
remain unbiased and unchanged in precision, then one must have

0

so that the estimates are orthogonal to the drift in the detector. The
following orderings have this property:
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n = 4 n = 5

Measurement
Number

Quantity to
be Measured

Setting for
Polarimeter

Quantity to
be Measured

Setting for
Polarimeter

1 a + 26 20" a + 6 10"

2 a 0" a + 46 40"

3 a + 36 30" a + 26 20"

4 a + 6 10" a 0"

5 .... a + 36 30"

J-6



6 . Calibration Designs

The term calibration design has been applied [ 1 ] to experiments
where only differences between nominally eq\ial objects or groups of
objects can be measured. Perhaps the simplest such experiment consists
in measuring the differences between the two objects of the n(n-l)/2
distinct pairing that can be formed from n objects. Ordinarily the
order in which these measurements are made is of no consequence. How-
ever, when the response of the comparator is time dependent, attention
to the order is important if one wishes to minimize the effect of these
changes. When this effect can be adequately represented by a linear
drift, it is possible to balance out the effect by proper ordering of
the observations. As with the polcirimeter data, this drift can be
represented by the series • • • -3A, -2A, -A, 0, A, 2A, 3A, • • • if
n(n-l)/2 is odd or by • • • -5A, -3A, -A, A, 3A, 5A. . . if n(n-l)/2
is even.

For n = 4, n(n-l)/2 = 6, cuid it turns out that it is not possible
to balcuice out the drift effect with 6 measurements. However, with 8

measurements the balance can be achieved by the following order,
denoting the four objects by A, B, C, D.

Observation Observation is a Measurement of
A B C D A

y^^
+-00-7

y^
- 0 0 + -5

y 0 0 + - -3

y^ 0 + - 0 -1

y^ 0 + 0-1
y. -00+3
6

y^ +0-05
Yq 0 - + 0 7

The notation used here, the plus and minus signs, indicate the items
entering into the difference measurement. Thus, y2

is a measurement of
the difference (D-A)

.

To see how the drift effect is balanced out, consider item C which
occiirs in the third, fourth, seventh, and eighth observations. In the

third and eighth observations the item occxirs positively euid the cor-

responding drift effects are -3A emd 7A respectively. For the fourth
amd seventh observations, item C occxirs negatively while the corresponding



drift effects are -A and 5A. The overall effect can be represented by
the sum of cross products of the columns for C and A, namely

[1] (-3A) + [-1] (-A) + [-1] (5A) + [1] (7A) = 0

using square brackets to denote the coefficient attached to the direction

of the difference and parenthesis for the drift effect. For A, one has

[1] (-7A) + [-1] (-5A) + [-1] (3A) + [1] (5A) = 0

In general, if the cross products sum out to zero, then the drift

effect is said to be completely "balanced out" or "orthogonal" to the

items being measured.

7. Restraints

In calibration designs only differences between items are measured
so that unless one or more of them are steindards for which values are

known, one cannot assign values for the remaining "unknown" items.

Algebraically, one has a system of equations that is not of full rank
£md needs the value for one item or the sum of several items as the
restraint to lead to a unique solution.

In the design of Section 6, for example, if one has a single
standard and three unknowns, the standcurd can be assigned to any one
of the letters. (The same would be true of three standards and one
unknown.) If there are two standards and two unknowns, the choice of

which pair of letters to assign for the standards is important in

terms of minimizing the uncertainty in the unknown.

It turns out that the pairing of A with D or of B with C is slightly
less efficient (see Appendix B) than the other pairings A with B or C

with D. This results from the fact that the observation on the dif-
ferences (A-D) and (B-C) are repeated and it is usually better (to

achieve smaller variance for the test items) to measure differences
between stamdards emd unknowns them between pairs of standards.
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8. Use of Calibration Design in Gage Block Calibration

The calibration design of Section 6 is used in gage block calibration
at the National Bureau of Standards and the analysis and interpretation
of the design for this application is representative of the principles
involves in the use of the design in other applications.

At NBS two master sets of gage blocks are maintained for trans-

ferring length calibration to users gage blocks, these are designated
A and B and their sum is designated by K. These are combined with two

sets of unknowns, designated C and D. The difference (A-B) is used as

the check standard.

/N ^ /N ^
If we denote the values determined for ABC and D by A B C D in

accordance with the statisticians' practice of distinguishing the value
from the experiment from the sought-after or long-run value, we may then

write

A = fjISyi - iyj -
ya

- 2y4
- - 2yg

+ 3y, + 2yg) . |

B = ^<-5yi
+ ^^2 *'^

2
* ^''4 ^^5 * ^^6 ‘ I

A-B = - ^^2 ” ^y^ - 4y^ - 6y^
- + 6y^ + 4yg)

^ ' 24‘‘yi
* ^^2 ^^3 ^=^4 ' ^5 ^^6

'
‘'=^7 * I

c = JJ-fyi
7- ey^ - Sy^ - 2y^ - Ty^ -f Sy^ - y^

+ 2yg) + |
/N ^

where A + B necessarily sum to K.

These values have the following standard deviations in terms of the

long run precision as represented by the process standard deviation U.

s.d. (A) = s.d. (B) = a /

s.d. (A-B) “

s.d. (C) = s.d. (D) = CJ / ~

One also obtains values A for A where

168 (-7yi
- Sy^ - 3y3 - 1^* Sy^ + 5y, + 7yg)

s.d. (A) = 0 / igg
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Because this is an overdetermined system (more observations than

unknowns) the deviation between observed and computed value is, in

general, different from zero and reflects the random errors of measure-

ment. These deviations, d^ d2 • • * dg follows:

'‘3
=

'^4 =

d. =

1 168

= -i-
2

“ 168

1

3 168

^ _1_
4

~ 168

1

(49y^ - Ty^ - Vy^ + 21y^ + 49yg + 49y^
- 7y^ + 21yg)

(-7y, + 87y. -i- 13y, - 5y. + 33y - 41y + 53y + 35y )

(-7y, + 13y_ + 89y + 25y - 39y + 37y + 57y - 7y )

(21y, - 5y^ + 25y, + Illy. - 27y + 3y. - 23y + 63y )

^7 ‘ l68 ‘‘’yi ^^^2 * ^’^3 ^^^4 * ^5 * “^6 ’^^7
‘

^8 ' 168 * ^^^2 ’’^3 * ®^''4 * ^^>'5 ‘ ^^^6 ' ’^7 *

These deviations provide the information needed to obtain a value,

s, which is the experiment's value for the process standard deviation,
a.

/ Z (dev)

^

s = / degrees of freedom = 4

The number of degrees of freedom results from teiking the number of
observations less the number of unknowns then adding one (for the
restraint) to give 8 - 5 + 1 = 4.
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9 . Example

Routine calibration of gage blocks is carried out with two NBS
master blocks (designated S. and S..) and two test blocks (designated
X and Y) . The blocks are placed close together on a metal platen for
a sufficiently long time to insure temperature equilibrium. A mechanical
intercomparator is used to determine the difference between the blocks
by first determining a reading for the block indicated by "+" then
following with the block indicated by The difference between
these two readings is the observation, y (all values are in micro-inch)

.

For a set of 0.101 in. blocks, the following data was obtained.

DATA FROM NBS CALIBRATION OF FOUR 0.101 INCH GAGE BLOCKS

Schedule
Difference First Second Difference

Deviationi
Measured Reading Reading y(i)

1 + - 0 0 S.-S.

.

52.0 52.5 -0.5 0.029

2 - 0 0 + Y-S. 45.2 52.1 -6.9 -0.046

3 0 0 + - X-Y 50.0 45.1 4.9 0.113

4 0 + - 0 S. .-X 53.1 50.0 3.1 0.571

5 0 + 0 - S. .-Y 52.3 45.2 7.1 -0.238

6 - 0 0 + Y-S. 45.1 52.0 -6.9 -0.079

7 + 0 - 0 S.-X 52.0 50.1 1.9 -0.154

8 0 - + 0 X - S. .
50.1 52.3 -2.2 0.304

S.+S.. = 6.4 used as restraint

S.-S.. = -0.133 used as check standard

a = .32 accepted standard deviation

The values for the blocks euid the drift effect. A, are

.
= ^[5(-0.5) - 2(-6.9) - (4.9) - 2(3.1) - 3(7.1) - 2(-6.9) + 3(1.9) +

2 (-2 . 2 )] +
(6.4)

—(-6.0) + 3.2 *= 2.9500
24

24
[-5(-0.5) + 2(-6.9) + (4.9) + 2(3.1) + 3(7.1) + 2(-6.9) - 3(1.9) -

2 (-2 . 2 )] +
(6.4)

= 34 ( 6 . 0 ) + 3.2 3.4500
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-0.5S.-S.. =

X = ^[-(-0.5) + 2(-6.9) + 5(4.9) - 6(3.1) - (7.1) + 2(-6.9) - 7(1.9) +
24

= ~(-54.8) + 3.2 = 0.9167
24

y = t^[(-0.5) + 6(-6.9) - 5(4.9) - 2(3.1) - 7(7.1) + 6(-6.9) - (1.9) +

= ~(-170.0) + 3.2 = -3.8833

A = ^[-7(-0.5) - 5(-6.9) - 3(-4.9) - 1(3.1) + (7.1) + 3(-6.9) + 5(1.9) +

7(-2.27)

= r~(.7) = 0.0042

The accepted standard deviation for the process is 0.32 y"in so that
one can compare the observed standard deviation, s,

to the accepted value by computing

Had the ratio (s/Q)^ exceeded 3.32 (the critical value for the 1% proba-
bility level of the F distribution) , then the measurements would be
regarded as being "out of control" and would be repeated. The other
check on process performance is ^ovided by the check standard for
which the difference between (S^^..) emd its accepted value should be
less than 3 times the stcmdard deviation of (sr^..). See Section 10
for a discussion of this test.

The drift term, A, has a standard deviation of a//l68 or 0.025. The
/N yv

statistical significance of A cam be judged by forming the ratio A

If this ratio exceeds 3, then A would be regarded as significant.
However, because the design has eliminated the effect of drift on the
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yalues of the blocks, one would not be concerned about a "significant"
A unless it was greatly in excess of previously encountered values.

The deviations are computed as shown in Section 8, for example, for
the deviation corresponding to y3 is given by

(dev)„ = r^[21 (-0.5) + 35(-6.9) - 7 (4.9) + 63 (3.1) + 21 (7.1) - 21(-6.9)
o Xbo

7(1.9) + 63 (-2.2)]

= rlrtSl.l] = 0.304
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10. Process Control

As mentioned in Section 2 , continued monitoring of the measurement

process is required to assure that predictions based on the accepted

values for process parameters are still valid. For gage block cali-

bration, the process is monitored for precision by comparison of the

observed standard deviation to the accepted value, by means of the

F-test. In the case of the design of Section 6, the square of the

ratio of the two standard deviations is compared to the critical value,

F(4, », a), which is the a probability point of the F distribution for

degrees of freedom 4 and *. [For calibrations at NBS, a is chosen as

.01 to give F(4, ®, .01) = 3.32].

The check for systematic error is given by comparison of the

observed value of the difference, S. - S.., between the two standards

with its accepted value. The uncertainty of this difference is given
by a.p =/(5/12)a^ +2a| where is the "within run" standard deviation
and Ob is the component of variance arising from variations from run-to-
run. The value of 0.j is obtained directly from the sequence of values
of S. - S.. arising in regular calibrations. The check standard test
is therefore.

[observed (S. - S..) - accepted (S. - S..)

i.e., t is compared to the critical value 3.0 which would correspond to

the .003 probability level for the normal distribution.

If both the "precision" (F-test) and "accuracy" (t-test) criteria
are satisfied, the process is regarded as being "in control" and values
for the unknowns, X and Y, and their associated uncertainties are
regarded as valid. Failure on either criterion is an "out-of-control"
signal and the measurements are repeated.

When the between run component, Ob» is present, the standard
deviation associated with the values for the unknowns core given by *

The value for the drift serves as an indicator of possible trouble if
it changes markedly from its usual range of values. However, because
any linear drift is balanced out, a chcinge in the value does not of
itself vitiate the results.

*See M.C. Croarkin, "An Extended Error Model for Comparison Calibration"

for an explanation.
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If the uncertainty attached to the restraint value is not negligible,

this will lead to a possible systematic error in all measurements based on

this restraint. Therefore, as a bound to this error one should, for the

design of section 6, add to the uncertainty from random error an allowance

of one-half the uncertainty in the sum (S. + S..). This is shown in the

computer example.

11. Computer Program

Appendix C lists a computer program in BASIC for carrying out the

calculation for the gage block example. The program can be used with
any design provided one has the arrays of coefficients for the determi-
nation of the values of the unknowns and the deviations corresponding
to the two arrays given in Section 8 for the gage block example.

The program calls for input of:

a) Administrative data—designation of blocks, operator, date,
etc.

b) Process parcimeters—-standard deviations, value for check
standard, etc.

c) Comparator readings

The computer programs provide in the output:

a) Deviations, s.d.

b) Values for unknowns, drift, and associated undertainties

.

c) Statistical tests as to whether process can be regarded as

"in control": on standard deviation cind on value of check
standard

.



12. Other Designs for Elimination of Drift With Order of Measurement

The n;iinber of observations over which a linear drift could be
expected to be valid varies with the type of measurement, but experience
indicates that it is unusual if it is as large as 20. For all distinct
pairings of n items n(n-l)/2 exceeds 20 for n ^ 7. The table below gives
designs for n = 5, 6, 7 which are balanced for linear drift.

n=5 n = 6 n = 7

10 Observations 18 Observations 21 Observations

+ - 0 0

0 + - 0

0 0 + -

0 0 0 +

-000

-00 +

0 + 0 -

0-00
0 0 + 0

+ 0-0

0 1-2

0 2-3

0 3-4

- 4-5

+ 5-1

0 4-1

0 2-4

+ 5-2

- 3-5

0 1-3

+ - 0 0

0 + - 0

0 0 + -

0 0 0 +

0 0 0 0

-000

0 0 + 0

-00 +

0 + 00
0 0-0
+ 00-
0-00

0 0 0 -

0 0-0
0 - 0 +

-0 + 0

0 + 00
+ 000

An alternate form of displaying
for the other designs.

0 0 1-2

0 0 2-3

0 0 3-4

0 - 4-6

- + 6-5

+ 0 5-1

0 - 3-6

0 0 4-1

- 0 2-5

0 + 6-3

0 0 1-4

+ 0 5-2

+ 0 5-4

0 + 6-3

0 0 4-2

0 0 3-1

- 0 2-5

0 - 1-6

the design i

+ - 0 0

0 + - 0

0 0 + -

0 0 0 +

0 0 0 0

0 0 0 0

-000

0 + 0 -

0 0+0
0 0 0 +

0 0 0 0

-000
0-00
+ 0-0

0 0-0
0-00
-000
0 0 0 +

0 0 + 0

0 + 00
+ 00 -

shown for

0

0

0

+

0

0

0

0

+

0

0

0

0

0

+

0

0

0

n

0 0 1-2

0 0 2-3

0 0 3-4

0 0 4-5

- 0 5-6

+ - 6-7

0 + 7-1

0 0 2-4

0 0 3-5

- 0 4-6

0 - 5-7

+ 0 6-1

0 + 7-2

0 0 1-3

0 + 7-3

+ 0 6-2

0 0 5-1

0 - 4-7

- 0 3-6

0 0 2-5

0 0 1-4

>= 5 and is used
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below:
Designs that involve a subset of all possible pairings are given

n = 6

12 Observ.
n = 7

14 Observ.
n = 8

16 Observ.
n = 9

18 Observ.

1-2 1-2 1-2 1-2

5-1 2-3 2-3 2-3

2-3 3-4 3-4 6-5

4-6 4-5 4-5 3-1

3-4 5-6 5-6 5-4

6-5 6-7 6-7 8-9

7-1 7-8 4-7

2-4 8-1 9-6

4-5 3-1 7-8

6-2 5-3 4-1

3-1 7-5 7-4 7-1

1-6 2-7 2-7 4-6

5-3 4-2 5-2 9-7

6-4 8-5 1-4

1-6 3-8 3-9

6-3 5-8

1-6 6-3

2-5

8-2

J-17



REFERENCES

1. Bose, R. C. & Cameron, J. M. , The Bridge Tournament Problem and
Calibration Designs for Comparing Pairs of Objects, NBS J. of Res.

69B (1965) , 323-332.

2. Eisenheurt, C., Realistic Evaluation of the Precision and Accuracy
of Instrument Calibration Systems, NBS J. of Res. 67c (1963)

,

161-187.

3. Swindells, J. F., Calibration of Liquid-in-Glass Thermometers,
NBS Monograph 90, GPO, 1965.

4. Zelen, M. , Linear Estimation and Related Topics, Chapter 17 of
Survey of Numerical Analysis edited by J. Todd, McGraw Hill,
New York City (1962), 558-584.

J-18



APPENDIX A

Thermometer Calibration

Liquid in glass thermometers are calibrated at NBS in a controlled
bath in which the temperature is increasing in a nearly linear fashion
with time. The temperature of the bath is measured by platinum
resistance thermometry at the beginning, middle, and end of a run with
the test thermometers being read once in the first interval and again
in reverse order in the second interval. The time sequence for the

resistance measurements, R2, R3 and the two series of thermometer
values denoted by Tj^ and Tj^ are as follows;

R
1

ml rp I

1 2 Kk 2 k
T T
2 1

R
3

with uniform time intervals between the thermometer readings. Figure
shows a schematic of the situation with the increment to the bath
temperature being A for each time period except for the middle reading
involving resistance thermometry where a step of a in temperature is

assxmed.

Figure

(k-1) intervals

/ “N

^ ^ , , , P

Time

Thermometer reading at fixed time intervals in a bath with
linear drift.
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The average (T| + Tj_)/2 will be the indication of the i-th thermometer

at the temperature implied by (R]_ + R2 + R3)/3. The differences, dj^ =

Ti - T| will be a measure of a + 2 (k - i)A so that the observational

equations may be written

E(d) = E
< N • < >

T - T'
1 1

a + 2(k - DA = 1 2(k - 1)

T - T'
2 2

•

a + 2(k - 2)A 1 2{k - 2)

•

•

T , - T

'

a + 2A

•

1 2
k-1 k-1

T, - t; a 1 0
k k

/ ^ / ^ /

a = X a

A A

where X stcuids for the indicated matrix, and where E( ) stands for the
"expected value of," i.e., the limiting value if the effects of random
error were eliminated.

The least squares estimates of a and A are given by the solution to

the normal equations

(X'X) a = X'd *= Zd

A 2Zd (k-i)

where the inverse of the matrix of normal equations is

(X'X)”^

V

k k(k-l)
1 !-•

II
0

l->

2 (k-1) (2k-l) -3 (k-1)

k(k -1)

k(k-l) 2k (k-1) (2k-l)/3 -3 (k-1) 3

k 0 k /

The estimates of a, A and Q , the variemce of the observations are given
by

[3Zid - (k+l)Zd]

k(k2-]y
[(k+l)Zd - 2Zidl

k(k+l)

3

^ [Zd^ - aZd - 2AZ(k-i)d] « ^ Z(dev)^

where dev. * d. - a - 2(k-i)A,
1 1

The standcurd deviation of the value for the test thermometer is

0//2 and for a and A,
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s.d. (a) = a/2 (2k-l)/k(k+l)

s.d. (A) = a/3/k(k^-l)

Control on the measurement process is maintained by two forms of
redundancy—one to check on the process average and the other to check
on process variability. The first of these is provided by incorporating
an NBS standard thermometer among the k thermometers and requiring that
its value be within random error of its accepted value. The variability
check is given by comparing O with the long run value established for

the process. When these conditions are satisfied, then one can regard
the process as being in a state of control.

A typical set of data for this type of calibration is given in the
following table. For simplicity the resistance measurements have been
suppressed and the temperature reported directly.

Calibration of Thermometers
Data From NBS Calibration of 22 August 1972
Provided by J. Wise, NBS, Thermometry Section

Thermometer Observation
Reference (PRT) 39.9378

39.983

39.913

T’ 39.966

T^ (check stamdard) 39.840

Reference (PRT) 39.9422

*^4 39.842

^3 39.969

^2 39.917

^1 39.991

Reference PRT 39.9501

PRT - OBS =

Averages Correction .

T^ 39.9870 -0.0436

T^ 39.9150 0.0284

T^ 39.9675 -0.0241

T^ 39.8410
4

0.1024

PRT 39.9434

accepted value is 0.1000

d -=

Tl - Ti a A

Predicted
d dev.

-0.008 1 6 Id = -0.077 -0.0071 -0.0009

-0.004 1 4 lid « -0.033 -0.0052 0.0012

-0.003 1 2 2/k(k+l) = 1/10 -0.0033 0.0003

-0.002 1 0 3A(k^-l) = 1/20 -0.0014 -0.0006

Idev^ = 0.00000270
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>>

a =

a

s.d. (a)

s.d. (A)

•— [3(-0.033) - 5(-0.017)] = -0.00140

“ [5(-0.017) - 2(-0.033)] = -0.00095

= /Zdev^/2 = /O. 00000135 = 0.00115

s.d. (average T) = a//2

20
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APPENDIX B

Least Squares Analysis of Calibration Designs

In this appendix the least squares analysis is presented in matrix
form for those wishing to prepare a general analysis. Each formal
statement will be illustrated by its application to the calibration
design of Section 6.

It is assxiined that the expected value of the observations represented
in vector form as y' = (yi y2 • • • Yn^ have expected values E(y) = x6
where B is the vector of parameters and X is the design matrix. It is
also assumed that the errors of measurement are uncorrelated and have
equal variance, i.e., V(y) = 0^ 1 .

For the design of section 5,

1 -1

-1

0

0

0

-1

1

0 -7

1 -5

1 -1 -3

1-1 0-1

0 -1

0 -1

0 -1

/

6 =

The matrix of normal equations is given by (X'X)B = X'y which for

calibration designs is not of full rank.

N
x'xB 4 -1 -1 -2 0

-1 4-2-1 0

-1 -2 4-1 0

-2 -1-1 4 0

0 0 0 0 168

B = X'y =
\

1 -1

-1

0

0

0 1-10
1-1 0-1

0 0-1 10
1 1 0 0-1

0-11
10 0

-7 -5 -3 -1 5 7

/
In order to solve this system, a restraint in the form h'B = K is

imposed leading to the augmented equations (see Zelen [4 ] ),
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\ f
V.

X'X h B X'y

h’ 0 X K
J k /

For the design as used in the calibration of gage blocks the restraint

is that A + B * K, giving h'« (11000) and the augmented equations
are

0 0 0 0 168 0

1 1 0 0 0 0

The solution for the parameter values & eure

< > ^ \ y \
^

\

X*X h
-1

X*y - c g X'y

X h* 0 K g’ 0 K
\ > k > < / k /

where C is the indicated KxK matrix eurising in the inversion process n.

For the example

<

B -3k 3S -35 - 7 7 0 XM f •
'I

*•7 _ 1
- IW 35 -14 . 7 -14 -31 -14 21 14 94

1 -35 35 7 - 7 0 ISS K -35 14 7 14 21 14 -31 -14 94

i J
- 7 7 tl 21 0 ICC

k *

- 7 14 35 -42 - 7 14 -49 42 94

7 - 7 31 91 0 ISS 7 42 -35 -14 -49 42 - 7 14 94

0 0 0 0 3 0 - 7 - 5 - 3 - 1 1 3 5 7 0

IM ICI ICS ISI 0 0
4

L
0 0

y

for which C -35 7

\

7 0

-35 35 7-70
- 7 7 91 21 0

7-7 21 91 0

\
2 0 0 0 2
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The variances of the parameters are given by C and of linear
functions, £.'3, the variance is For the example

V(A) = V(B) = = 35a^/336 = 5a^/48

V(C) = V(D) = ^ 910^336 = 13aV48

V(A-B) = +
0^2

- ^ 1400^336 = 5a^/12

V(C+D)

V(C-D)

=
<S3

" ^44

=
<S3 ^44

V(A) =

V(A+B) = 0

* 2=34’'’'

- '

2 2
= 20/336

= 2240^336 = 20^3

1400^336 = 50^/24

= 0^168
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FOOTNOTE 1

If one had assigned the two standards to positions B and C instead
of to A and B as was done, then one would be repeating the measurement
of the differ-ence (B-C) , and of the difference (A-D) . These differences
are internal to the pair of standards over the pair of unknowns and
one might suspect that they add little to the transfer from standard
to test item. This is confirmed by excunination of the inverse of the

matrix of normal equations,

4 -1 -1 -2 0

N

0
-1 1

168
56 0 0 28 0

\
84

-1 4 -2 -1 0 1 0 14 -14 0 0 84

-1 -2 4 -1 0 1 0 -14 14 0 0 84

-2 -1 -1 -14 0 0 28 0 0 56 0 84

0 0 0 0 168 0 0 0 0 0 1 0

0 1 1 0 0 0

/
84 84 84 84 0 0

The varicmces for the standards are

V(B) = V(C) = 14a^/168 = (P’/Vl

V(B-C) = 560^168 = a^/3

which is smaller than for the restraint A + B = K.

However, for the test items the variances are

V(A) = V(D) = 560^168 = 0^3

which is larger than that with the restraint A + B = K for which the
corresponding Vcuriemce is 13o2/48.

The estimate for the test item. A, is

* ‘ M '*^2 ‘=^3 ''^5 '*''6 * ®^
7 ^ f

which does not involve and y0 which are meas\irements of the difference
between the two standards, i.e., of B-C. Thus, there is a gain in effi-
ciency in the calibration of the test block by using positions A and B

for the stsmdards, the efficiency factor being (a^/3) / (130^/48) 16/13.
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FOOTNOTE 2

If there were but a single standard, A, the inverse of the matrix
of normal equations would be

4 -1 -1 -2 0 1
-1 1

168

/
0 0 0 0 0 168

-1 4 -2 -1 0 0 0 70 42 28 0 168

-1 -2 4 -1 0 0 0 42 70 28 0 168

-2 -1 -1 4 0 0 0 28 28 56 0 168

0 0 0 0 168 0 0 0 0 0 1 0

1 0 0 0 0 0 168 168 168 168 0 0

variances of the test

/
items are

y

V(B) = V(C) = 700^/168 = 50^12

V(D) = 560^168 = 0^3

FOOTNOTE 3

If the sum of all four were taken as the restraint, the inverse of
the matrix of normal equations would be

-1 1
•v

4 -1 -1 -2 0 1
336

49 -21 -21 - 7 0 84

-1 4 -2 -1 0 1 -21 49 - 7 -21 0 84

-1 -2 4 -1 0 1 -21 - 7 49 -21 0 84

-2 >1 -1 4 0 1 - 7 -21 -21 49 0 84

0 0 0 0 168 0 0 0 0 0 2 0

1 1 1 1 0 0 84 84 84 84 0 0

S /
'

/
The variances of all four test items are the same

V(A) = V(B) = V(C) * V(D) = 490^336 «=
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5

1 0

I 5

20
25
30
35
40
45
50
55
60
65
70
72
75
50
65
^0
45

1 00
105
1 10
1 1 5

1 20
1 25
1 30
135
1 3fi

1 40
1 42
1 45
1 50
1 55
1 60
1 65
1 70

1 75
1 RO
1 85
1 90
195
200
205
2 10
2 15
220
225
230
235
240
245

Computer Program for Analysis of Gage Block Data

AGE HLiCK calibration****#
THIS PWflGPAM COMPUTED THE VALUES OF THE UNKNOWN GaGE BLOCKS,
AND PERFORMS TV*o STATISTICAL TE.iTS, THE F-TFoT AND THE T-TEST,
TO OFTEKMINE IF THE PROCESS IS IN COxSTRML.

INPUT

THIS PROGRAM CALLS FOP A USER CREATED DATA FILE MHTCH CONSISTS

TEST BLOCKS! INCHES )

OF CHECK ST ANDA RD( M ICROl NC HE S )

F THE INSTRUMENT! MIC RrtI NCHF S )

« f> F T H F FOLLOW INC

:

* ! 1 ) ! CS! I ), I -1 ,3 ) - DATE
« ! 2 ) K - VALUE OF KLSTRA

! 3 ) NO - NOMT N AL SIZE OF
» ! 4 ) S5 - ACCEPTI

D

VALUE
» ! 5 ) ns - ACCEPTED S.D. O

» ! 6 ) B6 - ACCEPTED TOTAL :

» ! 7 ) 12 - UNCFREAINIY IN

! 8 ) \! I ) ,Y! I ) - OBSERVED
THF RESTRAINT
READINGS ( F. IGHT PAI KS )

• »«»«
•

» DATA VALUES WHICH ARE DETEkMINF:D BY THE calibration DESIGN,
» AND MHICH APE STORED wITHIN THIS program in DATA STATEMENTS
* ARE AS FOLLOWS

:

* ! 1 ) 6! I , J ) - least souarfs cofff TO COMPUTE THE UNKNCMNS
» ! 2 ) M! I , J >

- LEAST SQUARES COEFF TO COMPUTE THE DEVIATION
» ! 3 » E! I > VARIANCE FACTOR
» ! 4 ) F! T ) DRIFT VFCTOP
» ! 5 ) Cl - MATRIX DIVISOR
* ! 6 ) GS! I 1 - BLOCK DLS IGNAT ION
w
» OTHE R VAPI AriLES; 1

» ! 1 ) N - NO, OF BLOCKS IN THE CALIBRATION ! N • 4 )

» ! 2 ) G1 - NO. OF OhSERVAT IO-N& ! G1 • a )

e- ( 3 ) F4 - F PATIO ! CRITICAL VALUE FOR P • ,01 »; ! F4 - 3,32 1

* ! 4 ) A4 - NO. •iF DEGRFLS op FREEDOM ! A4 - 4)
»«-«* »»»«
«

««*•»«*«««»

*««« »•»«

« »*« » »»»

«»«* **«« »«*
• OUTPUT

* ( 1 ) DATE.OBSFRVEF , INSTRUMENT
» ! 2 ) COMPARATOR -tPADINGS
* ( 3 ) OBSERVED DIFFERENCES
» ( 4 ) DEV r AT IONS
• ! 5 ) VAIUES of THE UNKNOWNS
• ( e > observed standard deviation
» ! 7 ) STATISTICAL TESTS

! 8 ) uncertainty statement
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250 DIM Ca.( 3 1. H( 4 ,6 ) , M( 8,8), A( 9 ) , X( 8 ) , Y(

255 I'ATA 35, -1 4, -7, - 1 4 ,-21 ,- 14,21 ,14,84
2f-0 DATA -35 ,14,7, 14,21 . 14,- 2 1 , - 1 4 , 84

TATA -7, 14,35,-42,-7, 14, -49,42 ,84
2*^0 DATA 7.4 2, -35 ,-l 4,-49,42 ,-7,1 <*.84

2^5 DATA 49, -^ , -7,21 ,49,49,- 7 ,21

2 30 DATA -7,07,13,-5,33.-41, 53, 35
205 DATA -7, 13,59,25,-39,37, 57,-7
290 DATA 21,-5.25.111, -27.3. -23,63
295 DATA 4C , 33 , -39, -27,9^,25 ,^,2l
300 DATA 49, -41 , 37. J. 25. 103, 13.-21
5 05 DATA -7, 53, 57, -2 3, 9, 13.73.-7
310 DATA 21,35,-7,63,21,-21 .-7,63
312 DATA -7, -5, -3.-1, 1.3. 5.

7

3 1 5 DATA .31 250, .31 250, . 1458 33, , 1458 33

320 DATA 1 66
3 22 DATA
?30 N-4
335 Cl -8
340 F4-3.32
?45 A4 -4

350 P1-G1*1
355 * READ FF I C I LSTS USED T<n Cf'JMPUTE VALUES r^F THE riLOCKS
360 FflP I l,N
365 FMP Jl • 1,R1
37 0 PE AD B( I ,.I1 )

375 NEXT Jl
300 NEXT I

305 * READ CeFFFICirsrS U at D TO COMPUTE THE DEVTATIt'NS
390 FOP I 1,G1
395 FOR Jl« 1,G1
400 READ M( I ,J1 )

<*05 NEXT Jl
410 NEXT I

411 * READ DRIFT VECTOR
**12 FOP I • 1,01
4 1 3 READ F( T )

414 NEXT I

415 * READ VARIANCr VECTOR
420 FOR I • l.N
425 READ E( I )

430 NEXT I

435 READ WATKIX DIVISOR
440 PFAD Cl
441 * READ BLOCK LFSICNATIONS
442 Ff»P I • 1,N
445 READ G5f:( I )

444 NEXT I
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445
450
455
a 6 0

af-b

<*70

471
473
475
480
4fl5

4 8"^

4 90
4 92
4 ^2
4 95
500
5 05
510
5 15
520
52 5
530
535
540
545
550
555
560
565
570
575
580
585
5 90
5 95
6 00
6 05
61 0

615
620
625
630

* DEFINH U3FK DATA 1 I LE - D\TAl
FILES DATA I

* PtAD A D:i IN I STRATI VE DATA AND PROCESS PAKAMETCK'S
RiiAD 1 , C3( 1 ), CS( 2 >, C*( 3 >

>?tAD»l ,i<L,V0, S5, 85, n6, 'h2

* READ PAkAT'^R READINGS AND COsIPUTF. TH F I R 0 1 1 FI- RFNC LS
* ALSO, COMPUTF DRIFT "Dl, AND S.D,( DRIFT) SI
01 -0

FOR I • 1,G1
PFAI)«1 , X( I ), Y( I )

A( I ) •X( I )-Y( I )

D1 -Dl AC I >*F( I )

NFXT I

Dl -Dl/Cl
SI -PS*! 1 ,/ri ll', 5

* SET A(9)- RESTRAINT
A(9)-K
* COMPUTE VALUES • V(I), S. 1>, - Z(I), AND UNCERTAINTY -

FOR I • 1 , N

Y1 -0

FOP J1 -1 , R1

Y1 -Yl HC I, J1 )*A( J 1 )

NEXT J1

V( I )-Yl/Cl
7( I )-( B6t2-R5^2*E( I ) )t . 5

C( I ) •3*Z( I ) .5*M2
NEXT I

* COMPUTF CHECK STANDARD
C5-V( 1 )-V( 2 )

* COMPUTE THE DEVIATIONS AND THE ObSERVED S.O,
SO *0

FOR I » 1,G1
1 )0-0
FOR J1 -1 ,Gl
D0-D0-M( T,Jl )*A( J1 )

NEXT J1

D( I ) -DO/Cl
SO-SO -DC 1 2

NEXT I

S-( S0/A4 )f ,5
* PERFORM STATISTICAL TESTS
F-( S/B5 )f2

T-( C5-S5 I/R6
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640 PK IN 1,90

6

645 PRINT DATE , CS( 1 )

650 PRINT fJ«5. ,C«:(2)
655 PRINT INSTR.,CS(3)
660 PRINT, 605
665 PRINT f'HSfcP V AT r dN S

670 FdP I • 1,01
675 PR TNT X( I >, Y( I )

680 NEXT I

565 *PRINT dPoEKVEO DIFIEPENCES AND OFVlAfldNS
690 PRINT, 69

5

695 FMT //,X18, A( I ), V8, DLV(I)
700 F8R I 1,01
705 PPrNT,71 0, A( T ), D( I )

710 FMT X14, F<^ .3,X4,F9.3
715 NEXT I

720 * PRINT VALUES OF THE BL-^'CXo

722 PRINT, 723
^23 P ViT //,X53 , UNCERTAINTY
725 PRINT, 730
*^30 FSIT X19, NoM. , X8, COWP. ,X1 0,S. D, , X4, 3 ( S. D , ) . 5( S , E . )

73 5 FOP I !,.%'

740 PRI NT,745,0s5( I ),N0,V( I ),Z.( I ),C( I )

745 FMT F12.6,F11.2,X7,F3,5,F15.5
750 NEXT I

755 * PRINT STATISTICAL INFORMATION
760 PRINT, 76

5

765 PRINT OUS. S.D, ACC. S. D, , F TFST,F RATIO, D.F.
•^70 PRINT, 775, S,P5,F,F4, A4
7 75 FMT F7 ,4 ,X5, F9. 5, X3 , Fb. 3 , FI 2. 2, I 10
780 IF F>F4 THEN 790
^85 GO TO 800
790 PRINT, 7V5
795 PRINT *«**«****** S, 1), Is NoT IN CdN T i\0 L****** ************ »**»
800 PR I NT, 805
805 PRINT OMS, CHFCK, ACC. CHECK, T TEST
810 FR1NT,81 5,C5,S5,T
815 FMT FIO. 5, FI 1 .5, F12.5
820 IF AHS(T) > 3 THFN 830
825 Od TO 840
8.30 PRINT, 835
835 PRINT »**»**«-*****CM£CK STANDARD IS NOT IN CONT Rd L****** «**** **

840 PRINT, 905
845* PRINT Dk'IFT AND S.D. (DRIFT)
885 FHINT,89 0, D1 , SI

890 FMT DRIFT • ,F10.4/ S.D. (DRIFT) - FIO.

4

895 PRINT, 900,

K

900 FMP ///, RFSTPAINT (S.*-S.,) • ,F8.2
901 PRINT, 9P3, M2
902 PRINT, 906
903 FMT SYSIEMATIC EFRdElS.E. ) IN RESTRAINT • ,F8,2
905 FMT //
906 FMT //////
910 STOP
915 END
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INPUT = USER DATA FILE

10 MAY 2 3 1 9 "^4
, El- L , F E DFF A L 1

20 d . 1 01 , 1 33 , • ?2 , , 49 , , 20

30 52. 0, £2.5
40 43,2,52.1
50 £0.0,45.1
60 53.1,50,0
^0 £2. 3, 45,2
30 4 5. I , 52 .0

90 £2.0,50,1
1 00 = 0 , 1 , 52 .

3

OUTPUT

Date M 3Y 28 1974
f>hS, HOWELL
INSTt*, r-LDEPAL 1

rBSERVATIONS
£2 52.5
45.2 £2.1
50 45. 1

53. 1 50
52.3 45.2
45.1 52
52 50.1
50.1 52.3

A( T ) DEV( I )

-.500 . 029
-6, 900 - , 04o
4,900 .113
3. 100 . 571
7,100 - ,237

-6,900 - , 079
1 ,900 - .154

-2.200 .304

UNCE RTAI STY
NOM. CflPR. S . 1). 3( 3.D . ) .5( S.E

s. . 1

0

loco 2.95 .45618 1 .46854
s.

.

.101000 3.4 5 ,45613 1 , 4 68 54

X . lOlOOO .92 .47452 1 .52355
Y .101000 - 3.63 .47452 1 .52355

H S . S , D ACC. S. D, F TEST F RATIO D.F.
,3607 . 32000 1.271 3.32 4

OHS. CHECK ACC. CMECK T TEST
- .50000 -, 13300 -, 74098

DRIFT • .0042
S. D.( DR IFT ) • .0247

K'yZSTPAlNT(o.*S,.) * 6.40
SYbTFMATTC HKRORls.E. ) IN PF.isTRAiNT - ,20

J-32



Metrologia 26, 107-113 (1989) metrologia
© Springer-Vcrlag 1989

An Extended Error Model for Comparison Calibration

C. Croarkin

Statistical Engineering Division. National Institute of Standards and Technology*, Gaithersburg, MD 20899, USA

Received: September 10. 1988 and in revised form November 18. 1988

Abstract

The usual error model for calibration experiments is

extended to situations where there are both short-term

and long-term random errors of measurement. Such

error models are useful where short-term errors are

related to instrumentation, and long-term errors are

related to operating procedures, environmental fac-

tors or changes in the artifacts themselves. The con-

cept of a check standard is advanced for estimating

variability and maintaining statistical control of the

measurement process.

Introduction

Comparison calibration relates a characteristic of an

artifact or instrument to the defined unit for the quan-

tity of interest. A reference standard, whose value has

been independently established, is the basis for assign-

ing a value to the unknown artifact. For calibrations at

the highest accuracy levels, very precise comparators

with linear responses over a small on-scale range are

used to quantify small differences between artifacts of

the same nominal value. We describe an error model

and analysis where two unknowns are compared with

two reference standards according to a specific design.

Calibration Model

In the simplest case, an unknown X with value X*, yet

to be determined, is assumed to be related to a refer-

ence standard R with known value R* by

X* = A + R*

where A is small but not necessarily negligible.

Given a measurement x on the unknown and a

measurement r on the reference standard, the re-

sponses are assumed to be of the form

X = rj + X* +

and (1)

r = rj + R* +

where tj is instrumental offset and e, and e, are inde-

pendent random errors which come from a distribu-

tion with mean zero and standard deviation a.

The value of A is estimated ‘ by the difference A
where

A = X - r (2)

and the value assigned to the unknown artifact is

based on the known value of the reference standard,

R*, called the restraint, according to

X* = A + R*. (3)

The standard deviation of this estimate, Ox, depends

on the error structure for X* which is of the form

X* = X* + e,- e, (4)

so that

Ox = y/2a

.

(5)

Calibration Designs

A more complicated case involves the calibration of

several unknowns, such as a weight set of various de-

nominations or a group of voltage cells in a temper-

ature-controlled enclosure, relative to a single refer-

ence standard or group of standards. Any difference

measurements which compare unknowns and refer-

ence standards with one another and each other are

candidates for the calibration procedure.

‘ Boldface type is used to denote a least-squares estimate from

the data such as AFormerly, the U.S. National Bureau of Standards
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A calibration design is a subset of all candidate

measurements which admits a least-squares solution

for the unknowns. The design is constructed to be

parsimonious so as, on one hand, to minimize the

number of measurements and, on the other hand, to

give estimates with reasonably high precision. We rec-

ognize that precision depends on the number of mea-

surements, and Grabe [1] has shown how precision

depends on the construction of the design. As we show

in this paper, precision can also be limited by other

factors.

In the earliest references to designs by Hayford and

Benoit [2, 3], the term “weighing design” is used to

describe a sequence of measurements for calibrating a

weight set. In papers published in the 1960s and 1970s,

Bose and Cameron [4, 5] and Chakravarti and Surya-

narayana [6] extend the theory and application of

designs; Cameron and Eicke [7] solve a problem pecu-

liar to electrical circuits; and Cameron and Hailes [8]

discuss the situation where there is drift in the mea-

surement process. Recent publications [9-12] show

that designs now enjoy general acceptance in the cali-

bration laboratory and are routinely used for the cali-

bration of mechanical and electrical units of measure-

ment, as well as for mass measurements.

tions, one that arises in the short-term and one that

arises in the long term.

It is convenient to think in terms of short-term

instrumental variations and long-term artifact changes

caused by environmental conditions and the like. The

latter are assumed to vary randomly from design to

design and to be constant for a single design. The

model in ( 1 ) is expanded to include both types of errors

so that

X = tj +
(6 )

r = rj + {R* + Sk} + e,

where and e, are short-tenn errors of ( 1 ), and 3x and

(5 r , which represent long-term changes associated with

X and R, come from a distribution with mean zero and

standard deviation

The error structure of the estimate, X*, given by

X* = X* + Sx-S^ + e,- e, (7)

now contains both types of error terms, and the stan-

dard deviation a* becomes

Application to Designs

Expanded Calibration Model

Throughout this development, the one constant as-

sumption has been that random errors of measure-

ment are independent and come from a single error

distribution (such as the normal distribution). With

more precise measurement systems, we are now able to

identify situations where these assumptions are called

into question and a more realistic model is needed. We
find that random errors of measurement for a single

design, which takes at most a few hours’ time, are not

of the same magnitude as errors which afflict the mea-

surement process over the course of several designs or

days Thus, we are forced to admit two error distribu-

^ The statistical tcmi for this phenomenon is components of

error with the errors sometimes referred to as within-time and

between-time random errors

Standard deviations associated with solutions to a de-

sign depend upon the error structures of the model. We
illustrate with an example where two unknown arti-

facts X, and Xj with unknown values X* and X* are

calibrated relative to two reference standards R
,
and

Rj with values R* and R*. All items have the same

nominal value. A design consisting of the six compari-

sons di,... ,df, that can be made among the four items,

two at a time, can be represented as:

Obs R, Rj Xi Xj

d, 1 1
d2 1 -1
d2

d^

1

1 -1
-1

ds 1 -1
d. 1 -1

The model that follows from this design is;

-he,

d,= {R*2 +S^^}-{X:+Sx,}

ds= {Rt+S^,} -{X^ + Sx,}+es
^6 = {X: + Sx,}-{Xt + S^^}+c,

( 8 )
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The terms E^— , e^, represent random errors of mea-
surement and the te;ms <5^, , ^rj,

^

x, > ^nd <5x2 represent

random change'; m the artifacts. It is assumed that the

c ter»-us COtTiC from a distribution with mean zero and

standard deviation and that the <5 terms come from

a distribution with mean zero and standard deviation

cTb- All random errors are assumed to be mutually

independent.

The solution to the design depends on the restraint.

If the restraint is taken to be the average of the refer-

ence standards or

R*

then least-squares estimates (see, for example, Came-
ron et al. [13j)are as follows:

/?r = i( +d, -d, -d,) +R*

= ^(-2d^-d2 -di +d^ +di) + R* (9)

^r = s( -3d2-d2 -id^-d, +2d^)+R*

XT = U -d2 -3d2-d^ -3ds-2d^) + R*

We rewrite the solutions in terms of model (8) and

collect error terms to obtain

= /?•-(-§( 4<5r,
— 4(5rj-I-2£i + E 2 + E 3 —£4 —£5

/?* = i?* -I- f (— 4<5r,

-

f-4<5Rj —

2

£i —£2 —£3 +£4 +£5)

X* =Xf -I- ^
( — 4^R| — 4(5rj -I- 8<5xi

— 3£2 — £3 — 3£4— £5

X* = X? -I- 1
( — 4<5r, — 4<5rj

-

i-8<5xj — £2 — 3£3— £4 — 3£

Associated standard deviations are found from (10) as

follows^;

c'r, =‘7i«2 = +

and (11)

— — — /3 —2 1 3 —2 \l/2

The structure of ( 1 1 ) indicates how precision depends

on the relationship between the components of error.

For all four estimates, the contribution to the total

variance from al is four times larger than the contribu-

tion from ai ; thus, the size of (7b relative to a* deter-

mines to what extent precision is affected by the num-
ber of design points.

Check Standard

The quantity a^, can only be estimated from many
designs involving the same artifact. Because calibra-

tions are usually performed on a one-time basis, the

prerequisite data for this analysis does not usually

exist on the unknown itself. Thus, we designate a check

^ These equations are valid where R* is known without random
error; see the section headed. “A Matnx Approach", for the

case where R* is subject to random error

Standard for this purpose, and values of the check

standard from many designs provide the basis for esti-

mating (7b.

For designs involving two reference standards, we
create a check standard based on the difference be-

tween the two reference standards. For the design of

(8), this difference

C = R:-R*2 (12)

which is independent of the restraint, has an error

structure of the form

C = /?*— /?2"l"5(^^Ri~^^R2“^^^l'b2£2-l-2£3

-2£4-2£s). (13)

with associated standard deviation

ac = {2al+\^aiy'r (14)

Hence

(^b = {\oc - \ 05 )

and (11) can be reduced to

and (16)

^X,
—

•

+ 2£b) (10)

-2 £6)

Estimates of Standard Deviations from the Data

Given n designs with check standard values

Cl C„, the quantity ac is estimated with (n — 1)

degrees of freedom by

/ 1
n \l/2

where C is the average of the check standard values

The standard deviation, (7,, is estimated from a

single design with (m — k -(-
1 ) degrees of freedom where

m is the number of comparisons in the design; k is the

number of artifacts; and the additional degree of free-

dom comes from the known value of the restraint. For

the design given by (8), the standard deviation a^ is

estimated with three degrees of freedom by

/I «

5w =
(^3

_I (d.-</()'j 08)

*
This method of estimating the standard deviation assumes

that the check standard is not drifting over time
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where d, is the predicted value for each difference

measurement from the design; i.e.,

d,=RX- R*2

d2 = R: - xr

d2 = RX -XX
d,= Rt- xr

d,= r*2 -XX
d, = x: - XX

We can improve the estimate of cr» by pooling the

standard deviations from the n designs.

The pooled value Sp, which has 3 n degrees of freedom,

is computed as

/I "

= . .19,

For the purpose of making statements of precision or

uncertainty the population standard deviations <t„, at

and Oc are replaced by their respective estimates in the

appropriate equations.

Process Control

Two aspects of statistical process control are relevant

in the calibration process. Short-term control for mea-

surements constituting a single design depends on a*,

and long-term control for calibrations over time de-

pends on <7b via check standard measurements. The

latter depends upon reliable estimates from historical

data for the mean, C, and the standard deviation, Sc

For any new calibration, the check standard value, C,

is tested for agreement with past data by a t statistic

where

The process is judged to be in control if

where t^/j (v) is the upper a/2 percentage point of Stu-

dent's t distribution [14] with v degrees of freedom.

Otherwise, the calibration is discarded.

Short-term control for each design is exercised by

comparing the standard deviation from the design, s«

,

with a pooled value Sp from historical data. An F sta-

tistic is computed as

F = sllsl .

Short-term precision is regarded as being in control

if

F < F,(v,, vj)

where F,(v,,v 2 ) is the upper a percentage point of

Snedecor's F distribution [15] with v, degrees of free-

dom in 5* and degiees of freedom in Sp. Failure to

meet this condition is taken as an indication that pre-

cision has deteriorated, and the current calibration

results are discarded.

Case Study From Mass Calibration

The National Institute of Standards and Technology

(NIST) maintains about thirty check standards for

mass calibrations. These check standards, which cover

a variety of designs, load levels, and balances, consti-

tute the data base for constructing uncertainties asso-

ciated with mass calibrations and for implementing

statistical control of the calibration process.

The data base, which covers the last twenty years

of calibration history at NIST, is reviewed on an an-

nual basis to update uncertainty statements and to

expose any trends or anomalies in the process. Stan-

dard deviations from the designs, s», are pooled by

balance. Standard deviations for each check standard.

Sc, are estimated by (17).

Analysis confirms that the long-term component of

error, Sb, is negligible for the mass-calibration process

except at the critical kilogram level. The majority of

mass calibrations at NIST start at the kilogram level

using the design of (8) with the restraint as the average

of two reference kilograms and a check standard C as

defined by (12). Standard deviations for this process

are shown in the table below.

Standard Deviations at the Kilogram Level

Source Notation Eq. Std. dev.

Kg balance (19) 0.0316 mg
Check standard 5c (17) 0.0277 mg
Long-term change 5b (15) 0.01 16 mg
Unknowns 5*,. 5j[j (16) 0.0240 mg

Weights other than kilograms are related to the NIST
unit of mass via a hierarchy of designs where the re-

straint for each design is taken from the solution to the

previous design. For example, at the kilogram level,

the unknown Xj is a group of weights totaling a kilo-

gram; the group constitutes the starting restraint for

the next design in the series. Thus, any random error

that influences the value assigned to X 2 is propagated

to all other weights.

Application to Other Designs

The standard deviation associated with a measure-

ment must be defined on a design-by-design basis. A
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matrix approach is outlined in the next section; also

see Croarkin [16, 17] for specific formulations for a

design involving two reference standards and three

unknowns and a design involving four reference stan-

dards and four unknowns.

The problem of definition can sometimes be avoid-

ed by judicious choice of a check standard. If one

chooses a check standard with the same error struc-

ture as the artifacts being calibrated, then the standard

deviation for the check standard also applies to the

calibrated artifacts. For example, if we make all ten

comparisons among five artifacts of the same nominal

value, where one artifact is a designated check stan-

dard, then the check standard will have the same error

structure as the unknowns.

A Matrix Approach

A matrix approach is outlined for estimating compo-
nents of variance for any measurement design where

there are both short-term random errors of measure-

ment and long-term random changes in the artifacts.

We also allow for the situation where the restraint has

been estimated from a previous experiment, and the

random errors associated with that measurement pro-

cess are taken into account.

Given m difference measurements among k arti-

facts, where some artifacts are regarded as reference

standards and some are regarded as test items or un-

knowns, the model for the measurement process

D = A[X*+S] + E (20)

is shown in terms of matrix elements. The elements

and their respective dimensions are defined as follows:

- Z) a matrix of difference measurements
1m X 1)

- A di matrix of zeroes and ones such that a plus
|m X kl

or minus one in the j"’ position indicates that the
J***

artifact is involved in the i“* comparison and a zero

indicates the converse

- A"* a matrix of unknown values for the k artifacts
(k + n

-da matrix of random errors with zero mean and
(k « n
standard deviation

- c a matrix of random errors with zero mean and
(m » 1

1

Standard deviation g^

Because the matrix A has rank (k — 1 ), a solution for an

unknown X*, as shown by Zelen [18], is achieved by

imposing upon the system a restraint, or known value

for a linear combination of the artifacts. Let the scalar

R* be the restraint, and let y’R be a vector of zeroes

and ones such that a one in the position indicates

that the j“’ artifact is in the restraint and a zero indi-

cates the converse.

For example, the vector^

y’R =(1 1 0...0)
(1 > kl

indicates that the restraint R* is the summation for the

first two artifacts.

Then a solution can be found from an augmented

matrix B where

(k

B
2l « (k

has an inverse of the form

and Q is the covariance matrix; X* is the vector of

estimates for the unknowns; and other entries (•) are

irrelevant for this application.

The deviations from the fit are given by the vector

C where

r =[D-AX*]’
( 1 X ml

and the standard deviation for the design g^ is esti-

mated by

5* =
C'C

m — k-i-

1

1/2

with m - k -(- 1 degrees of freedom.

It is now assumed that a check standard C is

tracked for many applications of the same design over

time. The estimated value of C for any particular de-

sign is given by

C = ^c[X*]

where, for example,

=(\ -1 0 ... 0 )

(1 X kl

indicates that the check standard is the computed dif-

ference between the first and second artifacts.

’ The mark (
') indicates the transpose of a matnx
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The standard deviation Oy, can be estimated from

the relationship

. _
o]:-

where (Xf and should be estimated from the data of

several designs

Now consider a single unknown Xj whose esti-

mated value is

Ar = i^"x,i'i^i 121)

where, for example,

=(0 1 0 ... 0 )

( I « k)

signifies that Xj refers to the second artifact in the

design. Then the appropriate standard deviation for Xf

<yx,
=

is given by

= i[^Xy] '[QA'A] [ifxj [Q] [^xj

(22 )

and the standard deviation associated with any linear

combination of the unknowns is computed in a similar

fashion. At this stage we assume that R* is known
without random error. Eq. (25) is appropriate if this

assumption is not valid.

Mass calibration is a special case because values

are assigned to sets of weights covering several denom-

To account for weights of various denominations, let

be a vector of nominal values for the k weights of

the second series so that

W ={Wy w;).
(1 » k)

Now we redefine the design matrix A and the restraint

vector for the next series and let

R* = Xt

and

The matrix B and its inverse B"' follow accordingly.

The if^xj vectors are also redefined for the weights in the

series so that estimates can be computed according to

(21). Then the appropriate standard deviation for the
j'h

weight, Xj, is given by (25) which follows:

1/2

(25)

Standard deviations for the check standard for this

series and other combinations of weights are com-
puted similarly. It is noted that the process standard

deviations, a. and depend on the balance and the

denominations of weights calibrated in the senes; thus,

they should be estimated separately for each senes.

The process is extended to the next series by re-

defining the vector so that it identifies the out-

going restraint whose value is given by (23). Then the

standard deviation for this restraint is given by (26)

which follows:

[^^MA' A][^,^alA[Se^;\'[Q][S£-,Xj kw +
2 ~\

aXr [if [Q A' A] cl + [if,]' [Q] <ri (26)

(nations of mass. All values are related to a starting

restraint, such as a kilogram reference standard, by a

series of interrelated designs. The first series includes

as an unknown, a single weight or a summation of

weights, which becomes the restraint for the following

seiies and so on throughout the entire weight set.

Thus, we must account for imprecision associated with

restraints after the first series.

Let if, be a (k X 1 ) vector that defines the unknown
whose value will be used as the restraint in the next

series; this out-going restraint has value

A', = [if,]’[;r*]. (23)

The standard deviation associated with this restraint is

computed as

‘^x. = ([^zV[Q A' A] [i^,] at + [if,]'[C] [i^,] .

(24)

" See the discussion under “Check Standard" and Eqs. (16) and
( 18 )

The standard deviations given by (22) and (24) are

appropriate for values estimated in the initial series of

weighings where the starting restraint is a known
value. For values assigned by subsequent series of

weighings, the imprecision of the estimated restraint

contributes a component to the total standard devia-

tion. Thus, (25) and (26) are appropriate.

Concluding Remarks

The proposed error model is especially enlightening

where short-term errors are related to instrumenta-

tion. Then long-term errors are the result of operating

procedures or environmental changes which affect

the artifacts over time but are reasonably constant in

the short-term so as not to affect the standard devia-

tion from the design. Thus, there is motivation for

isolating the long-term component in order to ascer-
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tain whether precision can be improved given current

instrumentation.

Other models may prove more useful or descrip-

tive for other situations. For example, for mass cali-

brations which deal with weights of the same nominal

mass, it is reasonable to assume that random changes

in the weights can be characterized by a single error

distribution. However, for weights which are not of the

same nominal mass, we would allow for errors propor-

tional to mass or, perhaps, to surface area.

Finally, the analysis of the design for four artifacts

demonstrates that improved precision cannot always

be attained by increasing the number of measurements

in the design. The relative magnitudes of and o^, and

their contribution to the total variance must be under-

stood before one can improve precision.
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THE USE OF THE METHOD OF LEAST SQUARES IN CALIBRATION

by

J. M. Cameron

1. Introduction

When more than one measurement is made on the same quantity, we are

accustomed to taking an average and we have the feeling that the result
is "better" than any single value that might be chosen from the set.

Exactly why the average should be better needs some justification and

the fundamental step toward a general approach to the problem of
measurement was taken by Thomas Simpson in 1755. In showing the
advantage of taking an average of values arising from a number of
probability distributions, "he took the bold step of regarding errors,
not as individual unrelated happenings, but as properties of the
measurement process itself ... He thus opened the way to a

mathematical theory of measurement based on the mathematical theory
of probability" [3, page 29].

The taking of an average is a special case of the method of least
squares for which the original justification by Lengendre in 1805 did
not involve any probability considerations but was advanced as a con-
venient method for the combination of observations. It was Gauss who
recognized that one could not arrive at a "best" value unless the
probability distribution of the measurement errors were known. In

1798 he showed the optimality of the least squares values when the
underlying distribution is normal and in 1821 showed that the method
of least squares leads to values of the parameters which have minimum
variance among all possible unbiased linear function^ of the observa-
tions regardless of the underlying distribution. It is this property
that gives the method of least squares its position of dominance
among methods of combination of observations.

In this paper the statistical concepts needed for the method of
least squares will be stated as a prelude to the usual modern version
of the Gauss theorem. The formation of the observational equations
and the derivation of the normal equations are illustrated for several
situations arising in calibration. The role of restraints in the
solution of systems which are not of full rank is discussed. The
results are presented in a form designed to facilitate computation.

An example of a nonlinear function with smaller variance than the
average (the "best" linear estimator) is given by the midrange for
the rectangular distribution. The midrange (average of the largest
and smallest observation) has variance 1/[2(N+1 )(N+2)] when based
on n measurements, whereas the average has variance 1/12N. Thus if
N^3, the midrange is to be preferred.
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2. The Physical and Statistical Model of an Experiment

In physics, one is familiar with the construction and interpretation
of the physical model of an experiment. One has a substantial body of
theory on which to base such a model and one need only consider the
determination of length by interferometric measurements to remind
oneself of the various elements involved: a defined unit, the apparatus,
the procedure, the corrections for environmental factors, etc. One
realization of the experiment leads to values for the quantities of
interest.

But one realizes that a repetition of the experiment will lead to

different values—differences for which the physical model does not
provide corrections. One is thus confronted with the need for a

statistical model to account for the variations encountered in a sequence
of measurements. In building the statistical model, one is first faced
with the issue of what is meant by a repetition of the experiment--many
readings within a few minutes or ab ^initio determinations a week apart.

The objective is to describe the output of the physical process
not only in terms of the physical quantities involved but also in terms
of the random variation and systematic influences due to environmental,
procedural, or instrumental factors in the experiment.

3. Equation of Expected Values of the Observation

If one measured the same quantity again and again to obtain the
sequence

* ’

'^n
* * *

then if the process that generates these numbers is "in control," the
long run average or timitXnQ mean, u, will exist. By "in control" one
means that the values of y behave as random variables from a probability
distribution (for a discussion of this topic, see Eisenhart [1]). This
limiting mean, y, is usually called the expected uafae of y designated
by the operator E( ) so that the statement becomes in symbols E(y) = y.
Because y is regarded as a random variable one can represent it as

y * y + e

where e is the random component that follows some probability distri-
bution with a limiting mean of zero, i.e., E(e) « 0.

The quantity y may involve one or more parameters. Consider the
measurement of the difference in length of all distinct pairings of
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four gage blocks, A, B, C, D. Denote the 6 measurements by y| , y2 , . .

then one may write

E(y,) = A-B

E(y2) = A-C

E(y3) = A-D

E(y4) = B-C

E(y5) = B-D

ECyg) = C-D

Other representations are useful.

Observation Expected Value: E(yl Matrix Form: XB

A - B 1 -1 0 0 A

y

y

2

3

A - c

A - D

^4

^5

^6

B-C

B - D

C-D

Consider a sequence of measurements of the same quantity in the
presence of a linear drift of A per observation. The expected values
are thus

:

Observation

ECy^) = y

E(y2) * y + A

E(y
3

) = y + 2a

Matrix Form: XB

E(y^) = y + (n-l)A (n-1)
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There 1s an alternative representation that measures the drift from

the central point of the experiment so that the drift Is represented

by . . . -3A, -2A, -A, 0, A, 2A, 3A . . . for an odd number of obser-

vations and by . . . -5A, -3A, -A, A. 3A. 5A . . . for an even number

of observations. 2 2 ~T 2 "T

If, as for example with some gage blocks, the value changes approxi-

mately linearly with time; then one can represent the observation as

follows:

Expected Value E(y)

ECy-j) = a + 8x^

E(y
2

)
= a + BXg

Matrix Form: X6

E(y^) = a +

The sequence of measurements for the intercomparison of 4 gage
blocks 1s as follows:

Observation Expected Value: E(y) Matrix Form: XB

S. - S.

.

- 7A/2 1 -1 0 0 -7

h Y - S. - 5A/2 -1 0 0 1 -5

^3 X - Y - 3A/2 0 0 1 -1 -3

^4 S..- X - A/2 0 1 -1 0 -1

^5 S..- Y + A/2 0 1 0 -1 1

h Y - S. + 3A/2 -1 0 0 1 3

S. - X + 5A/2 1 0 -1 0 5

X - S.. + 7A/2 0 -1 1 0 7

that for simplicity, A/2 is regarded as the parameter.

)

S.

S..

X

Y

A/2

For a detailed analysis of this and related experimental arrangements,
see J. M. Cameron and 6. E. Hailes [1]. The notation is that used in

[1] where S. and S.. refer to reference standards and X and Y are the
objects being calibrated.
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If, as often occurs in the intercomparison of electrical standards,

the comparator has a left-right polarity effect, this can be represented

as an additive effect, a, as shown below for the intercomparison of 5

standards.

Observation Expected Value: E{y) Matrix Form ; X6

A - B + a 1 -1 0 0 0 r

B - C + a 0 1 -1 0 0 1

^3 C - D + a 0 0 1 -1 0 1

J'4 D - E + a 0 0 0 1 -1 1

-A + E + a -1 0 0 0 1 1

^6 -A + D + a -1 0 0 -1 0 1

B - D + a 0 1 0 -1 0 1

>'8
- B + E + a 0 -1 0 0 1 1

>9 C E + a 0 0 1 0 -1 1

^10 A - C + a 1 0 -1 0 0 1

A

B

C

D

E

a

4. Statistical Independence

The sequence of differences from a zero measurement, y^,

A:
y,-yo, y2-yo. yyyQ yp-yo- • •

are clearly dependent because an error in y will be common to all.

Similarly, the successive differences

B: y2-yT y3-y2»* • •»VVi** * •

will be correlated in pairs because an error in y^ affects both the

(n-l)st and n-th difference.
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If it is assumed in both cases that each has the form u-j = yi + e-(

where E(e-|) = 0, Var (ei) = and cov (e>j,ej) * 0,then the variance of

the differences for sequence A is, as one would expect,

V(yi-yo)
= 2a2

and the covariance of two differences is

cov
(yi-yfl. yj-yo)

= E[(e-eo)(Cj-eo)l = E(eJ) = 0*

because terms of the form E(e^. ,ej)= 0

For sequence B the variance is also V(yi-yi-i) = 2a^ and the

covariance terms are-

cov(y,.-yi.,. yj-yj.i)
= E[(c,-e,.T)(Cj-Cj.,)] = r 0 if |i-j| >2

l-o* if |i-j| =1

These variance-covariance relationships can be represented in matrix
form:

Sequence A: V= 2 1

1

... r Sequence B: V= 1o•••oo1CM

•

1 2 1 ... 1

•

-1 2 -1 0 ... 0

•

•

•

1 1 1 ... 2

•

•

0 0 0 0 ... 2

All are familiar with the phenomenon of much closer agreement among
measurements taken immediately after each other when compared to a sequence
of values taken days or weeks apart. The simplest statistical model for
this case is that each day has its own limiting mean, yj y 6i , where
E(6-j) = 0, Var(6'j) = ag, Cov(6i,6j) 0,and the successive values on
each day have the form

^ij '
“i '^ij

* ^
«i

*
^ij

where E(eij) = 0, Var(eij) = aj, Cov(E.jj, ~ 0, and Cov(eij, 6^) = 0.
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These three examples serve to illustrate the point that the physical
conduct of the experiment is the essential element in dictating the

appropriate statistical analysis. In all three cases the correlation among
the variables vitiates the usual formula: standard deviation of the mean =

(l//n) standard deviation. (See Appendix, Section 1(b).)

It is in the physical conduct of the experiment that one has to build

in the independence of the measurements. For Sequence A one could remeasure
the zero setting each time or in Sequence B, make an independent duplicate
measurement. Ordinarily this is too much of an expense to pay to achieve
uncorrelated variables just for a simpler analysis.

Statistical independence is to be desired in the sense that if

the successive measurements are highly correlated, then many measure-
ments are only slightly better than a single one. The really important
issue is that the proper statistical model be used so that the results
are valid.

5. Normal Equations For the Method of Least Squares (independent
random variables)

When there are more observations than parameters, the "best" (in

the sense of minimum variance) linear unbiased estimates for the
parameters are given by the so-called least squares estimators. For
example, assume one has the problem of deriving values for A, B, C,

and D from the following measurements.

Measurements Expected Value: E(y) Matrix Form: XB

^1

^2

^3

^4

^5

^6

^7

>^8

A 0 0 0

B

C

0 10 0

0 0 10
B

C

D 0 0 0

A + B 0 0

B + C

C + D

0 110
0 0 11

D + A 0 0 1
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An obvious estimator. A, is the average of the three values.

Expected Value
A

(A+B)-B

(A+D)-D

so that, assuming independent measurements with variance, a^.

A = j(yi
+ >5 -

ya
+
ye

Var(A ) = |o^

The least squares estimator is obtained by forming the normal

equations (see Appendix, Section 2).

3A + B + + D = + yg + yg

A + 3B + C =
yz ^6 * ^5

B + 3C + D = yg + y^ + yg

A + C +30 = y^ + yg + y^

The solution gives the following estimators for the parameters.

A = (7y^ - 3y2 + 2y3 - 3y^ + Ay^ - y^ - y^
+ 4yg)/15

B = (-3y^ + 7y2 - 3y3 + 2y^ + Ay^ + Ay^ - yy - y8)/T5

C = (2y^ - 3y2 + 1)/^ - 3y^ * ^5

6 = (-3y^ + Zy^ - 3y3 + 7y^ - yg - yg
+ Ay^ + Ayg)/15

Using formula (1.11) of Appendix, gives

Var(A) = 105aV225 = 21oVA5 = 7aVl5

which can be compared to the variance of A which was 25a^/A5. The Gauss
theorem on least squares guarantees that no other linear unbiased
estimator will have smaller variance.
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In matrix form one has

(X'X)6 =
“

3101
"

'a =
1 0 0 0 1 0 0 1

13 10 B 0 10 0 110 0

0 13 1 C 0 0 1 0 0 1 1 0

10 13 D 0 0 0 1 0 0 1 1

6 = 1

TI
7-3 2-3

-37-32
2-3 7-3

-32-37

B =
15

1 0 0 0 1 0 0 1

0 1 0 0 1 1 0 0

0 0 1 0 0 1 1 0

1
0 0 0 1 0 0 1 1

4 -1 •-1 4

'

y

4 4 -•1 -1

-1 4 4 -1

-32 -37 -1-144
When only differences among a group of objects (such as gage blocks,

voltage cells, etc.) are measured the normal equation will not be of
full rank so that a unique solution will not exist. For the design
involving differences between all distinct pairings of objects the
normal equations are, for the case of 4 objects discussed in Section 3,

3A - B - C - D -

-A + 3B - C - D =
-y, + + yg = qj

-A - B + 3C - D =
2

” ^
'^6

~ ^3

-A - B - C + 3D =
-y^ - yg - yg

= q^

M-9



Or in matrix form:

“l 1 1 0 0 0
~1

-1 0 o" B = 3 -1 -1 -1 6 = 1 1 1 0 0 0

-1 0 0 1 1 0 1 0 -1 0 -1 3 -1 -1 -1 0 0 1 1 0

0 -1 0 -1 0 1 1 0 0 -1 -1 -1 3 -1 0 -1 0 -1 0 1

0 0 -1 0 -1 -1 0 1 -1 0 -1 -1 -1 3 0 0 -1 0 -1 -1

0 1 0 -1

0 0 1 -1

which can be seen not to be of full rank because the sum of the four

equations is zero.

One needs a baseline to which the differences can be referred--a
restraint to bring the system of equations up to full rank. If one of
the objects were designated as the standard, or if a number (or all)
of them were regarded as a reference group whose value was known, values
for the items could be obtained.

If the restraint A « Kq is invoked, the normal equations become
(using the methods of Appendix, Section 3)

r 3A - B - C - D + X =
q, 3 -1 -1 -1

-A + 3B - C - D -1 3 -1 -1

-A - B + 3C - D -1 -1 3 -1

-A - B - C + 3D '
''a

-1 -1 -1 3

A =
''o

1 0 0 0

0

0

0

0

f

<ai

( 1

X

A
X K

“ - 0

The solution is given by

A = K B
.1
"T 00004

'

1 1 1 0 0 0 0 y

§ * K+(-2y^-y2-y3+y4+y5)/4 X 0 2 114 -10 0 110 0 /o
c ' K+(-y,-2y2-y3-y4+y5)/4 0 12 14 0-1 0-1 0 1 0

D . K+(-y,-y2-2y3-y5-y5)/4 0 112 4 0 0-1 0-1-1 0

X = 0 4 4 4 4 0 0 0 0 0 0 0 1
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6
1

J ooo1 0 0 0 4

-

y

X -2 -1 -1 1 1 0 4 K
0

-1 -2 -1 -1 0 1 4

-1 -1 -2 0 -1 -1 4

0 0 0 0 0 0 0

A. /s

The variances of the values are V(A) = 0; V(B) = V{C) = V(D) = a^/2.

If the restraint A + B + C + D = K-| is invoked, the normal equations
become

3A - E - C - D + X '
‘’l

3 -1 -1 -1

-A + 3B - C - 0 + X '
‘<2 -1 3 -1 -1

-A - B + 3C - D + X '
<’3 -1 -1 3 -1

-A - B - C + 3D + X =
‘’4 -1 -1 -1 3

A + B + C + D 1111

<0Q1 II

1
_>>X

1

/N

X

11L- —

1

1

0

and

A

A =

/V

B =

C =

D =

X =

the solution is given by

(y]+y2+y3+K^)/4
44N

6
. 1

T5'
3 -1 -1 -1 4 1 1 1 0 0 0 0

(-yi+y4+y5+K^)/4

A.

X -1 3-1-14 -10 0 110 0

0

-1 -1 3-14

-1 -1-1 3 4

4 4 4 4 0

0-1 0-1 0 1 0

0 0-1 0-1-1 0

0 0 0 0 0 0 1

4 4 4 0 0 0 4

-4 0 0 4 4 0 4

0 -4 0 -4 0 4 4

0 0-4 0-4-4 4

0 0 0 0 0 0 0

^ ^ ^

The variances of the values are V(A) = V(B) = V(C) = V(D) = 3a^/16.
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Although it is a simple matter to change the reference point for
the parameters (i.e., change the restraint) after one solution has been
found, the corresponding change of variances for the parameter values
should not be ignored. These variances are given by the diagonal terms
of the inverse of the matrix of normal equation, the inverse being
indicated by double brackets in these examples. The difference in

variance for § in the last example, arises from the fact that in the
first case one is concerned only with the difference between A (the
standard) and B, whereas in the second case it is the difference between
B and the average of the others that is involved.

For completeness, the matrices of normal equations and their
inverses for the examples of Section 3 are shown below.

Linear Drift

X = 1 0 X'X = n n(n-l )/2

n(n-l)/2 n(n-l)(2n-l)/6

2

(n-1)

n(n-l)(2n-l)/6 -n(n-l)/2

-n(n-l)/2 n

y a linear function of x

X =ri x,l X'X = n Zx

•Ix n

X
n
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Gage block design

0 1

-10 0 1-5

0 0 1-1-3

0 1-1 0-1

01 0-1 1

-10 0 13

1 0-1 05
0-1 1 07

X'X

B'

4 -1 -1 -2

-1 4 -2 -1 n 1

-1-24-10 0

-2-1-140 0

0 0 0 0 168 0

1 1 0 0 0 0

X'X B
-1 1

' 33F
"

35 -35 -7 7 0 168

B' 0 -35 35 7 -7 0 168

-7 7 91 21 0 168

7 -7 21 91 0 168

0 0 0 0 2 0

1.68 168 168 168 0 0

Intercomparison of 5 standards (Sum of all used as restraint)

0 1-1 0 0 1

0 0 1-1 0 1

0 0 0 1 -1 1

-1 0 0 C 1 1

-10 0 10 1

0 1 0-1 0 1

0-1 0 0 1 1

001 0-1 1

1 0-1 0 0 1

X'X

B*

B

0

4 -1 -1 -1 -1 0

-1 4 -1 -1 -1 0

-1 -1 4-1-1 0

-1 -1 -14-10
-1 -1 -1-140

0 0 0 0 0 10

111110

1

1

1

1

1

0

0



-1
0 5X'X B

B' 0

4 -1 -1 -1 1

-1 4 -1 -1 -1

-1 -1 4 -1 -1

-1 -1 -1 4 -1

-1 -1 -1 -1 4

5

5

5

5

000005/20
5 5 5 5 5 0 0

6. Standard Deviation

By substituting the computed values for the parameters into the

equations of expected values for the observation, one has a pA.tdictzd

vaZaz to compare to the actual observation. The difference, d, between
the observed and predicted value is called the de.vicuUon and is used
to determine an estimate, s, of the standard deviation, o, of the
process

.. /ST
/ n-k+m

where n is the number of measurements, k is the number of parameters and
m is the number of restraints.

Ordinarily one has available a sequence of values of the standard
deviation say S], S2i S3, . . . , Sp based on v-j , V2, V3, . . . , Vp degrees
of freedom. One forms the estimate of a by combining these in quadrature

a =

with degrees of freedom N = Zv. In assigning a standard deviation to
the parameters or linear combinations of them, the value a is used rather
than the value of s from a single experiment.

The variance of the sums of two parameter values is given by adding
the corresponding diagonal terms (variances) in the inverse of the
matrix of normal equations and the appropriate off diagonal terms
(covariances) and multiplying by For the case of the intercomparison
of 5 standards given at the end of Section 5:
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s.d. (A+B) =
/g^ )]

=

For the variance of the difference, the covariance terms enter negatively
so that for the same example

s.d.(A-B) = /g^ + (?B-2a^g
= /tl+4-2(-l )]

=

For other linear combinations, formula 1.1 0-M of the Appendix would be

used.

For the linear function example, the predicted value of y for

Xo is yQ= a + Bx^ which has a variance of

’'o’ ^11 ^12
‘1

C
^2 ^22 X

0

(Cii ^x
o ''22 ^Vl2

where the terms C,,, 0,2* C
22

the elements of (X'X)”^ given
Section 5 for the dase of y^as a linear function of x.

in

7. Correlated Measurements

In the previous section it was assumed that the observations were
uncorrelated, i.e., that V(yi) = g^, cov(yi, yj) = 0 or in matrix form
V = Var(y) = g^I where I is the identity matrix. Section 4 of the
Appendix discusses the general case where one knows the matrix, V, of

variances and covariances for the observations.

Quite often a transformation of variables can be achieved to obtain
variables that are uncorrelated. A simple example is provided by the
case of cummulative errors, i.e., in the case where

y,
= u, + e,

>2
= Uj + e, + e2

yj
= ^3 + e, 4 e

2
* ^3

The variance covariance matrix of the y's assuming E(ei) = 0, Var(£) = g^,

cov(£iej) = 0 is given by
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12 2 2

12 3 3

1 2 3 . . n

If one transforms to variables where

X

X

X

1
=^1 "^1

2
= y

2
' ^1 CsJ

II - u-| + e

3
" -^3 " -^2

= ^3 - ^2 ^

2

3

*n
* -

^n-l
'

“n
'

‘'n-l * S

The expected values and variances become

E(X) = V(X) =

y2-ui

•

•

In matrix form X « Ty where T = 1 0

-110 0

0-11 0
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and if one computes Var(Ty) = TVT', one gets

Var(Ty) =
1 00 ..' '

1 1

1

... r

-1 1 0 12 2 2

0 -1 1 12 3 3

•

• •

1 -1 0

0 1 -1

0 0 1
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APPENDIX: FORMULAS FROM STATISTICS

Background and Notation

(a) Expected Value

The expected value, y, of a random variable, y, will be written

E(y) = y

The mean y may represent a linear function of some basic
parameters B-), B2^ ... 6k with known coefficients

XI, X2, . . .,xk

E(y) = y = x^Bi + X262 + . . .
+

The expected value of n observed values yi, y2 . . . . » can

then be written

E(yi) ~
x-jiBi ^12^2 ^Ik^k

(1*1)

E(y2) =
^2^6^

+ X2262 + . . . + X2,^6,^

^^^n^
"
^nl^l/ ^n2^2

+ • • • +
^nk^k

This may be written in matrix notation as

E(y,)' =
Xii x^2 • • •

^ik

E(y2) X
2 I ^22 • * *

^2k

E(yn) X T X «... X
,

nl n2 nk

E(y) XB

^kJ

(1.1-M)

where the vectors y and 6 and the matrix, X, are easily
identified.
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(b) Variance, Covariance

The variance, a?, of a random variable, y^. , is defined as

O? = E{(y, - u,)'} = E(y^M - 2i.^E(y.) + y? = E(yp - uj (1.2)

and the covariance , of the variables y^
and

y^
by

°ij
'

^‘(^i
-
“i>‘yj

- ‘‘j’’
=

- Vj
The variance of cy where c is some constant is

Var (cy) = E{(cy - cy)^} = c^a^ (1.4)

The variance of a sum of two variables

Var(y^ + y^) = E{[y^ ^2 *
^^1

" ^^^^^1 ‘ ) + (^2 ‘ ^2^^^^

= E(yi - Uj)^ + E(y2 - U2)^ + 2E{(y^ - y^)(y2 - y2))

+ 02 + 20-12 (1.5)

which we may write as

0
^

+ o| + 2o
^2

^ ^1 ’of + o,2‘ - [1 1] o| 0^2 T

1

cd

<\i

+
C\J Oi2 cl

_
J-

For independent random variables o.. = 0 and

Var(Zy.) = Zo? (1.6)

EXAMPLE:

Var(ay^ + by
2

+ cy^) = E{[(ay^ - ay^) + (by
2

- by
2

) + (cy^

= a^o^ + b^02 + c^o| + 2abo.j2 + 2aco.j2

which may be written as

[a b c] ’^1 ®12 °13’ a"

Oi2 cl 023 b

“^13 ^23 ^3 - _c_

- cy^)]^}

(1.7)

(1.7-M)
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(c) Linear Function of Random Variables

E{[a^(y

+

A linear function

L = a,y, + + . . . + a„y„

has expected value

E(L) = a^E(y^) + a2E(y2) + . . .
+

or in matrix notation

E(L) = (a-| a
2

.
. . a^) E(yi)

E{y2)

LE(y„)J

= a'y

The variance is given, by analogy with (1.7) by

V(L) = [a^ a2 • • • d
n] ^1 ^12 • • •

^In

021 ^2 •• •

^2n

^^nl ^n2
• • •

^n

which reduces to the usual formula

.2^2V(2a.y.) = Ea^o?

( 1 . 8 )

(1.9)

(1.9-M)

(1.10-M)

( 1 . 11 )

if = 0.

For two linear functions L, and the covariance term is

given by
^

i-ii,) + *

= a,b,E(y,-ij,)2 + a2b2E(y2-U2)^ + . . . + a„b|,E(y|,-Uj,)^

(a,b2 + a2b^)E(y,-u,)(y2-U2) + (a^bj + a3b^)E(y,-u,)(y3-U3)

+ (a2b2'*’a2b2)E(y2”U2) (y3“Vi2) + . . .
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This reduces to the usual formulas:

then Cov (L-j, L
2 )

* La^-b^-a?If . 0

( 1 . 12 )

If 0
^

= 0 then Cov (L^ , L
2

)
= o^Za.b.

For the case of = a^y-j + a
2y 2 *"2

~
^1^1

^ ^2^2 ^ *^3^3*

covariance can be written:

(1.12-M)

(a, a^ aj) bioj + b20^2 Vl3 = (a, a^ dj) ^1 °12 ^13

V2 ‘^l'^12 ^3^23 012 ^2 ®23 >>2

b3a| + b^o^3 + b2a23 ^13 ^23 ^3
>-

giving the general formula for the variance and covariance of two linear
functions

^1 ^2 * * . a.

bi b2 . . . bn

a? a
1 °12 • * *

°ln

012 ^2 . o
2n

‘^In ^2n
• •

• %

ai b^

"2 ^2

a b
n n

(1.13-M)

or in general for p such function, i.e., for a pxn matrix A

Var(AY) = AVA‘

(d) Quadratic Forms in Random Variables

We have from (1.2)

E(y^) = o^ +

(1.14-M)

(1.15)

We wish to extend this to include the case of a more general
quadratic expression in the y's, consider for example

E[(ay^ + by2)^] = Ea^yj + £b^y2 + 2abE(y^y2)

= a^a| + a^y^ + b^o^ + b^y| + 2aby^y2 + 2abo.j2
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which may be displayed as a matrix product as follows:

y2^ ”a^ ab = ^2^ ’a^ ab
'h'

+ [a b] 0^2 a

ab b^
-H.

ab b^ -^2. .^^12 i .
b

This example illustrates the general formula:

E[(a,y, + . . + = E^[y, ai ^1^2 • •

®l®n

a^a'i ao • •

2 12 2 n

a„a, a„a« . . a;
n I n 2 • n

=
[y, . . y^l a| . . . a^i^

• •

’h'

•

+ [a^ . . aj -of 0,2 . . 0
,„

•

• •

“in
• • •

“n
I-

• •

a,
In 21^ n

or

E{y'Ay} = y'Ay + a'Va

where A =
“

2

^1 ^1^2 * ° * and V =
of 0,2 ...

^1^2 ^2 • • •

•

0,2 o| ...

• -*

(1.16-M)

The last term can be replaced by the trace of AV so that we have

E(Y'AY) = u'Ay + Trace(AV) (1.17-M)

For an excellent treatment of these statistical topics one should
consult Zelen E5]

.
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2. The Gauss Theorem on Least Squares (Independent. Equal Variance.
Fu 11 Ranirr

Let the n observations
yi,y2 t.

• -ty^ have expected values

Ely,) = •

’‘lk®k

E(y2) =
*21®1

*
*22^2 • •

’‘2k®k

(2.1)

E(y„) = x^,6, + x„262
*nk®k

and be statistically independent with common variance, a^.
conditions can be expressed in matrix form as follows:

E(y) = Ey, = X,

h *:

12 ^Ik

22 ^2k

*nl *n2 'nk

6 = X 6

These two

(2.1-M)

v(y) = 0

0 0“

0 0

• • • 0

. . . 0

. . . a"

= G^I

The Gauss theorem states that the minimum variance unbiased linear
estimator of any linear function, L, of the parameters, 6

^
62 •

• •

^k*
say

L = a^B^ + a
2
B
2

+ . . .

is given by substituting the values of B^. which minimize
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Q = +

considered as a function of the 6-. These values, B, , • •

the solutions to the k equations, ^called the nonmoJi iquazlon4>.

Ix?iBi t Zx.,x.|^B|, = IX., y.

( 2 . 2 )

Sk are

Zx.^x.tBi + Zx?^B>12^11^1 i2^2 ^*i2*1k®k
° ^*12^1

IXikX,,6i * Sx,|,Xi262 + . . + Ix?kBk
=

or in matrix form

(X'X)B = X'y

The solution to these equations can be written as

B = {X'X)”^X'y

(2.3)

(2.3-M)

(2.4-M)

because X was assumed to be of rank k. The matrix (X'X)"^ is the

-oiue/ue 0 ^ the. maVUx noAmal zquboXtoKi and plays an important role
in least squares analysis. Let its elements be denoted by c.. so that

* J

(X'X)' 1 _

‘^ll *^12
• • •

^Ik

C21 C22 . . .

(2.5-M)

^kl ‘^k2
• • •

^kk

The standard deviation, o, is estimated from the deviations d^.

,

where

^i
^

'^i ^^il^l ^i2^2
**

• * '^

*ik^k^ ( 2 . 6 )
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by the quantity, s,

s =
( 2 . 7 )

and is said to have n-k ^A.eedom,

The standard deviation of the values for the coefficients 6- are
given by

s.d.(S^.) = o/c^.^ (2.8)

and for a linear function L = aiBi + a«B« . . . a.Bi, is [see equation
(1.10-M)]

' ' ^
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3. The Gauss Theorem on Least Squares (Independent, Equal Variance.
With Restraints)

If the parameters, 6^., are required to satisfy the m linear equations

(3.1)'^1 ~ ^
11^1 ^ ^

12^2 • •

^Ik^k
"

'^1

* ^^069 • • •

m mrl m2'’2

or in matrix form

B'6 = K (3.1-M)

then using the method of Lagrangian multipliers, it turns out that the
minimum variance unbiased linear estimators are given by minimizing

F = Q + 2X^ - K^) + - ^2) + . . + 2XJm>^ - K^) (3.2)

considered as a function of the B's and X's. (2X.j is chosen rather
than just X-j so that in setting 3F/9Bi = 0, a common factor of 2 can be
divided out.)

This leads to the normal equations

Ix^B^ + . . + Sx^Xj^Bk + + . . + b^^X^ = Zx^y

ZXj^XiBi +. . + 2:x2Bk + b^i^X^ + . . . + b^^X^ = ZXj^y

biiBi + , . + B^i^B,^
=

^ml^l"^ ^mk^k
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or in matrix form

X'X B ’b"
= "X'y“

B' 0 X K

and the solution is given by

• /s
-

6 ’X'X b“

-1
’x'y'

X B' 0 K

(3.3-M)

(3.4-M)

If X'X was already of full rank, then B must be of rank m for the

inverse to exist. If X'X is of rank (k-m) and B' consists of m rows,
then the indicated inverse will exist if B is orthogonal to X'X, i.e.

that (X'X)B = 0,and B is of rank m. Also if B is a combination of
such an orthogonal set of restraints, denoted by H, and the vectors of
X'X, then the inverse exists if the mxm matrix B'H is of rank m, i.e.,
the determinant |B'H| f 0.

EXAMPLE : If the differences A-B, B-C, C-D, D-E, E-A are measured, then
the 5 measurements yi,y2iy3i yaiy*; (assumed independent with equal
variance) can be represented as

E(y) =
I

OQ1c
\

—

1
% o o o Y

B-C 01-100 b

C-D 0 0 1-10 c

D-E 0 0 0 1 -1 0

-A +E
-1 0 0 0 1 E

XB

-1 2-1 0 0

0-1 2-1 0

0 0-1 2-1

-1 00-1 2

rank of X'X is 4

The restraint A+B+C+D+E =[111
— *

A = H' 'a

B B

C C

0 D

E E
_ .

K

M-28



is orthogonal to X'X because H'(X'X) =(11111) (X'X) = (0 0 0 0 0]

.

If the given restraint were A + B = Kg, then B' = (1 1 0 0 0) and iB'hj
2 ^ 0 so that the restraint is sufficient to produce a solution.

The standard deviation estimate is changed from that given in
formula (2.7) to become

s = degrees of freedom = (n-k+m) (3.5)

where m is the number of restraints.

Formulas (2.8) and (2.9) still apply for the standard deviation of the
parameter values and of linear combinations of them.

4. The Gauss Theorem on Least Squares (General Case)

If the observed values yi yz • • • yn variances and

covariances a-- so that

Var (y)
=

°1 °12

012

°ln ^2n

In

'2n

= V

and the parameters are subject to the m restraints

(4.1-M)

b,,B, + . . . + = K, (4.2)

b iBi + . . . + b ,B. = K
ml 1 mk k m

or in matrix form

B'6 = K (4.2-M)

Then the least squares estimators for 6 are given by

A
6 = X

1
>X1 B

-1
X'V"\

A
X B' 0 K

where as before V = [X^ . . . X^,] is a vector of Lagrangian multi-

pliers entering into the minimization process.

For a discussion of this general case, the reader is referred to the

Goldman-Zelen article [4].
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For some time it had been suspected

that values assigned to NIST working

standards of mass were some 0. 1 7 mg/
kg larger than mass values based on

artifacts representing mass in the Inter-

national System of Units (SI), This rela-

tively small offset, now confirmed, has

had minimal scientific or technological

significance. The discrepancy was re-

moved on January 1, 1990. We docu-

ment the history of the discrepancy, the

studies which allow its removal, and the

methods in place to limit its effect and

prevent its recurrence. For routine cali-

brations, we believe that our working

standards now have a long-term stability

of 0.033 mgAg (3cr) with respect to the

national prototype kilograms of the

United States. We provisionally admit
an additional uncertainty of 0.()9 mgAg
(3o-), systematic to all NIST mass mea-
surements, which represents the possible

offset of our primary standards from
standards maintained by the Bureau In-

ternational des Poids et Mesures
(BIPM). This systematic uncertainty

may be significantly reduced after analy-

sis of results from the 3rd verification of
national prototype kilograms, which is

now underway.

Key words: calibration; international

standards; kilogram; mass; national stan-

dards; SI; standards.

Accepted: January 6, 1990

1. Introduction

The kilogram (kg) is one of the seven base units

which form the foundation of the Systeme Interna-

tional d’Unites or International System of Units,

abbreviated SI. Used world wide to express the re-

sults of physical measurements, the SI spiecifies that

the kilogram is the unit of mass and that the mass of

the International Prototype Kilogram exactly

equals 1 kg. The International Prototype referred

to in the definition is a cylinder made of an alloy of

platinum and iridium and stored at the Interna-

tional Bureau of Weights and Measures (BIPM) in

France. The kilogram is thus the only remaining

base unit of the SI to rely on an artifact for its

definition.

When the SI was established, replicas of the In-

ternational Prototype were manufactured by the

BIPM for use as national prototype kilograms. At
long intervals, the national prototypes are returned

to the BIPM where their assigned mass is verified

by measurements directly traceable to the Interna-

tional Prototype [1]. It was intended by the

founders of the SI that the national prototype kilo-

grams would be the primary mass standards within

each country. There are, however, several practi-

cal difficulties with this scheme. The following dis-

cusses the reasons for these difficulties and the

steps we have taken to overcome them.

In order for the kilogram unit to be useful, meth-

ods must exist to measure multiples and submulti-

ples of 1-kg standards. These methods, when
successful, rely on good equipment and sound ex-

perimental practice. In addition to these, a calibra-
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tion service requires rigorous tests to maintain

statistical control of the measurement process. At

NIST, statistical rigor was introduced in the 1960s

through the pioneering work of Pontius and

Cameron [2]. Present methods are simply refine-

ments of the system which they established.

The uncertainty of a 1-kg standard, expressed as

a dimensionless ratio, propagates directly to mass

values of multiples and submultiples derived from

the standard. For example, if a kilogram standard

has a relative uncertainty of 1 ppm‘, all multiples

and submultiples derived from the standard will

have an uncertainty component of 1 ppm propa-

gated from the standard. In the field of precision

measurement, uncertainty is usually reported at an

estimated level of 1 standard deviation. All uncer-

tainties are combined by the root-sum-square

(RSS) method according to guidelines recom-

mended by the International Committee for

Weights and Measures (CIPM) [3]. In NIST cali-

bration reports, on the other hand, uncertainties are

estimated at a level of 3 standard deviations. Fur-

thermore, any uncertainty deemed “systematic” to

a series of measurements is added directly to the

“random” uncertainties, which are combined by

RSS. However, in the rest of this paper, we follow

the CIPM recommendations unless otherwise

noted.

In addition to the SI, the United States recog-

nizes the U.S. Customary System of units for legal

metrology. In this system, the avoirdupois pound

(lb) is the unit of mass. It is, by definition, exactly

equal to 0.45359237 kg.

2. History of NIST Mass Standards
Before 1980

2.1 Primary Mass Standards of Platinum*Iridium

Kilograms K20 and K4 are the two national pro-

totypes of the United States. Kilogram K20 has his-

torically been considered the primary U.S.

kilogram standard with K4 being relegated to use

as a “check standard.” The history of these two
artifacts through 1985 has already been docu-

mented in a previous report [1]. One important

question which remained open in [1] is whether the

mass values assigned by BIPM to their working
standards have been consistent with the SI defini-

tion of mass. The cause for concern was that the

embodiment of the SI definition, the International

Prototype Kilogram, had not been used since 1946.

This situation has changed within the past year as

'

1 ppm = I part per million = 1 x 10~‘.

BIPM embarked on only the third calibration of

national prototype kilograms since 1889. Prelimi-

nary results obtained by BIPM as a part of the 3rd

verification confirm the long-term stability of their

working standards to within required limits [4].

2.2 Secondary Mass Standards

Platinum-iridium alloy (approximate density

21,500 kg-m"^) is too expensive a material for wide-

spread use. At present, stable alloys of non-mag-

netic stainless steel (approximate density 8,0(X)

kg-m"^) are usually specified for use as secondary

standards. Before such alloys were available, prac-

tical standards were typically made of plated brass

(approximate density 8,400 kg-m”^). The densities

of these alloys assume importance because mass

metrology is almost always performed in the ambi-

ent air (density ca. 1.2 kg-m"^) using balances

which are, in essence, force or torque transducers.

The effect of air buoyancy thus becomes a con-

founding influence which must be removed by cor-

rection.

The size of the necessary buoyancy correction

relative to the mass of interest is given by:

(1 -pypj/(l -p./px)- 1 =:p.(l/px - 1/p,), (1)

where p,= ambient air density

p,=density of the known standard

Px= density of the unknown secondary

standard.

Equation (1) makes clear that, when comparing

weights of nearly equal density, the importance of

the correction is relatively small. Buoyancy correc-

tions are typically 10 ppm between alloys of stain-

less steel and brass; corrections of less than 5 ppm
are typical for comparisons between various alloys

of non-magnetic stainless steel. (Specifications for

the highest quality analytical weights limit the al-

loy density to within a narrow range in order to

ensure that buoyancy corrections between nomi-

nally equal weights will be small.)

By contrast, the buoyancy correction between (i)

primary standards of platinum-iridium alloy and (ii)

secondary standards of brass or stainless steel typi-

cally ranges from 87-97 ppm. In our laboratory,

the densities of secondary kilogram standards are

determined by hydrostatic weighing. The density

of ambient air is now determined from the CIPM-
1981 equation-of-state for moist air [5]. The latter

requires knowledge of ambient temperature, baro-

metric pressure, relative humidity, and carbon-
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dioxide level. A discussion of the accuracy which

can be expected from buoyancy corrections in our

laboratory is given in [1].

The above considerations dictate that calibra-

tions carried out by NIST on a routine basis be

performed with secondary standards having a den-

sity near to that of the unknown weight.

2.2.1 N, and N 2
Two weights, designated N|

and N 2 , have served as NIST secondary standards

of mass since 1965. The weights were fabricated in

1948 of a nickel-chromium alloy having a nominal

density of 8,340 kg-m“\ which is close to that of

the brass weights which were then in common use.

These weights were given an initial calibration in

terms of a platinum-iridium prototype (K4) in 1948.

They were recalibrated against both K20 and K4 in

1958. The newer calibration gave mass values

which were systematically higher by about 0.06

mgAg. There is no indication in the existing

records what, if any, uncertainty was assigned to

either calibration. When, in 1965, Ni and N 2 were

placed in service as secondary mass standards, the

mass assigned to them was based on selected data

from the 1958 series of measurements. Presumably,

this decision was made because the 1958 measure-

ments were performed by remote control on a two-

pan, Rueprecht balance having a standard

deviation below 0.02 mg. By 1965, this device had

been replaced by a single-pan balance which was

much more convenient to use but which had an

inferior standard deviation of about 0.15 mg. Fur-

ther, remote weighing was not possible on the sin-

gle-pan balance.

Based on the 1958 measurements, the mass of N,

and N 2 taken together was calculated to be:

R=1 kg- 10.059 mg.

The difference in mass between N| and N 2 was cal-

culated by pooling a large amount of data:

C = — 19.476 mg.

These two numbers, R and C, fix the individual

values of each kilogram. The uncertainty in C is

largely statistical in nature. It depends almost en-

tirely on the standard deviation of the balance used

to compare the mass of Ni with N 2 . Thus its uncer-

tainty could be rigorously assigned. In addition, the

significance of any measured change in C could

also be determined.

The uncertainty of R was much more problem-

atic. The statistical component of this uncertainty

resulting from the balance used in the measure-
ments may, of course, be calculated. There are at
least two additional components which increase
the uncertainty of R (but not of C):

1. The uncertainty in the accepted mass of K20
with respect to the International Prototype
Kilogram.

2. The accuracy of the correction for air buoy-
ancy between the platinum-iridium and the

nichrome kilograms.

Rather than base an estimate of these uncertainties

on what was considered insufficient metrological

data, calibration reports prior to January 1, 1990

state;

"It is assumed that the present ‘accepted values’ of

the two NIST standards at the 1 kilogram level,

designated N, and N 2 , are without error. Estimates

of the uncertainty of the accepted values of the

NIST standards relative to the International Proto-

type Kilogram can be provided on request. How-
ever, these estimates have no real meaning in either

national or international comparison. This is be-

cause of the lack of sufficient data to provide a

realistic estimate of the uncertainty in the values

assigned to the prototype kilograms K20 and K4,

particularly in regard to long term, or between-run

variability. Changes in the accepted values for the

NIST standards at the kilogram level, as and when
they occur, will be reported in the scientific papers

of the Bureau and will be given wide distribu-

tion...”

Except for the change in name of the institution,

the above wording had been in place at least since

1967. The reports of that time (and well beyond)

also referenced a technical note entitled “The Ac-

cepted Values of the NBS Standards at the 1 kg

Level and Associated Uncertainty Estimates,” to

be published at a future date. Unfortunately, this

note was never produced. Section 3 of the present

paper may therefore be regarded as fulfilling a

promise of long standing.

In looking over calibration documentation ex-

tending back 25 years, it seems that the original

intention was to reserve N, and N 2 for calibration

of other working standards of similar density.

Thtse working standards would be used in routine

calibration work and thereby would spare N, and

N 2 from excessive wear. But the calibration of

working standards of 1 kg could only be done on

the single-pan balance mentioned above. Thus

working standards would be assigned an uncer-
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tainty which was large relative to the precision of

commercially available balances unless the calibra-

tion were based on the average of many measure-

ments. But the latter strategy would no longer

spare N, and N: from excessive use.

Faced with this problem, Ni and N 2 began to be

used as working standards themselves in routine

calibrations. They were never cleaned (except for

gentle dusting with a brush) in order to prevent

discontinuous changes in their mass. It was, of

course, recognized that checks must be established

to ensure the constancy of the mass assigned to the

summation of N| and N 2 . Two criteria were rou-

tinely used.

The first criterion was the constancy of C. A
measurement of C was available each time Ni and

N 2 were used. In time, a newer balance of similar

design was obtained. This device, which is still in

use, has a standard deviation of about 0.035 mg. If

values of C were seen to change significantly with

time, it would mean that the summation mass of N,

and N 2 had deviated from its accepted value. This

test is effective in checking whether one or the

other kilograms has suffered damage since its last

use. However, the test fails to detect changes com-

mon to both artifacts. Because N| and N 2 are virtu-

ally identical and receive identical use, such

changes cannot be ruled out a priori. Thus the con-

stancy of C is not a sufficient test to rule out a

change in the summation mass of the two kilo-

grams. A control chart showing values of C over

time is given in figure 1. The second criterion is

discussed below in section 2.2.2.

19 35 -1

-19 4 -

-19 5S -

-19 6 H ^

^

i

!

75 80 85 90

Date

Figure 1. Mass values of Ni —

N

2 as a function of time. Measure-

ments were taken on a balance having a standard deviation of

0.035 mg for a single reading.

In 1969, the masses of N| and of N 2 were redeter-

mined 10 times with respect to K20 and K4. Mea-
surements were made on a one-pan balance having

a standard deviation of 0.14 mg for a single obser-

vation. The results of these measurements indicated

that Ni and N 2 were an average of 0.09 mg/kg be-

low their accepted value. However, because the

uncertainties propagated from the prototype kilo-

grams and from the correction for air buoyancy

could still not be assessed, these data were not

used.

2,2.2 100-g Check Standards The second

criterion used to monitor the constancy in mass of

N| and N 2 was the evolution in time of two l(X)-g

“check” standards. A measurement of one or the

other of these standards in terms of N, and N 2 was

obtained each time a routine calibration was per-

formed on a set of weights from 1 kg to 100 g. Such

measurements are carried out dozens of times each

year. If the mass of the 100-g check standards was

seen to change over time, it would be evidence that

either their mass or that of N, and N 2 was chang-

ing. It is unlikely that the mass of the 100-g check

standards would change in exact proportion to the

mass of the 1-kg working standards. This test suf-

fers, however, from low precision. The statistical

precision in the assignment of mass to a 100-g stan-

dard is about ten-times lower than the relative pre-

cision of mass assigned to 1-kg weights. The reason

is simply that all mass comparisons between 1 kg

and 100 g are performed on the same balance. One
would need to average about 10^ mass determina-

tions of a 100-g check standard in order to have the

same relative precision as one single mass determi-

nation of a 1-kg standard.

The 100-g check standard suffers from an addi-

tional problem. Since it receives heavy use, its mass

can reasonably be expected to decrease with time

due to wear. Control charts showing mass values

obtained over time for our 100-g check standards,

JMC-1 and JMC-2, are given in figure 2. The ap-

parent rapid loss in mass early in the service life of

JMC-I is not unusual. Such behavior is also seen,

for instance, in our 1-g check standard where there

can be no possibility that the source is instability in

1-kg working standards. Thus the 100-g check stan-

dards, while essential to guard against measure-

ment blunders and catastrophic changes in working

standards, are themselves susceptible to long-term

instability.
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Figure 2. Mass values of 100-g check standards JMC-l(a) and

JMC-2(b). These values are based on the accepted mass of N,

and N: prior to January 1, 1990.

2 .2^ State Laboratories Each state within the

United States maintains a well-equipped laboratory

for primary mass metrology, typically placed ad-

ministratively within the State Department of

Agriculture. Training of personnel and many as-

pects of quality control are coordinated through

the NIST Office of Weights and Measures (OWM).
The OWM organizes regional round-robin mea-

surements involving State mass-standards of vari-

ous nominal values. These round-robins also

include standards recently calibrated by NIST. An
examination of round-robin results for 1-kg masses

does not reveal systematic differences between

NIST and the States developing over time. But the

precision of these comparisons limits conclusions

to about 0.5 mgAg.

2.3 Fundamental Measurements

Some fundamental constants offer a check on the
constancy of mass standards. During the 1970s,
measurements of the Avogadro constant [6]
and the Faraday constant F relied directly on mass
values maintained at NIST. These measurements
can be compared with related measurements at

other laboratories as is done during periodic CO-
DATA adjustments of the fundamental constants

[
8 ].

In the case of the NIST determination of the

Faraday constant, routine mass calibrations of a 5-g

and 3-g working standard were used. It was esti-

mated that the uncertainty in these calibrations was
0.5 ppm (standard error). This estimate contributed

less than 10 percent of the combined experimental

uncertainty. The Faraday constant has, therefore,

little bearing on the present discussion.

This is not true in the case of the Avogadro con-

stant. In order to have their mass values directly

traceable to national standards, the experimenters

made direct use of K20 and K4. Several calibra-

tions at the 1-kg level were carried out on the

newly developed NBS-2 balance [9]. This balance

operates under remote control and, at that time,

had a standard deviation of less than 0.005 mg. (Af-

ter initial testing at NBS, the balance was trans-

ferred to the BIPM where improved conditions

have reduced its standard deviation five-fold.) Un-

fortunately, N| and N^ were not measured during

the experiments, although several stainless-steel

kilograms were calibrated in terms of K20 and K4.

Two of these kilograms had also been measured

against K20 and K4 in 1969 as part of the series of

mass determinations which included N| and N 2 (see

sec. 2.2.1, above). These results were completely

consistent with the 1969 measurements and thus

raise the question of whether the mass values for

N| and N2 dating from 1958 were still appropriate.

3. History of Mass Standards after 1980

About 10 years ago, NIST began a program to

tie the mass values disseminated by its calibration

services with international standards. It was fore-

seen that improvements in commercial balance

technology and improved precision in measuring

critical fundamental constants would soon make
this step necessary. In addition, questions of inter-

national compatibility of national standards began
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to be raised at this time. In order to assess the

presently accepted values of NIST secondary stan-

dards with respect to the SI, four major areas had

to be addressed:

1. A meaningful calibration of K20 and K4 with

respect to accepted representations of SI stan-

dards.

2. A reliable method for making corrections for

air buoyancy between primary standards of

platinum-iridium and secondary standards of

nichrome or stainless steel.

3. A balance which could compare kilogram

masses with a precision no worse than 0.005

mg.

4. Demonstration that primary standards could

indeed be used periodically to calibrate sec-

ondary standards and that mass values so de-

termined did not suffer from serious, unex-

plainable discontinuities.

We now briefly describe efforts made in these

four areas.

3.1 Tie to International Standards

As mentioned in section 2.2.1 above, the main

reason given in the past for not basing mass calibra-

tions on routine comparisons with K20 was that the

long-term stability of platinum-iridium prototype

kilograms had not been rigorously established. One
reason for this apparent lack of understanding is

the infrequency with which the International Pro-

totype Kilogram is used. The BIPM faces this same

problem because it is their job to recertify national

prototype kilograms upx)n request and to provide

new national prototype kilograms when required.

These activities must be carried out during the long

intervals when the International Prototype Kilo-

gram is not accessible.

As described in [1], the BIPM has set in place the

following system in which all the mass standards

involved are made of platinum-iridium alloy.

Two working standards are used in the calibra-

tion of an unknown prototype. The measured dif-

ference in mass between the two working

standards is used to check that neither has suffered

a catastrophic change in mass. The working stan-

dards are cleaned at about 15-year intervals. Within

these intervals, however, their mass is redeter-

mined periodically against a third kilogram which
is reserved for just this use. This third kilogram is

cleaned just prior to its use in recalibrating the

working standards. Based on the history of the last

40 years, it appears that the BIPM repr«en-

tation of the SI unit of mass is stable to within

about 0.02 mg (0.02 ppm). Therefore, it seems a

reasonable goal to achieve compatibility with the

mass representation currently maintained at the

BIPM. These measurements are reported in detail

in [1].

3.2 Corrections for Air Buoyancy

In eq (1), the quantity p, is typically determined

from an equation-of-state for moist air. The inputs

to this equation are temperature, barometric pres-

sure, relative humidity, and ambient level of carbon

dioxide. The last of these has relatively little effect.

It is obvious that errors in measuring the required

experimental input parameters will propagate to

the final result. In the 1970s, however, it was ap-

preciated that the equation-of-state itself has great

importance and that several such equations were in

wide use. Furthermore, it had not yet been demon-
strated experimentally that any of the equations-of-

state in use were adequate for actual mass

comparisons.

At NIST, Jones derived a semi-empirical equa-

tion-of-state based on up-to-date data [10]. This

equation, with minor changes, was endorsed for

use in mass metrology by the CIPM in 1981 [5].

The equation given in [5] is now referred to as the

CIPM-81 equation-of-state for moist air and is used

for mass metrology by most national laboratories.

The NIST began using this equation for interna-

tional work in 1981. Use of CIPM-81 instead of its

predecessor [11] makes a negligible change to rou-

tine mass calibrations. As of January 1, 1990, how-
ever, CIPM-81 has been adopted for use in all

calibration software.

In order to test the efficacy of CIPM-81, it is

necessary to determine the mass difference be-

tween two nominally equal weights with and with-

out reliance on the equation-of-state. The latter

measurement is typically done in vacuum. This

type of comparison was done at the Physikalisch-

Technische Bundesanstalt (PTB) [12]. Results

agreed to within the expected uncertainty, 1 X 10”^

in p,.

It is also necessary to measure the input parame-

ters with sufficient accuracy. In general, this re-

quires the use of transducers whose calibration is

checked at frequent intervals by defining instru-

ments. Our capabilities as they existed in 1985 are

described in [1]. Since that time, we have improved

the accuracy of our measurements of barometric

pressure and of relative humidity.
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3.3 Improved Balance

The balance used for primary mass metrology

must operate by remote control in order to ensure

that the weights being compared remain in suffi-

cient equilibrium with the air of the weighing

chamber. Schoonover and Keller have demon-

strated that severe systematic errors may intrude if

the equilibrium constraints are violated [13]. In ad-

dition, the balance itself must have sufficiently high

precision. We consider the balance to be suitable

when either of the two following conditions is met:

1. The contribution of the balance imprecision to

the uncertainty of working standards is negligible

compared to the imprecision of routine mass cali-

brations. 2. The imprecision of the balance is negli-

gible compared to typical instabilities of mass

standards.

In [1], we described modifications made to an

existing balance which allowed it to fulfill the first

criterion. Although working reasonably well, we
wanted to improve efficiency by fully automating

it. In order to make the job of automation more

straight forward, the balance was fitted with an

electro-magnetic servocontrol system [14]. Intro-

duction of the servocontrol also resulted in a mod-

est improvement in precision [15].

3.4 Stability of Mass Values

It remains to demonstrate that the work under-

taken since 1980 has led to an improved representa-

tion of the SI unit of mass.

3.4.1 K20 and K4 The most recent mass value

for kilogram K20 results from the 1984 calibration

at the BIPM [1]. As discussed in [1], the cleaning

process at the BIPM removed significant amounts

of surface pollution from the two prototypes. (The

kilograms had also been cleaned at NIST but by a

less effective technique). Since 1984, NIST has

adopted the BIPM cleaning method. Values ob-

tained for the difference in mass between K20 and

K4 are shown in figure 3. These have standard de-

viation of 0.0019 mg. We would expect a standard

deviation of 0.(X)13 mg based solely on the ob-

served standard deviation of the balance which

was used. The difference is negligible.

3.4.2 Ni and Nj Throughout the last 10 years,

N, and N2 continued to be used as working stan-

dards for routine mass calibrations. In 1982, they

were measured against K20 and K4 prior to send-

ing the latter two weights to BIPM for recalibra-

tion. The results, calculated after receiving the new

0 095-
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0.085
• 0

0 080 0

G.C75 h

A

0 OAt NIST
0 070 A At 01PM (before cleaning)
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Figure 3. Mass values of K20-K4 as a function of time Mea-

surements were taken on a balance having a standard deviation

of 0.0018 mg for a single reading.

BIPM certificate, indicate that the value of R/2
was 0.103 mg±0.025 mg below that accepted. The
uncertainty is at an estimated level of one standard

deviation and is dominated by problems with auxil-

iary equipment used in measuring air buoyancy.

The value of C was found to be —19.474

mg±0.003 mg, consistent with the control chart

data shown in figure 2.

From 1986 to 1988, mass values of N, and Nj

were determined three times against K20 and K4 in

a more careful series of measurements. Several

other stainless-steel kilograms were also involved

in the measurements. These are discussed in section

3.4.3, below. It is sufficient to mention at this point

that this series of measurements was consistent

with the long-term measurements of the other kilo-

grams involved. The results of the 1986-1988 mea-

surements are summarized in table 1. The
uncertainty types and the rules for combining un-

certainty conform to recommendations of the

CIPM [3]. (This reference defines Type A and

Tyi>e B uncertainties.) Components 2, 4, and 5 will

be discussed in more detail in section 3.4.3. In as-

sessing whether the observed change in R/2 after

1986 is significant, one must not include Type B

components, which we believe to be systematic to

all measurements in table 1. It is interesting to note

that the observed change in R /2 after 1986 is three

times greater than the change in C. It is also inter-

esting that the data of figure 1 show a statistically

significant variation with time. A linear fit to the

data predicts that the value of C in April 198B was
— 19.454±0.0028 mg (1 standard deviation), in sat-

isfactory agreement with the measurement shown
in table 1.
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Table 1. Recent determinations of the masses of kilograms Ni

and N 2 with respect to secondary standards calibrated against

K20. The values of C are subject to a measurement uncertainty

of 0.0013 mg (1 standard deviation)

R/l C
Date [(N|-hN2)/2] [N,-N 2 ]

1986 Aug 1 kg —5.159

1987 Nov 1 kg -5.192

1988 Apr 1 kg -5.193

mg —19.440 mg
mg — 19.451 mg
mg — 19.447 mg

Accepted values; 1 kg —5.0295 mg — 19.476 mg
— 19.454 mg

(1965)

(Apr. 1988)

Uncertainty (1 standard deviation or 68 percent

level) for measured values of R/l
confidence

Component Type A Type B

1. Instability of K20 since

1985 BIPM calibration included in 4 nil

2. Calibration precision

of secondary standard 0.0035 mg nil

3 Correction of secondary

standards for air buoyancy included in 2 0.01 mg

4. Instability of

secondary standards 0.0036 mg nil

5. Calibration precision of

(N, + N2)/2 0.0005 mg nil

6. Correction of N| and N 2

for air buoyancy nil 0.001 mg

RSS 0.0050 mg 0.010 mg

Combined Type A and B: 0.011 mg

During this period, several kilograms which

were submitted to NIST for calibration were mea-

sured against N| and N 2 using routine calibration

procedures. The test kilograms were also measured

against stainless-steel kilograms which are dis-

cussed in the next section using our best 1-kg bal-

ance. The results were, in all cases, consistent with

table 1.

There was now good evidence that the accepted

value of R/1 was 0.164 mg below the accepted

value. Less certain evidence suggests that more
than half of this difference had been present since

at least 1969 (see sec. 2.2.1). This computes to an

average change of order —0.004 ppm/yr.
The standards N, and N 2 were again checked in

1989. Although these measurements were not as

extensive, they show that the average mass had

dropped by another 0.05 ±0.01 3 mg (1 standard de-

viation) with respect to four stainless-steel kilo-

grams reserved for special use. This change thus

appears to be real and serves as a warning that N,

and N 2 are now losing mass at a greatly increased

rate. The value of C measured during these mea-

surements had returned to within 0.012 mg of the

accepted value.

3.4.3 New Secondary and Working Standards of

Mass Kilograms N, and N 2 have served as both

secondary standards—artifacts of practical density

which most accurately represent mass as specified

in the SI; and working standards—artifacts of prac-

tical density used as standards in routine calibration

work. Our intention was to separate these roles by

acquisition of new standards, all made of non-mag-

netic stainless steel. The choice of alloy simply re-

flects the fact that the highest quality 1-kg weights

which are commercially available are now made of

stainless steel. Several stainless-steel kilograms

were already on hand for use as secondardy stan-

dards. Three of these, designated D2, El, and E2
are about 25 years old. The physical characteristics

of all three kilograms are similar; D2 was described

in some detail in [1]. We also made use of a newer

kilogram, designated CH-1, whose characteristics

are also described in [1]. The four artifacts were

grouped in pairs: CH-1 and D2 formed one pair

while El and E2 formed the second pair. When not

in use, the pairs were stored in separate containers

of different design. The pair El, E2 was never sub-

jected to any type of cleaning except for gentle

dusting with a soft brush. The pair CH-1, D2 was

cleaned on various occasions.

The pair CH-1, D2 was compared eight times

against primary standards K20 and K4. The mass

values of CH-1 resulting from these measurements

are shown in figure 4(a). Figure 4(b) shows mea-

surements of the mass difference between CH-1
and D2. Note that results displayed in figure 4(a)

include a buoyancy correction of approximately 95

mg while the correction for air buoyancy needed

for the results in figure 4(b) was less than 3 mg.

Figure 5 shows similar data for the pair El, E2. In

this case, however, the pair CH-1, D2 was used as

the standard. The mass value assigned to the stan-

dard was the same for all the data shown. Pertinent

statistical parameters are summarized in table 2.

The outlying point in the mass difference of CH-1
and D2 was repeatable. Because the difference re-

turned to its previous values upon recleaning the

two kilograms, we assume the outlying value was

due to some type of surface contamination. At any
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Table 2 . Statistical parameters inferred from measurements of secondary standards

Mass of: DF 5w ib DF

CH-1 0.0085 mg 8 0.0013 mg

CH-1 -D2 0.0052 mg 18 0.0013 mg 0.0036 mg 16.9

El 0.0015 mg 4 0.001 1 mg 0.001 1 mg 2.5

E1-E2 0.0016 mg 9 0.0013 mg 0.0009 mg 4.2

(b)

Figure 4. (a) Mass of CH-1 as a function of time. These values

are based on direct comparison with K20. The balance used has

a standard deviation of 0.0018 mg for a single reading, (b) Mass

of CH-1 — D2 as a function of time using the same balance as in

(a). There is one outlying point which has been excluded in the

data analysis.

rate, the outlying point is not included in the calcu-

lations for table 2.

In table 2, 5,oui is the estimated standard deviation

of the data shown in figures 4 and 5. The number of

degrees of freedom in this estimate is given in the

next column. The quantity Jw refers to the “within-

group” standard deviation—that component of the

observed standard deviation which can be at-

tributed to the balance precision. This number is

1 1.770 ^
I

j

I

1 1.760 +

n.750
|

0

I
;

I

1 1 .740 1 I 1 —-I

84 86 88 9C

Date

(a)

-5.505

§ 6
o

5.525 -

'’^'^^3-1
86 33 90

Dote

(b)

Figure 5. (a) Mass of El as a function of time. These values are

based on direct comparison with CH-1 and D2. The balance

used has a standard deviation of 0.0018 mg for a single reading

(b) Mass of El —E2 as a function of time using the same balance

as in (a).

pooled from a great many measurements and thus

has a large number of degrees of freedom. The “be-

tween-group” standard deviation, Jb. is a measure

of increased variability seen over long time peri-

ods. This quantity is calculated from the others in

the table. The estimated number of degrees of free-

dom [16] in 5b is given in the last column. A full

discussion of these parameters as well as their treat-

ment in the context of mass calibrations has been

given by Croarkin [17]. It is interesting to note that
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the data of figure 2, when subjected to the same

analysis, indicate thatib for these measurements is

0.01 16 mg [17].

The Croarkin model is not sufTicient to model

direct comparisons of CH-1 and D2 with K20 and

K4. This is because uncertainties in buoyancy cor-

rections have little effect on measured differences

between weights of the same density but have large

effects on measured differences between weights of

different density. While the transducers used to

measure the parameters of temperature, pressure,

relative humidity, and carbon-dioxide level have

excellent short-term precision, slow drifting be-

tween recalibration leads to an additional “between

group” uncertainty. If the error model of [17] is

extended to include buoyancy effects, the data of

table 2 can be used to compute an additional

parameter = O.CX)7 mg (DF = 3.9). This parameter

characterizes daily variability in the measured mass

difference between a kilogram of platinum-iridium

and a kilogram of stainless steel due solely to mea-

surement of the air buoyancy correction.

Although based on somewhat limited data, it

seems that El and E2, kilograms of the identical

alloy and which are never cleaned, have a more

stable mass than CH-1 and D2. This is a curious

result in the sense that mass values for El and E2
are based on direct comparison with CH-1 and D2.

In these comparisons, it is assumed that the summa-

tion mass of CH-1 and D2 is the average of all

recent measurements which are in statistical con-

trol. The evidence thus suggests that this average is

a better estimate of the mass of CH-1 and D2 than,

for instance, the most recently obtained values.

As mentioned in the introduction to this section,

it was envisioned that use of Ni and N: as working

standards would be superseded by stainless-steel

kilograms. These would have a nominal density of

8000 kg-m~\ In 1985, six such kilograms, identical

to CH-1, were obtained for this purpose. They are

marked 1,2,. ..,6 but for purposes of discussion we
shall refer to them as Cl, C2,...,C6. Until January

1988, these six kilograms were used extensively for

various cleaning studies. Now, however, they will

be used as working standards as described below in

section 4.

4. Summary of the Change on January 1,

1990

Beginning on January 1, 1990, the mass values

assigned to working standards of the NIST calibra-

tion service are based on a calibration chain which

starts with mass values assigned to NIST primary

standards K20 and K4 by the BIPM, continues

with mass values assigned to secondary standards

CH-1 and D2 with direct reference to K20 and K4,

and finally to working standards Cl, C2,...,C6 by

direct reference to CH-1 and D2.

4.1 Effect on Industry and Technology

An Ad Hoc Committee of the National Confer-

ence of Standards Laboratories (NCSL) was
formed in order to help assess industrial and tech-

nological implications of the actions contemplated

for January 1, 1990. Members of the Committee

include representatives from civilian and military

standards laboratories, balance manufacturers, and

weight manufacturers. All were asked to estimate

the impact which a change of roughly 0.15 mgAg
would have on their programs. The members could

not identify a single instance where such a change

would affect a manufactured product or a critical

measurement. Virtually all concerned, however,

recognized that a change of this magnitude could

be noticeable within their metrology laboratory.

This is not surprising since typical NIST calibra-

tions give an uncertainty of about 0.075 mg (3 stan-

dard deviations) for calibrations of 1-kg standards

and users of these standards often have balances of

comparable precision to our own.

In recent years, calibrations for primary national

laboratories of other countries have been carried

out using secondary standards CH-1 and D2 with

assigned values based directly on measurements

against K20. These measurements are not, there-

fore, in need of correction.

4.2 Implementation

Based on the data shown in section 3.4.2, it is

clear that, by 1988, mass values assigned to NIST
working standards were some 0.164 mgAg higher

than our best estimate of their actual value (that is,

the value directly traceable to the representation of

the SI unit of mass). At the beginning of the

decade, the discrepancy was about 0.10 mgAg.
There is evidence that, between 1988 and 1989, the

discrepancy grew still greater.

In early 1988, and based on the data available to

that point, it was decided to assign new mass values

to NIST working standards on January 1, 1990. On
the same date, the new quality-control procedures

designed to keep mass values assigned to NIST
working standards closely tied to the SI representa-

tion of mass would be in place. Various standards
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organizations were informed of these intentions by

letter. The letter also stated that the new mass val-

ues would be of the order of 0.15 ppm lower than

the present values. Also in 1988, the NCSL Ad
Hoc Committee was established to help in the im-

plementation of the change. The target date of Jan-

uary 1, 1990 was chosen to coincide with the date

on which international changes in the representa-

tions of the SI volt, ohm, and kelvin would be im-

plemented. Guidelines developed by the Ad Hoc
Committee are given in the Appendix.

These guidelines treat the discrepancy between

the accepted mass of NIST working standards and

the mass traceable to SI representations as equal in

magnitude to 0.17 mg/kg (0.17 ppm) throughout

the decade from 1980 through 1989. Based on data

presented above, we see that this is an oversimplifi-

cation. Our best data, taken between 1986 and

1988, give the discrepancy as 0.164 mg/kg. Less

accurate data, however, suggest that the dis-

crepancy grew slowly throughout the decade and

then increased rapidly in the last year. A time-de-

pendent correction algorithm with time-dependent

uncertainty could, of course, be devised based on

these data. The complexity of applying such an al-

gorithm combined with its trivial scientific or tech-

nological benefit made this course unwise. Instead

we recommend correction of —0.17 mgAg made

to NIST calibration certificates dated during the

1980s. This, we believe, will provide sufficient con-

tinuity with certificates issued after January 1,

1990.

The BIPM is conducting the 3rd verification of

national prototype kilograms. When this exercise is

completed (perhaps in 2 years) we will have a

much better idea of the internal stability of BIPM
standards and the stability of these standards with

respect to the national prototype kilograms. For

the present, we estimate that the mass values used

by NIST in its calibrations represent SI values as

maintained by the BIPM to within 0.03 mg/kg or

0.03 ppm (1 standard deviation). This uncertainty

will not be included in NIST calibration reports

except to say that it is systematic to all mass mea-

surements.

5. Future Plans

We plan to participate in the 3rd verification of

national prototype kilograms being organized by

the BIPM. Consequently, in early 1990, we will

send our national prototype (K20) to BIPM for a

lengthy set of comparisons.

We plan to recalibrate our working standards in

terms of secondary standards CH-1 and D2 at ap-

proximately 6-month intervals. The working stan-

dards will not, initially, be cleaned although the

secondary standards will. We foresee calibrating

the secondary standards in terms of our primary

standards K20 and K4 at about 2-year intervals.

Based on the data presented above, we believe this

procedure will permit us to know the mass ratio

between our working standards and our primary

standards to within 0.01 ppm (1 standard deviation)

at all times. As noted at the end of the previous

section, this uncertainty does not include possible

discrepancies between NIST standards and those

of the BIPM. We tentatively set the latter uncer-

tainty at 0.03 ppm (1 standard deviation).

It would be helpful to have a balance of 1-kg

capacity and a standard deviation of order 0.005

mg for use in routine calibration work. Such a

device would help compensate for the fact that,

since January 1, 1990, we are formally recognizing

that our working standards are subject to uncer-

tainty.

A major goal of the new quality-control system

is to improve international compatibility regarding

practical mass standards. We are, therefore, seek-

ing to promote international comparisons of stain-

less-steel mass standards in order to ascertain the

degree of compatibility among various industrial-

ized countries.

In conclusion, we note that a system of metrol-

ogy ultimately based on an artifact standard will

necessarily have shortcomings. Over a long

enough period of time, mass differences between

any two artifact standards will be unstable; the esti-

mated standard deviation based on the complete

data record will diverge. If the mass of one of the

artifacts is arbitrarily assumed to be constant, its

actual instability will in time be revealed by mea-

surements of true physical constants. While there

has as yet been no such revelation [18], modem
technology may soon be expected to put the

present definition of the SI kilogram to a severe

test.

6. Appendix. Notice of Change in the

Unit of Mass Traceable to The Na-
tional Institute of Standards and Tech-
nology

On January 1, 1990 the unit of mass as dissemi-

nated by the National Institute of Standards and

Technology (NIST) will shift by 0.17 mgAg (0.17
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ppm). This small shift will bring the unit of mass

traceable to NIST into better agreement with inter-

national standards. Since the avoirdupois pound is

defined as 0.45359237 kg, pound masses traceable

to NIST will also be affected to the same extent

(0.17 ^Ib/lb, or 0.17 ppm).

Most people will be unaffected by this small

change so that continued traceability to NIST can

be maintained without taking any action. Unaf-

fected users will be those whose mass standards are

assigned an uncertainty greater than 1 mgAg or

lju,lb/lb (1 ppm). Included in the affected list

are:

1. Analytical weights certified to be within any

of the tolerances prescribed by NIST/NBS or

ASTM/ANSI or to any OIML tolerance ex-

cept E|.

2. Direct-reading balances and scales.

3. Any analytical weights which have been as-

signed an uncertainty greater than 1 mgAg or

1 /ilb/lb (1 ppm). [This will typically include

all weights greater than 2 kg or less than 20 g
which were calibrated by NIST/NBS (see

table Al). In some special cases, however,

NIST calibrations at weight denominations

other than those shown in table A I may have

an uncertainty lower than 1 mgAg.]
Traceability to NIST of the above three cate-

gories is unaffected by the change which will take

effect on January 1, 1990. No action need be taken.

In addition, any calibration certificate dated Janu-

ary 1, 1990 or later already has any necessary

changes incorporated.

Tible Al. Typically, action need be taken only for these nomi-

nal values of weights and only if the assigned uncertainty is

below the value given. Although this table shows weight de-

nominations most likely to require correction, denominations

which may require correction are not necessarily limited to

those shown

Nominal mass Uncertainty Nominal mass Uncertainty

2 kg 2.00 mg 50 lb 50 ^Ib

1 kg 1.00 mg 30 lb 30 plb

20 lb 20 plb

500 g 0.50 mg 10 lb 10

300 g 0.30 mg
200 g 0.20 mg 5 lb 5 pib

100 g 0.10 mg 3 lb 3 plb

2 lb 2 ^Ib

50 g 0.05 mg 1 Ib 1 ^Ib

30 g 0.03 mg
20 g 0.02 mg 0.5 lb 0.5 plb

0.3 lb 0.3 plb

0.2 lb 0.2 /lib

Weights which will be affected by the change

which will take effect on January 1, 1990 are all

those which do not fall into category 3 above and,

in addition, whose calibration certificate bears a

date before January 1, 1990. Affected weights are

those which have an assigned calibration uncer-

tainty of less than 1 mg/kg (1 ppm). Based on typi-

cal NIST calibration reports, these will generally

be weights with denominations between 2 kg and

20 g or 5 lb and 0.2 lb. Other denominations may be

affected in special cases, however.

The following actions will be necessary in order

to maintain traceability to NIST for the affected

weights:

a. Weights whose calibration certificate bears a

date after January 1, 1980 and before January

1, 1990.

After January 1, 1990 the mass of each

affected weight should be reduced by 0.17

mgAg (0.17 ppm) as shown in table A2. This

applies both to the true mass and the apparent

mass. The uncertainty stated in the report re-

mains the same.

(Alternatively, the mass values stated in the

calibration certificate may remain uncor-

rected provided the stated uncertainty is in-

creased by 0.17 mgAg).

b. Weight sets whose calibration certificate

bears a date before January 1, 1980 but which
have been subjected to a surveillance test

within the 10 years preceding January 1,

1990. (An example of a surveillance report

Table A2. Corrections to apply to calibrations dated between

January 1, 1980 and January 1. 1990. The denominations shown
are those of table Al

Nominal mass Correction Nominal mass Correction

2 kg -0.3400 mg 50 lb -8.500 >ilb

J kg —0.1700 mg 30 lb -5.100 >ilb

20 lb -3.400 Mlb

500 g — 0.0850 mg 10 lb -1.700 filb

300 g —0.0510 mg
200 g —0.0340 mg 5 lb -0.850 ^ilb

100 g —0.0170 mg 3 Ib -0.510 >ilb

2 lb -0.340 ^Ib

- 50 g —0.0085 mg 1 Ib -0.170 ^ilb

30 g — 0.0051 mg
20 g — 0.0034 mg 0.5 lb -0.085 Mlb

0.3 lb -0.051 ^Ib

0.2 lb -0.034 ^lb
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issued by NIST is shown at the end of this

Appendix.
~

rected provided the stated uncertainty is in-

creased by 0.17 mg/kg).

After January 1, 1990 the mass of each af-

fected weight should be reduced by 0. 1 7 mg/
kg (0.17 ppm) as shown in table A2. This

applies both to the true mass and the apparent

mass. The assertions of the surveillance repon

will remain in effect.

c. Weights whose calibration certificate bears a

date before January 1, 1980 and which have

had no surveillance test subsequent to January

After January 1, 1990 the uncertainty as-

signed to each affected weight should be in-

creased by 0.17 mg/kg (0.17 ppm) until a new
calibration or surveillance test is performed.

1, 1980.

(Alternatively, the mass values stated m the

calibration certificate may remain uncor-

Sample Surveillance Report Issued by NIST

April 1, 1987

In reply refer to: 731/12345

Company XYZ
1 Metrology Blvd.

Grovers Comer, NJ 00000

Attention: J. Doe

Subject: Recalibration of Mass Standards prev iously calibrated under NBS Test No. OO/GOOOOO (copy

attached)

Items: Nine (9) Mass Standards: 100 g — 1 g

The above items have been intercompared m sums. The differences as measured have been compared with

the differences computed from the value under GOOOOO. One or more of the items have been checked against

national standards. The results of this test indicate that there is no significant change since the last calibra-

tion. This test assures the continuing accuracy of the values under GOOOOO.

Sincerely,

Richard S. Davis

Group Leader, Mass Group
Center for Manufacturing Engineering

Attachment
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