
NISTIR 4894Applied and

Computational

Mathematics

Division

Computing and Applied Mathematics Laboratory

Computation of Dendrites Using

a Phase Field Model

A. A. Wheeler, B. T. Murray, and R. J. Schaefer

July 1992

Technology Administration

U.S. DEPARTMENT OF COMMERCE
National Institute of Standards and Technology

Gaithersburg, MD 20899





Computation of Dendrites Using
a Phase Field Model

A. A. Wheeler
B. T. Murray
R. J. Schaefer

U.S. DEPARTMENT OF COMMERCE
Technology Adnninistration

National Institute of Standards

and Technology

Computing and Applied Mathematics Laboratory

Applied and Computational Mathematics Division

Gaithersburg, MD 20899

July 1992

U.S. DEPARTMENT OF COMMERCE
Barbara Hackman Franklin, Secretary

TECHNOLOGY ADMINISTRATION
Robert M. White, Under Secretary for Technology

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
John W. Lyons, Director



'O'
.

*: .v -u.

‘(^ ' 'H ^'^>^'

:'

'"'/Uiii:' .

'
i it ‘/'Vini

'

^ ’"'

. 1*;
_

.'.!l|^

^ ..^J

.,;r-
.;e».

f;..

P**

f- iSiXf-

.:h

0 " 0?^,, -v

-lA'

’><?

;>

.^,i-

%::i /' ,

,'

' >3i .i :0 i-Mf-

'..=^ifc.

. y^A' :..!,

\ "

ki;.n> >fi

* ’?

##
‘ • '

t‘

, ‘Kj 'j..,'

. iii-. Jr
^‘'''-

•It.')*’



Computation of Dendrites Using

a Phase Field Model

A. A. Wheeler* B. T. Murray and R. J. Schaefer

National Institute of Standards and Technology ^

Gaithersburg, MD 20899 USA

Abstract

A phase field model is used to numerically simulate the sohdification of a pure

material. We employ it to compute growth into an undercooled liquid for a one-

dimensional spherically symmetric geometry and a planar two-dimensional rectan-

gular region. The phase field model equations are solved using finite difference

techniques on a uniform mesh. For the growth of a sphere, the solutions from the

phase field equations for sufficiently small interface widths are in good agreement

with a numerical solution to the classical sharp interface model obtained using a

Green’s function approach. In two dimensions, we simulate dendritic growth of

nickel with four-fold anisotropy and investigate the effect of the level of anisotropy

on the growth of a dendrite. The quantitative behavior of the phase field model is

evaluated for varying interface thickness and spatial and temporal resolution. We
find quantitatively that the results depend on the interface thickness and with the

simple numerical scheme employed it is not practical to do computations with an

interface that is sufficiently thin for the numerical solution to accurately represent

a sharp interface model. However, even with a relatively thick interface the re-

sults from the phase field model show many of the features of dendritic growth and

they are in surprisingly good quantitative agreement with the Ivantsov solution and

microscopic solvability theory.

’Permanent address: School of Mathematics, University of Bristol, Bristol BS8 ITW, U.K.

^Technology Administration, U.S. Department of Commerce, Washington D.C.

1



1. Introduction

Recently Kobayashi [1], [2], [3] reported computations of the unsteady phase field equa-

tions in two and three spatial dimensions, which clearly showed the evolution of sohd

dendritic structures into an undercooled melt. Other reahstic features of dendritic growth

were also exhibited in these computations, such as tertiary side arm formation, side arm

coarsening well away from the dendrite tip, and the inclusion of hquid droplets in the

sohd phase. This, to our knowledge, is the first time that a computation of solidification

has been able to show dendritic growth with the above features. Kobayashi ’s work is a

qualitative demonstration of the possible utihty of phase field models of solidification as a

computational tool for modehng comphcated, realistic solid/liquid interfaces. However, he

did not systematically investigate such important issues as the accuracy of his numerical

solutions, their relation to the various classical formulations of solidification, such as the

Stefan problem, or whether his simulations were conducted in a parameter regime that

corresponded to reahstic growth conditions of an actual material.

It is the focus of this paper to address these issues, and critically assess phase field

models as a viable computational technique. We go on to compare the results of our com-

putations of dendritic growth using a phase field model with current theories of dendrite

tip selection, in particular, the Ivantsov solution, marginal stability theory, and micro-

scopic solvabihty theory. We also address the issue of side arm formation. In contrast to

Kobayashi, our work represents a quantitative evaluation of phase field models, as weU as

the theories of dendrite tip selection mentioned above.

Phase field models of solidification, since their invention by Langer, see [4], following

an adaptation of the Model C proposed by Halperin et al. [5], and also independently

by Collins and Levine [6], have been subject to development and rigorous mathematical

analysis by Caginalp [7], [8]. Only recently has computer technology advanced sufficiently

that it is now possible to numerically integrate the unsteady phase field equations, in real-

istic configurations. An early computation is due to Smith [9], and more recently accurate

calculations in one spatial dimension have been obtained by Caginalp and Socolovsky [10]
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and Lowen et al. [11]. The advantage of the phase field formulation of soHdification,

which is described in section 2, is that no distinction is made between the sohd, hquid

and interface. This allows the whole domain to be treated in the same way numerically;

the interface is not tracked but given implicitly by the level set of a scalar function of

time and space, the so-called phase field. In essence, the classical formulation of a free

boundary problem is replaced by a pair of nonlinear reaction-diffusion equations for the

temperature and phase field. This approach allows the computation of reahstic compli-

cated interfacial structures whose connectedness changes in time. Numerical treatments

of free boundary problems, using boundary integral or domain transformation methods

encounter great difficulties in these situations.

Experiments on the free growth of dendrites by, for example, Glicksman et al. [12],

show that the dendrite tip selects an operating state, as characterized by the tip velocity,

u, and radius of curvature, r, dependent on the undercooling of the melt, AT. Ivantsov’s

theory [13] provides a local model of a dendrite tip, which is represented by a parabola,

solidifying with constant velocity into an infinite melt. This theory determines the Peclet

number, V = 2ur//c, as a function of the undercoohng parameter, A = cATIL, where c

is the specific heat, /c is the thermal diffusivity, and L is the latent heat per unit volume.

Another independent relation between v and r is required to determine them uniquely.

A resolution of this indeterminacy was sought by introducing surface energy into the

theory, which introduces an additional length scale, do = cr j L., the capillary length into the

problem, where a is the surface energy. This approach resulted in marginal stability theory,

originally due to Oldfield [14], which predicts the other relation to be C7* (= 2/cdo/ur^) =

0.0192. This theory is ad hoc and based on the notion that the tip exists in a state of

marginal stability related to the critical radius for growth of a sohd sphere or cylinder into

an undercooled melt.

In contrast, an alternate mathematical treatment incorporating the surface energy is

known as microscopic solvabihty theory. It is reviewed by Kessler et al. [15] and Pomeau

and Ben Amar [16]. This theory indicates that surface energy in itself is not sufficient,

but that anisotropy of surface energy is required to achieve a steady stable tip, and cr* =
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as 7 —> 0
,
where 7 is the surface tension anisotropy parameter, defined in two-

dimensions by cr oc H-7Cos(fc^), where 0 is the angle of the interface to a given direction and

k is an integer that characterizes the symmetry of the crystal. Unfortunately, the physical

basis for this is unclear, the theory relying on sophisticated formal asymptotic methods. To

date, to our knowledge, there is scant independent confirmation of microscopic solvabihty

theory against numerical simulation or experiments. Meiron [17] showed from a numerical

boundary integral formulation, that anisotropy is necessary for stable, steady growth of

the tip of a needle crystal. Saito et al. [18] conducted a numerical simulation on a quasi-

steady model using a Greens function technique, and were able to roughly confirm the

predictions of the theory. Experimental confirmation, the ultimate test of such a theory,

is much less conclusive. This is because the anisotropy in the surface energy of most

materials is difficult to measure and thus unknown. Also microscopic solvability theory

is most weU-developed for two dimensions, but experimentally dendrites are usually three

dimensional. Ben Amar [19] has shown that by choosing the best value of the anisotropy

parameter the experimental results of WilLnecker et al. [20] could be adequately described

over a wide range of values of the dimensionless undercoofing parameter. However, careful

experiments on pivahc acid, camphene and succinonitrile by Rubinstein and Glicksman

[
21

], [
22

]
do not support microscopic solvabihty theory, in particular, they do not confirm

the dependence a* = as 7 —> 0 .

In section 2 we briefly introduce a new phase field model for sofidification based on an

entropy functional formulation. In section 3 we describe the results of our numerical inte-

gration of the phase field equations in a spherically symmetric geometry, and quantitatively

compare our results to an accurate numerical solution of the corresponding free-boundary

problem based on a Greens function technique due to Schaefer and GHcksman [23]. In

section 4, we describe the numerical method used to solve the unsteady phase field equa-

tions in a planar two dimensional geometry and make a quantitative assessment of it. We

compare our results to both microscopic solvability theory and marginal stability theory,

as weU as discuss side-arm formation.

Our results in the case of the sphericaUy symmetric geometry indicate that the nu-
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merical solution of the phase field equations converge to the results of the corresponding

free-boundary problem as the interface thickness is reduced providing that the interface is

adequately resolved. In two-dimensional planar geometry, the validation of the numerical

solution of the phase field equations is much more difficult to perform. This is because

adequate resolution of the interfacial layer in a realistic parameter range is difficult to

achieve. Quahtatively, our numerical solutions show dendrite formation for growth into

an undercooled melt, and show the importance of the level of surface tension anisotropy.

We find reasonable quantitative agreement to the Ivantsov solution and to microscopic

solvabihty theory for a fixed value of the interface thickness; however, we show that the

results are dependent on the interface thickness. This, we believe, provides the main obsta-

cle to the use of phase field methods for the accurate computation of complex solid/hquid

interfaces for realistic growth configurations in more than one space dimension. Never-

theless, the phase field method produces many of the quafitative features observed in real

crystal growth, and with further development of the numerical solution techniques may

provide the best approach for simulating dendritic growth.

2. The Governing Equations

Phase field models of the solidification of a pure material are based on a Landau-Ginzberg

free-energy functional:

-L mT)+-{v^Y d^l,
(
1
)

where Q is the region occupied by the system, (/>(x,t) is the phase-field, T(x, t) is the

temperature and e is a parameter which is constant for an isotropic material. The free-

energy density f[(j>^T) is a double well with respect to (j). Various choices for the precise

form of / have been suggested, the most studied of which is

(2)

where a is a positive constant, and Tm is the melting temperature of the material. The

sohd and liquid phases are represented by
(f)

in the neighborhood of —1 and +1 respectively.
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An alternative choice for f has been proposed by Kobayashi [2]:

fi<P,T) = W \-0[T-TM])dC, (3)
Jo

where 14^ is a constant and /5 is a monotonic function of T — Tm, with \/3\ < 1/2 and

/5(0) = 0. This choice has the advantage over Eq. (2) that the liquid and solid states are

represented by exactly equal to zero and unity respectively.

In both cases the free energy Eq. (1) is used to derive a kinetic equation for the phase

field by requiring that it evolves in a manner such that total free energy T decreases

monotonicaUy in time. The simplest choice is made consistent with this requirement:

(4)

To this is appended the heat equation modified to take account of the liberation of latent

heat, by the inclusion of an appropriate source term:

dT
(5)

which provides an equation for the temperature, where A" is a constant proportional to the

latent heat per unit volume. Typically, Eq. (5) is not derived from basic thermodynamic

principles with specific consideration of the form of the free-energy functional Eq. (1),

so it is not clear that the solution of the equations Eq. (4) and Eq. (5) will ensure that

J- is monotonic decreasing in time. Penrose and Fife [24] have addressed this question

by employing the appropriate thermodynamic potential to this non-isothermal situation,

namely an entropy functional. From this they derived, in a consistent manner, the phase

field equations when the free energy density is given by Eq. (2). To our knowledge, the

phase field model based on the free energy density given by Eq. (3) has not been placed

in a consistent thermodynamic setting in the same way. However, this free energy has the

advantage that, because the two states, sohd and Hquid, are given by fixed values of (/>,

0 and 1, the latent heat released through the source term in the modified heat Eq. (5) is

correctly accounted for in a numerical computation of the phase field equations given by

Eq. (4) and Eq. (5). This is not true with the choice for / given by Eq. (2) as the values

of (/) representing the sohd and hquid states depend upon e, T and a.
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Another phase field model which combines the advantages of both the above models,

that is, one that is thermodynamically consistent and represents the sohd by ^ = 0 and

the hquid by = 1, has been suggested and is discussed at length in [25 1. This new

model results in the following dimensionless governing equations for the phase field and

temperature:

0 — - + 30eQ:Au^(l — (j))

,

1 ^2

(6)

(7)

where p(^) = (/5>^(10 — 15<^ + and prime denotes differentiation. The solution of these

model equations results in the total dimensionless entropy of the system <S, given by

/Jci 44’, y-)
-

(
8

)

increasing monotonically in time, with the dimensionless entropy density given by

44,u)=
f [<(1-C)(C- l) + iaAup'{Q]dC (9)
Jo

Here, length has been scaled on some reference length scale w of say the dimensions

of the domain, time on the corresponding thermal diffusion time where k, is the

thermal diffusivity, and temperature by putting T = Tm + ATu, where AT is a reference

temperature difference (such as, between the melting temperature and the temperature at

the boundary of the domain).

The present phase field model is characterized by four dimensionless parameters. The

parameter A is the dimensionless undercooling, defined as

cAT
A =

L (
10

)

where c is the specific heat and L is the latent heat per unit volume. In [25], it is shown how

the remaining three constants are related to the physical parameters which characterize

the interface dynamics (i.e., interfacial energy, cj, and mobility, /z) and to an estimate of

the interface thickness, <f, which is a consequence of the phase field approach; the following

definitions relate the remaining model parameters to the physical constants:

V2wP
a =

12caTM ’
(
11

)
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(
12

)
m =

kL

and

w (13)

Once the characteristic length scale w has been chosen, knowledge of the physical prop-

erties leaves one degree of freedom, namely e, which then is used to set the interface

thickness. It is expected that in order to model the physical behavior correctly, the in-

terface thickness must be sufficiently small compared to the interfacial macrostructures

that we wish to model; however, from a computational viewpoint, it is desirable for the

interface thickness to be as large as possible in order that accurate solution of the phase

field equations can be obtained for practical computational effort. This is one of the key

issues to be addressed by the computations presented here.

From Eq. (13) it is clear that the hmit e —^ 0 corresponds to the interfacial thickness

tending to zero. Specifically, in [25] we show that if we take the hmit e —^ 0, where

the constants a and m defined above are assumed to be order one, we recover the sharp

interface model to leading order

du

dr
= (14)

with interfacial boundary conditions

du

dn

liquid

solid
a""

V,

nj

u = -r(— + /C),m

(15)

(16)

where T = crTm/{wLAT) is the dimensionless capillary length, Vn is the dimensionless

normal velocity of the interface (into the hquid) and JC is the curvature. The conservation

of heat across the soHd-liquid interface allowing for latent heat production is represented

by Eq. (15) and the Gibbs-Thomson equation modified to account for interface kinetics

by Eq. (16).
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3. The Growth Of A Sphere

Our first test of the phase field model is to compare it to an accurate numerical solution

of the growth of a sphere into an undercooled melt originally described in Schaefer and

Glicksman [23]. The growth of the sphere is strongly influenced by curvature, kinetic, and

heat flow effects, thus providing the ingredients for a severe test of the correspondence

between sharp interface and phase field descriptions in the limit e —> 0.

Schaefer and Glicksman [23] solved the sharp interface problem Eq. (14), Eq. (15),

and Eq. (16), recovered in the Hmit e —> 0 in a spherically symmetric geometry using

a Greens function method. We have used the same technique here modifying slightly

their normahzation to be consistent with that we use here in the phase field model. The

initial data corresponded to a solid sphere of radius po chosen to be 10% greater than the

equilibrium radius p*

.

In our non-dimensionalization, we choose p* as the reference length

scale ly, and AT to be equal to the undercooHng (taken to be positive). Thus, initially

we set u = —1 everywhere. The dimensionless equihbrium radius is given from Eq. (16)

as p* = 1/(3\/2q;A), and because we choose p* — \ this gives a = l/(3\/2 A). Also, we

introduce the parameter

PlcfTm

2k,L ’

which represents the mobihty of the interface and is the same dimensionless group em-

ployed in [23], and we note that m = 2^. The nondimensional boundary condition for the

interfacial temperature Eq. (16) is given in terms of ^ as

dp

dr
-4^ (18)

3.1. Numerical Method For Solution Of the Sharp Interface Problem

As the sphere grows, heat is emitted from its surface at a rate proportional to the latent

heat and to the growth rate. The resulting temperature field, and in particular the surface

temperature of the growing sphere at r = /?('r), is calculated by a Green’s function integral:

= + ^
G{p,p'{r'),T,T')^dT', (19)
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where for a sphere

G{ r, r , T, T ') (
jr - r'Y \

\ 16 (t — r'Y )

— exp

The radius of the sphere is given simply by

16 (t — t'Y )
(
20

)

The numerical procedure used to increment the interface position pn and temperature

at the nth time step {r = Tn = nAr) to the n+lth time step (r^+i = + At) was as

follows:

1. Compute dp!dr at r = r^, denoted by pn, from Eq. (18).

2. Compute p^+i from Eq. (21) employing a backward difference, i.e., pn+i = pn-^PnAr.

3. Update the interfacial temperature from Eq. (19) by

i=n

u{pr,,nAr) = At p^.iG{pr„ p^,nArYAr).
t=i

An alternative quadrature formula of the Greens function integral in step 3 was also tried

using only pi_i on each time interval and was found to converge much less rapidly. For the

conditions considered in this paper, calculations were carried out using a range of values

of the time step. It was found that for time steps smaller than a value, which depends on

A and the results agreed within 0.1%.

3.2. Numerical Method For The Phase Field Model

We assume that initially the temperature is everywhere uniform at u = —1. We employed

a finite difference scheme to solve the phase field equations Eq. (6) and Eq. (7) expressed

in a spherically symmetric geometry in which the sole spatial variable is r, the radial

distance. Second-order central differences were used to discretize the Laplacian operator

on a uniform spatial mesh for the domain 0 < r < R, with AT-f 1 nodes. Unhke the Greens

function approach described above the phase field computation requires a finite domain
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and thus we must be careful in choosing appropriate outer boundary conditions a-t r = R.

We chose them to be

du

dr

li + 1

R
= 0

,
and

d(l)

dr
= 0 at r = J?,

(
22

)

which is consistent with assuming a quasi-static approximation for the heat diffusion equa-

tion in the far field. The phase field is simply equal to unity in the far field. At the origin

the coordinate singularity in the Laplacian operator was avoided by employing a local

form for the solution as described in Smith [9] and Neumann boundary conditions. The

solution was advanced in time using a second-order Crank-Nicholson scheme for the Lapla-

cian terms and a backward difference for the latent heat production term in the modified

heat equation. Specifically, the solution was advanced a single time step in the following

manner:

1. Update the phase field by solving the tridiagonal system,

2. Update the temperature by solving the tridiagonal system.

Here and are the discrete approximations to ^ and u, etc represent the tridi-

agonal matrices that result from the temporal-spatial discretization,

and !,($-) - The computations were conducted on a Cray-YMP and the

solution of the tridiagonal systems was conducted using the Cray library routine TRID

which employs cyclic reduction. The code was well vectorized and achieved in excess of

200 MFLOPS on a single processor.

3.3. Comparison of the Two Methods

We conducted calculations using both methods for an undercooling of 0.5 and two different

values of the mobility, ( = 0.05 and 1.0. The most comprehensive set of computations
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was conducted for = 1.0. For this case in conducting the computations on the phase

field model, we used five different values of e (0.1, 0.075, 0.05, 0.02 and 0.01) and five

different grids with mesh spacings Ar (0.001,0.002,0.01,0.02 and 0.1) for each value of e.

The time step was taken to be lO""^. It was found that there was a critical value of the

time step, that was apparently insensitive to the mesh size, above which the numerical

scheme was unstable, despite the impficit discretization of the diffusion operator. We

ascribe this to the explicit discretization of the source term^ in the phase field and heat

equation. It was found that invoking the outer boundary condition at r = 10 was sufficient

for approximating an unbounded domain.

For the case ( = 0.05, which is a more reahstic value for a supercooled pure metal,

calculations were only performed on the phase field model for e = 0.01, with Ar = 0.05,

and At = 10“^, for which we were able to obtain excellent agreement with the numerically

computed solution of the classical formulation, but with the outer boundary placed further

away at r = 20. We attribute this to the increased communication by the temperature

field to the far-field in this case of a lower interfacial mobihty w_. 'e the interface motion

is relatively sluggish relative to the thermal diffusion time. Henceforth, we restrict our

discussion to the case = 1.0.

On the finest grids excellent agreement was obtained between the two procedures as

shown in Figure 1 for Ar = 0.001 and e = 0.01. It was found that the numerical solution

exhibited a temporal oscillation when the mesh was too coarse. In all except one of these

cases the breakdown corresponded to values of e/Ar (a measure of the resolution of the

interface by the computational mesh) less than or equal to unity. In particular, for a fixed

value of e, on increasing the mesh spacing the numerical instabihty first manifested itself

as a significant oscillation in the interface velocity; at larger values of Ar it was apparent

as a significant oscillation in the surface temperature also. These observations broadly

confirm the suggestion by Osher [26] and Caginalp and Socolovsky [10] that the numerical

solution of the phase field equations by a finite difference method on a uniform mesh could

be expected to breakdown for Ar > e.

We now discuss the solutions computed on sufficiently fine meshes for which the numer-
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Position, r

Figure 1: Tlie solid curves (from bottom to top) are the temperature at times r = 1.25,

2.5, 3.75, . .
.

,

11.25, as a function of the radial coordinate, computed from the phase field

model for the case e = 0.01, A = 0.5 and ^ = 1.0. The dashed curve represents the locus

of the interface (j) = 0.5 and the almost coincident solid circles are taken from the Greens

function solution at the corresponding time levels.
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At e =0.01 e =0.02 e =0.05 e = 0.075 e = 0.1

0.001 1.520 -0.7502 -3.347 -5.213 -7.058

0.002 1.504 -0.7540 -3.347 -5.213 -7.058

0.01 1.009 -0.8753 -3.361 -5.2173 -7.060

0.02 92.44 - 1.2452 -3.404 -5.2300 -7.063

0.1 91.49 9.149 -3.086 -5.6091 -7.063
1

Table 1: The relative difference in the surface temperature calculated by the two methods

over an interval of 12 time units expressed as a percentage. The entries in italics indicate

that the solution was subject to a numerical oscillatory instabiHty. Those in bold were

employed in the curve fitting discussed in section 3.3; in particular, the emboldened entries

in the columns were fitted as —0.748337 — 0.00153s — 0.52s^, for e = 0.02; —3.34638 —

0.000375s - 0.36s2, for i = 0.05; 5.21304 - 0.00462s - 0.22s2, for i = 0.075; -7.05878 -

0.0330495s + 0.284232s^, for e = 0.1, where s = Ar/e.

ical oscillation was not present. We found the best agreement in the interface temperature

between the two methods was obtained when it was expressed as a function of the in-

terface position, the disparity being insensitive to e/Ar (in the phase field formulation

the interface position was defined to be given by = 1/2)- The interface temperature

as a function of interface position is controlled largely by heat flow, and this excellent

agreement indicates that our scheme provides a good solution of the heat equation. How-

ever, the agreement between the two methods for the interface temperature Ui (as well

as its position p and velocity p), expressed as a function of time depended much more

strongly on the values e and Ar. In particular, the disparity between the two numerical

methods increased monotonically with time. This distinction between the errors in the

interface temperature expressed as a function of time or position is illustrated in Figure

2 for e
—

0.1. The central dashed line indicates the interface temperature as a function

of position, as computed by the phase field method. This curve is almost coincident with

the solid circles which represent the same quantity but obtained from the Greens function

method. However, each solid circle is not coincident with the interface temperature for

the corresponding time level, thus indicating a considerable disparity in the two methods

when the interfacial temperatures are compared as a function of time.
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Position, r

Figure 2: The solid curves (from bottom to top) are the temperature at times r = 1.25,

2.5, 3.75, . .
.

,

11.25, as a function of the radial coordinate, computed from the phase field

model for the case e = 0.1, A = 0.5 and { = 1.0. The dashed curves are the locus of (from

left to right) cj) = 0.1, (j)
= 0.5 and (j)

= 0.9. The solid circles represent the locus of interface

temperatures computed from the Greens function solution; each sofid circle corresponds

to the same time levels as the solid curves, and the time levels increase upwards.
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A summary of the errors between the two methods is given Table 1, where the error

between the two techniques in the interface temperature (averaged as a function of time

over the computational time interval of 12 time units) is tabulated in terms of the mesh

spacing and e. The itaHcized entries indicate an unstable numerical solution, as discussed

above. The variation in the errors of p and p showed similar behavior to the interface

temperature. For a fixed value of the mesh spacing the error between the two techniques

decreases as e decreases, except for the case of reduction of e from 2x10“^ to the smallest

value 10“^. This we attribute to the error between the exact phase field solution and

the classical solution being sufficiently small for e = 0.01 that it is comparable to the

numerical errors in the Greens function solution of the classical problem, as weU as the

errors in the quadrature formula (with a time step of 0.05) used to compute the average

surface temperature from the numerically computed phase field solution. Linear regression

of the errors against e for fixed values of Ar show the error between the numerical solution

of two different formulations to be first order, i.e., oc Ae, where the constant A was found to

be 78.6,78.56,77.13,73.32 for Ar = 0.001,0.002,0.01,0.02, respectively. The convergence

with i is therefore insensitive to the mesh size (assuming that numerical instabihty is not

present). It also confirms the asymptotic theory of the phase field equations in the limit

e —> 0 by Caginalp [8] which indicates that their solution approaches the sharp interface

solution in this limit. This strong hnear dependence of the error on e for a fixed mesh

allows the application of accelerated convergence techniques, such as Richardsons method,

to the phase-field equations.

With the value of e fixed the errors decreased as the mesh spacing was refined, albeit

very slowly. There was one exception to this for e = 0.01, where regression of the errors

with respect to Ar indicates that this is not so. This we attribute, as discussed above,

to comparable errors associated with the Greens function technique and the quadrature

formula used when i is sufficiently small. We fitted a quadratic polynomial to the errors

as a function oi s = Ar/e for e = 0.02, 0.05, 0.075 and 1.0. The values of the coefficients

are given in Table 1 and show that the convergence is predominantly quadratic; however,

the coefficients do depend on e.
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In summary, these calculations reveal that a numerical instability occurs when either

the time step exceeds a critical value, which is independent of the mesh size, or the mesh

spacing is approximately greater than or equal to e. The optimum value of Ar is given by

Ar ^ e because the error is not significantly reduced by using a finer mesh compared to

the consequent increase in processor time. The errors themselves appear to be 0{e) and

dependent only weakly on the mesh spacing provided Ar < e.

4. Two-Dimensional Calculations

In addition to the spherically symmetric calculations previously described, a series of two-

dimensional numerical calculations are performed in order to further evaluate the present

phase field model. The primary objective is to evaluate the behavior of the given phase field

model for reahstic physical parameter values, i.e., evaluate how well the diffuse interface

model reproduces the essential physical mechanisms, and investigate the feasibility of

accurate numerical simulations of unconstrained solidification of a pure material in an

undercooled melt.

For the two-dimensional calculations, the phase field equation given by Eq. (6) is

modified to include anisotropy in the parameter e, where the anisotropy is assumed to

have the form

e(^) = eT){9) = e(l + 7 cos kO).

The angle 6 is defined as the angle between the normal to the interface and the x-axis,

and k specifies the mode number. Evaluating the variational derivative of Eq. (1) after

including the variation of e with orientation yields a modified version of Eq. (6):

dcf)

(f>

— - + 30eaAu(^(l — <^)
— e

-2

dx
ivWv'iS)

dy.

(r?^(e)V^)|
.

(23)

In the phase field model, the interface is represented by level sets of (j). In order to compute

the anisotropic behavior, the orientation angle is determined in terms of the phase field cj)
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using the following relation for the normal vector:

iv^l

From this expression we have the definition

n = = cos 9x + sin dy.

tan^ = —

,

and, in addition, we obtain

n 4^x4^xy 4’y^xx
^

4^y4^xy

\V(j)\^
’

''''

These relations are used to compute the terms in Eq. (23) which arise from expanding the

derivatives of e{6).

It is shown in [27] that the only modification to the free boundary problem Eq. (14) to

Eq. (16), obtained in the limit i ^ 0, is to the modified Gibbs-Thomson equation which

becomes

We note that allowing e to depend on 9 modifies both the interface kinetic and curvature

terms. It is shown in [27] that the latter is the same as that obtained from sharp interface

models where the surface energy depends on the interface orientation.

For the two-dimensional simulations, symmetry conditions (vanishing Neumann con-

ditions for both (j) and u) are applied at the boundaries of the rectangular domain, which

has scaled dimensions of Xl and Yl in the x and y coordinate directions, respectively.

We note that the results presented here for the temperature and phase field are displayed

after reflecting the computational domain about the hne y = 0, which corresponds to the

axis of the dendrite. From the chosen definition of the dimensionless variables, the value

u = 0 corresponds to the melting temperature of the pure material, while u = —1 is the

undercooling temperature (the dimensional undercooling is AT). Initially for each calcu-

lation, a small region of solid (u = 0) is located at the x = 0, y = 0 corner of the domain,

and the remainder of the domain is undercooled liquid (u = ~1)- The shape of the initial
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solid region is either one-quarter of a circle with an initial radius denoted by or one-

quarter of an elhpse with semi-minor axis i/o and semi-major axis Xo- Either continuous

initial conditions, for which the values of
(f)
and u change smoothly over a thin region, or

discontinuous conditions were used in the computations. For the results presented, the

long-time behavior of the solutions is insensitive to the type of initial conditions assumed.

The two-dimensional simulations were performed using property values for pure nickel.

The values for the required material parameters are: a = 3.7x10“^ J/ cm^, = 1728 K,

L = 2350 J/ cm^, c = 5.42 J/ K cm^, /c = 0.155 cm^/s, and /x = 285 cm/K s. Except

for the kinetic coefficient, /i, these property values for nickel are readily available (see

[28]). The value for the kinetic coefficient lies in the range of estimated values and was

chosen here partly from consideration of the numerical values of the dimensionless model

parameters.

In order to completely determine the dimensionless parameters given by Eq. (11) -

Eq. (13), we must choose values for the reference length, u;, and the interface thickness

6. The choice of these parameters is based on the physical structure we wish to compute

and the practical Hmitations of accurately resolving gradients within the interfacial region

for a desired computational domain of size Xl and Yl- For the simulation of dendritic

growth, we choose to relate 8 and w to an estimate of the dendrite tip radius. Clearly,

we would expect that 8 must be much smaller than the tip radius of the dendrite and

that the domain must be many times larger than the tip radius to simulate the growth

and development of the dendrite. In order to begin the calculations, we estimated the

dendrite tip radius based on marginal stability theory [14] for a given value of undercoohng,

represented nondimensionally here by A. The computations are facihtated by lower values

of A (large values of undercooling, AT), because the dendrite grows faster and encompasses

a larger portion of the computational domain. Values of A in the range of 0.4-0. 5 are used

here. A dimensionless undercoohng of A = 0.5 corresponds to an actual undercoohng of

217 K for nickel, which is an attainable level of undercoohng [20]. For an undercoohng

corresponding to A = 0.5, marginal stabihty gives an estimated value for the tip radius

of 1.7 X 10~^ cm. Based on some prehminary computational experiments to determine
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how the interface thickness and the size of the domain should be chosen in relation to

the tip radius, we obtained the parameter value a — 400 in the definition Eq. (11). For

the physical parameters of nickel given above, this yields a value for the length scale

w = 2.1 X 10 cm; the dimensionless parameter m has the value 0.05 for nickel.

With the parameters a and m specified, the parameter e was used in the computations

to vary the thickness of the interface. The computational resolution was determined by

the extent of the domain chosen [Xl and Yl) and the number of grid points used in the

discretization of the domain. We performed computations with e equal to 0.005, 0.0033,

and 0.0025, but for the majority of the simulations of dendritic growth into an undercooled

liquid we used the value e = 0.005.

4.1. Numerical Method

One of the clear advantages of the phase field model is that the location of the solid/hquid

interface does not have to be determined expHcitly. However, accurate numerical solutions

to the phase field equations require that gradients of the field variables be adequately

resolved over the thin interfacial region. Our objective is to evaluate the behavior of the

phase field model presented here by simulating the growth of a two-dimensional dendrite

into an undercooled liquid. In order to perform the simulation, the governing equations

are solved numerically in a two-dimensional rectangular domain of sufficient size to allow

for the development of characteristic dendritic structure (e.g., side arms). Even with the

phase field approach, an optimum solution procedure should employ some type of adaptive

technique, particularly for the phase variable, since the solution varies over such a small

part of the domain. Since our interest is primarily to evaluate the model itself, we have

chosen to use straightforward finite difference solution techniques applied on a uniform

computational grid. An advantage of this approach is that the numerical implementation

of such techniques is quite simple and it is easy to take full advantage of highly vectorized

large-scale computers.

The governing equations given by Eq. (7) and Eq. (23) are a pair of coupled, second-
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order, nonlinear parabolic equations. They are discretized spatially using second-order

finite differences on a uniform grid characterized by mesh spacings AX and AF in the

X and y coordinate directions, respectively; for the temporal discretization we introduce

the time step At. In order to maximize the computational efficiency, we employ explicit

time-differencing on the (j) equation which is nonlinear in all terms except for the highest-

order spatial derivatives. The heat Eq. (7) is linear in the temperature u but contains the

source term depending on (j). With explicit time- differencing Eq. (7) would be subject to

a more restrictive time step requirement than Eq. (23); thus, we employ the alternating-

direction implicit method (ADI) on Eq. (7) which for the simple linear heat equation

is unconditionally stable and second-order accurate in space and time. The methods

employed here are described in many standard texts on finite difference techniques for

partial differential equations (for example, Richtmyer and Morton [29]).

For the nonhnear phase field equation with exphcit time- differencing (e.g., simple Euler,

Adams-Bashforth), the unsteady linear diffusion part of the equation is subject to the

stability restriction: At < (AX)^/(4m); however, the additional nonhnear terms in the

equation may impose a more restrictive condition on the size of the allowable time step.

The actual size of the time step was determined by numerical experimentation. Both first-

and second-order accurate explicit time differencing were evaluated for solving Eq. (23);

however, the first-order method was used to obtain the results presented here, since the

restriction on the size of the time step for the (j) equation was such that first-order accuracy

in time proved to be adequate to obtain a good balance in the spatial and temporal

truncation error.

4.2. Computation of Dendrites

Using the numerical technique described above we have sought to compute the evolution

of dendritic structures using the parameter values m = 0.05 and a = 400 which were deter-

mined from the physical properties for nickel as described previously. The dimensionless

parameters e. A, and 7 are varied in the calculations as is the size of the computational
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domain. We assume 4-fold anisotropy for all the calculations presented here so the mode

number k has the value 4.

We found that in the absence of anisotropy (7 = 0) the solid developed as an amorphous

structure in which the dendrite tips were subject to repeated tip spHtting. A typical

example of this behavior is shown in Figure 3(a). For nonzero values of the anisotropy

parameter 7, a very distinctive needle crystal formed along each coordinate direction

as a result of the four-fold symmetry of the anisotropy as shown in Figure 3(b). This

is consistent with the recent microscopic solvability theory of dendrite growth, which

indicates the importance of surface energy anisotropy, as well as calculations on local

models of solidification [15].

For smaller values of the anisotropy (7 less than approximately 0.01), the tip did not

settle down to a steady state over the period of the computation; it is not clear from

our calculations whether a steady state would have occurred on a larger computational

domain over a longer period of dimensionless time. However it is clear that anisotropy has

a profound effect on the evolution of the crystal. For values of the anisotropy parameter

10“^ < 7 < 2 X 10~^ the dendrite tip rapidly locked into a definite steady operating state

for the computational domains we employed. Unless otherwise stated aU computations

presented below for quantitative comparison with non-zero anisotropy yielded a needle

crystal.

In order to quantitatively describe dendritic growth we compute the the tip temper-

ature U, radius 5, and velocity V
(
overbars denote phase field results) for the dendrite

aligned with the x-axis in the following manner: we define the interface by the locus

(/)(a:,y,t) =1/2 and so estimate the the dendrite tip position on the x-axis, and the corre-

sponding temperature and curvature, at each time level, by linear interpolation from the

mesh. The radius of curvature of the tip was approximated at each mesh point on the

x-axis by employing the identity

^ ^4>yy

R 4>x
’

where second-order accurate finite differences were used to approximate the partial deriva-
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Figure 3: The computed phase field for parameters corresponding to nickel with e = 0.005,

A = 0.5, Xl = 4.5 and Yl = 2.25; note that the computational domain has been reflected

about the horizontal centerhne. The results show the the effect of anisotropy level:

(a) 7 = 0 and (b) 7 = 0.01. The black area is solid 0 < ^ < 0.1; the white area is the

interfacial region O.l <
(f)
< 0.9; the gray area is hquid 0.9 <

(f)
< 1.
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tives. The tip velocity was approximated at the the midpoint of each time interval by using

central differences on the dendrite tip position.

In Figure 4 we plot V, R and as a function of time. There is clearly a very well-

defined operating state for the tip over the greater part of the time interval, following an

initial transient as the tip quickly attains its operating state. The final transient is due to

the dendrite tip encountering the end of the box.

In performing the numerical computations several issues had to be addressed in order

to evaluate the behavior of the present phase field model. First, we consider the effect

of spatial mesh size and time step for a fixed set of dimensionless parameters. In Table

2, we list computed values of the interface velocity and dendrite tip radius for different

mesh spacings and time steps. We note here that the mesh spacing in each direction, AX

and Ay, are always taken to be equal to one another in all the calculations. For the finer

spatial meshes, the time step restriction of the explicit treatment of the
(f)
equation only

permitted stable numerical solutions for the smaller time step values. It is apparent from

the results that the tip velocity is more sensitive to the discretization error than the tip

radius. We note that the computation time for AX = 0.0025 and At = 2.5 x 10“^ is

16 times greater than for the case with AX = 0.005 and At = 1 x 10“^, but with only

a corresponding change of about 10 % in the numerical values. In fight of this, for the

calculation of dendrites presented below, we employ the coarser of these two meshes and

the larger of the time steps in order to adequately investigate the parameter space. In the

calculations presented here, we estimate that there are approximately nine spatial mesh

points within the interfacial region when AX = e; this level of resolution was used unless

otherwise stated. We note that in a similar computation, Kobayashi [2] employed a mesh

approximately six times coarser.

We now discuss the effect of the interface thickness on the computed results. For the

parameter values corresponding to nickel (i.e., a = 400 and m = 0.05), an interface thick-

ness (defined to be represented by (j) values between 0.1 and 0.9) corresponding to e =

0.005 was found to be the largest allowable; for e equal to 0.01, the interfacial region is

spread apart to such an extent that it no longer approximates a thin interface, while for
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Figure 4: The estimated values of the dimensionless dendrite tip velocity V, temperature

U, and radius R, against time r for the case e = 0.005, 7 = 0.015, and A = 0.4.
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At

0II<]

'A

AX = 0.005

V R(IO^)

AX = 0.003

V R(IO^)

AX = 0.0025

V H(102)

1.0 xlO-"*

5.0 xlO-^

2.5 xlO-^

4.57 7.34

4.70 7.14

4.84 7.11

5.43 6.79

5.62 6.76

5.72 6.74

5.85 6.65

5.96 6.61 6.04 6.53

Table 2; The calculated tip velocity V and tip radius R for different mesh spacings and

time steps. The results were computed for parameters e = 0.005, 7 = 0.01, A = 0.5,

a = 400, and m — 0.05 on a domain with Xl — 2.0 and Yl — 1.0.

e equal to 0.005 or smaller the interfacial region remains thin. We conducted a series of

calculations in which only the interface thickness was varied. In Table 3, we show the

dependence of the dimensionless tip velocity, radius, and temperature on the interfacial

thickness. We also list the percentage difference between the computed tip temperature

and that predicted by the modified Gibbs-Thomson condition Eq. (16) using the computed

tip velocity and radius; this provides a quantitative measure of the accuracy of the phase

field approximation to the sharp interface model Eq. (14), Eq. (15) and Eq. (24). It is

evident that the operating state of the dendrite is sensitive to the interface thickness. How-

ever, as the interface width is reduced the error in the modified Gibbs-Thomson equation is

diminished. The interface moves more slowly at thinner interface widths. Similar behavior

was observed in the spherically symmetric calculations discussed Section 3.3. It is clear

that in order to employ the phase field method as an accurate computational approach for

approximating the solution to the sharp interface model, sufficiently thin interfaces must

be taken which must be adequately resolved by the computational mesh. This we believe

is the major computational issue to be addressed in the subsequent development of the

phase field method as an accurate computational technique.

From the above discussion in order to adequately resolve the interfacial layers we

require XX — e, which for a value of e of 2.5 xl0“^ produces the smallest error obtained

in the phase field approximation. However, for the finite difference algorithm with a

uniform spatial mesh this requires an impractical amount of computing resources for the
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e V U{W^) X 100

5.0 xlO-^ 5.43 6.79 -3.86 82 %
3.3 xlO-^ 3.89 7.94 -4.32 19 %
2.5 xlO-^ 3.32 10.23 -3.90 11 %

Table 3: The calculated tip velocity V, tip radius and interface temperature U for

three values of the interface thickness. The last column is the percentage difference of the

calculated tip temperature to the temperature Ugt computed from the modified Gibbs-

Thomson Eq. (24) using the V and R values. The results were computed for parameters

7 = 0.01, A = 0.5, a = 400, and m = 0.05 on a domain with Xl = 2.0 and = 1.0; in

each case the mesh spacing was given by AX = e.

simulation of dendrite growth. The differences given in Table 3 represent a worst case and

we found that with e = 5.0 xl0“^ the error in satisfying the modified Gibbs-Thomson

equation was typically 25%. We go on to describe results of dendritic growth which must

be regarded in this context. Our aim is to further investigate the phase field model,

and, in particular, the relation of the computed dendritic solutions to existing theories of

dendrites, with which we find surprisingly good agreement.

The dimensions of the computational domain, Xl and Yl were 4.5 and 2.25, respec-

tively. Initially the solid region was an elHpse with semi-major axis Xo = 0.5 and semi-

minor axis
2/o

== 0.05; both the solid and hquid had a dimensionless temperature of —1. We

employed a mesh of 900 and 450 uniform intervals in the x and y directions respectively,

corresponding to equal mesh sizes AX = AT 0.02, with a time step At = lO""^. Simple

Euler time stepping was used to advance the solution in time. This mesh was the finest

we could practically employ consistent with doing sufficient runs to adequately cover the

(7 ,
A) parameter space.

Our first comparison is against the Ivantsov similarity solution for a parabohc interface

propagating with constant velocity in the direction of its axis of symmetry into an infinite

undercooled melt. This solution assumes that the interface temperature is constant and

equal to the melting point, and so interface surface energy and interface kinetic effects

are neglected. It predicts in two-dimensions that the Peclet number is related to the
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dimensionless undercooling A as

A = Vt?P exp('P) (25)

where V — 2vr j k. and A = c[Tm ~
^oo)/-^- Here v and r are the dimensional tip veloc-

ity and radius, Tm is the melting temperature which is equal to the isothermal interface

temperature, and Too is the far-held temperature. Our phase held model includes both

surface energy and interface kinetic effects and so the interface is consequently not isother-

mal with a temperature equal to the melting temperature. This is conhrmed in Figure 4

which shows that the dendrite tip temperature U is depressed beneath the melting point

(given as zero in our non-dimensionalization). For purposes of comparison to the Ivantsov

model, which only accounts for conservation of heat, we estimate the undercooling pa-

rameter by A = c{Ttip — Ttnit)ILj (= U + 1), where Timt is the initial temperature of

the hquid in the phase held calculations. The initial temperature Tmit is a good approx-

imation to Too in the Ivantsov model, because at the large undercooHngs we employ the

temperature gradient is weU-conhned to the vicinity of the dendrite during the period of

constant velocity tip growth. In Figure 5 we compare the Peclet numbers estimated from

our computations, V = 2RV, for different values of the dimensionless undercooling. A,

against those predicted by the Ivantsov formula, Vj{A), shown as a sohd curve. Here,

the function, Vi{A), is obtained by inverting the Ivantsov formula Eq. (25). The value

of the anisotropy parameter is 7 — 10“^. The agreement between the two is fairly good,

improving as the undercooling decreases. In Figure 6 we plot the ratio of the estimated

Peclet number to that given by the Ivantsov formula against the anisotropy parameter

for A = 0.4. We chose to plot the ratio V/Vi{A)j because the estimated undercoohng

parameter, and hence the Peclet number, predicted from the Ivantsov theory T/(A) varies

between the calculations for different anisotropy parameters. We see from Figure 6 that

the agreement to the Ivantsov theory improves as the anisotropy diminishes. It would

appear that extrapolation of the almost linear dependence of VjVi^A) to 7 = 0 would

reveal that the Ivantsov solution would not be recovered for zero anisotropy. However, as

noted above no steady solution was found for 7 < 10“^, and so it is not clear whether
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Undercooling parameter, A

Figure 5: The Peclet number from our calculations V against the estimated undercooling

parameter A for nickel. The sohd circles represent runs on the domain Xl — 4.5 and

Yl = 2.25 with mesh size 5 x 10“^; the open squares on the domain Xl = 2.0 and

Yl = 1.0 with mesh size 2.5 x 10“^. The solid curve is the prediction from the Ivantsov

formula Eq. (25).
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Figure 6: The ratio of the estimated Peclet number V to that predicted by the Ivantsov

solution Vi{K) plotted against the anisotropy parameter 7 with undercooling parameter

A = 0.4
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there is any justification for such an extrapolation. In Figure 7 we compare the results of

our computations to marginal stability theory. Marginal stabihty theory predicts that

O’" - = 0.0192. (26)
Lvr^

In this figure we plot the values of a* from our computations against the dimensionless

undercooling parameter A for the smallest value of the anisotropy parameter (7 = 10“^)

for which we obtained a well defined steady dendrite tip operating state. The sohd hori-

zontal line indicates the marginal stability result given above. The results show increasing

agreement with the marginal stability result with decreasing undercooling. The depen-

dence of a* on A is unexpected, and may be due to the inclusion of interface kinetics in the

phase-field model, which we expect to be significant at the large values of the dimensionless

undercooling used in the calculations, but which are absent in both marginal stability and

microscopic solvabihty theory. In Figure 8 we display against the anisotropy parameter

7 for a fixed value of A. The dashed line indicates the best power law fit through the data

which corresponds to a'*' oc 7^-®^®. Microscopic solvability theory predicts the exponent in

the power law to be 1.75. The data points for values of 7 in excess of 2 x 10“^ consist

of dendrites whose tip radius [R < 0 . 02
)

is well less than the interface thickness 0.2
)

and therefore we may expect these results to be less reliable. Also shown in Figure 8

as solid squares are the results of microscopic solvability theory given by Ben Amar [19]

who numerically computed the value of cr*. The level of agreement is surprisingly good,

particularly in view of the fact the we are conducting computations on a finite domain

using the phase field model with a relatively large value of the interface width which, as

we have discussed above, is not a particularly good approximation to the classical free

boundary problem obtained as e —^ 0. Moreover, this free boundary problem includes

interface kinetics which is absent in the microscopic solvability theory. In view of these

limitations, the estimated exponent provides some evidence to suggest that microscopic

solvabihty theory and the phase field model in two dimensions contain a measure of agree-

ment. The experiments conducted by Willnecker et al. [20] on the solidification of nickel

measured the dendrite tip velocity to be in the range 37 to 48 ms~^, our calculations
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Undercooling parameter, A
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Figure 7; The calculated value of a* plotted against the undercooHng parameter A. The
sohd circles represent calculations on the domain Xl = 4.5 and Yl = 2.25 with mesh

size 5 X 10~^; the open squares where computed on the domain Xl = 2.0 and Yl = l.O

with mesh size 2.5 x 10“^. The horizontal hne corresponds to the value a* = 0.0192 from

marginal stability theory.
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Figure 8: The calculated value of a* plotted against the anisotropy parameter, 7, with

undercooling parameter A = 0.4. The results were computed on the domain Xl = 4.5

and Yl = 2.25 with mesh size 5 x 10“^; the open circles represent calculations for which

a steady operating state was not obtained. The sohd squares correspond to values of a*

computed by Ben Amar [19] on the basis of microscopic solvability theory. The dashed

line is the power law fit to the solid circles.
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predict tip velocities in the range 26 to 50ms for the anisotropy parameter in the range

0.011 to 0.04. The value of 7 for most materials, including nickel, is difficult to measure

and unknown. However, despite this uncertainty in the value of 7 our calculations reveal

growth rates in the correct range, although we note that the experiments measured three

dimensional dendrites compared to our two dimensional calculations.

Finally, we use the present phase field model to simulate the development of a side-

branched dendritic structure. We found that the formation of side-branches was depen-

dent on the spatial resolution used. For spatially underresolved calculations, with ap-

proximately 3-5 mesh points within the interfacial layer, uniformly spaced side-branches

evolved. However, when the spatial resolution was increased the side-branching disap-

peared. We attribute the formation of side-branched structure on coarser meshes to the

noise associated with the larger truncation error. To investigate this further, we introduced

random noise into the phase field equation for computations on finer meshes. In particular,

we added the term AnTn into the expression in square brackets in the discretized form of

Eq. (23), where An is the amplitude of the noise and is a random number in the interval

[—0.5, 0.5]. Physically, this represents thermal noise at the interface and was also used by

Kobayashi
[
1 ]. The production of side arms was very sensitive to the noise; side arms

were stimulated for values of An as low as 2.5 xl0“^. In contrast the operating state of

the tip was insensitive to noise, the time average of the tip velocity and radius being only

very weakly affected. This provides some evidence to suggest that side arm formation is

a process distinct from the dynamics of the dendrite tip.

In Figure 9 we show a computation that displays side-branch formation. The phase

field and isotherms are shown at three different dimensionless times. In the phase field

plot, the width of the curve represents the interval 0.1 < (j) < 0.9, and thus gives an

indication of the thickness of the interface. For this computation, we again employed the

parameter values corresponding to nickel used throughout this study. For the simulation

the domain has dimensions Xl = 6.75 and Yl = 3.375. The mesh spacing was AX =

AY = 0.075, and the time step was At = 5.0 xl0“^. The computation starts from an

elliptical solid region with semi-major axis Xq = 0.15 and semi-minor axis 7/0 = 0.075. The
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dimensionless parameters are e = 0.005, 7 = 0.01, and A = 0.5.

5. Conclusions

We have conducted an extensive detailed study of the phase field method as a computa-

tional procedure for the solution of free boundary problems associated with sohdification,

and in particular dendritic interfaces. On the basis of the simple finite difference methods

employed here we find that in simple one dimensional geometries accurate solutions can

be obtained. However, in more reahstic two dimensional geometries accurate computa-

tions require interfaces so thin that the need to accurately resolve them require computing

resources at the limit of current computer technology. However, less accurate computa-

tions on thicker interfaces provides surprisingly good quantitative agreement with both

the Ivantsov and microscopic solvability theories of dendrite tip growth. Side branch for-

mation in these computations is caused by the introduction of very small amplitude noise,

which leaves the operating state of the dendrite tip largely unaffected.

Because of the need to use very fine interface thicknesses we beheve that further use

of the phase field model as an accurate computational tool for the computation of two

and three dimensional sohd shapes wiU require more sophisticated numerical algorithms,

possibly employing adaptive finite element techniques.
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Figure 9: A simulation of a nickel dendrite with the phase field (on the left) and the

temperature field (on the right) shown at three different dimensionless times (r). The

dimensionless parameters are e = 0.005, 7 = 0.01, and A = 0.5. Random noise with a

one-percent amphtude was introduced into the calculation to stimulate the development of

the side-branched structure. The computational domain was reflected about the horizontal

centerhne.
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