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Abstract

A phase-field model for isothermal solidification of a binary alloy is developed

that includes gradient energy contributions for the phase field and for the composi-

tion field. When the gradient energy coefficient for the phase field is smaller than

that for the solute field, planar steady-state solutions exhibit a reduction in the seg-

regation predicted in the liquid phase ahead of an advancing front ( solute trapping),

and in the limit of high solidification speeds predicts an alloy solidification with no

redistribution of composition. Such situations are commonly observed experimen-

tally.

PACS numbers: 81.30.Bx, 82.65.Dp, 68.10.Gw, 64.70.Dv
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A PHASE-FIELD MODEL OF SOLUTE TRAPPING

1. Introduction

Sharp interface models of alloy solidification typically employ the solution to the usual

diffusion equations for heat and solute in the bulk phases. The matching of solutions

at the liquid-solid interface is obtained from flux conditions required for conservation

and through constitutive laws for the jump in concentration across the interface and its

temperature as functions of interface velocity. The latter are obtained from a separately

derived model of the atomistics of solute diffusion across the interface. The dependence of

the jump in concentration on velocity is termed solute trapping and provides a mechanism

whereby the jump vanishes at high rates of solidification consistent with experimental

observations (partitionless solidification). While this modeling approach has met with

considerable success, it is clear that at high rates of solidification (1 m s
-1

)
the concen-

tration gradient near a freezing interface may be sufficiently large that gradient energy

terms, as in the Cahn-Hilliard equation, should be included in the solute diffusion prob-

lem in the liquid. The phase-field model presented in this paper will provide a common

framework for the incorporation of these terms into the diffusion equation and at the

same time provide a description of the diffusion in the interfacial zone, thus avoiding the

requirement for separately derived constitutive laws for the interface conditions.

Kinetic theories for solute trapping fall into two categories, diffuse and sharp interface

theories. Baker [1] solved the dilute solution continuum diffusion equation in a moving

reference frame across a diffuse interface with various assumed spatial variations of energy

to predict solute trapping by rapid growth. Langer and Sekerka [2] demonstrated that

a solution to the Cahn-Hilliard equation in one dimension exhibits a reduction in the

change in composition across a diffuse moving interfacial region between two phases as

the velocity of the front increases. Their solution requires a miscibility gap (double well

potential) in the conserved order parameter (composition).

Many sharp interface theories of solute trapping are typified by the approach of Cher-

nov [3]. Analytic and Monte-Carlo models of trapping based on very similar principles

to Chernov’s have been developed by others ([4], [5] [6], [7]). In these models, an impu-
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A PHASE-FIELD MODEL OF SOLUTE TRAPPING

rity atom must actively jump into the solid crystal at levels in excess of the equilibrium

solubility. Thus special assumptions are required regarding preferential adsorption at

the interface. In the approach of Aziz [8], the impurity may end up in the crystal on a

high energy site by virtue of the formation by its neighbors of a regular lattice around

it. Hence to avoid incorporation onto a high energy lattice site, an atom must diffuse

away. Since the maximum speed of diffusion can be rather slow compared to the speed

with which crystal-melt interfaces can move ([9], [10], [11]), the atom may be trapped on

a high energy site by a rapidly moving interface.

Phase-field models have been used to describe solidification of pure materials for

many years. In this context they were developed by Langer [12], [13], Caginalp [14], and

also Collins and Levine [15]. Caginalp has also extensively studied their mathematical

properties [16], [17]. A recent review of phase-field models is given by Fife [18]. More

recently, phase-field models that deal with alloy solidification have been developed by

Lowen et al. [19] and Wheeler et al. [20].

In previous work (see [20], which we will denote by WBM), the authors have presented

a novel phase-field model for alloys in which a free energy surface and field equations were

developed for the phase field </>(x, t) and the solute concentration c(x, f
)

. This work con-

tained a gradient energy term for the phase field but not for the solute field. Asymptotic

analysis of this model in the limit of a sharp interface, while recovering the required flux

conditions based on conservation of solute at the interface as well as the Gibbs-Thomson

effect for curved interfaces, produced a model in which the jump in concentration across

the interfacial zone increased in magnitude as a function of velocity. This effect, which is

contrary to experiments on solute trapping [21], [22], [23], is eliminated in the model pre-

sented in this paper. The essential feature that caused this difficultly was made evident

by the parallel tangent condition that arises in the asymptotic analysis. This condition

requires that the concentrations of the liquid and solid phases on the two sides of the

interface must be given by two tangent points to the curves for the liquid and solid free

energy density versus concentration, respectively. The two tangents must be parallel
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A PHASE-FIELD MODEL OF SOLUTE TRAPPING

and separated by a energy that is an increasing function of the growth velocity. The

parallel tangent condition precludes the possibility of solute trapping, since the resulting

interfacial solid and liquid concentrations generally cannot approach each other. In this

paper we will show that inclusion of the gradient energy term for the solute breaks this

condition and allows solute trapping to occur.

The incorporation of gradient energy terms into the diffusion problem requires a gra-

dient energy coefficient not present in phase-field models for pure materials or in the

previous model for alloys. This new parameter, 8, affects the thickness of the thin so-

lute transition zone between liquid and solid phases independent of the thickness of the

phase-field transition zone, which is determined by the gradient energy coefficient for the

phase field, e. Whereas the introduction of the phase field and its associated gradient

energy coefficient may be viewed as artificial and a regularization of the moving bound-

ary problem, the need for a gradient energy coefficient for solute to properly describe

diffusion in finely spaced multilayers [24], [25], [26] and during spinodal decomposition

[27] is well documented. It therefore makes sense to consider an asymptotic analysis as

e/8 gets small. This limit implies that the spatial extent of the structural disorder is

small compared to the spatial extent of the composition variation across an interface.

Through this asymptotic analysis, we derive a new set of governing equations that de-

pend only on 6 and that, through comparison to experiments, may provide a data base

for 8 without requiring values for e. In order to illustrate our model we therefore will

show results for three values of 8 added to the materials properties used for nickel-copper

alloys developed in our previous model [20]. Further, from predictions of our model we

describe experimental measurements that could be used to determine values for 8 for

alloy solidification.

The present model is for isothermal solidification, wherein heat flow is ignored and

the temperature and the composition of the liquid far from the interface would be con-

trolled parameters. For a steady state, the theory would then predict the velocity of

the interface and the compositions in the interfacial zone. With this approach, constant
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velocity planar solutions cannot be obtained except under special conditions. Experi-

mentally, heat flow generally has the role of setting the interface velocity as for example

in directional solidification. Thus it is useful to consider the velocity and the composition

far from the interfacial region as being controlled while the self-consistent temperature

and the interfacial compositions are determined by the theory. This approach allows us

to directly inspect the behavior of the model as the solidification velocity is increased

through constant velocity planar solutions.

In Section 2 we develop the general phase-field model for alloys and give the governing

equations. In Section 3 we study solutions that correspond to a stationary planar interface

and we present the asymptotic analysis that yields information about surface tension

and adsorption. In Section 4 we extend this asymptotic analysis to the case of a planar

interface freezing at constant velocity, and obtain a new set of governing equations, with

solutions that exhibit solute trapping. In the last section we discuss our results and

compare them to the Aziz model of solute trapping [8], [28].

2. The Model

In our previous model [20], the Helmholtz free-energy functional was assumed to depend

only upon the phase-field </>(x, t), its gradient V</>(x, t), and the concentration c(x, t). This

model recovers the standard diffusion equation in the bulk phases. In the sharp interface

limit of this model, when a planar interface propagates with a constant velocity, the

process of solute segregation at the interface results in a solute boundary layer forming

adjacent to the interface with a length scale D/V
,
where D is the diffusivity of solute in

the liquid and V is the interface velocity. As V increases the associated solute gradients

become correspondingly large without bound, and the length scale of the solute field

diminishes. In fact, for a typical value of the solute diffusivity of 10

~

5 cm2
s
-1

,
the

length scale D/V of the solute field approaches atomic dimensions for velocities on the

order of 100 cm s
_1

,
which is common in rapid solidification experiments. It is well known

that continuum treatments of diffusion processes that occur on length scales of atomic
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dimensions typically require the inclusion of gradient energy effects.

To remedy this shortcoming we generalize the Helmholtz free-energy functional used

in the previous phase-field formulation, to allow it to depend on Vc(x,t). This, as we

show below, results in the characteristic length of the solute profile at high interface

velocities being much larger than D/V providing a solidification model that is valid to

much higher interface velocities than those based on the classical diffusion equation. For

an isothermal binary alloy with components A and B we put

T= jAfiM+j^tr+j^cAdy, (i)

where Q is the volume occupied by the system, c is the concentration (mole fraction)

of B, and e > 0 and 8 > 0 are the coefficients of the phase field and solute gradient

energies, respectively. The simplest choice for the Helmholtz free-energy density /(</>, c
)

corresponds to an ideal solution and is identical to the one used previously [20], as given

by

RT
/(<£, c) = cfB {<t>) + (1 - c)fA {(f>) + [c log c + (1 - c) log(l - c)], (2)

Vm

where R is the universal gas constant, T is the temperature of the system, which is a

parameter in the isothermal problem, and um is the molar volume, which is assumed

to be constant. The terms proportional to RT/vm in this equation correspond to the

contribution to the Helmholtz free-energy density of the entropy of mixing of an ideal

solution model. The functions fa (</>) and fB ((f)) represent the Helmholtz free energies of

the pure materials A and B, respectively, with corresponding melting points T and

The functions are given by double-well potentials with respect to <^>. As in our

earlier model, we employ the forms used by Kobayashi [29]:

fA {(f>)
= WA f p{p-l)(p- \ — (3A(T))dp, (3)

Jo

fB {4>) = WB [%(p-l)(p- l-pB (T))dp, (4)
Jo

where WA and WB are constants. We assume that Tffl < T < Tj£\ in which case

— 1/2 < (3A {T) < 0 < /3b (T) <1/2 [20]. A more complex form of equations (2) might

include energy of mixing terms proportional to c(l — c).
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We require that the governing equations ensure that the Helmholtz free energy de-

creases monotonically in time, and that the total solute within the system is conserved.

Simple postulates satisfying these requirements are

^ _ 71 /f
&

dt
Ml

6<f>
’

dc

dt
= V-M2 (c(1-c)V— ],

(
5

)

(
6

)

where

and

^ = 9-l - e’VV,
84 d4

v ’

8c dc

The quantities Mi and M2 are positive, and may depend on c, <^> and T. Allowing M2 to

depend on
(f>
can provide for different solute mobilities in the liquid and solid phases. In

the present work we take Mi and M2 to be constants. Appropriate boundary conditions

for a finite volume Q are

d<j)

dn

dc

dn

d(V 2
c)

dn
= 0

, (
7 )

where n is the outward normal to the boundary of fh

It follows that the highest spatial derivatives that appear in the phase-field equation

(5) are given by the Laplacian operator, whereas those for the solute concentration (6)

with 8 ^ 0 are given by the spatial biharmonic operator. For <5 = 0, the highest spatial

derivatives that appear in the solute equation are given by the Laplacian, with a diffusion

coefficient given by [20]

D = M2

RT
(
8

)

Our aim here is to study the effect of interface velocity on the segregation at the inter-

face when a solute gradient energy is included in the model. For simplicity we confine

our attention to planar interfaces; nevertheless, this still provides a rather complicated

situation, and so to proceed we consider first a stationary interface in which the relative

effects of the two gradient energy terms are revealed.
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Our extension of the phase-field equations given by (5) and (6) may be viewed as

generalized forms of the Allen-Cahn [30] and Cahn-Hilliard equations [31], respectively.

They are coupled through the energy density / = /(/, c). The Allen-Cahn equation

describes the motion of anti-phase boundaries in chemically-ordered crystals [with / =

/(/)], and the Cahn-Hilliard equation describes spinodal decomposition [32] [with / =

/(c)]; in both cases, the appropriate form for / is given by a double well in / or c,

respectively. In order for a single set of governing equations to treat the motion of the

liquid-solid interface for alloys and also for pure materials, the double well in the free

energy must exist with respect to /. For the ideal solution model considered here, the

free energy has a single minimum in the variable c.

3. Stationary Interface

We consider the solute and phase fields due to a stationary planar solid-liquid interface

situated in an infinite region, in which the far field boundary conditions are given by

c —> c+00 and / —» 0 as z —» oo, and c —» c_ and / —» 1 as z —» — oo. We choose the

origin z — 0 such that the liquid (/ = 0) occupies the region z > o, and the solid (/ = 1)

occupies the region z < 0. The aim is to determine c +OQ and c_ 00 ,
which represent the

bulk concentrations in the liquid and solid, respectively, and to identify the characteristic

length scales associated with the solute and phase fields in the interfacial zone.

The steady one- dimensional governing equations (5) and (6) have the form

— e2 /zz + f<t>
— 0, (9)

— 8
2
czz -f fc = A, (10)

where we have integrated the solute equation twice and employed the far-field conditions

that c is bounded. The boundary conditions are

((f), c) —> ( 1 , c_oo ) ,
as 2 -> — oo, (11)

and

((f), c) —>
(0,c+oo ), as z —> oo. (12)
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Equations (9) and (10) are simply the Euler-Lagrange equations that minimize T subject

to the constraint that the solute is conserved; A is then the corresponding Lagrange

multiplier. WBM considered the case 8 — 0 and showed that the concentrations c +GO and

c_oo were given by the common tangent construction to the free-energy densities in each

phase, /(0,c) and /(l,c).

It is convenient to recast (9) and (10) in the form

c
2
4>zz + F<t> — 0, (13)

8
2
czz + Fc = 0, (14)

where

= Ac-

in which case it is clear that the associated Hamiltonian

h = + y (
c*)

2 +

is conserved. Here, the Hamiltonian describes motion of a particle in the potential field

given by F, with the spatial variable z playing the role of time and the gradients (j) z and cz

playing the role of velocity components. It is convenient in the present context to retain

the coefficients e and 8 in the Hamiltonian, rather than rescaling so that the coefficients

are equal, as they would normally be in a classical description of particle dynamics.

Since in the far field the spatial gradients vanish, by comparing the values of the

Hamiltonian as 2 —

*

±oo it follows that

F(l,c_„) = F(0,c+oo ), (15)

and, from the solute equation, it similarly follows that

Fe(l,c_„) = Fc(0,c+oo )
= 0. (16)

Additionally it is required that F^(l,c_oo) = F^(0,c+oo )
= 0, but this is automatically

satisfied from the assumed form of the free energies /a and /g. Equations (15) and (16)
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determine the three unknown quantities c_ c+oq and A, and can be rewritten in the

form

/( °' C+°°) ~ f{1 '
C-°°\=A = fc (

0,c+oo )
= /C (l,c-,). (17)

C+oo C—oo

The identical conditions hold for the case 8 = 0 [20]; in both cases c _ 0

0

and c+OQ are

determined from the common tangent construction using the free energies /(l,c) and

/( 0, c) of the two phases. Thus for a stationary interface, the inclusion of the solute

gradient energy does not disrupt the common tangent construction, which is important

because any dynamical theory of solute trapping must recover the equilibrium conditions

for a stationary interface. However, the inclusion of the solute gradient energy does affect

the spatial structure of the solute and phase fields, as we discuss next. In Figure 1 we

show the phase diagram computed from the present model for the nickel-copper alloy

data base given in Ref. [20]. The locus of c_oo and c+OQ as functions of temperature are

called the solidus and liquidus, respectively.

Numerical integration of the governing equations for various values of e/8 are shown

in Figure 2. It is apparent from this figure that as e/8 decreases, the width of the phase-

field transition diminishes compared to that of the solute field. This change in scale of

the phase field relative to the solute field as e/8 decreases is a result of the decreasing

importance of the phase-field gradient energy relative to the solute gradient energy.

3.1. Asymptotic Analysis for e/8 <Cl

To investigate the behavior of the stationary interface in more detail, we consider an

asymptotic analysis in the limit e/8 —» 0. We can roughly associate the two lengths

e‘ = 6
\j

'^m

~RT
(18)

as being characteristic of the transitions layer thicknesses of the phase field and solute

field, respectively. In addition to the characteristic lengths l € and tg, the free energy used

in the phase-field model involves the energy densities Wa and Wb
,
as well as the dimen-

sionless functions (3a(T )
and /5b(T), which together determine the double-well structure

10-



A PHASE-FIELD MODEL OF SOLUTE TRAPPING

Concentration of copper, c

Figure 1: The phase diagram for the nickel-copper alloy. The liquidus and solidus are

represented by the upper and lower solid lines respectively. They are computed from the

common tangent construction (17). The dashed curve represents the quantity c*, using

the approximation A — 0 [see equation (34)].
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Figure 2: Concentration (dashed) and phase-field (solid) profiles across a stationary

interface obtained by numerical integration of equations (9) and (10) for values of (e/£)
2

of 0.01, 0.005, 0.002, and 0.0005. The smallest value corresponds to the sharpest profile

for the phase field. The x-axis is measured relative to is [see equation (18)]; here 6 =
3.3 x 10

-4
J 1//2 cm-1 / 2 and T = 1543 K.
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of the free energies of pure component A and B in our model. We previously discussed

how these quantities can be related to conventional material properties for solidification

through the expressions [20]

WaMT) ,
(T - Tg>)

6
= ^

jtf)

Wb0b(T) ,
(T - Tjf 1

)

6
8

Jjf>
(19)

eVWI _ cv/W’b

“ 6^2 ’

°B ~
6-J2'

where La and aa are the latent heat per unit volume and the surface tension, respectively,

for pure component A, with the analogous definitions for component B. In performing

the limit e/6 —> 0, it is also appropriate to scale the phase-field parameters Wa, Wb, /3a,

and /3b in the appropriate fashion to maintain finite values of surface tension and latent

heat as the phase-field transition layer becomes sharp relative to the solute layer.

To proceed we choose units based on the length is and energy density RT/vm ,
and

introduce the dimensionless variables z — z/ls and / = f/[RT/vm ]
(quantities with

tilde’s will be dimensionless). We set e = e/6, and consider the limit e —

>

0. The scaled

energy (2), on eliminating W

a

and Wb in favor of <ja and as by using (19) and (20),

then takes the form

f{<t>,c) = + (1 - c)fA (0) + c logc+ (1 - c) log(l - c),
(
21

)

where

with

W) = + /7M>(
0
),

f[-
2)

(<t>)
= 18a^2

(l - 4>T and /<,°>(«/,) = AFAf{3 - 20), (23)

WApA La (T-T™) Wa 72d2

*
6[RT/vm ]

[RT/vm \ TW ' [RT/vm \
e2

'

Here AFa, the dimensionless free energy difference between the solid and liquid phases

of pure A, and aa = crA /(6yjRT/vTn ), the dimensionless surface tension of pure A, are

(
22

)

and
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assumed to be of order unity in taking the limit. Similar definitions hold for the B

component. We introduce the notation /(
n

) = cf + (1 — c)j

^

for n — 0,-2.

In the limit e —» 0 it emerges that there are three different regions in z: one, which

we refer to as the inner region, in which z is small, and two others, which we refer to as

the outer regions, where z is of order unity; the latter regions are distinguished from one

another by z being positive or negative. We expand the solution in the outer regions as

regular perturbation series in e
2

,
i.e.,

</>
= + e

2
</>
(2)

(£) + 0(e4
),

and

c = c^°\z) -f e
2
c^

2\z) + 0(e4
).

In the inner region we set z - e
2
x, and write similar expansions for the variables c{x) =

c(z), and <j>(x) = (f>(z).

In the outer regions c varies but (j> is effectively either zero or unity, and we find that,

to all orders,
<f>
= 0 for z > 0 and

<f>
= 1 for z < 0. The leading-order problem for c(°) in

the outer regions is then given by

j2 (
0

)

- = A, for z < 0, (24)

- + /c(0,4
o)

)
= A, for z > 0, (25)

where A = A/[RT/ v^]-, note from equation (23) that the free energy /(</>, c) has no

explicit e-dependence when evaluated at </> = 0 and <j) = 1. First integrals for these

equations can be determined by integration with the far-field conditions c^(i) —> c^-oo

as z —» ±oo:

j

- /(l,c(
_
0)

) + ic(_
0> = F„, for 5 < 0, (26)

-/(0,4°>) + i40) = F0o ,
for 5 > 0, (27)

1 (dS
2 y

dz

-14-
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where = Ac-^ — /(l, c_oo) - Ac+00 — /(0, c+OQ ), from the common tangent conditions

derived above.

Boundary conditions at the interface z, — 0 are found by matching the solutions in

the inner and outer regions. Expanding the expression c(z) = c^(5) -f e
2A+\z) + 0(e4

)

for z = (Px with z > 0 gives

c(e
2
x) = c+\0) + e

2
+ 42)

(0)
)
+ 0(e4

),

which provides the appropriate far-field boundary conditions for the solute field in the

inner region for x > 0. Similar relations hold for z < 0.

To leading order the solution in the inner region satisfies

-^ + 72 {*
2
Bi
m + S2

a [1
- £(0)

]}W0) - 1)W
(0) - 1/2) = 0,

d2
c(°)

dz2
= 0.

The leading order solute field is thus linear in the inner region,

(28)

(29)

c^(x) = aA^x -f c*.

To match with the leading order outer solution it must be a constant, &°\x) = c*. The

value of c*, which we will call the interfacial concentration, is found through the matching

procedure at next order. The leading order phase field in the inner region is then found

to have the explicit form

<f>(°\x) — |[1 — tanh(3cr*x)],

where

ex* = y/c*a% + (1 - c*)v 2

a (30)

is a dimensionless weighted average of the surface energies of the two components. This

shows that the characteristic dimensional length associated with the phase field is actually

e
2
ls/cr*. The first order problem is

- + /ir>w<
o,
,c*)c<

2
> = (3i)

-15-
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- = -18(^) 2
(1 - *<°>)

2
[oi - a 2

]. (32)

This provides a solvability condition obtained by integrating equation (32), which after

matching to the outer solution gives the following interfacial condition for the jump in

the leading order concentration gradient across the interfacial layer,

dcf dS
dz dz

2=0+ z~0~ -

(33)

where

A -
~ 2 ~ 2

<?B ~ aA

2a*
(34)

Employing equations (26) and (27) we deduce that the interfacial concentration c* is

related to the interfacial concentration gradients at leading order by

A 'dc^ dcW
+ —

2 dz dz
2— 0 z=0+ -

= /<°>(0,c*)-/<°>(l,c*)
) (35)

A

2
y/K - ¥( l,c*) + y/Ko - +( 0,c*)J = /(°>(0,c*) - /(°)(1 ,c*). (36)

If A 1, then equation (36) would be approximated by

;<°>(o,c*) = /<°>(i,c*), (37)

and so c* would be the concentration for which the Helmholtz free energy density is

continuous across the interface, and from equation (33), the derivative of the leading

order concentration would be continuous across the interfacial layer as well. The quantity

A may be roughly estimated by (d# — d^)/2, which for a nickel-copper alloy [20] is given

by 10
~ 7

/8, where 8 has units J
1//2cm-1 / 2

. Below we illustrate the results of our model for

three values of 8 all greater than 3.3x10 6
J

1/,2cm 1 / 2
,
in which case A <C 3 x 10 2 and so

we expect this approximation to be reasonable. In the light of this, and for simplicity, in

the remainder of the treatment of the stationary interface we will henceforth set A = 0,

although incorporating the effects of nonzero values for A would present no essential

difficulties.
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We now summarize our findings under this assumption. The form of the free energy-

function /(^, c) determines the far field values c_ and c+00 through the common tangent

construction (which does not depend on the value of A), and determines the constant

value c* of the leading order concentration in the inner region. The leading order phase

field 4>(°\x) in the inner region satisfies equation (28) with c(°) = c*, with far field values

given by <^(°) —

>

1 as z —> — oo, and <^(
0

) —> 0 as z, —

>

+oo. In the outer regions the

leading-order concentration c(°)(£) satisfies equations (24) and (25) with ^°) = 0 for

z > 0 and <^(
0

) = 1 for z < 0. The far-held boundary conditions are c+\z) —» c+00 as

z —

>

oo and c^l\z) —» c_^ as z —

>

— oo. At the origin the solute held and its derivative

are continuous, and the solute concentration is given by c(°)(0) = c*. The value of c* is

the concentration for which the Helmholtz free energy density of the liquid and solid are

equal. The dependence of c* upon the temperature is shown in Figure 1 by the dashed

curve. (The curve c*(T) is often referred to as the T0 curve, [33]). From this analysis we

see that a complete separation of length scales of the solute and phase-held occurs in the

limit e —» 0: the solute varies only in the outer region where z = 0(1), and the phase

held varies only in the inner region where x = 0(1), and, to leading order, the transition

from
(f)
= 0 to

(f)
= 1 is sharp on the length scale of the solute held.

3.2. Solute Surface Excess and Surface Tension

Solutions to the phase-held model with 8 0 provide an example where we can calculate

the alloy surface tension and surface excess quantities associated with Gibb’s notion of a

diffuse interface [34]. In Gibbs’ treatment, the system is assumed to consist of two bulk

phases that are separated by a thin transition region whose thickness is small compared

to the dimensions of the bulk sample. Outside of the transition region, each of the

bulk phases is uniform, and the thermodynamic variables all assume equilibrium values

appropriate to each phase. In the transition region there is a rapid but smooth change

of the variables in passing from one phase to the other.

The diffuse transition region is then idealized by replacing this region by a dividing
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surface, located at some position within the transition region. Associated with the di-

viding surface are surface excess values of the extensive thermodynamic variables. In

treatments of the thermodynamics of surfaces (see, for example, [35]), the alloy surface

tension, a, satisfies

v — fx — A^A + (38)

where fx is the excess Helmholtz free energy per unit area of the dividing surface, T a

and T# are the surface excess solute concentrations of components A and B, respectively,

and [La and [Lb are the chemical potentials of components A and B, respectively. For

a one-dimensional, steady-state system with a dividing surface located at x = 0 and

with equal molar volumes vm in each phase, the surface excess solute concentration T#

is defined by (see, for example, [36])

/
L rO rL

c(x)dx = J
^cs dx + J

cL dx-YvrnYB ,

where the interval of integration extends far enough into each bulk phase that the solute

concentrations assume their bulk values in the liquid and solid, with c(—L) = cs and

c(L) = cl, with an analogous definition for Ta It follows that for our model with equal

molar volumes, we have T

a

— ~Yb . We note that the difference of the chemical potentials

of the two components, ([lb — [La), is given by v^A, where A is the slope of the common

tangent of the free energy curves given in equation (IT). The above expression (38) can

then be written

cr = fx — AvmTB , (39)

The excess Helmholtz free energy per unit area associated with a planar interface that

we use in our phase-field model is given by

{[/W ,
o-/(i ,«_„)] + £(£)

+ Jo j
[/(<£, c) -/( 0 ,Coo)] + j dz. (40)
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Employing the definition of /(<^>, c), after some manipulation we obtain the expression

a = a
[4>] + a

[c] , (41)

where

In the limit e/6 0, it is natural to place the dividing surface at the position z — 0

where
(f)

varies from zero to unity, since there is then no ambiguity about the interphase

boundary location. In Figure 3 we plot the leading order expression for the surface excess

of copper, defined by

roo r0

Vm^B=f (c(0) (z) - c+OQ )dz + I
(c(0) (z) - C-^dz,

as a function of temperature for the nickel-copper alloy between the two pure component

melting points.

The asymptotic analysis given above shows that to leading order cr^j is the contri-

bution to the surface tension associated with the inner layer where only (j) changes and

<7[c
]

is the contribution associated with the outer layers where c alone changes. These are

given by

aW =
V c*°b + (! - C*M>

and

<*[c]
=

[/
yfFM dc + Jc*

dc
;

we note that is the dimensional form of a *, and C7[c
]

is proportional to 6. The integrals

must be evaluated numerically. From the definition of a* given by equation (30), and

the dependence of c

*

on temperature shown in Figure 1, we see that cr^j has a simple

monotonic dependence on temperature, achieving the values of the pure two components

at their melting points. In Figure 4 we plot and a as functions of temperature.
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_4

Surface excess of copper, *10

Figure 3: The dimensionless surface excess of copper, Tcu = Cu/h, as a function

of temperature between the melting points of pure nickel and pure copper, as computed

from the leading order terms in the asymptotic analysis.
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The latter quantity is evaluated for three values of 8 equal to 3.3 x 10-6
J
1/2cm- 1 / 2

,

3.3 x 10
-5

J
1//2cm-1 / 2

,
and 3.3 x 10

-4
J

1
'
/2cm~ 1 /2

. It is evident from the dependence of cr^]

and cr[c
]

on temperature that the surface tension of the interface, a — -f a[c], may have

at most a single maximum value, at a temperature between the melting temperatures of

nickel and copper, and reduces to the value of the surface tension of either pure component

at their melting points. The dependence of the surface tension upon temperature provides

a way of determining the value of 8 from experimental measurement.

Few measurements of the dependence of alloy surface tension on temperature have

been performed and these primarily for systems with limited solid solubility (see, for

example, [37] [38]). (Our assumption of an ideal solid solution provides for a full range

of solid solubility). Most of these systems show an increase in the liquid-solid surface

tension with the addition of a solute which decreases the liquidus temperature, a trend

recovered in the present model for the initial addition of component B to pure component

A. Experimentally, the tension increases typically by no more than about 10% for a

composition of 0.1. This suggests that smallest values of 8 used in Figure 4 may be most

appropriate.

An expression relating the temperature dependences of the adsorption and the surface

tension may be derived in the Gibbs framework of surface excesses. This expression is

beyond the scope of the present paper but its derivation involves the consideration of

only those variations with temperature that maintain equilibrium between the liquid and

solid phases as well as the interface. Qualitatively one knows that the surface adsorption

adjusts itself to a value that lowers the surface tension. As temperature decreases, the

composition (B content) of the bulk liquid and solid phases increases according to the

phase diagram (Figure 1). For an interface in a dilute alloy (high temperature and low B

content) it can be seen from Figure 4 that the surface tension increases as temperature

decreases. Thus the surface tension can be thought of as increasing with composition.

This requires that the surface should be lean in component B and thus have negative

r#, in agreement with Figure 3 for high temperatures. At intermediate temperatures the
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Figure 4: The dimensional surface tension a and its component parts cr^j and <7[c
]

as

functions of temperature, as computed from the leading order terms in the asymptotic

analysis. The surface tension depends on 8 and is plotted for three values of 8. The three

curves in the lower diagram correspond (from left to right) to 8 = 3.3 x 10
-6J^cm-1 /2

,

8 = 3.3 x 10
-5

J
1/,2cm-1 / 2

,
and 3.3 x 10

-4
J

1|/2cm-1 /2
.
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surface tension depends less strongly on temperature (near the knee in the curve shown

in Figure 4) and the adsorption is zero. Similar arguments can be used to show that

positive adsorption is reasonable at lower temperatures near the melting point of pure B.

4. Non- Stationary Interface

4.1. Governing Equations for Steady-State Interface Motion

We now consider a planar solid-liquid interface moving with a constant velocity V. Adopt-

ing a frame of reference translating at the same velocity and coincident with the center of

the interfacial zone (given by ^ = 1/2 at z = 0 in this frame), the dimensional governing

equations (5) and (6) become

2 cP(f) V d(f)

6

~d?
+
~Mx ~dz

U = o, (42)

d

dz

with boundary conditions

V_dc

M2 dz
(43)

c c-oo

)

<t>
1

,
as z — oo, (44)

c —» c+QO , (J) 0, as 2 -> +oo,

where c+OQ and c_^ are the concentrations far from the interface in the liquid and solid

respectively. Examination of these equations indicates that they include four associated

length scales, given by

L = e
RT'

U = 8
RT ’ 8-m-l

— MX RT'
8m? =

m2rt
Vvm '

(45)

The two length scales £e and arose in the case of the stationary interface discussed in

the previous section, where l$ was chosen to non-dimensionahze the governing equations.

They are thus representative of the widths of the phase-field and concentration fields in

the interfacial zone, respectively, and are a result of the dependence of the Helmholtz

free-energy functional T on their corresponding gradients. The two length scales
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and Im2
are directly associated with the motion of the interface. In particular Im

1
is

associated with the dynamic response of the interface to non-equilibrium, and Lm2 i
on

employing (8), is given by D/V, and is. therefore the length scale on which the diffusive

and advective transport balance in the standard diffusion models of solidification.

In this section we seek to extend the analysis of the stationary interface discussed

in Section 2 to a non-stationary interface. As in the case of the stationary interface

we choose Is as our reference length scale by which to non-dimensionalize the governing

equations (42) and (43), which become

where

and

-2^
,

~2 y_<ty _
”-2 rh dzdz 1 fl'V* +C

77 Wl-«br
dz dz % + {ft

2
)r 2 + ;<°>)

dz

m =

V -

42

Vis

D

e
2Mi

= 0, (46)

cPc ~dc

d?
+v

di
= 0

’ (47)

(48)

(49)
i-My £m2

D

are nondimensional representations of the interface velocity and mobility of the interface

relative to that of solute respectively, and z — isz as defined earlier.

4.2. Governing Equations for e/8 <C 1

We have conducted an asymptotic analysis of the governing equations (46) and (47) in the

limit e —> 0, with the remaining parameters of order unity. In particular, the parameter

rh may then be associated with interfacial kinetics; this requires that e
2M\ is of order

unity in this limit.

The details of the expansion are similar to those given in Section 3, but the analysis

is more complicated. For brevity we just state the results, which show that there is an

layer of thickness 0(e2

)
about 5 = 0 where

(f)
varies from zero to unity and c is constant

at leading order. The leading order solute field outside the interfacial layer satisfies the
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governing equation

d_

dz
+

P_

dz

~ dc

3 + vrz = 0
'

with interfacial boundary conditions

(50)

and

c(0+
)
= c(0-) = x(V',T),

(Pc

dz2

z-o+

z=0-

dc

dz

Z=0+

= A,

z—0-

fi
o){0,x{V,T))~ fl°\l,x(V,T)),

£c i=0+

_ A

di3
i=0- x(l-x)’

C+c as z oo. and c_ oo

}

as z — oo.

(51)

(52)

(53)

(54)

(55)

Here the interfacial concentration, %( V,T), satisfies

A

2

dc dc
A —

dz - n_ dz
2—0 z=0+-

+ ^\/x5| + (1 - xW = /<
o)
(0.x) - /

<0
>(l.x).m (56)

We note that when the interface is stationary (V - 0), this reduces to the same expression

(35) for c* given in the previous section for the stationary interface. Using the above

expression for pure A, we may relate fn to the dimensional interface kinetic coefficient

for A, fiji, as

I^AaAm — —-———

.

LaD

A similar expression can be obtained for pure B. Because we have assumed M\ does

not depend on composition, the values for fiA and fib must be related, as described in

Ref. [20]. Then the values for rh calculated for either pure A or pure B are then the

same. Using the material parameters for the nickel-copper alloy given in WBM we find

that rh « 500. The fact that rh is large will play a role in the interpretation of the

subsequent results. It should be emphasized that the dimensionless constants appearing
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in the above equations are then independent of e, and can be computed solely from a

knowledge of conventional material parameters and 8.

The governing equation (50) and its associated boundary conditions (51), (52), (53),

(54) and (55) provide a model for a continuous solute field across a structurally sharp

interface located at z — 0, where the interfacial boundary conditions have been derived

from taking the limit of the phase field model as the interfacial thickness, becomes

vanishingly small compared to the thickness of the solute layer, is- The boundary con-

dition (51) represents continuity of the solute concentration at the interface which arises

because the transition layer in
(f)

is much thinner than the length scale associated with

the solute gradient energy in the limit e = l € /ls — 0; this property was also observed for

the stationary interface in the same limit e —> 0. Boundary condition (53) in dimensional

units states that the quantity fc — 82d2c/dz 2
is continuous across the interface. This

quantity is 8T/8c and is the generalized interdiffusion potential including the gradient

energy contributions [27]. The interdiffusion flux is proportional to d(fc + 62d2 c/dz2
)/dz

and hence (52) and (54) taken together ensure that the interdiffusion flux is continuous

across the interface, which, along with continuity of solute concentration there, ensures

that the solute is conserved across the interface.

We integrate (50) once, which, on applying conservation of solute across the interface

and the far field boundary conditions, yields

, v d
3
c dc ,- c(l - c)—
3 + — + Vc = I/Coo, (57)

dz dz

where the two far field concentrations c+00 and c_ D

0

must also be equal for this steady

state solution; their common value is denoted c^. The appropriate boundary conditions

are (51), (52) and (53) at the interface z = 0; they may be written as

d?c

dz 2

dc

dz

z-o-

(o-) = x(vn (58)

2=0+

= A) (59)
z=0~

=. AFa — AFb- (60)
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The far field boundary conditions are

Coo as z oo. (61)

As discussed in the previous section, A is small and we henceforth set it to zero, in

which case (56) may be manipulated to show that the interfacial concentration, x{V,T)

is given uniquely in terms of the interface velocity and system temperature by the root

of

X AFb — AFa + X 2AFa (AFb - &Fa) - A(cr| _ 5»)

+ <Af,C -(Mm = 0,

(62)

for which the right-hand side of (56) is positive. Further, we observe from equation (59)

that in this case the first derivative of the concentration is continuous at the interface.

All subsequent computations for the moving interface have been done with A = 0.

We now discuss the properties of the solute field given by the solution of (57)-(61)

as the interface velocity increases. If for a given V both the system temperature T and

far field concentration ca

0

are specified, then the boundary conditions over-prescribe the

problem, and in general a solution will not exist. However, if we only specify c 0

0

and

V the above problem determines both the solute field and the system temperature, T

.

Below we first discuss the results of a numerical integration of the governing equations

(57 )-(61 )
and then go on to interpret them in the light of further asymptotic analysis.

4.3. Numerical Solution of the Asymptotic Governing Equations

To investigate the dependence of the solute profile, c(z), and the system temperature, T,

on the dimensionless interface velocity V we have computed solutions of the governing

equation (57) and its associated boundary conditions (58)-(61) using the NAG subroutine

D02GAF [39], which employs a finite difference discretization allied to Newton iteration.

We performed computations for the case of the nickel-copper alloy for a range of values

of V. The far field concentration c0

0

was set to 7.17441 x 10~ 2
,
which is the value of
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the solidus concentration at a temperature of 1700 K. Solute profiles were computed

using three values of 8 given by 8 = 3.3 X 10~ 4
J

1,/2cm-1 / 2
,
3.3 x 10

-5J^cm-1 / 2 and

3.3 x 10-6J 1/2cm-1 /a
;
the profiles are not sensitive to the value of 8 used, and for purposes

of illustration we will show results for 8 — 3.3 x 10~4
J

1 /2 cm-1 / 2
.

In Figures 5 and 6 we show the solute profiles for V = 0.1,0.5,1.0,5.0,10.0 and

100.0. In Figure 5, the abscissa is z/^, which is proportional to physical distance and

is independent of velocity. Figure 6 shows the same solute profiles but with distance

scaled with respect to Im2 = D/V

,

the conventional diffusion length. From Figure 5 it

is clear that the degree of segregation and the characteristic length of the solute field in

the liquid ahead of the interfacial region (z > 0) monotonically decrease as the interface

velocity increases. Although the thickness of the solute profile decreases, we see from

Figure 6 that it does not decrease as rapidly as the classical diffusion length, D/V .

In order to assess the dependence of the segregation on the interface velocity V we

computed the maximum value of c(£), denoted cmax ,
and the interfacial concentration

X, as well as the corresponding temperature, T, for each value of V. In Figures 7 and 8

we show the loci of the pairs {cmaxiT) and (x, T) superimposed on the phase diagram,

these loci are parameterized by V. Results are shown for the same three values of 8

given above. In all three cases, as the velocity increases, the value of c Tnax approaches

the prescribed value = 7.17441 x 10~ 2
;
this limiting case corresponds to partionless

solidification.

The rate of change of cTnax with velocity is independent of the particular choice for

8 as can been seen by the vertical alignment of the solid circles on the curves in Figure

7. On the other hand, the manner in which the temperature first increases and then

decreases as V is increased does depend strongly on 8.
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Figure 5: The solute profile computed for different values of the dimensionless interface

velocity V. Distance has been non-dimensionalized with respect to £g, which does not

depend on the interface velocity. The material parameters are those for the nickel-copper

alloy given by WBM and 8 = 3.3 x 10
_4

J
1/,2cm_1//2

.
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Figure 6: The solute profile computed for different values of the dimensionless interface

velocity V. Distance has been non-dimensionalized with respect to the diffusion length,

D/V

.

The material parameters are those for the nickel-copper alloy given by WBM and

6 = 3.3 x 10
-4

J
1/2cm-1 / 2

.
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Concentration of copper, c

Figure 7: An enlargement of the phase diagram given in Figure 1. The upper and lower

solid curves are the liquidus and solidus respectively. The dashed curve is the locus of c*.

Also indicated by solid curves are the loci of the maximum concentrations, cmai . These

curves correspond (from top to bottom) to three values of 8 = 3.3 x 10 4 J
1//2cm 1//2

,

3.3 x 10~ 5
J

1//2cm-1 / 2 and 3.3 x 10
-6

J
1,/2cm-1 / 2

. The solid circles on each curve represent

(from right to left) data points corresponding to V = 0.05, 0.5, 5, 50, and 500. The data

points for a given velocity are approximately aligned in the vertical direction, and some

of the data points at high velocities are off-scale and not indicated on the figure.
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Concentration of copper, c

Figure 8: An enlargement of the phase diagram given in Figure 1. The upper and lower

solid curves are the liquidus and solidus respectively. The dashed curve is the locus of

c*. Also indicated by solid curves are the loci of the interfacial concentrations, %. These

curves correspond (from top to bottom) to three values of 8 — 3.3 x 10~4 J
1/2cm-1 / 2

, 3.3 x

10
-5

J
1 ^2cm_1

'
/2 and 3.3 X 10~ 6

J
1//2cm-1 / 2 The solid circles on each curve represent (from

right to left) data points corresponding to V — 0.05, 0.5, 5, 50 and 500. The data points

for a given velocity are approximately aligned in the vertical direction, and some of the

data points at high velocities are off-scale and not indicated on the figure.
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4.4. Discussion of the Numerical Results

4.4.1. Velocity-Dependence of the Solute Profile

At low velocities (F < 1) the degree of segregation in the liquid is greatest, with the

maximum value of the concentration approaching the liquidus concentration as the in-

terface velocity tends to zero. It is straightforward to conduct an asymptotic analysis

of (57) and its boundary conditions in the limit V —> 0. This shows that a layer forms

about the interface of thickness tg which separates the two outer regions, one in the solid

and one in the liquid, where the solute varies on the length scale, Im2
— D/V(^$> lg). In

the outer regions the solute concentration simply has, at leading order, the classical form

associated with directional solidification of a planar interface:

c(^) = Coo + (cL - c00 )exp(-Vz) (63)

in the liquid region z > 0, and

c{z
)
= Coo (64)

in the solid region z < 0. In the layer the concentration varies between the solidus

concentration cs in the solid phase and the liquidus cl in the liquid phase, and the

system temperature is given by the solidus temperature. In the outer regions the effect

of the solute gradient energy is weak and only provides a regular perturbation to the

classical exponential solute profile. However, in the layer centered on the interface the

solute gradient energy is comparable to the Helmholtz free energy density. In Figure 9 we

compare the computed profiles for 6 = 3.3 x 10 4
J

1/,2cm some of which are plotted

in Figures 5 and 6, with the leading order asymptotic solution (63) and (64). It clearly

indicates that the classical result is achieved as V —> 0+ .

The length scale of the solute field diminishes monotonically as V increases and the

classical form of the solute field that is found at low interfacial velocities is disrupted

at high velocities when its length scale D/V is comparable to the length scale of the

interfacial layer, £g, i.e., when V ~ 1. We also observe that at sufficiently large values

of V the solute field in the liquid develops a decaying oscillatory form. An asymptotic
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Figure 9: The solid curve is the classical solute profile which is the leading order solute

profile as V —» 0. The dashed curves represent numerical solutions of (57)-(61) for

different values of V with 6 = 3.3 x 10
-4

J
1 /2 cm-1 /2

. The dashed curves correspond to

V — 0.1, 0.5, 1, 5, 10 and 30, in order of decreasing maxima.
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analysis of the governing equations for V 1 shows that the form of the solute profile

in the far field is, in the liquid,

c ~ Coo + A~exp(ri 2
) + A~exp(r 2 z), (65)

as z —» -f oo, and, in the solid,

c ~ Coo + A™exp(r3z),

as z —> — oo, where 7"i,r2 and r3 are the three roots of the cubic

- 0^(1 - c0o)r
3 + r + V — 0.

(
66

)

(67)

The quantities r\ and r2 have negative real parts, and are either distinct and real, or are

a complex conjugate pair; the third root r3 is real and positive. The quantities Af3

,

are two undetermined real or complex conjugate constants and is an undetermined

real constant.

When V is small the roots of (67) are approximately given by

?T ~ -\Zcoo(l - Coo),r2 « -V and r3 « +^/coo(l - cx ),

and so the dominant contribution to the far field concentration in the liquid is propor-

tional to exp(— Vz) and the classical concentration profile (63) is recovered in the far field.

From the formula for the roots of a cubic it may be shown when V
r2
c00 (l — Cqo) < 4/27,

all roots are real; otherwise the roots r\ and r2 form a complex conjugate pair. Thus

we expect a change in character of the concentration field in the liquid from monotonic

decay at smaller velocities to a damped oscillation when the velocity is sufficiently large

that

V >
8^/3000(1 - Coo)

We note that since r3 is always real, there are no spatial oscillations in the solute profile

in the solid. Further insight into the solution for large interface velocity can be obtained
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by conducting an asymptotic analysis of the governing equation (57) and its boundary

conditions in the limit V —» oo, which shows that, in the liquid z > 0,

c ~ Coo + V~ 2/3
P exp (-0 cos ~ + 0(V~ X

\ (68)

and, in the solid z > 0,

c ~ Coo + V"
_2/3 ^exp(z), (69)

where

o _ 2uTn [c00 (l - Coo )]

2/3

P ~ 3RT

and z — 5[coo(l — Coo)/F] 1|/3
. Thus at high interface velocities the characteristic length

of the solute profile is ^F -1 /3 = (^m2 )

1//3
)
and in the liquid the profile has damped

oscillations, as indeed are observed in our computations (see Figure 10). Thus, the length

scale of the solute field, although becoming smaller with increasing interface velocity, is

much larger than would be expected on the basis of the diffusion length Im2
= D/V =

U/V alone, as suggested by our calculations displayed in Figure 6. Moreover, we note

that (crnai — Cmtn )
decreases like F -2 /3 for large interface velocities. In Figure 10 we

compare the computed solution of equation (57) with the asymptotic forms (68) and

(69) for V —* oo, and show increasingly good agreement as V increases.

4.4.2. Velocity-Dependence of System Temperature

We now discuss the dependence of the system temperature on the interface velocity,

under the assumption that A is zero. As seen in Figure 7, as F increases from zero the

system temperature initially increases. The temperature rise is greater for large values

of 6. This effect is due to the size of the second term on the left-hand side of (56).

The value of m ~ 500 is large. When V/rh is small, this term is small and may be

approximated by zero, in which case the interfacial concentration is well approximated

by x(T) = C*(T). As V increases, the interfacial concentration decreases due to the

presence of the solute gradient energy. This requires the temperature to increase because

c* is a monotonic decreasing function of the temperature, see Figure 1. Over the range

1 M £
1 ±M

f

(

B
) rp{A )

1 M
(70)
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Figure 10: A comparison of the computed concentration profiles for 8 = 3.3 X

10
-4

J
1,/2cm_1 / 2 displayed on Figures 5 and 6 for different values of V (given by the

dashed curves) with the asymptotic forms (68) and (69) (given by the solid curve) cor-

responding to the limit V —> oo. The computed profiles correspond to V — 0.1, 0.5, 1,

5, 10 and 30 in order of increasing maxima.
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of velocities for which V/rh is small, V may become large, and the concentration at the

interface changes from its value for a stationary interface to approximately c0

c

. It is this

range of interface velocities which characterizes the transition to partitionless growth.

An increase in the interface velocity to values for which V/rh is not small results in very

little further change in the interfacial concentration. Thus, from (56) the temperature

decreases linearly with increasing velocity, which is the result of interface kinetics (the

mobility Mi). The value of 8 affects the range of values of V over which the initial

temperature rise occurs because of the factor \Jx&a + (1 ~ x)&b left-hand side of

(56), which is inversely proportional to 8.

In summary, the effect of increasing the interface velocity on the solute profile is

to cause a progressive reduction of its characteristic length scale, from lsV~ l = D/V
,

when V is small, to at large values of V. In making this transition the form

of the solute field in the liquid develops a damped oscillation. The maximum value of

the concentration, and hence the segregation, decreases monotonically as the interface

velocity is increased. Over the range of values of V for which the segregation is reduced,

the system temperature increases. Further increase in the interface velocity results in the

temperature decreasing linearly with velocity, similar to the assumed effects of interface

kinetics in a pure material.

5. Discussion

In the previous sections we have presented and analyzed a model of solute trapping. In

particular we have considered the properties of the solution to this model in the limit

e/

8

0. This we believe is the appropriate limit because the variation of concentration

across an interface is thought to occur on a length scale longer than the associated

change in atomic order, which here is represented by the phase-field. We have shown

that by taking this limit of our phase model we may recover a new model of solute

trapping in which the interface is structurally sharp. This new model is independent of

the value of the phase-field gradient energy coefficient e, and is completely specified by the
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conventional material and growth parameters and the value of the solute gradient energy-

coefficient. While the latter quantity does not appear in classical models of solidification,

our analysis indicates that it may be experimentally determined from a knowledge of the

dependence of the interfacial surface tension on temperature, and thus concentration, or,

as we show below, on the dependence of the partition coefficient on the interface velocity.

In the absence of the solute gradient energy, the solute field is given by the exponen-

tial profile (63), with the associated length scale Im2
— D/V, which has the property

that (-M2 —> 0 as V —» 00 . Employing D — 10
-5cm2

s
-1

as a typical value of the diffusion

coefficient of a binary alloy, it is clear that for values of the interface velocity in excess of

approximately lm s
-1

, 8m2
is less than or equal to the atomic scale. Such large velocities

are commonly encountered in rapid solidification, and applying a model based on a clas-

sical solute diffusion equation on such a small length scale is therefore an important issue.

In the model presented here the solute gradient energy acts to oppose the contraction of

the length scale associated with large velocities. Indeed for velocities where V is large

the analysis given in Section 3 shows that the length scale of the solute profile is isV~ 1^.

This length scale in dimensional units, denoted by is given as

(
PDun\

°°
v VRT )

Employing the data for the nickel-copper alloy given in WBM, we find « 6 X

10~ 3
(6

2F) 1//3 cm, where 8 and V have units of J^cm-1 / 2 and cm s
-1

,
respectively, in

which case > 10
-8 cm (typical of atomic dimensions) providing that V < 10 16£2 cm

s
-1

. Assuming 8 > 10
-5

,!
1 / 2 cm-1 / 2

,
our asymptotic model should be valid for interfacial

velocities up to 1 km s
_1

,
which surpasses the limitation of 1 m s

-1
required of earlier

models that employ the diffusion equation without solute gradient energy terms.

In our asymptotic model, we find that the concentration is continuous across the

interface and that the concentration field is described by (57) and boundary conditions

(51) to (55). In the limit V —> 0, appropriate to low interface velocities, a thin solute

layer of size is forms across the interface in which the concentration varies rapidly. The

concentrations at each side of this layer, in the solid and liquid, are given by the common
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tangent construction at small interface velocities, and so there is effectively a jump in

the concentration across this thin layer at the interface. However for general values

of the interface velocity the concentration is continuous and we are not able to define

the partition coefficient in the conventional manner. Instead we propose an alternative

partition coefficient, denoted k *, defined as

k*
far field concentration,

maximum value of the concentration
(72)

The analysis for low velocities indicates that fc* —> ke as V —> 0, where ke is the conven-

tionally defined equilibrium partition coefficient for a stationary interface. In Figure 11

we plot the partition coefficient from our computations of the solute profile as as function

of the interface velocity V.

The effect of increasing the interface velocity is to progressively reduce the length scale

D/V of the solute profile away from the interface that exists at small values of V until it

becomes of the same length £$. It appears from our computations that the maximum value

of the concentration decreases and hence k* increases as the interface velocity increases.

At sufficiently high velocities the concentration is approximately uniform everywhere and

equal to its far field value and so the partition coefficient k* will approach unity from

below as the interface velocity becomes infinite. In fact from the form of the solution

obtained in the limit of large interface velocity given by
(
68

)
and (69) for A = 0 it can

be shown that

k* -* 1 - kV~ 2/3 + Oiy- 1

), (73)

where k = 7/3/cqo and 7 = %/3exp[—

7

t/(3\/3)]/2 ~ 0.47. The quantity (3 is given by (70)

and depends on the interfacial temperature, T, which is determined by (56) with A = 0.

We now take the limit of infinitely fast interface kinetics, rh —» 00
,
and obtain from (56)

the following expression for the leading order system temperature

rp _ rp(A)rp(B)
1 ~ 1 M 1M

(1 Coo'jI'A T £00 TfJ

.(1 - cJ)Lat£ ) + c^LbTm >.

'

This is the equation for the T0 curve. In dimensional form, the first two terms of the
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expression for the partition coefficient (73) give

~ 1 _ ( D{ 1 - Coo) \ Vm

3( Coo
)i/3

^ V6 ) RT (74)

for large interface velocities. The partition coefficient k * will increase monotonically with

interface velocity from the value k e for a stationary interface to unity at very large values

of V and its approach to unity is described by (74).

The present results can be directly compared to a model commonly used to describe

solute trapping with a sharp interface model. For dilute alloys the functional form of &,

the ratio of the liquid and solid compositions at a sharp interface, is given by [8], [40]

ke + V/VD
1 + V/VD ’

where ke is the equilibrium partition coefficient, and Vp is a characteristic kinetic velocity

for solute trapping, which is often taken as Dl /ao ,
with D t a diffusion coefficient in the

interface and a0 an interatomic dimension.

Depending on whether solute drag [41] is included in the dissipation of the free energy

difference that drives solidification, Aziz and Kaplan [28] obtain two formulations for

the dependence of interface temperature on velocity associated with this sharp interface

model. For dilute alloys with a fixed solid composition, c Q

Q

,
the temperature is given by

rr rr ,

mc°° ( l - k + a ln(k/ke )\ V
t = Tm +—

\

—
e

j+7

where Tm is the pure (solvent) melting point, m is the slope of the hquidus, and [i is

the interface kinetic coefficient for the pure solvent. The parameter a is equal to k when

solute drag is neglected [42], [43] and equal to unity when solute drag is included [44],

Figures 11, 12 and 13 compare the results of the present investigation with the above

sharp interface models by equating the dimensionless velocities V and V/Vd- [Equating

these velocities gives the value 6 — yjRT/vm(D / Vd ) •]
Values for Tm, m, and ke were

taken from the data of Figure 1 and the value for /i was chosen as 200 cm K_1
s
_1

(corresponding to a value for Mi of 4.9 x 108 cm3
J
-1

s
-1

[20]).
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In Figure 11, the two curves showing the velocity-dependence of the partition coef-

ficients are remarkably similar. From this similarity one can extract a value of 8 which

agrees with data on solute trapping obtained from experiments using pulsed lasers to

rapidly melt and resolidification thin layers of alloys and ion-implanted Si. These exper-

iments give values for Vd on the order of 10 m s
_1

[21], [22], [23]. One might estimate

the same value for the characteristic trapping velocity, D /is, from the phase-field model.

In this manner, values of is = 10“8 cm or 8 — 4.2 x 10
-7

J
1 /2 cm-1 / 2 can be obtained.

This value is significantly smaller than that used in the present calculations. Since the

experimental determination of Vd was obtained using solutions to the classical diffusion

equation, it would interesting to reinterpret the raw data of solute trapping experiments

using the current asymptotic model to determine values of 8.

In Figure 12 and 13 we show the comparison of the dependence of the temperature

on velocity obtained in the phase-field model to the sharp interface model without and

with solute drag, respectively. The temperature predictions of the present model more

closely resemble the sharp interface model in which the dissipation of free energy due

to solute drag is included. This similarity is due to the fact that the phase-field model

naturally includes the presence of surface excesses and their transport with the moving

interfacial zone during solidification.

6. Conclusion

The description of solute trapping by using a phase-field model with solute gradient

energy terms is intuitively appealing. With equilibrium partioning, the solute gradients

in the liquid near the interface become increasingly severe at high solidification rates. It

is natural to suppose that for large enough velocities, the energy required to maintain the

solute gradient becomes too high, and instead equilibrium partitioning of solute at the

interface is abandoned in order that less severe gradients can be maintained. The phase-

field model described here provides a mechanism for the realization of these intuitive

concepts: large solute gradients in the system are penalized by the inclusion of the solute
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Velocity, V

Figure 11: The normalized partition coefficient (A:* — ke )/( 1 — ke )
calculated from our

computations plotted against the interface velocity V, for the case of the nickel-copper

alloy with 8 = 3.3 x 10
-4

J li/2cm-1 / 2
,
8 = 3.3 x 10

_5
J
1/

^

2cm-1 / 2 and 3.3 x 10
-6

J
1/,2cm-1 / 2

.

The solid curve superimposes the predictions for the three values of 8 and are essentially

indistinguishable. The dashed curve represents the form of the the dependence used in

the Aziz theory; k =
(
ke + V)/(l -f F); here ke is the value of the partition coefficient for

a stationary interface, which for the nickel-copper alloy at 1700 K is 0.8.
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Figure 12: The solid curves show computed system temperature, T, as a function of

the interface velocity, V for (from bottom to top) 8 = 3.3 X 10
-4

J
1 ^2cm_1/'

2
,
8 — 3.3 x

10~ 5
J
1/2cm- */ 2 and 3.3 x 10 6

J
1,/2cm 4 / 2

. The dashed curve associated with each solid

curve represents the corresponding temperature dependence upon the interface velocity

based on a sharp interface theory without solute drag [28] [a = k in equation (75)].
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Figure 13: The solid curves show computed system temperature, T, as a function of

the interface velocity, V for (from bottom to top) 8 = 3.3 x 10
-4J^cm-1 / 2

,
8 = 3.3 x

10
-5

J
1,/2cm~ 1 / 2 and 3.3 x 10

-6
J

1/,2cm-1 / 2
. The dashed curve associated with each solid

curve represents the corresponding temperature dependence upon the interface velocity

based on a sharp interface theory with solute drag [44] [a = 1 in equation (75)].
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gradient energy term in the free energy functional. Diffusion equations derived using the

formalism of non-equilibrium thermodynamics then provide a consistent framework for

the evolution of the system under non-equilibrium conditions.

The governing equations described here are based on an ideal solution model of the

bulk phases, allowing the modeling of simple systems with lens-shaped phase diagrams.

In addition to the classical materials parameters associated with alloy solidification, our

model requires the specification of two other parameters that appear as coefficients of

the gradients of the phase field and concentration field in the free energy functional.

The governing equations then exhibit two additional lengths scales determined by the

gradient energy coefficients, that each characterize the width of diffuse transition layers

of these fields. For an isothermal system with a stationary planar geometry, these are the

only lengths in the system and, in the bulk regions outside of the transition layers, the

solute field in each phase is uniform and given by the equilibrium values consistent with

the temperature of the system. For systems with a steadily-propagating solidification

front, however, we find that deviations from equilibrium behavior occur, leading to solute

trapping at high velocities.

We have argued that near the solidification front, the length scale associated with the

transition layer of the phase field is small compared to the more diffuse transition for the

solute field. This scaling defines an asymptotic regime in which the phase-field gradient

energy terms can be neglected, while the solute gradient energy terms are retained. The

asymptotic governing equations obtained in this limit have the advantage that the phase

field no longer appears. The transition in passing from the solid region to the liquid

region is then spatially sharp, and appropriate jump conditions across this surface are

derived for the fourth-order solute diffusion equation. In particular, we find that the

solute field is continuous across the inter-phase boundary, so that some care is required

to define an effective partition coefficient. We employ a reasonable definition based on

the maximum difference between the liquid and solid concentrations near the interface

that reduces to the usual definition at low velocities.
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We have studied the solutions to the asymptotic equations both numerically, for a

range of solidification velocities, and asymptotically, in the limits of high and low ve-

locities. At low velocities, in the regions far from the interface, the steady-state solute

profiles approach the familiar exponential distributions obtained from the classical diffu-

sion equation, and the profiles exhibit the characteristic length D/V based on the ratio

of the solute diffusivity and the solidification velocity. The solute concentrations near the

interface satisfy equilibrium partitioning. Although the phase boundary is structurally

sharp in this model, at low velocities there is still a transition region of rapid solute

variation near the phase boundary associated with the solute gradient energy term. As

the velocity is increased and the length scale D/V becomes comparable to that of the

solute gradient energy term, the length scale of the solute field changes from D/V to

a relatively longer scale given by a geometric mean of these two length scales. As this

occurs, the effective partition coefficient tends to unity. In particular, the deviation of

the partition coefficient from unity is found to decrease as I/
-1 /3 as the solidification

velocity is increased. At high velocities, the solute profile in the liquid is not monotonic,

but is found to exhibit a spatial oscillation that produces concentrations in the liquid

that lie below the far-field concentration. This profile is a direct result of the fourth-order

diffusion equation, and is not observed for the classical second-order diffusion equation.

The theory also suggests possible means for the experimental determination of the

solute gradient energy coefficient, which is a quantity that is not contained in the usual

data base of materials parameters.

We have compared the predicted dependence on solidification velocity of the solute

partitioning and system temperature obtained by using the phase-field model with the

predictions of two other popular models based on atomistic descriptions of solute parti-

tioning at a moving interface. If the parameters in the respective models are identified

in an appropriate manner, the predictions of the phase-field model are found to be in

qualitative agreement with one of the other two models that includes the effects of solute

drag.
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It would be of interest to employ the predictions of the fourth-order diffusion equation

discussed here to aid in the interpretation of experimental data for solute trapping.

Extending the theory to more complex geometries and to non-isothermal alloys are also

important areas of research. Other extensions of the theory would alloy the treatment of

more complicated binary alloys, such as eutectic systems.
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