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Abstract

Extraction of the optical flow field, time-to-contact^ and depth from an image sequence

is a vitally important problem in many contexts. Many robotic applications, e.g., obsta-

cle avoidance, autonomous vehicles and the like, can benefit from this information. In

this report, the problem is formulated under a least squares minimization framework.

Based only upon a set of spatiotemporal disparity^ measurements from a correlation

algorithm, the algorithm in general recovers optimal estimates, in the sense of least

squares, of both the instantaneous optical flow field and time-to-contact simultaneously.

It does not utilize knowledge of camera translation or any internal camera parameters.

Nevertheless, additional information can be recovered if prior information is incorpo-

rated into the algorithm. It is shown that if complete translational camera motion as well

as some internal camera parameters are known, optimal estimates of absolute depth can

directly be inferred from the disparity measurements. Closed-form solutions are

obtained in all cases. The algorithm is simple, effective, and easy to implement, which

enhances the possibility of hardware realization for real-time applications. Experimental

results, both synthetic and real, are included to show the performance of the algorithm

and to verify its robustness against random noise perturbation.

1 Introduction

1.1 Visual Motion

It is generally believed that the process of motion perception consists of two stages:

extraction and interpretation of the opticalflowfield. Optical flow, the instantaneous 2D
velocity flow field of the brightness patterns in an image [10] or on the retina, is a funda-

mental and important visual cue useful in many contexts. It can be induced by motion of

1. The quantity, time-to-contact, can also be interpreted as scaled depth because the two quantities only

differ by a scale factor. The two terms will be used interchangeably in this report.

2. The relative displacement, (^x. Ay, At) , of a feature point. A detailed description will be given later.
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objects in the world, by motion of the observer, or by both. It is therefore of great inter-

est to extract optical flow from a sequence of images. There are two main methodolo-

gies for extracting optical flow: gradient-based methods and correlation-based methods.

In general, gradient-based methods extract the optical flow field by computing spatial

and temporal gradients of the image sequence [10, 13, 14, 22, 33, 41]. However, only

one component of the flow (termed the normal flow) can be recovered from these spa-

tiotemporal gradients. In some hterature [4, 10], this shortcoming is referred to as the

aperture problem, which states that the local information is not sufficient to recover the

full flow field. Additional assumptions about the nature of the flow field [10], such as

smoothness, are imposed to provide additional constraints to solve the problem, usually

in an iterative fashion. However, these constraints are sometimes violated [22] and

introduce problems at the regions with flow discontinuities. In addition, spatiotemporal

derivatives are inherently noisy because of the noise-amplification nature caused by

numerical differentiation. Hence, results are usually unstable and highly susceptible to

noise.

The other methodology for extraction of optical flow is correlation-based using either

features or block-matching techniques. In one approach, prominent features (e.g., cor-

ners, edges, or contours) are first extracted from one image and then matched with suc-

cessive images to track the movement of the features [20]. In another approach, small

patches of the image (e.g., a 5 x 5 template) are directly compared with nearby patches

in the next frame by maximizing the correlation response [19, 21] or minimizing the

sum-of-squared difference (SSD) [9, 1 1, 12, 16] in a window to estimate the relative dis-

placement. The optical flow is calculated based upon the relative shift (Ax, Ay) of the

feature over the frame interval Ar. The relative shift (Ax, Ay) is termed the spatial dis-

parity for the feature point.

It is by no means trivial to establish and maintain such correspondence. In fact, the

major complication in the correlation approach is sometimes referred to as the “corre-

spondence problem” and results from failing to identify the feature in two images that

are projections of the same entity in the 3D world. However, despite the difficulties

associated with correlation-based methods, these methods appear to give stable and use-

ful results. They have been widely adopted in many practical vision systems to track the

movements of feature points on the image plane [8, 9, 16, 35].

In addition to spatial matching, one can also exploit the characteristics of temporal

coherence and perform matching in the temporal domain. Temporal profiles are

extracted from pairs of pixels which are then matched with one another to find the time

shift of a feature point [7, 34]. By measuring this time shift, Ar, using cross correlation

between the two signals, the optical flow can be deduced since the two pixels are sepa-

rated by a known distance (Ax, Ay)

.

We term the measured quantity Ar the temporal

disparity to explicitly distinguish this notion from spatial disparity (Ax, Ay)

.

The second stage of the motion perception process is optical flow interpretation. There

are two approaches used in this process. The first attempts to arrive at a description of
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the 3D scene (structure from motion problem) and the observer motion relative to the

scene (passive navigation problem) from optical flow. The second approach, sometimes

referred to as “purposive vision” [39], attempts to use optical flow directly, without 3D
reconstruction, to derive information relevant to achieving a desired robot task or

behavior. Scene information such as depth, surface orientation, and object motion can

be inferred from optical flow. Many robotic applications such as obstacle avoidance,

path planning, and object manipulation by a robot arm can benefit from this process.

Heeger and Jepson [ 1 8] used least squares minimization to find 3D motion and depth.

They solved for translation, then rotation, and finally depth in a step by step manner.

Bolles et al. [6] determined structure from extended image sequences. Some authors

have proposed incremental approaches to recover structure and motion from extended

image sequences. Matthies et al. [9] recovered depth sequentially using the Kalman fil-

ter framework. Their approach, however, is limited to the lateral camera motion sce-

nario^. Broida and Chellappa [15], Chandrashekhar and Chellappa [30], and Heel [23]

used extended Kalman filtering techniques to sequentially recover motion and 3D struc-

ture. Young and Chellappa [17] generalized the use of Kalman filtering to a stereo sys-

tem which recovered 3D motion and scene structure.

Time-to-contact is another quantity of interest in many applications particularly for

autonomous navigation and obstacle avoidance. Time-to-contact is defined as the time

duration for the robot to collide with a particular object which appears in the field of

view. It is viewed as an important invariant in visual motion [37]. Subbarao [36] derived

the upper and lower bounds for time-to-contact based on the first-order spatial deriva-

tives of the optical flow field. Nelson and Aloimonos [38] used the divergence of flow

field to estimate this quantity. Raviv and Herman [40] have described the relationship

between time-to-contact and visual looming, and how these quantities can be used,

without 3D reconstruction, to achieve obstacle avoidance or to approach an object with-

out collision.

1.2 Framework Overview

The least squares algorithm is primarily designed for cameras undergoing rectilinear

translation (e.g., a forward-looking, side-looking, or oblique-looking camera). It can be

extended to handle camera rotation if derotation is first performed with the knowledge

of interframe camera rotation furnished by some independent sensors. From the mathe-

matical point of view, rotation complicates matters by introducing nonlinearity to the

flow equation (see equation (3)). That makes the extraction and interpretation of optical

flow more difficult [27]. Since the rotational term does not involve any 3D parameters,

one can “undo” the effect due to rotation without any knowledge about the scene if the

rotation is given by some independent motion sensors such as an Inertial Navigation

System (INS). One way to do this is to subtract the flow due to rotation from the total

flow. Bhanu et al. [8] performed matching to obtain a displacement field and then dero-

tated the field based on rotational information resulting in an optical flow field that cor-

3. In lateral camera motion, the camera optical axis is always perpendicular to the velocity vector.
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responds to pure translation. This flow field is then interpreted. We devise a different

scheme to compensate for the rotation by derotating the entire iconic image based on the

given rotational information prior to doing any optical flow or feature extraction [32].

After derotation has been accomplished, an image sequence corresponding to pure

translation remains. Hence, without loss of generality, the image sequence is assumed to

be compensated for rotation. In the following, we show that flow and depth calculation

can be simplified by exploiting some special properties of a purely translating camera.

Disparities are assumed to be obtained from correlation-based algorithms [7, 8, 9, 11,

19, 21, 34]. It can be a spatial correlation algorithm in which the relative displacements

of feature points, or spatial disparities, are estimated over successive frames. It can also

be a temporal cross correlation algorithm in which temporal, as opposed to spatial, dis-

parities are estimated by performing ID correlation between pairs of pixels. In this

report, disparities are obtained by taking the latter approach [34].

This report deals with the problem of flow extraction and depth recovery for a camera

undergoing pure rectilinear translation in a static environment under a least squares

framework. It is based on the mathematical model of feature point trajectories (shown in

section 2). Multiple disparity^ measurements are taken and matched with a mathemati-

cal model to minimize the error, or discrepancy between the model and the observa-

tions. It is done by searching for an optimal set of model parameters, optical flow and

scaled depth, to best explain the observed data.

A schematic diagram explaining the relationship between different modules and their

functions is shown in figure 1 . This paper concentrates on the least squares module. Ref-

erences [32, 34] provide methods for implementing the other modules.

1.3 Significance

Many researchers estimate optical flow field based on extracted spatiotemporal deriva-

tives [10, 13, 14, 22, 23, 41]. For instance, Horn and Schunck [10] devised an iterative

minimization procedure over the entire flow field based on the spatiotemporal deriva-

tives. Lucas et al. [41] and Simoncelli et al. [42] described a least squares minimization

procedure on the flow field in a small neighborhood based also on spatiotemporal deriv-

atives. In this paper, the estimation of the optical flow field is based on spatiotemporal

disparities which are believed to be more reliable.

We explicitly distinguish the difference between disparities and optical flow. Optical

flow is the instantaneous velocity of feature points on the image plane at a particular

instance of time. It can also be interpreted as the tangent or slope evaluated at a particu-

lar instance of time along feature trajectories. On the other hand, disparities are only dis-

crete measurements of the differences in feature point positions. A widely accepted

method is to approximate the instantaneous flow (w, v) with disparities using

4. Disparities are assumed to be known. A precise definition of disparity will be given in later sections.
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Images

FIGURE 1. A schematic diagram showing the relationship between different modules
in the flow and depth/time-to-contact estimation process. Camera motion is assumed to

be known in the derotation and correlation modules and is optional in the least squares

module.
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u ~ Ax/At and v ~ Ay/At. In this paper, no such approximations are made and they are

treated as two different quantities. The exact instantaneous velocity of a feature point at

a pre-selected instance of time is estimated by fitting a set of disparity measurements

with a model. In other words, a better and more accurate optical flow estimate is

obtained without any numerical approximations.

No camera translation or internal camera parameters, such as focal length, or camera

center are required to estimate optical flow and time-to-contact (or scaled depth). A set

of spatiotemporal disparities suffices for the estimation process. Hence, tedious camera

calibration procedures can be avoided. However, more information can be recovered if

additional prior information is incorporated into the algorithm. It is shown that the least

squares estimation procedure can easily be modified to recover absolute depth directly if

complete camera motion as well as some internal camera parameters are known a priori.

The estimation of the time-to-contact is solely based on the disparity observations. It

does not require any derived quantities of the optical flow field such as the first-order

[36], second-order, higher-order derivatives or the divergence [38] of the flow field.

This avoids the expensive and unreliable computations of those spatial derivatives.

1.4 Paper Overview

This report is organized as follows: In section 2, a general mathematical model relating

optical flow to 3D motion parameters and depth is presented. The model is characterized

by two coupled first order differential equations which depend nonlinearly on the trans-

lation, and rotation of the camera and the depth of the scene point. In section 3, we show

that, if rotation is absent, the differential equation is decoupled and becomes a linear

model. Moreover, the simplified differential equation is shown to be solvable which

allows us to derive a model for the feature trajectory as a function of time. In section 4,

a least squares formulation is presented to estimate the optimal (absolute/scaled) depth

and optical flow on the basis of disparity measurements which are input to the algo-

rithm. Some experimental results, both synthetic and real, are then presented in section

5. Final remarks are presented in section 6.

2 General Motion and Optical Flow

We first review the mathematical model for optical flow under perspective projection.

This equation has been derived previously by numerous authors including Longuet-Hig-

gins and Prazdny [1], Bruss and Horn [2], Waxman and Ullman [3], and Jepson and

Heeger [18].

Consider a camera-centered coordinate frame (figure 2), where each scene point is asso-

ciated with a position vector, P = (X, Y,Z)\ relative to the camera where T denotes

the transpose. Due to the motion of the camera characterized by the 3D motion parame-

ters V = (V^, Vy, V^) ^ and Q. = Q.y, Q.^) which denote the translation and

6



Y

FIGURE 2. The camera-centered coordinate frame and the principle of perspective projection

of a scene point P(X,Y,Z) onto the image plane at (x,y).

rotation vectors respectively, the motion of the 3D point is described by a first order vec-

tor differential equation:

(.)

Under perspective projection, P projects onto the image plane at jc = (j, y)
^
accord-

ing to:

a: = (x,y)'^= (fX/Z,fY/Z)T (2)

Optical flow at point x is defined as the time derivative of (2). By taking the derivative

of (2) and substituting (1), we arrive at the following mathematical model for optical

flow:

X = (V, Z, x) + (Q, x) (3)

where x = (x, y) is the optical flow at point (x, y), Z is the depth of the point, and

are, respectively, the translational and rotational components of the optical flow

given by:
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xy -(f+x^)

L / /

Equation (3) is the vector equation for optical flow characterized by two coupled first

order ordinary nonlinear differential equations which describe the image velocity for

each feature point on the image plane as a function of translation, rotation of the camera

and depth. The equation is purposely separated into two terms to emphasize the two dif-

ferent flow components, the translational and the rotational. One very important obser-

vation is that the rotational flow component is fully determined by the rotational

velocity and is entirely independent of the structure of the scene while the translational

component does depend on the depth of scene points. Moreover, from (3) we see that

depth and velocity are multiplied together in the translational component. Therefore,

they can only be estimated up to a scale factor. This mathematically explains why a

monocular camera can at most recover scaled information from an image sequence,

unless either depth or velocity is known a priori.

3 Feature Point Trajectory

Rotation is assumed to be compensated by derotation of the image sequence using the

camera rotational information. Hence, without loss of generality, let us assume that

images have already been compensated for rotational effects and that the camera under-

goes only rectilinear motion. The flow model can be greatly simplified with the absence

of rotation. The flow induced by a translating camera is governed by:

X = h^{V,Z,x)

,

(4)

or in terms of its components:

(5)

The equation of the path for any feature point on the image plane as a function of time

can then be derived from (5). As will be shown, the parameters for the path model are

the opticalflow and scaled depth. The derivation of the mathematical model is partly

motivated by the work of Bolles and Baker [31]. Sethi and Jain [20] have also investi-

gated the problem of finding trajectories of feature points.
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FIGURE 3. The trajectory of feature points (bold line) as a function of time: The x or y component of

the trajectory has a hyperbolic shape in general and the curvature depends on the model parameters:

optical flow and depth. In the case of a laterally moving camera, the curves degenerate into straight

hnes.

Let us assume that the camera velocity is constant; hence (5) is solvable if one knows

how the depth, Z, evolves over time. Since the velocity is constant, depth will change

linearly over time as follows:

Z{t) = ZQ-V^t (6)

where Zq denotes the initial depth of the feature point at f = 0.

Substituting (6) into (5):

dx

Jt

dt

Equation (7) is a set of first order linear differential equations and is easily solvable in

{x, y) as a function of t subject to the following initial condition:

for r = 0, Z = Z^, and x = (Jq, y^)

.

The solution (x, y ) , is given by two implicit relationships as follows:

yv^-fVy

9



(8 )

2„{x-xJ + {fV^-V^x^)t-V^ix-x^)t = 0

Z,(y-y,) + (fVy-V^y^)t-V^(y-y^)t = (i

Equation (8) is the equation of the path of any feature point as a function of time on the

image plane. It will play an important role in subsequent analysis. Let us rewrite (8) by

introducing a change of coordinates given by:

X = + Ax

y = yo + ^y w
t = At

The solution, in vector form g (gi, ^ 2 ) 5
can then be expressed as:

g (Ax, Ay, At)
ZqAx -b (JV^ - V^Xq) At - V^AxAt -

_^2 ZoAy+ (/V^-y,yo)Ar~L,AyAr LQ
( 10)

From (10), the trajectories of a feature point in the (Ax- At) and (Ay-Ar) domains are

hyperbolas^ (part of the trajectory is shown in figure 3). The quantity (Ax, Ay) can be

treated as the displacement of feature points relative to the initial position (x^, y^) after

time At has elapsed. Many researchers refer to the term (Ax, Ay) as spatial or stereo

disparity [26] and the entire disparity map as the displacement field [11]. In most cases,

spatial disparity is obtained by correlating a pair of images in order to set up the corre-

spondence of feature points. As described above, we can approach the problem differ-

ently by estimating the time elapsed. At, for a feature to travel (Ax, Ay) on the image

plane by doing temporal correlation between intensity profiles extracted from pairs of

pixels [7, 34]. We call this time elapsed. At the temporal disparity.

The least squares formulation presented in the next section is general and is independent

of whether the input is spatial or temporal disparity. For this reason, we will introduce a

unified notation, (Ax, Ay, At) , termed the spatiotemporal disparity or spatiotemporal

displacement vector with respect to the initial feature point position at time equal to 0.

The spatiotemporal disparity of a feature point can be interpreted as the relative dis-

placement of that feature in the spatiotemporal volume (x-y-t).

5. If we rotate the axes by 45°, the cross product terms AxAt in the x-component of (10) can be elimi-

nated. The new equation is a general equation of hyperbola and is given by the following:

2
J2 J2

= 0

where Ax' , Af are the new coordinates after axes rotation and a, b, and c are the coefficients of the terms

Ax, Af, and AxAf in the x-component of (10) respectively. Similar axis transformation can be performed

to obtain the general hyperbola equation for the y-component of (10).
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4 Model-Based Least Squares Formulation

4.1 Motivation

In principle, two disparity measurements suffice to solve the equations for the optical

flow and scaled depth (see below). But in practice, due to noise in the observations, it is

more reliable to combine multiple measurements to reduce the effect of outliers in dis-

parity observations. The idea of using multiple measurements for estimation to increase

accuracy is adopted by numerous researchers. Bolles et al. [6] used long, densely sam-

pled image sequences to estimate depth by exploiting the epipolar constraint. Broida

and Chellappa [15], and Matthies et al. [9] tracked feature locations in extended

sequences of images to improve the accuracy in estimation of parameters such as depth,

translation and rotation. Okutomi and Kanade [24] used multiple images with different

baselines to acquire a set of sum-of-squared-difference (SSD) curves, added them up

and obtained the depth derived from the minimum of the resultant SSD curve. The latter

authors claim that their method effectively eliminates ambiguity in matching and can be

implemented in a massively parallel manner. However, the method is restricted only to

lateral camera motion while the least squares integration approach described below has

no such restriction and can be applied to arbitrary rectilinear translation. Lucas et al.

[41] and Simoncelli et al. [42] proposed a least squares minimization procedure of spa-

tiotemporal derivatives to a constant optical flow model in a local neighborhood. How-
ever, it is difficult to calculate all the spatiotemporal derivatives from numerical

differentiation reliably. Our approach uses a feature point trajectory model for the opti-

cal flow and formulates the problem as a least squares minimization problem using spa-

tiotemporal disparities.

In the following sections, a general framework based on the least squares (LS) formula-

tion to combine several disparity observations and to obtain the best estimate of both

optimal flow and scaled depth in the least squares sense will be presented. Method for

obtaining the disparities is discussed in [34]. If we impose the additional constraint of

known camera motion and internal camera parameters to the LS problem, the solution

will be simplified and absolute depth can be directly inferred from disparity measure-

ments without going through the optical flow calculation.

4.2 Least Squares Minimization

Combining (5) and (10), we obtain a format which is more suitable for our derivation:

Ajc - MgAt - l^^AxAt -

.^2
Ay - VqA? - ^pAxAr lQ

11



V,

where C = ^ is the ratio between the forward velocity and depth, and (Mq, Vq) is the

optical flow (i, y) for the point (Xq, Jq) at time equal to 0. The parameter, is the

inverse time-to-contact or the inverse scaled depth. Equation (11) emphasizes that the

trajectory model has optical flow (mq, Vq) and inverse scaled depth as the model

parameters.

In principle, two disparity vectors suffice to solve (11) in terms of (^q, Mq, Vq) . In prac-

tice, however, it is desirable to consider more than the minimum number of conditions.

We therefore formulate the problem as a LS minimization problem. Assume that there

are A (> 2) observations of the disparity vector, with each one denoted by

d- = (Ax-, Ay , At-) fori =
( 12)

The set of vectors are disparities relative to the initial position (Jq, y^) at time equal

to 0. These vectors can be seen as a set of discrete positions at a set of discrete time

instants. Note that we are not restricted to any particular method for measuring the dis-

parity. We can use spatial matching or temporal profile matching for disparity measure-

ment and, using (12), we maintain a consistent description of the disparities in a vector

format. The disparities can then be fed into the LS framework described below.

The following objective function or minimization criterion, J, defined as:

(13)

where
|i

•
||

is the Euclidean norm will be minimized.

Intuitively, / is a measure of the deviation of observations from the model in the square

sense. The goal is to search for a set of model parameters, (^q, Mq, Vq)
,
which are most

consistent with the recorded disparity observations in the least squares sense. In other

words, we intend to solve the following residual minimization problem, namely.

min J
( 14)

The solution, denoted by (^q, Uq, Vq) which minimizes (14), satisfies the following

necessary condition:

dJ dJ dJ =
(0 ,

0 , 0 ) (15)

(Co- “o. Vo)

Expanding (15) term by term yields the following:

12



dJ

5Co
(^o> “0. Vo)

^u^

3v

Mo. Vo)

0

= - E ^‘i +
i i

I J

i i i

= -Y^^yA^i + lol^^yi ^ + ^oX Ati) ^ = 0

( 16)

(^0. Mo. Vo)

Rewriting (16) in matrix form:

^At.2 (Ajcf + Ayf) X A^i) X Atf ^Ay .

i i i

1

o

1
XAr.-CAx^ + Ay?)

i

i i
h

= E^i^'i
i

2^(Ar,)2Ayi 0 E*^'.)^
_ i i _ .^o.

^Ay.Ar,
i

The solution (^q, Uq, Vq) can be obtained by solving the system of linear equations

defined in (17) which gives the least squares solution to the optical flow for point

(Jq. 3^o)
equal to 0. In fact, a closed-form solution can be written down explic-

itly. If we re-express (17) in a more compact notation as follows:

^11 ^12 ^13

^22 ^

a
13

0 ^22

then the solution to (17) can be written down explicitly as follows:

1 2
^6 ~ A

~ ^12^22^2
~ ^

13
^22^3 )

1 2
^0= ^ (-^12^22^1 “ (^13 “ ^11^22) ^2 + ^12^13^3) (19)

1 2
('O “ ^ (“^13^22^1 ^12^13^2 “ (^12 “ ^11^22) ^3)

'y 0 0
where A = -

<212^222 “ <^ 13^22 ** <222^ 11
- Note that the scalefactor between and

Zq, is recovered. Absolute depth cannot be obtained from a monocular camera without

further camera motion information.

^0

(18)

13



4.3 Using Complete Motion Information in a Calibrated Camera

If full motion information (heading and magnitude) is supplied by a reliable sensor (e.g.,

an inertial sensor) [8], and the camera is calibrated so that focal length, aspect ratio, and

image center are known), the LS problem takes a different form and we can solve for the

optical flow together with absolute depth by the following modified LS minimization

approach.

Observe that the only unknown parameter in the model described by (10) is Zq. We
observe N disparity vectors and fit them to the model in order to identify the only

unknown parameter Zq. In this case, the dimensionality of the parameter space reduces to

one instead of three.

The objective function, or the minimization criterion, is still the same as in (14), i.e., the

quadratic criterion. Minimizing the only unknown of the equation, Zq, the LS solution is

the following:

dJ

azo

Hence, optimal Zq

2oX (Ax, 2 + ^y])
- X A', Ax, ( V^Aat, -/V, + “

1 1

XAJ,.Ay,(V,Aj,-/V, + V,)-o) =0
i

is given by:

(20)

XAr,Ax,. (V^AX. -/v, + y,x„) + £Ar;Ay, (V^Ay, -fV^ +

Zn =

i

With the optimal depth, the optical flow, (uq, Vq) can be calculated from (5), i.e.,

(Xo^.-A,) •I(Ax," + A}’?)

Uq =
-/V^ + V^Xq) + ^Ar-Ay- (L,Ay. -fV^ + V^yQ)

i i

•I(Ax,2 + Ay2)

Vq =

J^At^AXi ( V,Ax,. -fV, + V^x,) + XAf/Ay,. ( V,Ay,. -/V, +

(21 )

(22)
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5 Experimental Results

5.1 Synthetic Data - Forward Moving Camera

The LS algorithm has been tested with synthetic data to verify its correctness and its effec-

tiveness in the presence of additive white Gaussian noise. In the experiment, a scene point

of interest initially has coordinates (10 mm, 20 mm, 200 mm) with respect to the camera.

The camera is moving along its optical axis at 50 mm/s. A set of disparities is generated by

assuming a pinhole camera model with a focal length of 16mm. These disparities are then

fed into the LS algorithm. The simulation results are presented in figures 4, 5 and 6. In fig-

ure 4, the scaled depth and its error are plotted against the number of disparities used. As

expected, more disparities improve the accuracy of the estimation and the estimate con-

verges to the true value after about 20 disparities. Similar conclusions can be made for the

optical flow estimate. In figures 5 and 6, the x and y components of the optical flow and

their errors are plotted respectively.

The previous experiment acts as a control experiment and the only error associated with

the disparities is quantization error. In the second experiment, zero-mean additive white

gaussian noise with a equal to 0.04 is introduced to perturb the synthetic disparity data to

observe the effect of random noise on the LS algorithm. In general, the convergence rate is

somewhat slower and the algorithm requires more disparities to perform within a certain

error allowance. Figures 7 through 9 show the simulation results.

5.2 Real data - Laterally Moving Camera

5.2.1 Poster Experiment

In this experiment, the image sequence is captured by a camera moving laterally in front

of a flat poster which is at a constant (known) depth from the camera. The images are cap-

tured by a SONY™XC-57 CCD^ camera. The camera moves parallel to the poster at an

increment of 0.875 mm between each frame taken and the sequence consists of 70 frames

(figure 10). Since all the feature points have the same depth from the camera, they will

have the same optical flow throughout the image plane. By examining the statistics of the

optical flow in the image plane and comparing it with ground truth (the true optical flow),

we can determine the accuracy (how close it is to ground truth) and the repeatability (how
repeatable the reading is throughout all feature points, i.e., a measure of the dispersion of

the data) of the flow extraction algorithm. We measure accuracy as the average of the opti-

cal flow values extracted; we measure repeatability as the root mean square error of the

flow.

6. Certain commercial equipment, instruments, or materials are identified in this paper in order to ade-

quately specify the experimental procedure. Such identification does not imply recommendation or endorse-

ment by NIST, nor does it imply that the materials or equipment identified are necessarily best for the

purpose.
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One of the difficulties that has to be confronted is to obtain ground truth reliably. This

involves the measurement of the depth of the poster and the focal length of the camera. We
utilized Tsai’s monoview coplanar method [25] for camera calibration. His method

requires a calibrated pattern with known dimensions. The output of the algorithm includes

the focal length of the camera, as well as the homogeneous matrix describing the geomet-

ric relationship between the camera frame and the calibrated object frame in space. From
this homogeneous matrix, we can deduce the relative orientation and distance between the

two frames, and hence the absolute range of the calibration object with respect to the cam-

era frame. With the known absolute depth of the poster^, the focal length of the lens, and

the known motion of the camera, the true optical flow can be deduced and compared with

the output of the flow extraction algorithm.

The image sequence is fed into our flow extraction algorithm [34]. Our main goal is to

demonstrate the effectiveness of the algorithm and the LS procedure. A correlating win-

dow of size 7 X 1 is employed in a temporal cross correlation algorithm. The mean and

root mean square error of the optical flow are calculated across the image. Figure 11a

shows the mean of the extracted optical flow value versus the true optical value derived

from the calibrated results. The flow converges to the true value as more disparities are

used in the LS framework. This reflects the accuracy of the flow extraction algorithm. In

addition, as a comparison, another graph is plotted in figure 11a. This is the mean of the

optical flow obtained by using only one disparity measurement and without using the LS
procedure. The mean without using the LS procedure exhibits somewhat random and

unpredictable behaviors while the mean obtained from the LS procedure approaches the

true value in a consistent manner. Figure lib show the calculated root mean square error

of the flow as a function of the number of disparities used in the LS framework. It, again,

decreases as the number of disparities increases which demonstrates the improved repeat-

ability. Once again, the root mean square error of the optical flow obtained from using

only one disparity measurement is plotted in figure 11b for comparison. It does not have a

very definite trend as opposed to the one obtained from the LS module which decreases

steadily towards zero. In addition, the error from the LS procedure is smaller than the error

obtained without using the LS estimation except for the first 5 disparities. This shows the

improvement of the LS procedure in the flow estimation process.

5.2.2 Poster and Can Experiment

In this experiment, a can is placed in front of the poster. The image sequence consists of

50 frames (figure 12) with the camera moving laterally in front of the scene. The correlat-

ing window is 7x1 in the temporal cross correlation algorithm and the number of dispari-

ties used for the LS module is 15 for every feature point. Each image is filtered with a

Gaussian function to eliminate the high frequency noise. The resulting optical flow is dis-

played in three formats, one in terms of intensity-encoded pictures (figure 13b), the other

in a 2D vector field (figure 13c), and a 3D plot (figure 13d). The presence of the can is

characterized by different optical flow as shown in figures 13b and c.

7. The poster was put on top of the calibration plate after camera calibration.
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Figure 13b is the x-component of the optical flow encoded in intensity with the lighter

region representing larger optical flow. The presence of the can in front of the flat poster is

obviously detected. This can also be seen from figure 13c which is the 2D vector field of

the scene at frame 3. The boundary of the can is not sharp and can be explained by the fact

that the correlating window covers two regions (can and background) with different

depths. The SSD graph evaluated at the boundary can be characterized by bimodality, i.e.,

it has two local minimum points [12]. This has an adverse effect on the matching algo-

rithm since the bimodality might confuse the matching criterion resulting in false matches.

Some researchers have suggested an adaptive windowing approach [29] to alleviate this

problem. An adaptive window changes its size to cover only those regions with similar

depths when performing matching.

5.2.3 Tree Sequence Experiment - Outdoor Scene

The tree sequence is a real outdoor image sequence provided to us by SRI. It has 128

frames and each frame is captured by incrementing the camera 1.2cm between frames. A
set of spatiotemporal disparities is first extracted by our temporal cross correlation algo-

rithm [34] and is then fed into the LS procedure for optical flow estimation. A 7x1 corre-

lating window is employed in the temporal cross correlation [34]. A total of 10 disparities

per feature point are used in the LS procedure for optical flow estimation. One original

frame of the sequence (frame 3) is displayed in figure 14a and the optical flow obtained at

this instance of time is encoded in intensity values and displayed in figure 14b.

5.3 A Comparison between Different Estimation Schemes

If the camera velocity component along the optical axis is known, it is possible to recover

absolute depth from time-to-contact. However, it is also possible to directly estimate abso-

lute depth if complete camera motion and some internal camera parameters are known. In

this section, a comparison is made using synthetic data, between the absolute depth

obtained from (19) and that from (21). Based on the results, the depth obtained from (21),

i.e., the result obtained using more prior information in the estimation process, is more

accurate than that obtained using less prior information.

A scene point has coordinates (10, 20, 200) mm initially relative to the camera which is

translating at (10, 20, 50) mm/s in space. A set of spatiotemporal disparities is generated

using perspective projection. A focal length of 16 mm is assumed. The disparities, cor-

rupted by additive Gaussian noise with sigma equal to 0.001, are used in both estimation

schemes. Absolute depths are independently recovered using (19) and (21). The estima-

tion errors are plotted using overlays in figure 15. It can be seen that the estimate obtained

by utilizing prior information is more accurate.

As expected, the estimate from (21) degrades if there are significant errors associated with

the prior information. Errors of 0.0625% in the focal length, 0.1% in the x-component, and

0. 1% in the y-component are introduced. The error of the estimate based on erroneous

prior information is plotted in figure 15. The result agrees with the intuition that less accu-

rate estimates are obtained when using less information.
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5.4 Real Data - Forward Looking Camera

Optical flow induced by a forward moving camera is notoriously difficult to extract [5,9].

An image sequence with 100 frames (figures 16a and b) for a forward looking camera is

captured to test the algorithm. A flat bull’s eye pattern is placed in front of a forward mov-

ing camera orthogonal to the velocity vector of the camera. It is captured by the same

experimental setup as described in the previous sections. The disparities are first calcu-

lated with our temporal cross correlation algorithm and then fed into the LS module. Since

the optical flow is extremely small in the vicinity of the FOE, the temporal disparity is

extremely large and is hard to estimate especially when the pair of pixels are far away

from one another. In order to circumvent this problem, the set of temporal profiles chosen

for temporal cross correlation is obtained by linear interpolation of the regular rectangular

grids to limit the pixel separation distances. Interpolation between pixels to get the tempo-

ral profiles might not be necessary if the resolution of the chip of the CCD camera is very

high around the FOE. A set of 20 disparities is used to calculate optical flow for each fea-

ture point.

The magnitude of the optical flow field at frame 3 is encoded in intensity and is plotted in

figure 16d. A 2D vector field is also plotted in figure 16e. It agrees with our intuition that

the optical flow is smaller (dimmer) in the vicinity of the FOE, and is larger (brighter)

when far way from the FOE.

The algorithm has also been tested on another forward looking camera sequence obtained

from NASA Ames (courtesy of Dr. Sridhar Banavar). It has 151 frames with objects mov-
ing no more than a pixel per frame. The first and the last frame of the sequence are shown
in figures 17a and 17b. The third frame, for which the optical flow and scaled depth are

evaluated, is shown in figure 17c. The scaled depth and 2D optical flow field are also

shown in figures 17d and 17e respectively.
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FIGURE 4. Synthetic data: Depth and error as a function of the number of disparities for

a forward looking camera.

a) The scaled depth converges to the true value after about 20 disparity inputs.

b) The deviation of the depth estimate from the true depth decays as the number of dispar-

ities used in the LS algorithm increases.

19



X flow
. X 1 or

(mm/s)

a.

200 70

200 BO-

200.50

200.40

200.30

200.20

200.1 0

200.00

1 99.90

1 99. SO-

error xio-^

(mm/s)

b.

1 .00 -

0.90-

0.80-

0.70-

0.60-

0.50-

0.40-

0.30-

0 .20 -

0 .10 -

-o.ooH

i

I

-O.IOj-

i

- 0 .20--

true x_flow

estimated x" flow'

20.00 30 00 40.00

number of disparities (N)

X flow error

1 0.00 20.00 30 00 40.00

number of disparities (N)

FIGURE 5. Synthetic data: Optical flow and error as a function of the number of disparities for a

forward looking camera.
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a) y-component of the optical flow as a function of the number of disparities used in the LS
algorithm.

b) The deviation of the estimate from the true optical flow value.
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used in the LS algorithm increases.
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FIGURE 10. The first and the last frame of the poster sequence which consists of 70
frames.
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procedure is also included for comparison, b) The root mean square error of the extracted flow at

frame 3 decreases as the number of disparities used increases. The error of the flow estimate obtained
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FIGURE 12. The first and the last frame of the can and poster sequence which consists of
50 frames. The can has been covered with textured paper.
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FIGURE 13. Poster and can experiment: a) Frame 3 of the sequence; the optical flow is

evaluated at this instance of time. Note that the can is hardly visible in front of the

poster, b) The depth of the image at time instant 3. Depth is encoded in intensity values.

Lighter intensity represents smaller depth from the camera. The algorithm can readily

perform segmentation and distinguishes the presence of the can in front of the poster.
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The can, which is closer to the camera, has larger optical flow and can be easily seen
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FIGURE 13. Poster and Can: d) Perspective plot of the flow field evaluated at frame 3. A 3x 3

median fitter is employed on the flow field. The viewpoint has also been altered to enhance the

visibility.
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FIGURE 14. Tree Sequence:

a) The original image of the sequence at frame 3.

b) The optical flow extracted from LS algorithm encoded in intensity values.
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FIGURE 16. Bull’s eye: The first (a) and the last (b) frame of the forward looking camera
sequence - Bull’s eye pattern. The pattern is flat and is perpendicular to the velocity vector

of the camera.
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FIGURE 16. Bull’s eye (con’t):

c) The third frame of the sequence.

d) The magnitude of the optical flow is intensity-encoded. Note that the optical flow estimate is

getting smaller (dimmer) when close to the FOE.
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FIGURE 17. Bull’s eye (con’t): e) The 2D optical flow field evaluated at frame 3.
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FIGURE 17. Forward looking camera from NASA: a) The first frame of the forward
looking camera sequence which consists of 151 frames, b) The last frame of the

sequence.
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FIGURE 17. NASA Sequence (con’t):

c) The third frame of the sequence.

d) The scaled depth map of the scene at the instance of frame 3. Scaled depth has been encoded

in intensity for display purpose. Brighter points represent smaller depth values from the cam-

era frame and vice versa.
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e.

FIGURE 17. NASA Sequence (con’t): e) The optical flow field at frame 3 displayed in 2D
vector format.
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6 Remarks

Under the LS framework, we have shown how to combine multiple noisy disparity mea-

surements (from other correlation modules) to obtain the optimal depth, time-to-contact,

and optical flow using a feature point trajectory model. We use different techniques that

depend upon the availability of internal camera parameters and camera motion informa-

tion. If no motion is known a priori, the LS estimation gives estimates of optical flow and

time-to-contact (or scaled depth). If one component of the velocity is known, absolute

depth can be calculated directly from time-to-contact without knowing any internal cam-

era parameters. On the other hand, if complete camera motion knowledge is available

through some independent inertial sensors along with internal camera parameters, the LS
estimation algorithm is reformulated to directly calculate absolute depth, bypassing the

calculation of optical flow. The framework is applicable to general camera translation and

rotation (with the aid of the derotation module described in [32]) and can be implemented

in a massively parallel manner at each pixel. Internal camera parameters can be estimated

through camera calibration procedures such as the one described in [25].

We model the trajectory of feature points with optical flow and scaled depth being the

model parameters. The LS framework minimizes the discrepancy between the disparity

measurements and the model by searching for the appropriate parameters in the parameter

space using the LS minimization method. The LS framework performs without knowing

any motion a priori but reduces the dimension of the parameter space if partial motion is

known in some special cases.

In this report, LS minimization is done in a batch mode. A sufficient number of disparity

observations is recorded before invoking the procedure. In contrast, the procedure can also

be implemented in a sequential/recursive setting. In that case, the objective function

defined in (13) is minimized recursively whenever a new disparity observation arrives.

Currently, the LS algorithm combines all the disparity measurements with equal weight

without taking into account the uncertainties associated with each individual measure-

ment. In the future, the LS algorithm can be modified to weight reliable data more heavily

than less reliable data in an intelligent fashion, e.g. by considering the confidence measure

of each disparity measurement in the minimization procedure (weighted LS approach).
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