
A11103 fl7MCDD

Development of the Forward
and Inverse Kinematic Models
for the Advanced Deburring
and Chamfering System
(ADACS) Industrial Robot

Keith A. Stouffer

Systems Integration Group

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Bldg. 220 Rm. B124
Gaithersburg, MD 20899

100

U56

4928
NIST

1992





Development of the Forward
and Inverse Kinematic Modeis
for the Advanced Deburring
and Chamfering System
(ADACS) Industrial Robot

Keith A. Stouffer

Systems Integration Group

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Bldg. 220 Rm. B124
Gaithersburg, MD 20899

September 1992

U.S. DEPARTMENT OF COMMERCE
Barbara Hackman Franklin, Secretary

TECHNOLOGY ADMINISTRATION
Robert M. White, Under Secretary for Technology

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
John W. Lyons, Director





DEVELOPMENT OF THE FORWARD AND INVERSE

KINEMATIC MODELS FOR THE ADVANCED DEBURRING

AND CHAMFERING SYSTEM (ADACS) INDUSTRIAL ROBOT

Keith A. Stouffer

National Institute of Standards and Technology
Robot Systems Division

Systems Integration



1

•^'b.

:,vr ';?



ABSTRACT

The kinematic model for the Advanced Deburring and Chamfering System (ADACS) robot, which

determines the position and orientation of the manipulator end-effector for a given set of joint angles, is developed

using the standardized Denavit-Hartenberg method as well as an alternative link transform method. The Denavit-

Hartenberg notation is described and the parameters for each link are provided in table form. The transform matrix

for each link is then derived using these parameters and the mathematical kinematic model is developed. The

kinematic model has the form

T6=T?T2T3fT3T4T5T|

where Te is a 4 x 4 matrix representation of the position and orientation of the last frame with respect to the base

frame.

The inverse kinematic model, which determines the joint value set for a given end-effector position and

orientation, is developed from the kinematic model derived using the Denavit-Hartenberg method. The first three

joints are solved using a geometric approach. The last three joints are solved for by algebraic and trigonometric

manipulation of the rotation part of the transformation matrix.

There are two problems that are dealt with when the inverse kinematic model is solved for. One is the

presence of a singularity point in the manipulator. A singularity occurs when two or more joint axes line up

causing an infinite number of possible solutions for any given orientation. As the singularity is approached,

excessive speed occurs in joint 4 as the wrist “rolls over.” A singularity occurs when joint 5 is zero. When a

singularity occurs, joint 5 is set to 0, joint 4 is set to its previous value and joint 6 is solved for. There is also an

ambiguity in the wrist. There are two solutions for the last three joints for a specific orientation. This ambiguity is

referred to as “wrist-flip” and “wrist-no-flip.” Because of the wrist ambiguity, there are two possible joint sets for a

given position and orientation. The values of joints 1, 2 and 3 are constant for both sets, while there are two

possibilities for joints 4, 5 and 6.



1. INTRODUCTION

1.1 ADACS Overview

Research into automating the deburring process has been conducted at the National Institute of Standards and

Technology (NIST) since 1983. Research started with the Cleaning and Deburring Workstation (CDWS) which

robotically finished parts made of soft metals (aluminum and brass).

A second generation deburring workcell is currently being developed at NIST under a Cooperative Research

and Development Agreement (CRDA) with the U.S. Navy and United Technologies Research Center (UTRC). This

Advanced Deburring and Chamfering System (ADACS) incorporates a six degree of freedom Cincinnati Milacron

T^-646* electric robot as the macromanipulator for an actively compliant deburring tool which serves as the

micromanipulator for the system. ADACS is capable of deburring and chamfering aerospace parts (engine hubs and

turbine blades) made from high-strength alloys such as inconel. UTRC is modeling the deburring and chamfering

process for high-strength alloys. The Navy is looking for an automated system capable of deburring and chamfering

these intricate engine hubs and turbine blades manufactured from high-strength alloys.

A robot was chosen over an NC machine for several reasons. To get the necessary manipulations for

deburring small complicated parts, at least a five degree of freedom machine is required. Five degree of freedom NC
machines are aveiilable, but at a much greater expense than a five or six degree of freedom robot NC machines are

also designed to deal with larger chip removal. In deburring of hard metals, very fine metal chips are produced. The

shields and protective boots on the NC machine would not prevent these small chips from getting into the machine

workings and causing damage.

1.2 Description of T^-646 Robot*

The Cincinnati Milacron T^-646 is a six degree of freedom electric robot with a three roll wrist. The

position of the end-effector is determined by the angles of the first three joints and the orientation by the three

intersecting joints of the wrist.

1.3 Kinematic Model

A manipulator arm can be described as a series of rigid bodies joined together in a kinematic structure. This

linkage, constructed with a serial or “open loop” structure, is referred to as an open kinematic chain. When each link

is kinematically described relative to its previous link, a mathematical kinematic model can be developed to

determine the position and orientation of the last link with respect to the first link given the angular position of each

joint.

1.4 Inverse Kinematic Model

After the mathematical kinematic model has been developed, the inverse kinematic model can be extracted

from it. The inverse kinematic model performs the opposite operation of the kinematic model. When the required

position and orientation of the end-effector is known, the inverse kinematic model can determine the required angular

position for each joint to obtain that position and orientation.

Product Endorsement Disclaimer

Reference to specific brands, equipment, or trade names in this document are made to facilitate understanding

and do not imply endorsement by the National Institute of Standards and Technology.
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1.5 Uses for Kinematic Models

The kinematic model will determine the position and orientation of the last frame with respect to the first

frame given the angular positions of each of the joints. However, the kinematic model is primarily used to develop

the inverse kinematic model which is much more useful in robotic programming. If the robot controller has a joint

interface, the joint angles obtained from the inverse kinematic model are fed to the controller to have the robot move

to a specified position and orientation. More often than not, the end-effector is required to move to a specified

position and orientation. The inverse kinematic model will determine the necessary joint angles to reach the

specified goal, and each joint is actuated to the necessary angle.
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2 KINEMATIC MODEL

2.1 Kinematics

Kinematics is the science of motion that disregards the forces that cause it. The study of the kinematics of

manipulators refers to the geometrical and time-based properties of the motion.

Manipulators consist of rigid links which are connected to each other with joints that allow relative

motion of the neighboring links. Position sensors at each joint measure the relative position of neighboring links.

The T^-646 is a six degree of freedom manipulator. The number of degrees of freedom that a manipulator

possesses is the number of independent position variables which have to be specified in order to locate all parts of

the mechanism. The T^-646 has six revolute joints, and therefore six degrees of freedom.

The kinematic model of the manipulator is a mathematical model that computes the position and

orientation of the end-effector with respect to the base frame given a set of joint angles. The kinematic model for the

ADACS robot was developed using the standardized Denavit-Hartenberg notation.

2.2 Denavit-Hartenberg Notation

The Denavit-Hartenberg notation was developed as a systematic method of describing the kinematic

relationship between a pair of adjacent links involved in an open kinematic chain. The Denavit-Hartenberg method

is based on a 4x4 matrix representation of the rigid body position and orientation. A minimum of four parameters

are necessary to completely describe the kinematic relationship between links.

In order to obtain the parameters of each link, and therefore describe the location of each link relative to its

neighbors, a frame is rigidly attached to each link.

Joint i -

1

Figure 1: The Denavit-Hartenberg Parameters
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Figure 1 shows a pair of adjacent links, link i-1 and link i and their associated joints, i-1, i, and

i+1. The convention used to attach the frames on each corresponding link is as follows:

* The origin of the i-th coordinate frame O is located at the intersection of joint axis i+1

and the common normal between joint axes i and i+1, as shown in the figure.

* NOTE: The frame of link i is at joint i+1 rather than at joint i

* The X axis is directed along the common normal

* The Z axis is along the joint axis i+1

* The Y axis is chosen to form a right-hand coordinate system

The relationship between the two frames can be completely described using the following parameters:

aj the length of the common normal (the distance from Zj.^ to Zj as measured along Xj.^ )

dj the distance between the origin Oj..| and the point Hj

a
j

the angle between the joint axis i and the Zj axis in the right-hand sense

0j the angle between the Xj..| and the common normal HjOj measured about the Zj axis in

the right-hand sense

The are two constant parameters, aj and Hj, that are determined by the geometry of the robot link. One of

the other two parameters (Got d) varies as the link moves. If the link is prismatic (adjacent links translate linearly

to each other along the joint axis) d will be the variable. If the link has a revolute joint (adjacent links rotate with

respect to each other along the joint axis), 0 will change as the link moves. In the case of the T^- 646 robot, all the

joints are revolute, therefore a, a and d remain constant for each individual link while 0 changes as the link is moved.

Figure 2 shows the relationship between adjacent coordinate frames.

Figure 2: The relationship between adjacent coordinate frames in the Denavit-Hartenberg notation
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2.3 Denavit-Hartenberg Frames for T^-646

Using the Denavit-Hartenberg notation, frames are attached to each link of the robot. After the links are

attached, the parameters can be determined for each link. Figure 3 shows the assigned frame for each link of the

robot The parameters determined from these frames are shown in Table 1.

*3

Figure 3: Coordinate frames using the Denavit-Hartenberg notation, robot is shown in zero or home position

2.4 Denavit-Hartenberg Parameters for T^-646

Table 1 : Denavit-Hartenberg parameters for the ADACS robot

Link Number 0i a\

0 1 -<-180'

02 -(-90°

03
-90°

04 + 180°

05
06

0

0

0
1612.6

0

0

0

0
1000
200

0

0

0

0

90°

0
-90°

0

-61 °

61°

0
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2.5 TVansformation Matrixes for T^-646

After the Denavit-Hartenberg parameters have been determined for each link of the robot, a matrix for each

link can be constructed to represent the position and orientation of frame i relative to frame i - 1 . The general matrix

is shown below.

T|-’

cos

sin 01

0

0

-sin6|Cosai sin e, sin a, a|Cos 0^

cose|Cosa| -coseisina, a, sin e,

sin a, cos a, d

,

0 0 1

Substitution of the parameters for each link into this matrix produces a 4 x 4 matrix for each link of the

robot. The first three 3 x 1 column vectors of the matrix contain the direction cosines of the coordinate axis of

frame i, while the last 3 x 1 column vector contains the position of the origin Oj. The matrix for each link of the

robot is shown below.

-cose, 0

T« - -sine, 0
1

'

0 1

-sine, 0

cose, 0

0 0

0 1

cos(e2+90) -sin(eJ•^90)

T’ = sin{ej+90) cos(ej+90)

0 0

0 I 000cos(ej+90)

0 1000sin|ej+90)

1 0

cosBj

sin 63

0

-sine, 200 00503

cosOj 200 sin 63

0 0

0 1

0

0

1 0 0

0 1 1612.6

0 0 1

NOTES:
* cos(e+ 180) = -cos 0
* sin (0-)- 180) = -sin 0

-cose, sine, cos (-61) -sine, sin (-61) 0

js
= -sine, -cos 6, cos (-61) cose,sin (-61) 0

0 sin (-61) cos (-61) 0

0 0 0 1

cose, -sine, cos (61) sin 6, sin (61) 0

sine^ cose^ cos (61) -cose, sin (61) 0

0 sin (61) cos (61) 0

0 0 0 1

•sinej

cose,
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To ease in the transformation from frame 2 to 3, an additional frame was added to the robot. This frame is

labeled 3 and is rigidly attached to the arm of the robot. The transformation from frame 2 to frame 3 takes into

account the rotation of the arm about the joint axis of frame 2 and the translation along the X axis of frame 2, aj in

the Denavit-Hartenberg parameters. The transformation from frame 3 to frame 3 is a translation along the Z axis of

frame 3 , this is dj in the Denavit-Hartenberg parameters.

2.6 Kinematic Model for T^-646

After the matrices have been determined for each link, we wish to determine the relationship between the

position and orientation of the last frame with respect to the base frame of the robot. The manipulator arm consists

of n-t-1 links from the base to the tip of the end-effector, in which relative position and orientation of adjacent links

are represented by the 4 x 4 matrices developed using the Denavit-Hartenberg parameters. If n consecutive coordinate

transformations are made along the manipulator serial linkage, we can derive the end-effector location and orientation

with respect to the base frame. In the case of the T^-646, there are 6 revolute joints to transform. Therefore, the

following equation can be derived

r? = T?T^i|T!Tir5-r|

where Is is a 4 x 4 matrix representation of the position and orientation of the last frame with respect to the base

frame. This equation is referred to as the kinematic equation of the manipulator arm and governs the fundamental

kinematic behavior of the arm.

rii

I'ZI

^31

0

ri2 ri3

•22 '’23

r32 '33

0 0

Py

Pz

1

rii

'-21

^31

ri2

''22

r32

Orientation matrix of the end-effector

with respect to the base coordinate frame

Position of the end-effector

with respect to the base
coordinate frame

It should be noted that there are several exceptions to the Denavit-Hartenberg notation rule. For the base

and last link, there is no common normal since each of these links has only one joint axis. Therefore, the coordinate

frames are defined as follows. For the base link, the origin of the coordinate frame can be chosen arbitrarily on joint

axis 1. The Zq axis must be parallel to the joint axis, but the orientation of the X and Y axes about the joint is

arbitrary. For the last link, the origin of the coordinate frame can be chosen at any convenient point of the end-

effector, however the X axis must intersect the last joint axis at a right angle.
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3 INVERSE KINEMATIC MODEL

3.1 Inverse Kinematics

The kinematic model derived in the previous section describes the relationship between the given joint

displacements and the resultant end-effector position and orientation. Finding the end-effector position and

orientation from a given set of joint values is known as a direct kinematic problem. Finding the joint displacements

for a given end-effector position and orientation is known as an inverse kinematic problem.

Solving the inverse kinematic problem provides a model which allows the end-effector motion to be

described in terms of the joint value motion. This is necessary for a joint-angle robot controller interface.

When solving the direct kinematic model, there is one unique end-effector position and orientation for a

given set of joint angles. The inverse kinematic problem, on the other hand, is more complex because multiple

solutions can exist for a given end-effector position and orientation. It is also possible that no solutions exist for a

particular range of end-effector locations. Further, since the inverse kinematic equations consist of nonlinear

simultaneous equations involving many trigonometric functions, a closed-form solution is not always possible to

derive. In this case the joint displacements are calculated using numerical methods. Fortunately, a closed form

solution can be derived for the T^-646.

3.2 Geometric Solution for Joints 1, 2 and 3

As stated before, the T^-646 is a six degree of freedom robot with a three roll wrist. This configuration

allows the determination of the first three joints to be solved using a geometric model.

Figure 4: Geomeiric Solution for Joints 1 , 2, and 3
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Figure 4 shows the how the first three (1,2, and 3) joint angles can be determined for a given position of

the manipulator. The center of the wrist is considered to be the end-effector, the last section can be

considered part of the tool transformation.

The geometry is shown again in Figure 5 without the outline of the robot to simplify the drawing for the

calculations of the joint values.

Figure 5: Geometric solution for Joints 1, 2, and 3

3.2.1 Solution for Joint 1

The solution for joint 1 can be determined by examining the projection of the manipulator arm in the x-y

plane (left side of Figure 5). The length of projection a can be determined to be:

a = (Px^ + Py2)2

whae is the length of the projection in the x-plane (or the x position of the end-effector relative to the base

coordinate frame), and Py is the length of the projection in the y-plane (or the y position of the end-effector relative

to the base coordinated frame). 0j can then be determined using the inverse tangent function as follows:

01 = Atan2 (px, Py) = Atan2
j^j

3.2.2 Solution for Joint 2

Examining the right section of Figure 5 it can be determined that

AnglA + AngIB + 02 = 90°

therefore: 62 = 90° - AngIB - AnglA

To solve this equation, AnglA and AngIB must be determined. AnglA is defined as the angle made between the line

segment C and the x axis of the base coordinate system. Segment C is defined as:

C = (px^ + Py^ + Pz^)2

10



Where Py position of the end-effector in the x axis of the base coordinate system, Py the position of the end-effector

in the y axis of the base coordinate system, and p^ is the position the end-effector in the z axis of the base coordinate

system. AnglA can then be determined using the inverse tangent function and is derived as follows:

AnglA = Tan'^ ^ = Tan^/ ^—
;j-

^
UPx^ -t- Py2)2^

AngIB can be determined using the Law of Cosines on triangle bed. Using the Law of Cosines it can be determined

that

-
1
- - 2cd Cos(AnglB)

AngIB = Cos'^ .J
b^ - - d^

j

thoefore:
' 2cd '

Once AnglA and AngIB have been determined, 02 is calculated.

02 = 90° - AngIB - AnglA

3.2.3 Solution for Joint 3

The solution for joint 3 is a little more complicated than the solutions for joints 1 and 2. Examine the

right section of Figure 5. It can be seen that the Offset angle is always a constant and can be evaluated using the

inverse tangent function.

Offset = Tan'"' 1612.6 mm ^ 82.930 °

200 mm

It can also be seen that AnglE is always the sum of the Offset angle and 03 (NOTE: 03 is negative in the right

section of Figure 5). Therefexe

03 = AnglE - Offset

AnglE is defined as the angle between line segment b and the extension of line segment d. Upon further inspection

it can be determined that AnglE and AngIC are supplementary angles, therefore

AnglE = 180° - AngIC

This leads to another problem, AngIC must be solved for. Using the Law of Cosines on triangle bed again, it can

be determined that

= b^ + -2bd Cos(AnglC)

AngIC = Cos'^ ./c^ - b^ -

]

thCTefore: ' 2bd
'

03 can then be determined using the formula

03 = AnglE - Offset

Therefore it has been determined that the angular positions for the first three joints can be determined based entirely

on the position of the end-effector in the x axis of the base coordinate frame, p^^, the position of the end-effector in

the y axis of the base coordinate frame, Py, and the position of the end-effector in the z axis of the base coordinate

frame, p^.
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3.3 Solution for Joints 4, 5, and 6

In the previous section, the displacements for the first three joints were solved for geometrically. The

derivation of the last three joints is a much more involved algebraic and trigonometric problem. There exists two

specific problems to be dealt with. The first problem is the presence of a singularity point. A singularity point

occurs when two or more joint axes line up causing an infinite number of possible solutions for any given

orientation. A singularity point occurs in this manipulator when links 4 and 6 line up, or when the value of joint 5

is zero. There is also an ambiguity in the wrist. The are two solutions for the last three joints for a given

orientation. This ambiguity will be referred to as “wrist-flip” and “wrist-no-flip.”

3.3.1 Rotation Matrixes

In determining the values of the last three joints, only the rotation part of the transformation matrix is

necessary (there are no position changes in the last three links, just orientation changes). The rotation matrixes for

the links are shown below.

NOTE: From here to the end of the paper, the term (Gj + 90) will be abbreviated as G^ therefore, when Gz occurs

in a matrix or an equation, the value (G2 + 90) must be placed there. For example, cos G2 MUST be replaced with

the value cos (G2 + 90). This abbreviation is necessary to simplify the complex equations to follow.

R°

R

R

R»

-cose, 0 -sine,

-sine, 0 cose,

0 1 0

cosoj -slne^ 0

Sine
2

cose^ 0

0 0 1

cosea 0 -sines

sine
3 0 cos 63

0 -1 0

0 1 0-10 0

0 0 1

-cos sin 0^ cos (-61 )
- sin G, sin (-61 )

- sin - cos cos (-61 ) cos sin (-61 )

0 sin (-61 ) cos (-61 )

cos Gg - sin ^ cos (61 ) sin 05 sin (61 )

sinGg cos 63 cos (61 )
- cos 0g sin (61 )

0 sin (61 ) cos (61 )

COSGg -sin Gg " 1
sin cos Gg

0 0
1 J

Once the values are known for joints 1, 2, and 3, these values can be substituted back into the kinematic

model to derive the last three joint values. Looking back at the rotation section of the kinematic model, it can be

seen that the orientation of the last frame with respiect to the base frame is Re = R2 Ra’ R4 Rs Re. If we

substitute the values of Gi, G2 ,
and Gaback into Ri R2 RI Ra, this rotation matrix gives the orientation of frame

3 with respect to the base frame as a numerical matrix. If this numerical matrix is inverted and premultiplied to Re,

we can obtain the numerical rotation matrix of the last frame with respect to frame 3, Re. The symbolic rotation

matrix of the last frame with respect to frame 3 can be obtained by multiplying the rotation matrixes of the the last

three links. Re = Ra Rs Re . We now have the symbolic and numerical rotation mauix of the last frame with

respect to frame 3. The equations are shown again below.

Re = Rs Re Symbolically

Re = (R° R2 R| Ra) Re Numerically
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When the rotation matrixes are multiplied together the following is obtained. NOTE: Due to the

complexity of the following calculations, it is recommended that the matrix multiplication be performed with a

software package such as Mathematica. The terms COS and sin have been abbreviated to C and S respectively.

F^RtRl Re = (Ri R2 RI R!)'^ Re

•’ll
•’12 ''13 a b c

hi *^22 Tjs ^6 =
d e f

tai '’32 i'33 g h
i

Symbolically Numerically

rii = C6(-C4 C5 + c(-61)S4S5) + S6(C5C(-61)c(61)S4 + C4C(61)S5 - S4S(61)s(-61) = a

>12 = S6(C4C5 - c(-61)S4S5) + C6(C5C(61)c(-61)S4 + C4C(61)S5 - S4S(61)s(-61)) = b

ri3= -C5S4C(-61 )s(61) - C4S5S(61) - c(61)s(-61)S4 =c

f2i = Cei-CsS^ - C4 S5 C(-61 )) + S6 (-C4 C5 C(61 )c(-61 )
+ S4 S5 C(61 ) + C4 S(61 ) s(-61)) = d

r22 = S6(C5S4 + C4S5C(-61)) + C6(S4S5C(61) - C4C5C(61)c(-61) + C4S(61)s{-61)) = e

^23 = C4C5C(-61)S(61) - S4S5S(61) + C4C(61)S(-61) = f

r3 i
= C6S5S(-61) + S6(c(-61)s(61) + C5C{61)s(-61)) = g

'’32 = C6(C(-61)S(61) +C5C(61)S(-61)) - S5S6S(-61) = h

r33 = c(61)c(-€1) - C5S(61 )s(-61) = i

3 .3.2 Singularity Point

As stated before, a singularity occurs in the manipulator when 65 is equal to 0 . When the above rotation

matrix is examined, it can be seen that the r33 value is only dependent on the value of 65.

r33 = c(61)c(-61) - C5S(61 )s(-61) = i

Therefore, we must determine the value of i when 85 is equal to 0 . The value of Cos(O) is 1 , therefore, the

manipulator is in a singular position when

r33 = c(61)c(-61) - s(61)s(-61)

r33 = 0.23504 - (-0.76496) = 1 = i

Therefore, a singularity occurs when the value of i, in the numerical rotation matrix, is equal to 1 . When a

singularity occurs, the value of 85 is set to 0, the value of 84 is set to its previous value, and joint 6 is determined

and actuated to the proper orientation. NOTE: In the control program, the value i must be checked before each

calculation to determine if a singularity occurs. If a singularity occurs and the value of 84 is not set to its previous

position, the inverse kinematic model will explode.
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3.3.3 Solution for Joint 6

The most complex part of the solution for the last three joints is determining the value of one of the three

joints. This is accomplished by examining the symbolic rotation matrix for equations that can be used to eliminate

all the variables except the one you are looking for and to combine the remaining variables into a tangent function.

There is no real method to go about this except experience in knowing what to look for and trial and error.

The first step to help clean up the matrix components is to evaluate all the cosines and sines of 61 and

-61 degrees found in the equations. These cleaned up equations are shown below.

Til = C6(-C4C5 + 0.48481 S4S5) + Sei 0.23504C5 S4 + 0.48481C4 S5 + 0.76496S4) = a

ri2 = C6(0.23564C5 S4 + O.4848IC4S5+ O.76496S4) -H Se ( -C4 C5 + O.4848IS4S5) =b

ri3 = 0.424024s4(1 -C5)
- O.87462C4S5 =C

r2i = C6(-C5S4 - C4S5C(-61)) + S6(-C4C5C(61)c(-61) -I- S4S5C(61) + C4S(61) s(-61)) = d

^22 = S6{C5S4 + 0.4848IC4S5) + C6( 0.48481 S4S5 - 0.23504C4C5 - 0.76496C4) = e

r23 = 0.424024C4(C5 -1) - O.87462S4S5 =f

r3i = -0.87462C6S5 + 0.424024S6(1 -C5) = g

r32 = 0.424024C6(1 -C5) + 0.87462S5S6 = h

r33 = 0.23504 -I- 0.76496C5 = i

Compare the g and h terms in each matrix

r3i = -0.87462C6S5 + 0.424024S6(1 - C5) = g
r32 = 0.87462S5S6 + 0.424024C6(1 -C5) =h

Multiply the top equation by Se

Multiply the bottom equation by Ce

Then add the equations

Seg = -0.87462C6S5 Sg -t- 0.424024S6 2 (1 -C5)

Cg h = 0.87462S5 Sg Cg + 0.424024Cg 2 (1 - Cg

)

Sg g -H Cg h = 0.424024(1 - C5)(Sg 2 . Sg 2 . Cg2 = 1

Sgg + Cg h = 0.424024(1 -Cg) Eq. 1

Wfe can now make a substitution for Cg

Compare the i terms in each matrix

Therefore

i = 0.23504 + 0.76496 Cg

Cg = (i - 0.23504)/0.76496

14



Substituting this into Eq. 1, we obtain the following

Sgg + Cgh = 0.424024(1 -(i - 0.23504)/0.76496)

To continue, some trigonometric substitutions must be employed.

1 - Tan^^
Cose =

1 +Tan^-6-
2

Sin

2Tan.0-
2_

1 +Tan^-Q-
2

And to ease in the notation, the following substitution is made

Tan 1 = K Tan ^ = K6
2 2

Making these substitutions into Eq. 2, we obtain

2J<6_jg / 1 - KeiU = 0.424024 (l - 1--. 0.23504
' 0.764961 + VI + Ke

Substituting n for the right side of Eq. 3

n = .424024 1 - i - Q-235Q4
V 0.76496 I

obtain

2 Ke 1 - Ke*" h = n

ll + Ke^/ \1 + Ke"

Multiplying both sides of the equation by (1 + Ke 2)

2K6g + (1 - K6^)h = n(1 H-Ke^)

Multiplying the h and n through the parentheses

2K6g+ h - hKe^ = n + nK6^

Rearranging Eq. 4

(h + n) Ke^ - (2 g) Ke + (n - h) = 0

Upon examining Eq. 5, it can be seen that it is a quadratic equation of the form

ax^ + bx + c = 0

WhCTe: a = (h + n)

b = -2g

c = (n - h)

X = Ke

The roots of a quadratic equation are

-b ± Vb^ - 4ac

2a

Eq. 2

Eq. 3

Eq. 4

Eq. 5
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Making the substitutions into this equation and solving for the roots, the following is obtained

g ± Vg^ +

(h + n) Eq. 6

Therefore, from Eq. 6, the roots are

K. _ g + Vg" -H
K6,=SjJE±ZZZ

’ (h + n) (h + n)

Remembering the substitution

Tan^ = K6
2

Therefwe 06 = 2 Tan ’ Ke

Because there are two possible roots, there are two possible solutions for 06

.

06, = 2 Tan"' K6
i

062 = 2 Tan ’ Keg

Making the final substitution for K back into these equations, the two solutions for 0$ are obtained.

66, = 2Tan-'(9J-!!ZIZIZ) = 2Tan-’(o.jEIZZZ|
\ (h + n) / \ (h + n) /

The two possible solutions for 06 causes the ambiguity in the wrist There are two possible solution sets

for {04, 05, 06} that give the required orientation for the end-effector. These sets are found by backing out 05 and 04

using both solutions for 06- A set is determined using the first solution of 06 and a second set is determined using

the second solution of 06. The set that requires the least amount of movement is then sent to the controller.

3.3.4 Solution for Joint 5

After 06 has been determined, its value is substituted back into its rotation matrix.

t

cos 06 -sin 06 °
I

sin 06 cos 06 °

0 0 1 J

Therefore, this matrix has a numerical value. This matrix is then inverted and post multiplied to the rotation matrix

that gives the orientation of the last frame with respect to the third frame.

Re Re
^ = Re RI = Numerically

Rs = R4 R5 Symbolically

16



Ri = Rs = r1 = rI rI

Til >12 ^3 a b
^ 1

>'22 '-23

^5 =
d e

'’32 ^33 g h
' J

Symbolically Numerically

= -C4 Cs + 0.48481 S4 S5 = a

ri 2 = 0.76496 S4 + 0.23504 C5 S4 + 0.48481 C4 S5 = b

ri 3 = 0.424024 84(1 -Cg) - 0.87462 C4 S5 = C

^21 = -S4 C5 - 0.48481 C4 S5 = d

r22 = -0.76496 C4 - 0.23504 C4 C5 + 0.48481 8485 = e

r23 = 0.424024 C4 (C5 - 1) - 0.87462 84 Sg = f

r3 i
= -0.87462 8g = g

r32 = 0.424024 - 0.424024 Cg = h

r33 = 0.23504 + 0.76496 Cg = i

Comparing the g and h terms of each matrix, it can be seen that a tangent function can be formed rather easily.

Tan 05 =
CO8 05

I 31 “ -0.87462 Sg = g
r32 = 0.424024 - 0.424024 Cg = h

Solving for 8g and Cg we obtain

Sin 05 = - (
3

10.87462
C0S65 = -(t?-: 0-424024)

1 0.424024 I

Combining the Sin and C08 functions, Og can be solved.

05 = Tan'

-g

0.87462

(
h - 0,424024

\ ' 0.424024 7

There are two solutions for 6g. One is determined using the first solution for Og, and a second is determined

using the second solution for Og. These solutions MUST be kept in their respective sets. DO NOT combine them

into one set or mix the sets. Incorrect joint angles will be calculated if this is not followed.

17



3.3.5 Solution for Joint 4

After the value for 85 has been calculated, it is substituted back into its rotation matrix.

R

- sin % cos (61

)

cos Og cos (61

)

sin (61)

sin Os sio (61)

cosOsSio (61)

cos (61) ]

Therefore, this matrix has a numerical value. This matrix is then inverted and post multiplied to the rotation matrix

that gives the orientation of the fifth frame with respect to the third frame.

R4 = Rs Rs = Rs R4 Numerically

R4 = R4 Symbolically

Symbolically Numerically

rii = -C4 =a

ri2 = c(-61 ) S4 = b

ri3 = -s(-61)S4 = c

r2i = -S4 = d

r22 = -c(-61
) C4 = e

r23 = s(-61 ) C4 = f

rai = 0

h2 = s{-61 )

r33 =c(-61
)

Upon inspection of the rotation matrix, it can be seen that a tangent function can easily be created by using

the a and d terms of each matrix.

rii
= -C4 =a

<'21 = -S4 = d

Tan 04 =
Cos 04

e4=Tar'(^)

Once again, there are two solutions for 84. One is determined using the first solution for 85, and a second is

determined using the second solution for 06 . These solutions MUST be kept in their respective sets. DO NOT
combine them into one set or mix the sets. Incorrect joint angles will be calculated if this is not followed.

After 04 has been calculated for each solution for 06 ,
there are two complete sets of joint angles for the

given position and orientation. 0
i , 02 ,

and 83 will be the same for each set. The two sets, labeled “wrist-flip” and

“wrist-no-flip”, are then compared with the previous angles of the manipulator and the set with the closest to this is

sent to the robot controller and the joints are actuated to the calculated value.

18



4 ALTERNATIVE KINEMATIC MODEL

4.1 Link lYansform Approach

The link transform approach assigns a coordinate frame to each link of the robot The coordinate frame is

placed at the joint of the link with the joint revolving around the Z axis in a right-hand sense. After a coordinate

frame has been assigned to the base of the robot and to each link of the robot a kinematic equation can be developed

to relate the position and orientation of the last frame (the end-effector) to the base frame. Figure 6 below shows

the frames that were assigned to the robot for the link transform approach.

Figure 6: Frames assigned to each link using the Link Transform Approach, robot shown in zero or home position

A transformation matrix can be calculated for each link by comparing the relative motion of a frame with

respect to its previous frame. As a joint is rotated, the frame of the corresponding link also moves by a certain

amount relative to the previous frame. An example of this is shown in Figure 7.

Zi Zo

Figure 7: Relative motion of frame 1 with respect to frame 0
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From Figure 7, the transformation matrix that relates the motion of frame 1 with respect to frame 0 can be

derived. The following is how this transformation matrix is derived. Als link 1 (and frame 1) revolves with respect

to link 0 (and frame 0) in a positive direction, the following happens:

The Xi axis varies from 1 @ 0 degrees to 0 (S) 90 degrees on the Xq axis. This motion is

defined by the cosine of joint angle 1.

The Xi axis varies from 0 (S) 0 degrees to 1 @ 90 degrees on the yo axis. This motion is

defined by the sine of joint angle 1.

The Xi axis is always 0 on the Zq axis because it always remains perpendicular to it.

The Vi axis varies from 0@ 0 degrees to -1 (5) 90 degrees on the x© axis. This motion is

defined by the -sine of joint angle 1

.

The yi axis varies from 1 @ 0 degrees to 0@ 90 degrees on the yo axis. This motion is

defined by the cosine of joint angle 1.

The yi axis is always 0 on thezo axis because of its perpendicularity.

The Zi axis remains coincident with the Zo axis during all motion.

Px = Distance along the Xj.i axis from frame i-1 to frame i = 0

Py = Distance along the yj.^ axis from frame i-1 to frame i = 0

Pz = Distance along the Zj.^ axis from frame i-1 to frame i = 0

From this information, a transform matrix can be assembled. This is a 4 x 4 matrix with the bottom row comprised

of fillers {0, 0, 0, 1 ) that do not effect the output of the matrix.

= ' M
' Zm

Filling in this generic matrix, the transformation matrix for the first joint (i = 1) is obtained.

TO

COS0,

sin 0,

0

0

-sin 0
^

cos 0,

0

0

0

0

1

0

0

0

0

1
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4.2 lYansformation Matrixes

The preceding steps are performed for each joint and the following transform matrices are obtained.

_ —
cos e, -sine 0 0 -cos 64 sin 0, 0 200

sin e, cos e, 0 0 Tj -
0 0 1 1612.6

0 0 1 0 sine. cos e. 0 0

0 0 0 1 0 0 0 1

— —
_

sin Oj cos Oj 0 0 cos 61 cos 63 -sin 61 sin 0^ sin 61 0

0 0 1 0
Tt -

sin 05 cos 0 0

cos - sin Bj 0 0 -sin 61 cos 85 cos 61 sin 65 cos 61 0

0 0 0 1 0 0 0 1

— —

cos Oj -sin 63 0 1000 cosBIsine, cos 61 cos e. -sin 61 0

sinBj cos e 0 0 •cose. sine. 0 0

0 0 1 0 sin 61 sin e. sin 61 cose. cos 61 0

0 0 0 1 0 0 0 1

— — —

4.3 Kinematic Model for T^-646

Once the link transform matrix for each link has been calculated, the kinematic equations can be solved for

and the kinematic model obtained. This is performed in the same manner that the kinematic model was developed

using the Denavit-Hartenberg parameters

T6=T?T2'l3'T3T4T6T6

where le is a 4 x 4 matrix representation of the position and orientation of the last frame with respect to the base

frame. This equation is referred to as the kinematic equation of the manipulator arm and governs the fundamental

kinematic behavior of the arm.

n
>12

>22

r 32

0

^13

'’23

r33

0

p.

Py

1

r r,. ..
rzi rja

I ^31

Orientation matrix of the end-effector

with respect to the base coordinate frame

Position of the end-effector

with respect to the base
coordinate frame

NOTE: Although this method provides a kinematic model that is correct, the Denavit-Hartenberg method is

preferred due to its standard frame placements that can be easily duplicated.
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5. CONCLUSION

The principles used to derive the forward and inverse kinematics for the T^-646 can be applied to most

modem “open loop” industrial robots. The Denavit-Hartenberg parameters provide a standard method of frame

attachment for each joint of the robot. The forward kinematic model provides a mathematical model that describes

the position and orientation of the last frame with respect to the base frame given a set of joint angles. The inverse

kinematic model, derived from the forward kinematic model, provides a mathematical model that determines the

required joint positions for a given end-effector position and orientation. Using the derived inverse kinematic model,

the joint angles can be determined for each position and orientation of the end-effector, making a joint interface

possible.
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