

REFERENCE

NISTIR 4934

Protocol Implementation Conformance Statement (PICS) Proforma for the SDNS Security Protocol at Layer 4 (SP4)

Wayne A. Jansen

U.S. DEPARTMENT OF COMMERCE Technology Administration National Institute of Standards and Technology Office of Weights and Measures Gaithersburg, MD 20899

QC 100 .U56 4934 1992

Protocol Implementation Conformance Statement (PICS) Proforma for the SDNS Security Protocol at Layer 4 (SP4)

Wayne A. Jansen

U.S. DEPARTMENT OF COMMERCE Technology Administration National Institute of Standards and Technology Office of Weights and Measures Gaithersburg, MD 20899

October 1992

U.S. DEPARTMENT OF COMMERCE Barbara Hackman Franklin, Secretary

TECHNOLOGY ADMINISTRATION Robert M. White, Under Secretary for Technology

NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY John W. Lyons, Director

TABLE OF CONTENTS

1.	INTRODUCTION 1.1 Background 1.2 Objectives	1 1 1
2.	INSTRUCTIONS	2
3.	IDENTIFICATION	3
4.	GENERAL STATEMENT OF CONFORMANCE	3
5.	PROTOCOL IMPLEMENTATION	4
6.	SECURITY SERVICES SUPPORTED	5
7.	SUPPORTED FUNCTIONS	7
8.	SUPPORTED PROTOCOL DATA UNITS (PDUs)8.1Supported Transport PDUs (TPDUs)8.2Supported Parameters of TPDUs8.3Allowed Values of TPDU Parameters	9 9 9 11
9.	SUPPORTED ALGORITHMS	12
10.	ERROR HANDLING10.1Security Errors10.2Protocol Errors	12 12 14
REFI	ERENCES	15
APPE	ENDIX A: SERVICE, FUNCTION, AND PROTOCOL RELATIONSHIPSA.1Relationship Between Services and FunctionsA.2Relationship Between Services and Protocol	16 17 17

ABSTRACT

The Secure Data Network System (SDNS) project, initiated by the National Security Agency in 1986, produced a computer network security architecture within the framework of the International Organization for Standardization (ISO) reference model for Open Systems Interconnection (OSI). The security protocol at layer 4 (SP4) is one element of the SDNS architecture used to provide security services at the Transport Layer of the OSI reference model. This report specifies the Protocol Implementation Conformance Statement (PICS) proforma for SP4. When the PICS proforma is completed for an SP4 implementation, it provides a clear and concise statement of capabilities, useful in a variety of situations to those involved in the production, testing, supply, procurement, and application of the implementation.

Key Words: Secure Data Network System; Security Protocol; Protocol Implementation Conformance Statement; Computer Network Security; Open Systems Interconnection;

1. INTRODUCTION

1.1 Background

The National Institute of Standards and Technology (NIST) and the National Security Agency (NSA) initiated a joint project in Computer Network Security in 1984. The project was based on the recognition that a comprehensive set of security mechanisms is needed to provide cost effective access control to data in geographically distributed computer networks. While the detailed security mechanisms can differ between the classified and unclassified communities requiring security, both communities benefit when commercial computer networks are developed with a common security architecture. The NSA initiated the Secure Data Network System (SDNS) program in 1986 as a result, at least partially, of this joint project.

Security Protocol 4 (SP4) [1,2] is one element of the SDNS architecture [3], used to provide security services at the Transport Layer of the International Organization for Standardization (ISO) Basic Reference Model (BRM) for Open System Interconnection (OSI) [4]. SP4 consists of a simple encapsulation/decapsulation protocol that protects normal Transport Protocol data units within a cryptographically secure envelope. SP4 is compliant with the security addendum to the OSI BRM [5], and forms the basis of the emerging ISO standard for a Transport Layer Security Protocol [6]. SP4 extends the OSI Transport connectionless and connection oriented standards [7,8] to provide or support the following security services defined in the security addendum:

- (1) Data Integrity,
- (2) Data Confidentiality,
- (3) Data Origination Authentication, and
- (4) Access Control.

1.2 Objectives

This report specifies the Protocol Implementation Conformance Statement (PICS) proforma for SP4. The supplier of a protocol implementation which is claimed to conform to the SDNS Standard [1] shall complete the SP4 PICS proforma. A completed PICS proforma becomes the PICS for the implementation in question. The PICS is a statement identifying the capabilities and options of the protocol that have been implemented. The PICS can serve a number of purposes, including as:

(1) a check list for the protocol implementer, to reduce the risk of failure to conform to the standard through oversight;

- (2) a detailed indication for the supplier and receiver of the implementation of its capabilities, stated relative to the common basis of understanding provided by the standard PICS proforma;
- (3) a basis for the user of the implementation to check the possibility of interworking with another implementation;
- (4) the basis for a protocol tester to select appropriate tests against which to assess the claim for conformance of the implementation.

The remainder of this report defines the procedures, format, and content that comprise the SP4 PICS proforma. The format is intended to follow the style used in the PICS proforma for the transport protocol [9]. Most of the content is derived directly from the SP4 standard [1]. Appendix A provides the rationale behind the content selection and explores the relationships between services, protocol, and functions.

2. INSTRUCTIONS

The first part of the PICS proforma, the Implementation Identification, is to be completed as indicated with the information necessary to identify fully both the supplier and the implementation. The main part of the PICS proforma is a fixed-format questionnaire divided into subclauses, each containing a group of individual items. Answers to the questionnaire items are to be provided in the rightmost column, either by simply marking an answer to indicate a restricted choice (usually "Yes" or "No"), or by entering a value or a set or range of values. Note that there are some items where two or more choices from a set of possible answers can apply. Therefore, all relevant choices are to be marked.

Each item is identified by an reference index in the first column; the second column contains the item to be addressed; the third column contains the reference(s) to the location of the item in the main body of the standard. For optional items, additional columns indicate the status of the item (i.e., whether support is optional, or conditional), and the degree of support for the item (i.e., either a Yes/No indication of support, or space to specify implementation support details).

The following standard PICS proforma notations [10] appear in the status column:

<u>Symbol</u>	Meaning
m	mandatory
0	optional
-	not applicable (N/A)
o. <n></n>	optional, but support of at least one of the group of options labelled
	by the same numeral <n> is required</n>

<u>Symbol</u>	Meaning (continued)
<cid>:</cid>	conditional requirement, according to the condition or item index
	identified by <cid></cid>
<item>::</item>	simple predicate condition, dependent on the support marked for
	<item></item>

3. IDENTIFICATION

Table 1 provides the format for identifying the implementation and its supplier. Only the first three items are required for each implementation. Other information may be completed as appropriate in meeting the requirements for full identification. The terms "Name" and "Version" should be interpreted appropriately to correspond with a supplier's terminology (e.g., using Type, Series, Model).

Item	Information
Supplier	
Contact point for queries about this PICS	
Implementation Name(s) and Version(s)	
Other information necessary for full identification (e.g., Name's and Version(s) for machines and operating systems, System Name(s))	

Table 1: SP4 Implementation Identification

4. GENERAL STATEMENT OF CONFORMANCE

Table 2 that follows codifies the general statement of conformance for the implementation.

Index	Item	Supp	oort
СОТР	Does the implementation claim conformance with ISO/IEC 8073?	Y	N
COMAN	Are all mandatory features of ISO/IEC 8073 implemented?	Y	N
CLTP	Does the implementation claim conformance with ISO/IEC 8602?	Y	Ν
CLMAN	Are all mandatory features of ISO/IEC 8602 implemented?	Y	N
SP	Does the implementation claim conformance with SDN-401?	Y	N
SPMAN	Are all mandatory features of SDN-401 implemented?	Y	N

Table 2: General Conformance Statement

5. PROTOCOL IMPLEMENTATION

Table 3 identifies the classes of the connection oriented Transport Protocol (COTP::) supported by the implementation, with regard to their use with either a connection oriented network service (CONS) or a connectionless network service (CLNS).

Index	Transport Class Suppo		port
C0	Class 0 SP4-CONS	Y	N
C1	Class 1 SP4-CONS	Y	Ν
C2	Class 2 SP4-CONS	Y	Ν
C3	Class 3 SP4-CONS	Y	Ν
C4	Class 4 SP4-CONS	Y	Ν
C4L	Class 4 SP4-CLNS	Y	Ν

Table 3: COTP Classes Implemented

6. SECURITY SERVICES SUPPORTED

The following set of tables, 4 through 6, identify for each class of the connection oriented Transport Protocol (COTP::), the security services available through SP4 and their level of support by the implementation. The security services listed are taken from the security addendum to the OSI BRM [2].

Index	Service Element	Status	Supj	port
T0SE0	Confidentiality	o.1	Y	Ν
T0SE1	Connection Confidentiality	T0SE0:m	Y	Ν
T0SE2	Connectionless Confidentiality	-		
T0SE3	Integrity	o.1	Y	Ν
T0SE4	Connection Integrity w Recovery	-		
T0SE5	Connection Integrity wo Recovery	-		
T0SE6	Connectionless Integrity	T0SE3:m	Y	Ν
T0SE7	Data Origination Authentication	m	Y	Ν
T0SE8	Access Control	0	Y	Ν

Table 4: Service Element Proforma for C0

Table	5:	Service	Element	Proforma	for	C1,	C2,	C3	
-------	----	---------	---------	----------	-----	-----	-----	----	--

Index	Service Element	Status	Supp	oort

T3SE0	Confidentiality	o.1	Y	Ν
T3SE1	Connection Confidentiality	T3SE0:m	Y	Ν
T3SE2	Connectionless Confidentiality	-		
T3SE3	Integrity	o.1	Y	Ν
T3SE4	Connection Integrity w Recovery	-		
T3SE5	Connection Integrity wo Recovery	T3SE3:0.2	Y	Ν
T3SE6	Connectionless Integrity	T3SE3:0.2	Y	Ν
T3SE7	Data Origination Authentication	m	Y	Ν
T3SE8	Access Control	0	Y	Ν

Index	Service Element	Status	Supp	port
T4SE0 T4SE1 T4SE2 T4SE3 T4SE4	Confidentiality Connection Confidentiality Connectionless Confidentiality Integrity Connection Integrity w Recovery	o.1 T4SE0:m - o.1 T4SE3:o.2	Y Y Y Y	N N N N
T4SE5 T4SE6 T4SE7 T4SE8	Connection Integrity wo Recovery Connectionless Integrity Data Origination Authentication Access Control	- T4SE3:0.2 m o	Y Y Y	N N N

Table 6: Service Element Proforma for C4, C4L

The following table identifies, for the connectionless Transport Protocol (CLTP::), the security services available through SP4 and their level of support by the implementation.

Table 7: Servi	e Element	Proforma	for	CLTP
----------------	-----------	----------	-----	------

Index	Service Element	Status	Supp	oort
	Confidentiality	o.1	Y	N
TLSE1	Connection Confidentiality	-		
TLSE2	Connectionless Confidentiality	TLSE0:m	Y	Ν
TLSE3	Integrity	o.1	Y	Ν
TLSE4	Connection Integrity w Recovery	-	ł	
TLSE5	Connection Integrity wo Recovery	-		
TLSE6	Connectionless Integrity	TLSE3:m	Y	Ν
TLSE7	Data Origination Authentication	m	Y	Ν
TLSE8	Access Control	0	Y	Ν

7. SUPPORTED FUNCTIONS

The following set of tables, 8 through 13, identify the mandatory and optional functions implemented for each class of Transport (COTP::) supported.

Table 8: Mandatory Functions for C0

Index	Function	Ref

T0F1	verification of peer address	6.4
T0F2	reflection detection	6.3.2
T0F3	security encapsulation	5.5
T0F4	reporting of security events	Notes

Table 9: Optional Functions for C0

Index	Function	Ref	Statu	s Supp	oort
T0F5 T0F6 T0F7 T0F8	data encipherment integrity protection padding explicit security labeling	6.2 6.3 6.6 6.5	0.1 0.1 0 0	Y Y Y Y	N N N

Table 10: Mandatory Functions for C1

Function	Ref

verification of peer address	6.4
reflection detection	6.3.2
separation after decapsulation	6.1
	5.5
reporting of security events	Notes
	reflection detection separation after decapsulation security encapsulation

Table	11:	Optional	Functions	for	C 1
-------	-----	----------	-----------	-----	------------

Index Function	Ref Status	Support
 T1F6 data encipherment T1F7 integrity protection T1F8 pre-encapsulation concatenation T1F9 padding T1F10 explicit security labeling 	 6.2 0.1 6.3 0.1 6.1 0 6.6 0 6.5 0 	Y N Y N Y N Y N Y N

Table 12: Mandatory Functions for C2, C3, C4, C4L

Index	Function	Ref
T4F1	verification of peer address	6.4
T4F2	reflection detection	6.3.2
T4F3	separation after decapsulation	6.1
T4F4	secure multiplexing	Implicit
T4F5	security encapsulation	5.5
T4F6	reporting of security events	Notes

Table 13: Optional Functions for C2, C3, C4, C4L

Index Function	Ref	Status Support		
T4F7 data encipherment T4F8 integrity protection T4F9 integrity sequence number T4F10 pre-encapsulation concatenation T4F11 padding	6.2 6.3 6.3.3 6.1 6.6	0.1 0.1 0 0 0	Y Y Y Y Y	N N N N
T4F12 explicit security labeling T4F13 final sequence number check	6.5 6.3.3	0 0	Y Y	N N

Tables 14 and 15 identify the mandatory and optional functions implemented for the connectionless Transport Protocol (CLTP::).

Table 14: Mandatory Fu	inctions for CLTP
------------------------	-------------------

Index	Function	Ref
	verification of peer address reflection detection	6.4 6.3.2
	security encapsulation reporting of security events	5.5 Notes

Table 15: Optional Functions for CLTP

Index	Function	Ref	Status	Supp	ort
TLF6 TLF7	data encipherment integrity protection padding explicit security labeling	6.2 6.3 6.6 6.5	o.1 o	Y Y Y Y	N N N

8. SUPPORTED PROTOCOL DATA UNITS (PDUs)

8.1 Supported Transport PDUs (TPDUs)

As indicated in Table 16, the security encapsulation (SE) TPDU is supported for both transmission and receipt, for the connectionless Transport Protocol (CLTP::) and all classes of the connection oriented (COTP::).

Table 16: TPDUs Supported

Index TPDUItem Status					
ST1	<u> </u>	transmission	COTP or CLTP:m		
ST2		receipt	COTP or CLTP:m		

8.2 Supported Parameters of TPDUs

Tables 17 and 18 indicate which parameters are mandatory or optional when a SE TPDU is issued by Transport (COTP:: or CLTP::).

Table 17: Mandatory Parameters for COTP, CLTP

Index	Parameter	Ref		
SPI1	Key Identifier must be present.	6.2,6.3		
SPI2	Bit one of Protected Header Flag must	8.2.2.2		
	be set as direction indicator.			

Table 18: Optional Parameters for COTP, CLTP

Index	Parameter	Ref	Status	Suppo	ort
SPI3 SPI4 SPI5 SPI6	Label Pad FSN ICV	8.2.2 8.2.2 8.2.3 8.2.4	-	Y Y Y Y	N N N

Transport implementations (COTP:: or CLTP::) shall be capable of receiving and processing all possible parameters of the SE TPDU as indicated in Table 19.

Table 19: Mandatory Parameters for COTP, CLTP

Index	Parameter	Ref
	Key Identifier must be present. Bit one of Protected Header Flag must be set as direction indicator.	6.2,6.3 8.2.2.2
SPR3 SPR4 SPR5 SPR6	Pad FSN	8.2.2 8.2.2 8.2.2 8.2.4

8.3 Allowed Values of TPDU Parameters

The following tables indicate the allowed range of values or size of value representation for the parameters of issued or received TPDUs, for the connectionless Transport Protocol (CLTP::) and all classes of the connection oriented (COTP::).

Table	20:	Values	for	Param	leters	of	Issued	TPDUs
		f	or (COTP,	CLT	Р		

Index Parameter		Values		
		Allowed	Supported	
AVI1	Key Identifier	1-254 octets		
AVI2	Prot Header Flags	"0" or "1"		
	Label			
AVI3	Defining Authority	1 octet		
AVI4	Value	1-m octets		
	Padding			
AVI5	Length	"1" to "254"		
AVI6	Value	1-254 octets		
AVI7	ICV	1-indef octets	5	

Table 21: Values for Parameters of Received TPDUs for COTP, CLTP

Index Parameter		Valu	es
		Allowed	Supported
	Key Identifier Prot Header Flags Label	1-254 octets "0" or "1"	
AVR3 AVR4	Defining Authority Value Padding	1 octet 1-m octets	
AVR5 AVR6 AVR7	Length Value	"1" to "254" 1-254 octets 1-indef octets	

Note: Field sizes for the parameters of the protected header must meet the following length restrictions for TPDUs issued and received: 20 + (m+2) + (Length+2) <= 254 octets.

9. SUPPORTED ALGORITHMS

Table 22 identifies the set of confidentiality and integrity algorithms supported by the implementation.

Index Item	Ref	Algorithm Identifier(s)
ALG1 Data Encryption	6.2.3	
ALG2 MAC ICV	6.3.1.3	
ALG3 MDC ICV	6.3.1.3	

Table 22: Supported Algorithm	ithms
-------------------------------	-------

10. ERROR HANDLING

10.1 Security Errors

Tables 23 and 24 contain the mandatory and optional security error actions to be taken upon receipt of an SE TPDU corresponding to the event description. In addition, all mandatory actions require that the security relevant event be reported to systems management.

Table 23: Mandatory Security Error Actions for COTP, CLTP

Index	Event	Ref
SER1	An improperly protected TPDU received shall be discarded.	6.0
SER2	A TPDU with an invalid key identifier shall be discarded.	6.2.3
SER3	A TPDU with an invalid ICV shall be discarded.	6.3.1.3
SER4	A TPDU with an invalid direction indicator shall be discarded.	6.3.2.3
SER5	A TPDU with an improper label shall be discarded.	6.5.3
SER6	A TPDU with an improper pad shall be discarded.	6.2.3
SER7	A TPDU with a duplicate sequence number shall be discarded.	6.3.3.1.2
SER8	A TPDU with an invalid peer address shall be discarded.	6.4

Notes: a) In item SER1, an improperly protected TPDU includes both those SE TPDUs where non-negotiated options are used, and those where negotiated options are not used.

b) Item SER7 applies only to the connection oriented Transport Protocol (COTP::) when integrity sequence number space and truncation protection have been negotiated for C2, C3, C4, or C4L.

Table 24: Optional Security Error Actions for COTP, CLTP

Index	Event	Ref	Actic	n
			Allowed	Supported
SER9	An invalid final sequence number detected for an encapsulated DR, DC, or ER TPDU.	6.3.3.2.3	Local Matter; Audit Advised.	
SER10	An invalid destination address, inconsistent with that negotiated for the associated key identifier, appears on an encapsulated TPDU.	None	Open	

Note: Item SER9 applies only to the connection oriented Transport Protocol (COTP::) when integrity sequence number space and truncation protection have been negotiated for C2, C3, C4, C4L.

10.2 Protocol Errors

Table 25 identifies the protocol error actions to be taken upon receipt of an SE TPDU corresponding to the event description.

Table 25: Protocol Error Actions for COTP, CLTP

Index Event		Ref	Action	
			Allowed	Supported
PER1	An undefined parameter encountered in the protected header.	None	Open	
PER2	Protected header parameters discovered out of sequence.	None	Open	
PER3	FSN parameter appears in the protected header of an encapsulated TPDU, other than DR, DC, or ER.	None	Open	

REFERENCES

- [1] Specification SDN.401, Secure Data Network Systems (SDNS) Security Protocol 4 (SP4), revision 1.3, National Security Agency, May 1989.
- [2] D. Branstad and others, SP4: A Transport Encapsulation Security Protocol, Proceedings National Computer Security Conference, Sept. 1987.
- [3] R. Nelson, SDNS Services and Architecture, Proceedings National Computer Security Conference, Sept. 1987.
- [4] ISO IS 7498, Open systems Interconnection Basic Reference Model, 1984.
- [5] ISO IS 7498/2, Open Systems Interconnection Reference Model Security Architecture, 1988.
- [6] ISO/IEC DIS 10736, Draft International Standard OSI Transport Layer Security Protocol, October 11, 1991.
- [7] ISO IS 8602, Information Processing Systems Open Systems Interconnection -Protocol for Providing the Connectionless Mode Transport Service, 1987.
- [8] ISO IS 8073, Information Processing Systems Open Systems Interconnection -Connection Oriented Transport Protocol Specification, 1988.
- [9] ISO/IEC JTC 1/SC6 N5839, Third Revised Text of ISO/IEC 8073 PDAD 3.2: Connection Oriented Transport Protocol Specification - Addendum 3: Protocol Implementation Conformance Statement Proforma, July 3 1990.
- [10] ISO/IEC JTC 1/SC6 N6233, Catalogue of PICS Proforma Notations, October 15, 1990.

APPENDIX A: SERVICE, FUNCTION, AND PROTOCOL RELATIONSHIPS

The SP4 standard poses a bit of a paradox. Its presentation is simple, yet a high degree of complexity arises when considering its use with the connectionless Transport protocol and the various classes of the connection oriented Transport protocol, in light of the available options. This complexity becomes more evident in the PICS proforma, since the full capabilities of the protocol must be expressed. Perhaps the hardest area of the proforma to reconcile is the SP4 service elements. This is due in large part to the somewhat weak service elements definitions appearing in the security addendum to the OSI reference model. The following guidelines are provided as an aid to understanding:

- (1) Connection confidentiality is indicated when the Transport service is connection oriented and the TPDUs are protected accordingly.
- (2) Connectionless confidentiality is indicated when the Transport service is connectionless and the TPDUs are protected accordingly.
- (3) Connection integrity is indicated when the Transport service is connection oriented, and the integrity sequence number space and per connection key granularity options are in effect. If recovery procedures are included in the Transport class then connection integrity with recovery applies.
- (4) Connectionless integrity is indicated when either
 - (a) the Transport service is connectionless, or
 - (b) the Transport service is connection oriented, the integrity sequence number space option is not in effect, and the per end-system key granularity option is in effect.
- (5) Data origination authentication is implicit since a pair-wise key shared between entities is used to decrypt or verify the integrity check value on an incoming security encapsulated TPDU.
- (6) Access control is indicated whenever security labels are employed and/or other access controls associated with the cryptographic association have been implemented.

Once the service elements have been resolved, the remainder of the PICS proforma is easier to digest. In particular, the underlying support functions and protocol may be mapped directly from the SP4 security services. The following sections explain these relationships in detail.

A.1 Relationship Between Services and Functions

Table 26 below gives a mapping between OSI security services provided by SP4 and the associated functions needed in an implementation. The consistency between supported functions and security services shall be maintained accordingly.

Security Service	Functions
Confidentiality	data encipherment padding
Connection Integrity	integrity sequence number space integrity protection reflection detection final sequence number check
Connectionless Integrity	padding integrity protection reflection detection padding
Data Orig. Authentication	verification of peer address security encapsulation use of either: integrity protection or data encipherment
Access Control	explicit security labeling secure multiplexing security encapsulation

Table 26: Mapping of Security Services to Supported Functions

A.2 Relationship Between Services and Protocol

Table 27 gives a mapping between OSI security services provided by SP4 and the SE TPDU protocol control information (PCI) and parameter fields employed by the underlying security mechanisms. The consistency between supported security parameters and SE TPDU parameter fields shall be maintained accordingly.

Security Service	TPDU Parameters/PCI
Confidentiality	encrypted data
	pad
Connectionless Integrity	integrity check value
	direction indicator
	pad
Connection Integrity	integrity check value
	direction indicator
	DT/ED send sequence number
	final sequence number
	pad
Data Orig. Authentication	peer address
	key identifier
	key identifier employed in:
	integrity check value
	or encrypted data
Access Control	security label
	key identifier
	key identifier employed in:
	integrity check value
	or encrypted data

Table 27: Mapping of Security Services to SE TPDU Parameters

NIST-114A U.S. DEPARTMENT OF COMMERCE	1. PUBLICATION OR REPORT NUMBER
(REV. 3-90) NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY	NISTIR 4934
BIBLIOGRAPHIC DATA SHEET	2. PERFORMING ORGANIZATION REPORT NUMBER
	3. PUBLICATION DATE OCTOBER 1992
TITLE AND SUBTITLE	
Protocol Implementation Conformance Statement (PICS) Proforma at Layer 4 (SP4) AUTHOR(S)	for the SDNS Security Protocol
Wayne A. Jansen	
PERFORMING ORGANIZATION (IF JOINT OR OTHER THAN NIST, SEE INSTRUCTIONS)	7. CONTRACT/GRANT NUMBER
NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY GAITHERSBURG, MD 20899	8. TYPE OF REPORT AND PERIOD COVERED
SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (STREET, CITY, STATE, ZIP)	
National Institute of Standards and Technology	
Computer Systems Laboratory	
Computer Security Division	
Gaithersburg, MD 20899	
SUPPLEMENTARY NOTES	
LITERATURE SURVEY, MENTION IT HERE.) The Secure Data Network System (SDNS) project, initiated by t	he National Security Agency
LITERATURE SURVEY, MENTION IT HERE.)	he National Security Agency thin the framework of the e model for Open Systems) is one element of the ansport Layer of the OSI tation Conformance Statement for an SP4 implementation, eful in a variety of
ITTERATURE SURVEY, MENTION IT HERE.) The Secure Data Network System (SDNS) project, initiated by t in 1986, produced a computer network security architecture wi International Organization for Standardization (ISO) reference Interconnection (OSI). The security protocol at layer 4 (SP4 SDNS architecture used to provide security services at the Tr reference model. This report specifies the Protocol Implemen (PICS) proforma for SP4. When the PICS proforma is completed it provides a clear and concise statement of capabilities, us situations to those involved in the production, testing, supp of the implementation.	he National Security Agency thin the framework of the e model for Open Systems) is one element of the ansport Layer of the OSI tation Conformance Statement for an SP4 implementation, eful in a variety of ly, procurement, and application
<pre>LITERATURE SURVEY, MENTION IT MERE.) The Secure Data Network System (SDNS) project, initiated by t in 1986, produced a computer network security architecture wi International Organization for Standardization (ISO) reference Interconnection (OSI). The security protocol at layer 4 (SP4 SDNS architecture used to provide security services at the Tr reference model. This report specifies the Protocol Implemen (PICS) proforma for SP4. When the PICS proforma is completed it provides a clear and concise statement of capabilities, us situations to those involved in the production, testing, supp of the implementation. </pre>	he National Security Agency thin the framework of the e model for Open Systems) is one element of the ansport Layer of the OSI tation Conformance Statement for an SP4 implementation, eful in a variety of ly, procurement, and application application development and application attention Set Semicolons; ocol Implementation Conformance
The Secure Data Network System (SDNS) project, initiated by t in 1986, produced a computer network security architecture wi International Organization for Standardization (ISO) reference Interconnection (OSI). The security protocol at layer 4 (SP4 SDNS architecture used to provide security services at the Tr reference model. This report specifies the Protocol Implemen (PICS) proforma for SP4. When the PICS proforma is completed it provides a clear and concise statement of capabilities, us situations to those involved in the production, testing, supp of the implementation.	he National Security Agency thin the framework of the e model for Open Systems) is one element of the ansport Layer of the OSI tation Conformance Statement for an SP4 implementation, eful in a variety of ly, procurement, and application application defined by SEMICOLONS) ocol Implementation Conformance
LITERATURE SURVEY, MENTION IT HERE.) The Secure Data Network System (SDNS) project, initiated by t in 1986, produced a computer network security architecture wi International Organization for Standardization (ISO) reference Interconnection (OSI). The security protocol at layer 4 (SP4 SDNS architecture used to provide security services at the Tr reference model. This report specifies the Protocol Implemen (PICS) proforma for SP4. When the PICS proforma is completed it provides a clear and concise statement of capabilities, us situations to those involved in the production, testing, supp of the implementation. KEY WORDS (6 TO 12 ENTRIES; ALPHABETICAL ORDER; CAPITALIZE ONLY PROPER NAMES; AND SEPAR. Computer Network Security; Open Systems Interconnection; Prot. Statement; Secure Data Network System; Security Protocol AVAILABILITY MINIMITED FOR OFFICIAL DISTRIBUTION. DO NOT RELEASE TO NATIONAL TECHNICAL INFORMATION SERVICE	he National Security Agency thin the framework of the e model for Open Systems) is one element of the ansport Layer of the OSI tation Conformance Statement for an SP4 implementation, eful in a variety of ly, procurement, and application application defined by SEMICOLONS) ocol Implementation Conformance
The Secure Data Network System (SDNS) project, initiated by t in 1986, produced a computer network security architecture wi International Organization for Standardization (ISO) reference Interconnection (OSI). The security protocol at layer 4 (SP4 SDNS architecture used to provide security services at the Tr reference model. This report specifies the Protocol Implemen (PICS) proforma for SP4. When the PICS proforma is completed it provides a clear and concise statement of capabilities, us situations to those involved in the production, testing, supp of the implementation.	he National Security Agency thin the framework of the e model for Open Systems) is one element of the ansport Layer of the OSI tation Conformance Statement for an SP4 implementation, eful in a variety of ly, procurement, and application application defined by SEMICOLONS) ocol Implementation Conformance

