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A Truncated SQP Algorithm for Large Scale Nonlinear

Programming Problems *

Paul T. Boggs ^ Jon W. ToUe ^ Anthony J. Kearsley §

August 4, 1992

Abstract

We consider the inequality constrained nonlinear programming problem and an

SQP algorithm for its solution. We are primarily concerned with two aspects of

the general procedure, namely, the approximate solution of the quadratic program,

and the need for an appropriate merit function. We first describe an (iterative)

interior-point method for the quadratic programming subproblem that, no matter

when it its terminated, yields a descent direction for a suggested new merit function.

An algorithm based on ideas from trust-region and truncated Newton methods, is

suggested and some of our preliminary numerical results are discussed.

1. Introduction

Large scale optimization problems are gradually submitting to the power of ad-

vanced algorithmic development and of modern computing environments, leading

to the formulation of models requiring solutions of these problems in a variety of

scientific areas. Two excellent recent reviews are given by Coleman [Col9l] and

Conn, Gould and Toint [ConGT92], who survey some important applications as

well as recent trends in algorithms and consider the impact of parallel computing

architectures for large scale optimization.

Following these authors we take the term large scale to mean any optimization

problem that is large enough so that the exploitation of special structure is im-

portant. In this paper we are particularly concerned with sparsity, although, as
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they point out, other problem structures may be important as well. We assume the

general nonlinear programming problem to be of the form

min f{x)
X

subject to: g{x) < 0

where / :
3?" —> 5?^, and g : 3?"^. We note that we could include nonlinear

equality constraints in {NLP) without incurring any aiialytical difficulties, but at

the expense of distracting technicalities. We thus omit them for the purposes of the

exposition here, but they have been included in our program.

Our basic tool for the solution of {NLP) is the sequential quadratic program-

ming (SQP) algorithm in which, given an approximate solution-multiplier pair,

{x’^, A*^), {NLP) is approximated by a quadratic program of the form

min V/fx*)"*” -f B^6

subject to: Vg(x*)

'

6 -f g < 0.

Here 5*^ is taken to be an approximation to the Hessian of the Lagrangian for

{NLP), i.e., for

^(x. A) =1 f{x) -hff(x)'''A

we choose

In this form the solution to {QP) provides a search direction for improving the

current iterate, x*. A steplength is chosen in this direction so cis to reduce a

merit function. Roughly speaking, a merit function is a scalar valued function

with a minimum at the solution to {NLP). Thus reducing this function ensures

progress and allows for the production of a globally convergent scheme. (See e.g.,

[BogT89] and [BogTK9l].) In a previous paper, [BogTK91], the authors introduced

a merit function for {NLP) and showed that it is appropriate for use with the

SQP algorithm. In this paper we apply these ideas to the large scale case, solving

{QP) only approximately by an iterative interior-point algorithm that we can stop

prematurely. Such ideas are in the spirit of truncated or inexact Newton methods.

(See [DemES82] and, for a recent discussion of these methods, [EisW91].)

To be more specific, we use the interior-point quadratic program solver of Boggs,

et al. [BogDRW91]. At each iteration this method constructs a low-dimensional

subspace and solves {QP) restricted to that subspace. We show that halting this

procedure after any number of steps yields a descent direction for the merit function.

The details of this solver and its properties relative to its use in an SQP algorithm

are discussed in §2.

The actual merit function and a related approximate merit function are reviewed

in §3. We then state the results just mentioned, namely that the inexact directions

are compatible with these functions. In §4 we give the details of the algorithm. One
of the problematic points is how to control the number of iterations on {QP)- Here

we use some ideas from trust re^ioTi methods. We attempt to assess how well {QP)
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approximates the behavior of the merit function by maintaining an estimate of a

trust region radius. §4 also contains a summary of the results of some numerical

experimentation with the algorithm on a few large problems of interest. Our results

indicate that our procedure is viable for large scale problems. Suggestions for further

research are contained in §5.

2. An Interior-Point QP Solver

Interior-point methods for linear programming have been demonstrated to be very

successful, especially on large problems; thus it is natural to consider their exten-

sion to quadratic programs (QP). One method that has performed well on linear

programs, and has been extended to QP with both good numerical results and

particularly interesting properties with respect to the SQP method is the optimal

subspace method of Boggs, et al. [BogDRW91]. (See also [DomBRW91].) We take

the QP of §1 to be of the form

min 6 +
6

subject to: 6 b < 0
(
2 . 1

)

where c, 6 € 5?", Q G A G and 6 G 3?”^.

The assumptions on (2.1) that are necessary to apply the algorithm are that

the problem is bounded; that A have full column rank; that there exist feasible

points (i.e., that the constraints be consistent); and that Q be positive semidefinite.

Note that a full dimensional interior is not required. We comment further on these

assumptions at the end of this section.

Briefly, the general algorithm can be expressed as follows.

OSD Algorithm for Quadratic Programming

1. Given a feasible point, <5°; set j := 0.

2. Generate 3 independent search directions

Pit X = 1, . .
.

, 3.

Let be the matrix whose columns are pi.

3. Form and solve the restricted quadratic program

min c~^6 -|- Q6

subject to: A^

6

4- 6 < 0

where 6 — 6^ P^Ct ^Jid ^ G 3?^. Call the solution (*.

4. Set := 6^ -t- pP^ C* for an appropriate value of the steplength p.

5. If stopping criteria are met, set J — j, 6j = 6^ and exit.

6. Go to 2.
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The details of the actual algorithm can be found in [BogDRW91] and [Dom-

BRW91]; here we describe those that are the most important for its application

in the SQP setting. One of the three directions is always a descent direction with

respect to the objective function, thus assuring descent in the objective value at

each step. Specifically, the algorithm uses directions that are solutions to

Pi = U (
2 .2

)

where ^ is a positive scalar depending on the current iterate.

D = diag{l/ri. A: = l,...,m}.

Tk — —{AkS^ + and U is a particular right hand side. The form of the matrix

in (2.2) allows for efficient exploitation of the sparsity. Note that if Q is positive

semi-definite, then this matrix is positive definite for all interior points. Given the

final direction, 6^, the steplength p is set either to obtain the optimal solution in

the given direction or to advance 99% of the distance to the boundary.

An important cispect of the algorithm is the procedure for obtaining an initial

feasible point, since we certainly do not require that a feasible point be given. The
algorithm uses a “Big M” method to construct the Phase I problem:

min c^6 -t- Q6 + M9
6,0

subject to: A^ 6 + b — eO <0
(2.3)

where e is a vector of all ones and 6 is the “axtificial” variable. Clearly for 6* large

enough the point {6,6) = (0,6*) is feasible for (2.3). The above procedure is thus

used until the artificial variable is negative, at which point the current value of 6

is feasible, and the M6 and e6 terms are dropped. If no such value of the artificial

variable can be found, then the QP is not consistent, i.e., no feasible point exists,

and the algorithm stops. In this case, however, one can show that the optimal

solution satisfies

6 = min max{A7 6 -\- bj },
6 j

^

and the resulting 6 is a reasonable direction for (NLP).

The criteria for convergence of the algorithm are that at least one of the following

hold: (a) the relative change in two successive values of the objective function is

small; (b) the relative difference between the primal and the dual objective function

values is small; or (c) the relative difference between two successive iterates is small.

To this list, we have added the criterion (d) the scales solution vector exceeds a

specified length. This last condition has been implemented to allow the use of trust

region strategies to monitor the quality of the (QP) approximation. In particular,

this procedure will cause the algorithm to halt if (QP) is unbounded, again with a

reasonable direction.

Note that the assumptions set forth above ensure that a solution to (2.3) exists,

but that the quadratic subproblems arising in the SQP algorithm may not have

solutions. Nevertheless, the directions calculated by 03D are useful directions in

the solution of (NLP).
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3. The Merit Function

A merit function for (NLP) is typically a scalar valued function that has an uncon-

strained minimum at x*, the solution to {NLP). Thus a reduction in this function

implies that progress is being made towards the solution.

In [BogTK91] we derived a merit function for (NLP) based on the work in

[BogT84] and [BogT89] for equality constrained problems. This was done by con-

sidering the slack variable problem (see [Tap80])

min fix)

1 o (
3 - 1

)
subject to: g{x) -|- = 0

where

S = diag{si,...,s^}.

The merit function in [BogT84] was then applied to (3.1). Since the resulting merit

function only contained references to and not to just Si, it was natural to rephrase

this merit function in terms of Zi = s?. This led to the rather unusual situation

of having a constrained merit function, i.e., a merit function whose constrained

minimum corresponds to the solution of (NLP). Our merit function is

V’d(x, z) = f{x) + X{x,z)'^c{x, z) + ^c(x, z)A{x, z)"^c(x, z) (3.2)

where d is a scalar,

c(x, z) = g(x) + Ze

A(x,z) = Vg(x)'^Vg(x) + Z

A(x,z) = -A(x,z)~^Vg(x)'^Vf(x)

and

Z = diag{zi,..., 2,„}

with the z vector constrained to be nonnegative. Although the merit function is

constrained, our algorithm ensures that the Zi always remain positive; thus the

bounds present neither a theoretical nor a computationcd difficulty. For a direction,

6*^, in X obtained as the solution to {QP), we take the direction for the change in z

to be

= -[Vff(x*)<5* + g(x*)-Hz'=].

Thus the next step is

= X* -|-

2 *=+! = z'^ + aq^

for some value of a. Observe that if 2 *^ > 0 and 6* is feasible, then

q*= + 2* = -[V3(x*=)V + 3(x*)] > 0 (3.3)
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and it follows that for a G (0, 1],
= z* + aq'^ > 0.

We show in [BogTK9l] that tpd hcis certain desirable properties for d sufficiently

small. First, under mild conditions, a constrained minimum of V’d corresponds to

a solution of (NLP). Furthermore, the directions are descent directions

for ipd for (x*’,z*^) sufficiently close to feasibility; a steplength of one is acceptable

near the solution if the method is converging q-superlinearly; and the directions are

always descent directions for t’(i,z) ||c|f (x,z).

Despite these useful properties, V’d has two deficiencies that preclude using it

directly in an algorithm. First, as stated above, 6'° is only a descent direction

near feasibihty, and second, it requires the evaluation of gradients and nontrivial

computation to assess a prospective value of a. Thus we employ an approximate

merit function and a globalization strategy that overcome these deficiencies. We
use

= /(®) + c(z, 2 )'^A*= + ^c(x,z).4*=c(i,z)

where

We show in [BogTK91] that (S^, q^) is a descent direction for V’d everywhere, that

will not interfere with rapid local convergence, and that the globalization strategy

described in §4 is effective.

The main theoretical result described here is that OSD and the merit function

are compatible. Specifically, if 6j is only a partial solution to (QP) obtained by

J iterations of OSD (see step 5), the above results continue to hold. We state the

assumptions that guarantee this. We use the term strong local solution to mean an

optimal point, together with a multiplier vector, of {NLP) at which the following

hold.

Al: The active constraint gradients are linearly independent.

A2: Strict complementary slackness holds.

A3: The second order sufficient conditions hold.

In addition we make the following assumptions on the {QP) subproblems:

A4; The matrices {B*'} are uniformly positive definite.

A5: For each k {QP) at x*' has a strong local solution.

We also need an assumption that guarantees that the merit function is well defined

i.e., that A is nonsingular. As in [BogTK9l] we formulate this by partitioning the

index set of the constraints into two subsets a and u. We can then write, without

loss of generality.

9{x) = ffa(x)

gu{x)
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and correspondingly,

Usually the index subset a will correspond to the set of active constraints for (NLP)
or (QP)- The necessary assumption in terms of a particular partition is the follow-

ing.

A6: The set {Vgt(x) : i 6 a} is linearly independent and > 0.

A discussion of the implications of these assumptions for SQP algorithms is given

in [BogTK9l]. The proofs of the results make use of the techniques in [BogTK91]

combined with an induction argument.

4. Algorithm and Num.erical Results

A brief statement of the final algorithm is as follows. Following the statement, we
give a brief discussion of some important points.

SQP Algorithm

1. Given x°, r (trust region radius), t] (globahzation parameter), and d (merit

function parameter):

Set k := 0.

2. Using OSD, iterate while ||6|| < r on

minV/(x*)'''^ +
6

subject to: V3(x*')^<5 -|- g{x^) < 0

to obtain 6*.

3. Set = -[Vg{x’^)^6^ + g{x^) + 2 *].

4. (Globalization Step)

Choose a* such that is reduced.

If ||c(x* -I- > ||c(5c*', -z*^)|| and ||c(x*, 2 *)|| > t],

reduce q* until ||c(x* -|- 2 * -f a*=9 *)|| < ||c(x^, 2 *)|j.

5. If V’(i(a:*’ -f a^6^,z^ -|- a^q^) > V’<i(a:*', 2 *)

set T] = ^ ||c(i*^, 2*')||.

6. Set

:= -f

2*+i := 2*+Q*g*.

7. If convergence criteria are met, quit.

8. Adjust T.
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9. Set k k + 1] goto 2.

A few comments are necessary. First, the globalization step is based on the

work in [BogT89]. In brief, 77 is an estimate of the radius of the domain containing

the feasible region in which the true merit function, is reduced in the

direction {6,q). For all iterates, the algorithm first requires that the approximate

merit function be reduced. If the current iterate lies outside the 77-domain, then the

algorithm also requires that the constraint infeasibilities be reduced. If the iterate

lies inside the 77-domain then the true merit function should also be reduced; if

not, then 77 is reduced. This allows steps that may increase the merit function, but

only in a controlled way. The steps that increase the merit function are usually

seen only in ecU'ly iterations or after active set changes. Second, our procedure for

updating r is to compute the predicted relative reduction of the merit function

based on the (QP) and compare that with the actual relative reduction. This

comparison of predicted and actual reductions is done using the approximate merit

function if the current iterate lies outside the 77-domain. The true merit function

is employed otherwise. We then use standard updating strategies to adjust r (see

e.g. [DenS83] or [MorS83]). Third, the penalty parameter, d, is updated in a very

straight forward manner. Essentially, an estimate of the condition of the problem

is monitored. In the event that this estimate increases significantly, d is decreased.

Provided that the initial value of d is reasonable, this updating did not occur often,

and is only observed when the iterates are outside the 77-domain. The algorithm

did not ‘hug’, or stick too closely to the constraint manifold, as is the case when

the penalty parameter becomes too small. Computationally, this simple procedure

for updating d appears to be effective even in the presence of highly nonlinear

constraints.

We have used this procedure to solve several problems in the range of 100-500

variables with up to 500 constraints. Many of these problems have arisen from

discretizations of control problems where the Hessian of the Lagrangian and the

Jacobian of the constraints have some known sparsity structure. These problems are

somewhat special, in that we knew that the major expense in the calculation of an

iterate comes from the solving of the {QP) . Typically, the constraints are nonhnear

inequalities that, in some way, hmit the control variables, and the objective function

is an energy approximation. The number of constraints is greater than the number

of variables in many of the problems we solved. In our testing, we use forward finite-

difference approximations to gradients and Hessians, and modify the Hessian of the

Lagrangian to be positive semidefinite in cases where it is not (e.g. [GilMW81]).

This latter procedure requires the addition of a non-negative diagonal matrix to the

Hessian approximation.

Our observations include the following.

• The number of major iterations is reasonable.

• The globalization procedure remains efficient, i.e. many full steps are ac-

cepted.

• Close to the solution, the trust region becomes inactive.
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• The trust-region strategy is basically effective, i.e., it prevents long, unprof-

itable steps from being generated at the beginning and after the active set

changes.

• In general a small number of iterations of OSD suffices at each major iteration,

and a very small number near the solution.

• As in all of our previous work in this area, the parameter d in the merit

function is not critical, i.e., the performance of the algorithm is not changed

much by changes in the strategy for adjusting d.

5. Future Research

We have described a preliminary version of an extension of the SQP ideas to the

large scale case. In doing so, we have used a combination of an interior-point

method for solving (QP) with trust region and truncated Newton methods to create

a promising algorithm. There are, however, many computational and theoretical

aspects of this algorithm that need further analysis and testing. Computationally,

we need to continue to test the procedure to discover its strengths and weaknesses.

At the same time, the limitation on the QP solver, OSD, that the Hessian must be

positive semidefinite, appears to be surmountable. In particular, we believe that

the solution of the reduced quadratic program (step 3 of OSD) can be modified to

handle an indefinite (or negative definite) Hessian. This would allow us to avoid the

extra work of ensuring that the Hessian is positive definite, and to explore directions

of negative curvature.

Our theoretical analysis described in §3 relies on the usual strong assumptions

that are typically satisfied in the small scale case. Some of these assumptions,

however, are often not satisfied in large problems. In particular, large problems may
be highly degenerate. We know that the interior-point algorithms for LP and QP
have no problem with these cases. Some of the problems that we have attempted

have been degenerate, and, although the theory does not apply, the algorithm

had no difficulty in solving them. Also, in some of the problems, the queidratic

subproblems were not always consistent. This, too, caused no difficulty for the

algorithm, but is a problem for the theory. Thus, obtaining good theoretical results

under a weakened set of assumptions is an important task for further research.
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