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A Note on the Pressure Equations

Used in Zone Fire Modeling

Ronald G. Rehm
Computing and Applied Mathematics Laboratory

Glenn P. Forney

Building and Fire Research Laboratory

National Institute of Standards and Technology

Gaithersburg, MD 20899

Examples of simple zone fire models are analyzed. These models illustrate the

nature of the numerical problems commonly encountered in zone models of en-

closure fires. Often these difficulties arise in the solution of the equations for

the pressure in connected rooms because the pressure equilibrates much more

rapidly than other dynamical variables. Since these models are very simple,

analytical techniques can be applied and some insight gained regarding the

nature of these problems. The models consist of ordinary differential equa-

tions coupled with algebraic equations. Singular perturbation methods and

phase plane analyses, together with numerical integration of the appropriately

nondimensionalized equations, are employed to examine the stiff nature of the

equations associated with these models. We conclude that many of the difficul-

ties associated with numerical integration of zone fire models in general may
be circumvented by appropriate analysis of the zone fire model equations.

1 Introduction

There is a long history of analysis of the dynamical behavior of fires in buildings

using mathematical models. The reason for development of the mathematical models

and their use in practice has been reviewed in [1]. The original mathematical model

of a plume used in zone fire models was developed by Morton, Taylor and Turner

[2]. Other early work contributing to the basic development of these models includes

experimental [3] and theoretical [4] studies of the effects of flow through openings

induced by fires in enclosures; analytical examples of the development of a stratified
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ceiling layer and the filling of an enclosure by the heated gases [5]; analytical exam-

ples of two layer modeling of the smoke movement in two-room structures [6]; and

theoretical study of the flow of smoke and hot gases through vents [7].

In this brief introduction, we do not attempt a complete review of the literature

on zone fire models, but rather try to give a perspective on where the analysis pre-

sented contributes to these efforts. Mathematical models of fires have commonly been

divided into two categories, field models and zone models. A description of each of

these types of model as well as their relative advantages and disadvantages has also

been discussed in [1]. A careful derivation of the equations used in zone fire models

from the basic conservation laws utilizing a control-volume approach has been given

in [8]. More recently, Forney and Moss [9] have discussed some of the difficulties long

encountered in trying to integrate numerically the zone fire models for general prob-

lems of interest in the fire community. Since zone models have been so useful to fire

engineers and researchers, and since numerical integration of the various equations

used in these models has persistently been plagued by difficulties, the current research

is presented.

Examples of simple zone models are analyzed. The first of these models is for the

pressure in a single room heated by a fire and vented to the outside by a small leak.

This model has been solved earlier [5] [9] [10] and provides the basis for analyzing

more complex models. Here the single ordinary differential equation (ODE) for this

model is made dimensionless, and the nondimensionalization is found to be helpful

for analysis of more complex models.

The second model, the coupled pressure equations for two rooms connected to each

other and to the outside, was derived in the report of Forney and Moss [9] because

it illustrates in very simple form the nature of the problem encountered commonly
in zone models of enclosure fires. Here, the equations for this two-room model are

made dimensionless, and we analyze them both by asymptotic and by phase-plane

methods. The methods provide insight into the nature of the numerical problems

commonly encountered in zone models.

Two appendices are also included. In the first, we provide a derivation of a set

of differential equations which govern all of the dependent variables (room pressure,

layer height, layer temperatures and densities, etc.) for a simple two-layer zone-fire

model. In contrast to the examples given in the main body of this report, this one

demonstrates that the equations already exhibit stiffness when the pressure equation

is coupled to the equations governing the other variables; the reason for this stiffness

is that the pressure generally equilibrates rapidly compared to the rate at which the

other variables, e.g., layer height, change in an enclosure fire. In the second appendix,

we present the commands in Mathematica [11] used to perform the calculations and

to produce the figures presented in this report.
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2 Conservation Equations

The differential equation for the pressure in a simple zone fire model is derived in this

section using the laws of conservation of mass and energy together with the equation

of state for an ideal gas. Differential equations for other quantities found in a zone fire

model such as temperature or density are derived in the general case in [8] [9]; a set

of differential equations for a specific, simple two-layer model in a single enclosure are

derived in Appendix A. A zone may consist of a number of interior regions (usually

an upper or a lower gas layer). The basic assumption of a zone fire model is that

properties such as temperatures can be approximated a^ uniform throughout the zone.

It is remarkable that this assumption seems to hold for as few as two gas layers, which

is the model considered in this paper.

Many differential equation formulations based upon these assumptions can be de-

rived. One formulation can be converted into another using definitions of density,

internal energy and the ideal gas law. One property that many of these formulations

share is the presence of multiple time scales. Physically, the pressure in a compart-

ment equilibrates much quicker than densities and temperatures, see Appendix A.

Numerically, this property is known as stiffness and in general requires the use of

special differential equation solvers to generate efficient solutions. The main focus of

this paper then is to show how an appropriate nondimensionalization for the pressure

equations in a zone fire model can be used with analytic techniques such as phase-

plane analysis and singular perturbation methods to expose and exploit the presence

of these multiple time scales.

Each differential formulation can be expressed in terms of mass and enthalpy flow

rates denoted rhu, tni^ qu and qi where the subscripts L and U refer to the lower

and upper layer respectively. These flow rates represent the net exchange of mass or

energy between zones due to physical phenomena or sub-models such as fire plumes,

natural and forced vents, convective, radiative heat transfer, etc. For example, a

vent exchanges mass and energy between zones in connected rooms, a fire plume

typically adds heat to the upper layer and transfers entrained mass and energy from

the lower to the upper layer, and convection transfers energy from the gas layers to

the surrounding walls.

As illustrated in Figure 1, a compartment can be divided into two control volumes,

an upper layer of hot gases and smoke, and a lower layer of air. The fire produces

a plume and acts as a pump to transfer mass from the lower to the upper layer,

adding energy to the transferred fluid. The two layer model is quite adequate for

many applications because upper and lower layers as described are often observed

experimentally in room fires. The gas in each layer has attributes of mass, internal

energy, density, temperature, and volume denoted respectively by m,, F,, p,, T,, and

Vi where i = L for the lower layer and i = U for the upper layer. The compartment as
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a whole has the attribute of pressure P. These eleven variables are related by means

of the following seven constraints

Tfl '

p, = -^ (density) = L,U
(
1

)

Ei = CuruiTi (internal energy) ,i = L,U
(
2

)

P = RpiTj (ideal gas law) ,i = L,U (3)

V = Vl Vjj (total volume) . (4)

The specific heats at constant volume and at constant pressure, and Cp, the uni-

versal gas constant, R, and the ratio of specific heats, 7 ,
are related by

7 = —
,

Cy

R Cp Cy .

The first law of thermodynamics states that the rate of increase of layer internal

energy plus the rate at which the layer does work by expansion is equal to the rate

at which enthalpy is added to the gas (where we consider the enthalpy added as that

from any sources minus losses to the walls). In differential equation form this is

internal energy work

dt dt

enthalpy

Qi (
5

)

A differential equation for pressure can be derived by adding the upper and lower

layer versions of Eq.(5), noting that

dE,

dt

d{cymiTi)

dt
(6 )

to obtain

f = + (7)

Differential equations for the layer volumes, energy, density and temperature can

be derived from definitions
(
1

)
to (4) using the quotient and product rules. These

differential equations are derived in [9] and are summarized in Table 1. Notice that

a ^ term occurs in all but the mass equations. Handling the pressure equation

properly is then crucial for solving the zone fire model both correctly and efficiently.

In the following sections, we examine the pressure equations which arise in some

simple examples of single and multi-room zone-fire models. The appropriate nondi-

mensionalization of the pressure equations helps to reveal the analytical character of

the equations and allows us to use analytical techniques to examine the nature of the

stiffness that arises from the pressure equations.
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Table 1: Conservative Zone Modeling Differential Equations

Equation Type Differential Equation

mass of layer i

pressure ^ + gu)

energy of layer i

volume of layer i
1

1-H
1II

density of layer i
dt
~

CpT.V, ((?* Cj,ThtT,)
^^ )

temperature of layer i
dt ~ Cpp.V,

Cp^tT,) + U ^< )

3 Pressure Equation One-Room Model

In Section 3.3.1 of [9], the first example is presented to illustrate the nature of the

problems encountered with the integration of the pressure in zone fire modeling. This

example is illustrated in Figure 1 (Figure 3 of [9]) and is for a fire in a single room

with a small leak near the floor. The major approximations made in this model are

that the heated gases never exit through the vent (i.e. the vent is near the floor, while

the heated gas layer stays above the leak) and that there is no heat transfer to the

walls; i.e. the enclosure hcis adiabatic boundaries. Under these conditions, the mass

loss through the vent equals a constant times the square root of the pressure difference

across the vent, and the enthalpy loss through the vent is a constant times the mass

loss. The starting equation for this model is Eq. (13) of [9] which is equivalent to

Eq. (7), derived earlier. We repeat the analysis given there in nondimensional form

and with a slightly different notation because the nondimensionalization gives some

additional insight and because this example, which can be solved analytically, forms

the basis for analysis of more complicated cases.

dp

di

Here the notation is as defined in [9] except that p is the pressure in the room relative

to the ambient pressure outside the room p = p^nc — Patmi and t is the time, qjire is

the constant fire (heat) source, and 9„ent is the enthalpy loss through the vent, defined

ire ^vent)
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Figure 1: One Room Test Case Configuration

as

^vent — CpTuent^^ent-^vent Sgn vent

The initial conditions are that p = 0 at t = 0.

Now use the following quantities with which to nondimensionalize:

Poo

T

(IJi

CpTygYit Cvent -^vent y/^Pvent

Vpoo V (IjlT

(7 - l) 9/:re (7 ^Cp'I^vent^vent-^veniv>vent )

(
8

)

The quantity poo = Pfinal — Patm is the asymptotic pressure rise in the enclosure

relative to the ambient pressure due to the specified heating with the enclosure leak

specified. Similarly, the quantity r is the time scale over which the pressure rise

occurs. These are the proper scaling parameters with which to make the dependent

and independent variables nondimensional:

_P_

Poo

i

T

P =

t =
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p

Figure 2: Solution of a Non-Dimensionalized Pressure Differential Equation for Initial

Conditions: p(0) = —2, p(0) = 0 and p(0) = 2

Then the equation for the pressure becomes

The solution to this equation with the initial conditions that p = 0 at f = 0 was given

earlier in [9] and in [10].

The value of the nondimensionalization will be apparent in the second example,

the two-room model, described below.

Figure 2 shows solution plots to Eq. (9) for three values of the initial conditions,

p(0) = 2.0, 0.0 and —2.0. These plots were generated using the software package

Mathematica[ll], particularly the command NDSolve. The initial condition that

p = y = 0.0 for t = X = 0.0 is the base calculation performed both in [10] and

in [9]. For all initial conditions shown, the solutions all converge at long time to

p{t —> cx)) = 1, the stable equilibrium solution to the problem.

3.1 Phase Plane Analysis for One-Room Model

The phase plane for the one-room model is just the line, but it is instructive to

consider it. We will examine first the case of positive dimensionless pressure and

study the solution for various initial conditions. Then in the latter portion of this

section, we examine also solutions for negative initial dimensionless pressures. In all

7



cases, the solutions pass, after long time, to the stable equilibrium value of p = 1,

which is called the fixed point of the equation.

To solve Eq. (9) generally for positive initial pressures, let p = and rewrite

Eq. (9)

Integrating,

dp

1 - y/P

= dt
2xdx

I — X

t — to = —2 In
\

l — x\ — 2x C

where C is the integration constant, and where x < 0 as well as x > 0.

Now, let the initial conditions be Penc(fo) = Penco at time f = fo = 0, where

we retain the symbol to for use later. Then po = Penc — Patm and po = PolPoo =

{Penc — Patm) /poo- Now, since po < 0 as well as po > 0, and since poo can be arbitrarily

small, — oo < Po < oo. Hence the phase space for the one-room model is the whole

line.

For 0 < Po < oo.

t - to = + 2{^0 - Vp)

and the phase diagram for either po > 1 or for po < 1 is the directed line segment

from Po to unity.

The solution to Eq. (9) for negative initial dimensionless pressures can be found

as follows. For — oo < po < 0,

Using p = — x^.

or, integrating.

= dt = 2
\ 1 + X

dx

f f0 = 2 In
1 1 + X

I

— 2x -f C'

where C is the integration constant, and where x > 0.



Now, initially, at < = 0,p = po- Hence,

( = 21n-ii^ + 2(\/M-ybi)
l + VW

When p starts at negative values, it rises to zero at t = tc,

tc = 2\n
1 + VN

For t > <C 5 P > 0, and we use the solution for p > 0 with initial conditions that p = 0

at t = tc, namely.

t — tr = 2\n
1

- 2,/p
|l-,/p|

In this case, the phase diagram is a directed line segment from po < 0 to unity.

4 Pressure Equation Two-Room Model

The second example, and the more interesting one since it illustrates the structure of

the mathematical problem in solving the pressure equations, is illustrated in Figure

3 (Figure 6 of [9]). In this example, there are two rooms. In the first room, denoted

by subscript 1, there is a fire and two vents, one to the outside, which is denoted vent

1, and the second vent, denoted vent 2, to the second room. Again, the walls are

assumed to be adiabatic. The equations for this example are:

where

dpi

di

dp2

di

7 - 1

7 - 1

^2

{Qfire Qventl ^vent2^

{Qvent2^

Qventl — C'pTyg'fiiiCygYLtl -^ventl (Pl ) 2p|pi
|

Qvent2 — CpTvent2^vent2 ^vent2 P2)y^p\Pl P2

1

We define the following scaling parameters:

Pool
Qfire \

,

CpTygfitl Cyg'rHl -Ayefill \/2p J

2
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Figure 3: Two Room Test Case Configuration

Poo2

n

9/t>e A

CpTrjent2(^ent2-^vent2\/‘^P j

FlPool Fi Qfir

T2 =

(7 - l)9/i

^Poo2

(7 - 1
) {CpT^entl Cvent\ ^ventX y/^P?

F2 Qfire

(7 ^)9/i’‘e (7 1) ( CpTygjif2^vent2 ^vent2

We use the pressure scale and the time scale associated with vent one as the basic

scaling parameters with which to make the equations dimensionless. Define

Px = Px/Poox

P2 = P2 /P00 X (10)

t = i/ri

Then, the ratios Poox/Poo2 and ri/r2 appear in the dimensionless equations, which we

can write as follows

^ = 1 - sgn(pi)yH - y^sgn(pi -p2)\/\px -P2\ (11)

dp2 /tiW . . A :
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4.1 Phase Plane for Two-Room Model

For the phase-plane analysis, change variables to pi,Ap = P\ — P2 - Then these

equations become

^ = 1 - sgn(pi)yH - y^^sgn(Ap)yiA^

dAp

dt
= l-sgn(pi)/H-

Vl “I" V2 /tj V2

V2 r2Vi
sgn (Ap)y|Ap|

These equations can be rewritten as follows; let

Pi

Ap

X

y

a =

b =

TjV2

Vt2Vi

Vi-f ^2

V2

Then the equations above become

^ = 1 - sgn(a:)yjzj- asgn(y)yM

dy
= 1 - sgn(a:)yi7| - afesgn(y)yH (

12
)

These equations are autonomous, see [12] and [13] for example, and therefore can

be reduced to a single first-order nonlinear ODE by eliminating time. Dividing these

two equations, we get

^ _ 1 - sgn " absgn {y)y/\y\

1 - sgn(x)yH - asgn(y)yi^

or

^ = \-
dx

a{b- l)sgn(y)yi^

1 — sgn (x)\/W- asgn(!/)Y'M
(13)

Although a phase plane analysis formally starts from either of these equations, when

we numerically integrate in the phase plane, we use the parametric form of the equa-

tions, Eqs. (12), and then plot the results in the phase plane.

If the two room volumes are identical and the conditions in the lower layer are the

same for the example illustrated in Figure 3 then the parameters a and b are given

11



x,y

1

0.8

0.6

0 .

4

0.2

t

Figure 4: Solution Plot of Equation 12 for a = 1, 6 = 2 and Initial Conditions

a;(0) = y(0) = 0

by a = Avent2Mventi and 6 = 2. Large a then implies that the vent connecting the

two rooms is large compared to the vent connecting the first room to the outside.

In general, the fixed point of the system for {x{t),y{t)) is determined from the

equations

and is given by xq = l,yo = 0. We note an important difference, between the

equations for {x{t),y{t)) and the usual ones encountered in phase-plane analysis [12]

and [13]; these equations are not analytic around the fixed point. The fixed point is

a stable one as determined by the numerical integrations described below.

Equations (12) have been integrated using the software package Mathematica.

Once again, as in the one-room example, we have used the command NDSolve for

this first-order nonlinear ODE system. Figure 4 shows x{t) and y{t) for a = 1, 6 = 2

with initial conditions (I.C.) a:(0) = y(0) = 0. The dimensionless pressure in room

1, x(f), starts at zero and increases monotonically to unity over of order ten dimen-

sionless time units. The pressure difference between room 1 and room 2, y{t), starts

at zero, increases to a maximum of about 0.1 at about one dimensionless time unit

and then decreases to zero again. The solutions displayed are well behaved, and the

numerical calculation of them encounters no particular difficulty. However, when left

12



x,y

Figure 5: Solution Plot of Equation 12 for a = 4, 6 = 2 and Initial Conditions

x(0) = y(0) = 0

in dimensional form and coupled with the equations describing the other properties

in the zone model, the equations are stilf. Therefore, in general, computation of solu-

tions to these equations could be difficult because of the short pressure-equilibration

time scale compared to the time scale for change of the other properties, such as

temperature, layer height, etc.

Figure 5 shows x{t) and y{t) for a = 4,6 = 2 with initial conditions (I.C.)

x(0) = y(0) = 0. The primary difference between these plots and those of Fig.

4 is that the solution for y rises more rapidly as a function of t from its initial

condition to a smaller maximum of about 0.01 and then decays to zero. Large a

is a condition on the ratio of time scales and volumes of the two rooms. As we

shall see in the following subsection, large a implies that the equations are stiff and

a singular perturbation analysis of the problem is applicable. We emphasize that

this problem, with a relatively large value of a, would most probably cause difficulty

using a numerical solver that did not account for stiffness of the equations. As noted

above, when the pressure equations are coupled with the equations for the other

properties in a zone model, they become stiff due to the disparity in time scales.

Therefore, integration of these equations would most likely cause even more difficulty

than integration of the previous case illustrated in Fig. 4.

Figure 6 shows x{t) and y{t) for a = 0.1,6 = 2 with initial conditions (I.C.)

a:(0) = y(0) = 0. The curves show a much more gentle time dependence than that

13



x,y

Figure 6: Solution Plot of Equation 12 for a = 0.1, 6 = 2 and Initial Conditions

x(0) = t/(0) = 0

displayed in Fig. 5.

Figure 7 shows a phase plane plot of the solution to Eqs. (12) with a = 1, 6 = 2.

This phase plane plot demonstrates that a: = l,y = 0isa stable fixed point of the

solution since all solutions progress toward this point as time increases. The plot was

prepared by integrating Eqs. (12) for thirteen different initial conditions and then

plotting each curve parametrically. All solutions reach the stable fixed point.

Figure 8 shows a phase plane plot of the solution to Eqs. (12) with a = 4,b = 2.

This figure shows that the trajectories of the solution have become much more angular

with nearly 45-degree lines joined to sections of the x-axis. This very abrupt behavior

is an indication that the Eqs. (12) are becoming stiff for the parameters chosen.

Figure 9 shows a phase plane plot of the solution to Eqs. (12) with a = 0.1, 6 = 2.

This figure shows that the trajectories of the solution have become much smoother

than those shown in either Figs. 7 or 8.

4.2 Zero-Order Singular-Perturbation Analysis

Return to Eqs. (11) and consider the cases when the ratio of time scales Ti /

T

2 becomes

either large or small; these cases are actually the cases of interest because physical

parameters dictate that the time scale ratio will often be large or small, and these

large or small numbers cause stiffness in the equations. We will not perform a formal

singular perturbation analysis, but only show how the zero-order behavior of the

14
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Figure 7: Phase Plane Plot of Equation 12fora = l,6 = 2

y

Figure 8: Phase Plane Plot of Equation 12 for a = 4, 6 = 2
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y

Figure 9: Phase Plane Plot of Equation 12 for a = 0.1, b = 2

system can be determined when the ratio of time scales is large or small.

First, consider the case when Ti/r2 ^ 1. This will occur, for example, when

the area of vent two, that connecting the two rooms, is moderately large, while vent

one, the vent to the outside, is a small leak. When this is the case, then, since Ti/t2

multiplies the difference in room pressures, pi —p2 —»• 0. If we eliminate (ti /T2 ){pi —

P

2 )

between the two equations, we get

If we now say p2 ~ Pi ,
then

If we choose the proper pressure and time scales, this becomes the same as Eq. (9)

for the single room with a fire and a leak, but now with a volume Vi + W, the volume

of the two rooms.

Similarly, when ri/r2 <C 1, we have the case where the vent area between the two

rooms is small relative to the vent area to the outside for example. In this case, we

concentrate on the first of Eqs. (11) and note that the term proportional to ri/T2 ,

the term representing the effect of the second vent, is negligible. Then, this equation

becomes

16



the equation for the single-room case again.

5 Conclusions

The simple problems examined in this paper illustrate the nature of the difficul-

ties long encountered when numerically integrating zone fire models. The pressure

equations equilibrate very rapidly compared to the equations governing the other

dependent variables in the zone fire models. When equations of this nature are en-

countered, they are referred to as stiff. The simple problems analyzed here illustrate

the nature of the stiffness and demonstrate that proper nondimensionalization to-

gether with singular perturbation analysis can provide insight into the behavior of

the system for parameters of interest.

The methods can be used to examine much more general problems. For example,

two rooms connected with each other and with the outside in different fashion can

be analyzed similarly to the two-room example presented here. In addition, some

multiroom enclosures have also been analyzed using the nondimensionalization and

singular perturbation methods described herein. In the limit of various leak sizes

between rooms (or time scales determined by the heat source, room volume and leak

rate), the equations can be shown to reduce to the one-room equation with redefined

leak rates and room volumes, as was done in the two-room Ccise illustrated above. The
methods should provide an opportunity to analyze difficulties with stiffness which are

encountered in more general zone fire models.
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A Zone-Fire Model Stiffness

Stiffness is a term used to categorize a class of mathematical problems arising from

physical systems that possess multiple time scales. Paradoxically, solutions to stiff

problems often appear to change slowly yet have enormous computational require-

ments when solved using standard ie non-stiff solvers. These solvers are inefficient

because they do not adequately exploit the key property of stiff systems. In stiff

systems, the short time-scale phenomena approach a quasi-steady state rapidly while

the other phenomena evolve on a much longer time scale.

The derivation of the differential equations for a simple zone fire model are pre-

sented here to illustrates the presense of these multiple time scales. Once the stiffness

is understood, analytical techniques can be used to simplify the physical model into

a non-stiff form or alternatively, special numerical procedures can be designed that

exploit the properties of stiff models.

A.l A Derivation Illustrating the Presense of Stiffness

We start with the equations of conservation of energy and mass for each of the two

layers. These equations are coupled with the state equations and the various defini-

tions. Here, tildes are used to denote dimensional quantities. The notation is that

used the main body of the paper.

The energy equations are

dEu
,

-dVu
— 9flre "b 9plume 9walls (15)

di di

dh
,

.dVi
. (16)

di di
— 9vent 9plume

The mass equations are

drhu

di
^^fire “b ^^plume (17)

II

i

TTlvent ^plume (18)

The state equations are for an ideal gas with constant specific-heat coefficients

p{i) = Rpu{i)fu{i) (19)

p{i) = RpL{i)TL{i) (20)

Eu{i) = Cvmu{i)fu{i) = -Vu{i)p{i) (21)
7 - ^

Eiii) = CvrhL{i)fi{i) = -VL{i)p{i)
(
22

)

7 - 1
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The definitions are

II
mu{i)

Mi)
(23)

p{i) = miii)

mi)
(24)

Vo = = constant (25)

9vent — CpT]_,(t^77ly^jll (26)

^vent — C^vent-Avenfy/^PLCP Po) (27)

9plume — CpTj_,(t^7Tlp\yiaie (28)

rUpimne — (29)

9walls — [S + 2(L + W)(H- z)]K(fu - To) (30)

^fire is assumed to be a constant fire (heat) source, ^vent is the enthalpy loss through

the vent, ^piume is the enthalpy pumped from the lower layer into the upper layer by

the plume, and ^waiis is the heat transfer rate to the walls, mfireis the mass added by

the fire, rhventis the mass loss through the vent and mpiumeis the mass pumped by the

fire plume from the lower layer into the upper layer. Q* is the fire input parameter

defined by Zukoski [5]

9fire

PoCr,Tos/PlH^

and po, To are reference density and temperature, g is the acceleration of gravity and

H is the height of the enclosure. S = LW is the floor area of the enclosure, where

L is the length of the enclosure and W is its width. K is a heat transfer coefficient

for heat transfer from the gas to the enclosure walls. Then Vq = LWH. The control

volumes are around the upper and the lower layers, and the sum of the two control

volumes is the total volume of the enclosure, which is constant.

An equation for the pressure is found by adding the energy equations for the two

layers, taking account of the equation of state for the ideal gas.

dEu

dt

dEi . d ~ T/\-T “b — 9fire Qvent 9walls

T — (T l)(9ftre 9vent 9walls)
at

dp

di

1 - 1

Vo
(^fire Q\ent ^walls)
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Here the notation is as defined earlier except that p is the pressure in the room relative

to the ambient pressure outside the room p = penc ~ Patm? S'lid t is the time.

The upper-layer energy equation and the upper-layer mass equation combine to

give an equation for the upper-layer temperature. The upper-layer energy equation

becomes:

1 d
, ^ ,

.dVv

1 dp
,

JVu^
,

JVu

7 d ~ ~ dp

The upper-layer mass equation is

drhu _ dpuVu

dt di

^[f.{RfvhVu) - hVuf-{Rtu)]

9fire T 9plume 9walls

9fire T 4plume 9walls

Qfire T 9plume 9walls

— TTlpJujjje -j- TTlf^^

— CpTu(^TTlp\ume T fiifire)

— (7p7[/(7fipiume T fi^ftre)

— CpTu T fi^fire)

Combining the upper-layer energy and mass equations

7

'Z
~ d ~ ~ dp

^

RpU h(/
dF

9plume ^walls C'p7(/(rhpiujjie T fil'fire)

Now noting Eq.(28) and that Cp = -:^Ri

CppuVu^ifu) = + 4fire “ 9walls “ Cp{fu - T’L)mpiume “ CpfuTUfire

Finally, the lower-layer mass equation is

dmi dpiVi

dt di
— ^plume ^vent

Rewrite the three equations for the pressure, the upper layer gas temperature and

the lower layer mass.

(^fire 9vent 9wciUs)
yo

dp

di
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CpPU^U-^iTu) = + 9fire — 9walls — C'p(7c7 — 7L)mpiujne — C'pT’t/mfire
at at

dhVL
di

— fMplume ^vent

Use much of the notation and the scales of Zukoski to define dimensionless quan-

tities. If z is the dimensional layer height, then

2 = z/H

Vl = VlIVo = z

Vu = Vu/Vo = l-z

Define the reference pressure po, temperature To and density po to be related by

po = RpoTo.

Pl = hIpQ

Pu = PuIpo

Tl = Tl/To

Tu = fu/fo

The time scale defined by Zukoski for nondimensionalization is

<Z = 4^9(8!H^)

The only tricky feature of the current nondimensionalization is that the pressure must

be defined carefully. Let p = po + Ap; i.e., the pressure is the reference pressure plus

the overpressure in the enclosure. The overpressure must be made dimensionless with

respect to poo where

Poo
9fire

C'pTl Cvent -dvent v^PL
,

(32)

Then

p = p/po = 1 + Ap/po = 1 + (poo/po)Ap = 1 -f eAp

where e = (poo/po)-

Rewrite the mass and heat sources and sinks as follows:

=TTTfij-g (33)



Qfire = poC.fo^H^Q' (34)

^vent = poy/gHH^QvyA^/pL^P (35)

9vent — CpToT£,771ycnt (36)

= CpfopoyJgHH'^Qvy/tTLyJpL^p (37)

^plume (38)

9plume (39)

QwaHs = [S + 2(L + W)(H-z)]K(tu-f^) (40)

= - z)]iTu - 1) (41)

where

0*̂
~ PoC.To^m

(42)

^ Cvent-^vent\/2/?oPo

" PoVgHH^
(43)

1
2 -'d-vent Csoimd

(44)

o " CpPoVgHH^
(45)

The equations in dimensionless form then become:

dAp

dt
l[Q' - QvVITl\/^P -Qw[\ + - z)]{Tu - 1)1

II

i

7-1^^ dAp, ^ n ,
+ ^^rr^ ix

€ + Q (5w[l + 2 (1 z)\{Tu 1)
'y at b

- (Q-yl^aZ^I\Tu - Tl) - MTu
dpLVi

dt
-{Q'ff^aZ^I^-QvVl^/pL^P

The purpose of the derivation presented here is to demonstrate that the equations

describing a very simple case of a zone-fire model are stilT. Zukoski [5] has presented

numerical estimates of the magnitudes of the various parameters which appear in these

equations. In particular, he has demonstrated that leaks generally are large enough

in most enclosure fire scenarios that the overpressure which can develop is rather

small. (In fact, Zukoski uses this fact to ignore any overpressure and make a quasi-

steady approximation for the pressure, assuming that it equilibrates instantaneously
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to the pressure outside the enclosure, during the enclosure-filling process. If the

overpressure were to become significant, in most cases there would be a structural

failure such as a window breaking to relieve this overpressure. A possible exception

might be any enclosure which was designed to accommodate large overpressures, such

as a compartment in a submarine for example.) When the leak is large enough to

sustain only small values of overpressure, then e = ^ <C 1 is a small parameter.

Using equation (32) with qtu-e
= 100, OOOIU, Avent = Im^, Cvent = -68 and ambient

density and temperature, e w 10“®
. Since this small parameter multiplies the time

derivative of the overpressure, the system of equations is stiff, and the culprit is the

overpressure equation.

Other observations can be made from this dimensionless system of equations.

However, we will note only one. The state equation is p = 1 + — PlTl — PuTu-

When e = ^ <C 1, then p « 1 and plTl = ^iPuTjj = 1- Then Pl ~ 1 and 7T « 1.

A.2 Some Numerical Considerations

As pointed out in [9] many different (but analytically equivalent) sets of differential

equations can be derived to form a zone fire model. Further, the numerical difficul-

ties encountered in these models because of stiffness can not be avoided simply by

exchanging the pressure equation for some other equation such as temperature, den-

sity, or internal energy. As shown in Table 1, each zone modeling differential equation

contains a ^ term. For a one room zone fire model, if the pressure is computed us-

ing equation (8), the formula for asymptotic pressure rise, and ^ is removed from

the other modeling differential equations, then the resulting approximate differential

equations are not stiff and a standard nonstiff solver may be used. This is essentially

why one room models such as ASET [14] can use non-stiff solvers in their solution.

For multi-room zone fire models, a non-linear set of equations need to be solved to

obtain the quasi-steady state pressures for each room. However, the class of problems

that can be solved is reduced since large pressure fluctuations can not be modeled

properly.

The curious aspect of stiff differential equations is that the solution appears to be

changing slowly and yet the computational costs of computing this solution are enor-

mous when using nonstiff differential equation solvers such as Runge-Kutta methods.

The question then is why does it cost so much to solve a problem whose solution

changes slowly? To maintain stability, a nonstiff solver must use a stepsize that is

small enough to track the part of the solution corresponding to the shortest time

scale even when this solution component decays rapidly to some quasi-steady value.

This stepsize is much smaller than required to accurately track the desired part of

the solution which corresponds to one of the longer time scales. So for stiff problems

the choice of stepsize is dominated by considerations of stability, not accuracy.
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There is no one definition of stiffness that is universally applied to initial value

problems. One that is commonly applied is the following (see [15]). An initial value

problem, dyidt = f{y,t),y{to) = yo is called stiff if the eigenvalues, Aj = Uj + ivj,

j = 1, . .
.

,

of the Jacobian, /y, satisfy

Wj < 0, j = 1, . .
. ,

iV
,

and

max (|u,|) ^ min (|u,|) .

In our case, the eigenvalues with large negative real parts correspond to the short

time scale phenomena (room pressures).

B Mathematica Commands Used to Perform Cal-

culations and to Produce Figures

This appendix documents the commands used to both perform the calculations and

to produce the plots illustrated in this report. These calculations were performed

using Mathematica[ll]. The equivalent analysis using traditional methods involving

FORTRAN would have certainly taken much longer; perhaps weeks instead of several

hours. The simple models for the vent and fire used to produce phase plane plots can

be made more complex and hence more realistic by adding a few “equations” to the

following Mathematica code.

*** figure 2 ***

rhs[y_]; = l. -Sign[y] Sqrt[Abs[y]]

odel [y0_] :=NDSolve [{y ’ [x] == rhs[y[x]], y[0] == yO},y ,{x,0, 10}]

y2=odel [2]

yin2=odel [-2]

yO=odel [0]

plot2=Plot [{Evaluate [y[x] /. y2] .Evaluate [y [x] /. yin2] .Evaluate [y[x] /. yO]}.

{x .0 . 10} .PlotRaiige->{-2.2}.AxesLabel->{"t" .
"p"}]

Figures 4.5.6 time dependent plots of x and y

ode2 [a_ .b_] :=

NDSolve[{x’ [t] == 1 .-Sign[x[t]] Sqrt [Abs [x[t]]] -a Sign[y[t]] Sqrt [Abs [y [t]]] .

y’[t] == 1 .-Sign[x[t]] Sqrt [Abs [x [t] ]] - ab Sign[y[t]] Sqrt [Abs [y[t]]]
.
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x[0] == 0,y[0] == 0},{x,y},-Ct,0,15}]

ode2[l ,2]

plot4=Plot [{Evaluate [x[t] /. ,

Evaluate[y[t] /. '/,]},{t,0,15},AxesLabel->{"t" ,"x,y">]

ode2[4,2]

plot5=Plot [{Evaluate [x[t] /. */,] ,

Evaluate[y[t] /. '/,]}, {t,0,l},AxesLabel->{"t","x,y"}]

ode2[.l,2]

plot6=Plot [{Evaluate [x[t] /. ,

Evaluate[y [t] /. '/,]},{t,0,15},AxesLabel->{"t","x,y"}]

** Phase Space Parametric Plot - Fig\ire 7, a=l,b=2 **

ode3 [a_ , b_ , x0_ ,
y0_] : =NDSolve

[

{x’[t] == 1 ,-Sigii[x[t]] Sqrt [Abs[x[t]]]-a Sign[y[t]] Sqrt [Abs[y[t]]] ,

y’[t] == 1 . -Sign[x[t]] Sqrt[Abs[x[t]]]- ab Sign[y[t]] Sqrt [Abs [y [t]]] ,

x[0] == x0,y[0] == y0},{x,y>,{t,0,15},MaxSteps->3000]

xypl=ode3 [1 ,2 , 1 ,2]

xyp2=ode3 [1 , 2 , 2 , 2]

xyp3=ode3 [1 , 2 , - . 5 , 1]

xyp4=ode3 [1 , 2 , 2 , 1]

xyp5=ode3 [1 ,2, 1 .5,2]

xyp6=ode3[l,2,-.5, .5]

xyp7=ode3 [1 ,2 , .5,2]

xyp8=ode3 [1 ,2,2, .5]

xynl=ode3[l ,2, 1 ,-l]

xyn2=ode3[l ,2,- .5,-1]

xyn3=ode3 [1 , 2 , . 5 , - 1]

xyn4=ode3[l ,2, .5,-1]

xyn5=ode3[l ,2,1 .5,-1]

xyn6=ode3 [1 , 2 , - . 5 , - 1]

plot7=ParametricPlot [{Evaluate[{x[t] ,y [t]} /. xypl]

,

Evaluate [{x[t] ,y [t] } /. xyp2] ,

Evaluate [{x [t] ,y[t]} /. xyp3] ,

Evaluate [{x [t] ,y[t]} /. xyp4] ,
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Evaluate [{x [t] ,y[t]} /. xyp5] ,

Evaluate [{x [t] ,y[t]} /. xyp6] ,

Evaluate [*Cx[t] ,y[t]} /. xyp7] ,

Evaluate [{x [t] ,y[t]} /. X3rnl] >

Evaluate [{x [t]
, y [t] } / . xyn2] ,

Evaluate [-Cx [t] ,y[t]> /. xyn3] ,

Evaluate [{x [t]
, y [t] } / . xyn4] ,

Evaluate [{x [t] ,y[t]} /. xynS] ,

Evaluate [{x [t]
, y [t] } / . xyn6] }

,

{t ,0 , IS} ,PlotRange-> All , AxesLabel->-C"x" ,

"

*** Phase Space Parametric Plot - Figure 8

xyp2=ode3 [4 , 2 , 1 , 2]

xyp3=ode3 [4 , 2 , 2 , 2]

xyp5=ode3 [4 , 2 , 1 . 5 , 2]

xyp6=ode3 [4 , 2 , 0 , 1]

xynl=ode3 [4 ,2 , 1
, -1]

xyn3=ode3 [4 , 2 , . 5 , - 1]

xyn4=ode3 [4 , 2 , 1 . 5 , - 1]

xyn5=ode3 [4 , 2 , 2 , - 1]

plot8=ParametricPlot

[

{Evaluate [{x [t] ,y[t]} /. xyp2] ,

Evaluate[{x[t] ,y [t]} /. xyp3] ,

Evaluate[{x[t] ,y [t]} /. xyp5] ,

Evaluate [{x [t]
, y [t] } / . xyp6] ,

Evaluate [{x [t]
, y [t] } / . xynl] ,

Evaluate [{x [t]
, y [t] } / . xyn3] ,

Evaluate [{x [t] ,y[t]} /. xyn4] ,

Evaluate [{x [t] ,y[t]} /. xyn5]},

{t ,0, 15} ,PlotRcLnge-> All , AxesLabel->{"x" ,

"

*** Phase Space Pairametric Plot - Figure 9

xypl=ode3[. 1 ,2,0,0]

xyp2=ode3 [ . 1 , 2 , 1 , 2]

xyp3=ode3 [ . 1 , 2 , 2 , 2]

xyp4=ode3 [ . 1 , 2 , . 5 , 2]

xyp5=ode3 [ . 1 , 2 , 1 . 5 , 2]

y">]

y">]
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xyp6=ode3 [ . 1 , 2 , 0 , 1]

xyp7=ode3 [. 1 ,2,2 , 1]

xynl=ode3 [ . 1 , 2 , 1
, - 1]

xyn3=ode3 [ . 1 , 2 , . 5
, - 1]

xyn4=ode3 [.1,2,1. 5,-1]

xyn5=ode3 [ . 1 , 2 , 2 , - 1]

plot9=ParainetricPlot [

{Evaluate [-Cx [t] ,y[t]} /. xypl] ,

Evaluate [{x [t] ,y[t]} /. xyp2] ,

Evaluate[{x[t] ,y[t]} /. xyp3] ,

Evaluat e [{x [t] , y [t] } / . xyp4] ,

Evaluate [{x [t] ,y[t]} /. xyp5] ,

Evaluate [{x [t]
, y [t] } / . xyp6] ,

Evaluat e [{x [t] ,y[t]> /. xyp7] ,

Evaluate [{x [t] ,y [t] } /. xynl] ,

Evaluate [{x [t] ,y[t]} /. xyn3] ,

Evaluate [{x [t] ,y[t]} /. xyn4] ,

Evaluate [{x [t]
, y [t] } / . xynS] }

,

{t ,0 ,30> ,PlotRange-> All ,AxesLabel->{"x" , "y"}]

Phase Plane Properties - Figure 10

a = 1

b = 2

yl [a_ ,x_] :=(1 - Sign[x] Sqrt [Abs [x]]
)
“2/a“2

plotlO=Plot [{yl [a,x] ,yl[a b,x]

,

-yl [a,x] , -yl [a b ,x] } ,{x , -4 ,4} , AxesLabel->{"x" , "y"}]

save graphics to an output file

stmp=OpenWrite ["f ig2"]

Display [stmp ,plot2]

Close [stmp]

Ipsfix -epsf < fig2 > fig2.ps

stmp=OpenWrite ["f ig4"]

Display [stmp ,plot4]

Close [stmp]

Ipsfix -epsf < fig4 > fig4.ps

stmp=OpenWrite ["f ig5"]

Display [stmp ,plot5]
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Close [stmp]

Ipsfix -epsf < fig5 > fig5.ps

stmp=OpenWrite ["f ig6"]

Display [stmp ,plot6]

Close [stmp]

Ipsfix -epsf < fig6 > fig6.ps

stmp=OpenWrite ["f ig7"]

Display [stmp ,plot7]

Close [stmp]

Ipsfix -epsf < fig7 > fig7.ps

stmp=OpenWrite ["f ig8"]

Display [stmp
,
plots]

Close [stmp]

Ipsfix -epsf < figS > figS.ps

stmp=OpenWrite ["f ig9"]

Display [stmp
,
plots]

Close [stmp]

Ipsfix -epsf < fig9 > fig9.ps

stmp=OpenWrite ["f iglO"]

Display [stmp .plot 10]

Close [stmp]

Ipsfix -epsf < figlO > figl0.ps

print graphics **

PSPrint [plot2]

PSPrint [plot4]

PSPrint [plots]

PSPrint [plots]

PSPrint [plot7]

PSPrint [plots]

PSPrint [plots]

PSPrint [plot 10]
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