
TOPOLOGICAL SEPARATION
VERSUS WEIGHT SHARING
IN NEURAL NET OPTIMIZATION

0. M. Omidvar
C. L. Wilson

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Advanced Systems Division

Image Recognition Group

Gaithersburg, MD 20899

^c—
100

.056

1992

C.2

NIST





NISTIR 4893

TOPOLOGICAL SEPARATION
VERSUS WEIGHT SHARING
IN NEURAL NET OPTIMIZATION

0. M. Omidvar
C. L. Wilson

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Advanced Systems Division

Image Recognition Group

Gaithersburg, MD 20899

July 1992

U.S. DEPARTMENT OF COMMERCE
Barbara Hackman Franklin, Secretary

TECHNOLOGY ADMINISTRATION
Robert M. White, Linder Secretary for Technology

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
John W. Lyons, Director





TOPOLOGICAL SEPARATION VERSUS WEIGHT
SHARING IN NEURAL NET OPTIMIZATION

O. M. Omidvar, University of the District of Columbia

Washington, DC 20008

C L. Wilson, National Institute of Standards and Technology

Gaithersburg, MD 20899

Abstract

Recent advances in neural networks application development for real life problems have

drawn attention to network optimization. Most of the known optimization methods rely

heavily on a weight sharing concept for pattern separation and recognition. The shortcoming

of the weight sharing method is attributed to a large number of extraneous weights which

play a minimal role in pattern separation and recognition. Our experiments have shown that

up to 97% of the connections in the network can be eliminated with little or no change in

the network performance.

Topological separation should be used when the size of the network is large enough to

tackle real life problems such as fingerprint classification. Our research has focused on the

network topology by changing the number of connections as secondary method of optimiza-

tion. Our findings indicate that for large networks, topological separation yields smaller

network size that is more suitable for VLSI implementation. Topological separation is based

on the error surface and information content of the network. As such it is an economical

way of size reduction which leads to overall optimization. The differential pruning of the

connections is based on the weight contents rather than number of connections. The training

error may vary with the topological dynamics but the correlation between the error surface

and recognition rate decreases to a minimum. Topological separation reduces the size of the

network by changing its architecture without degrading its performance.

1 Introduction

Neural net optimization research has achieved some success for real life problems. The focus of

this effort has been on error minimization. A standard method of optimization for real world

problems is weight sharing [1]. The weight sharing method increases the redundancy of the

network while reducing the Vapnick-Chervonenkis (VC) dimension [2]. Weight sharing lowers

the network capacity and decreases the network entropy. The increase in redundancy and

decrease in network entropy lead to larger size networks with minimal information capacity.

A very large training set is needed to train such a network. Even after the training the

network will not be stable and the generalization power of the network can not be estimated.
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The optimization strategy used in this reseaxch focuses on information content and the

quality of information represented in the network. This results in a smaller network with a

very high information content that allows the use of a reasonably small training set. We have

also done the topological separation to verify that the method is successful for networks with

different number of neurons in the hidden layer. The information content for topologically

equivalent networks is basically the same and the change in the number of neurons in the

hidden layer has little or no effect in the information content and the generalization power

of the optimized network [3].

We have used the Boltzmann method as a secondary method of optimization to prune the

networks used here. This method has been applied to both supervised and self organizing

networks [4]. The method can be used in conjunction with a primary method of optimization

such as Scaled Conjugate Gradient scheme [5]. The residting optimized network has been

used for both fingerprint and handwritten character recognition. The recognition system

is briefly described. The optimization method is explained, the information content and

capacity axe discussed and the results are presented.

2 Recognition Systems

Artificial neural network systems are constructed as interacting subsystems that have parallel

data flow between the layers and parallel processing of data in each subsystem. For example,

all pixels of the image are simultaneously applied to the input of the network so that all

parts of the input are filtered in parallel. In fingerprint classification [6] the input is an image

containing a single fingerprint. If the input is filtered, an image of the fingerprint with ridges

enhanced is produced. The input to the system is initially converted to a more compact

representation in terms of ridge direction data; this conversion is called ridge-valley feature

extraction. After the ridge-valley feature extraction is performed, a set of numbers which

represents the input data in a more compact form, ridge direction data, is produced. In

the next calculation the Karhunen-Loeve (K-L) transform is used to filter the ridge-valley

data by expanding it in terms of a set of characteristic image components which are the

eigenfunctions of the image covariance. This representation of the data is then used for

classifying the input in each of the learned classes providing an estimate of the probability

of the input being in each of the known classes. In the final calculation the input is assigned

to one or more of the known classes.

The process described above is all that is necessary for classification but needs a mod-

ification to allow learning. This modification is shown in figure 1. The filter and feature

extraction process remain unchanged, as does the idea of calculating class errors, but a

switch is introduced into this calculation which decides if the error is low enough to allow

classification.

Figure 2 illustrates a method used to perform self-organized learning. The data input path

contains any required filters or feature extraction calculations. The switch used to activate

learning compares the pattern to classes which have been learned and makes a decision on the

basis of pattern similarity; it then either modifies known patterns using the new pattern or

creates a new pattern class to accommodate the pattern. Self-organizing methods based on

decision trees have existed for some time. The unique feature of the neural network methods

is the parallel properties of the algorithms.

Figure 3 illustrates the method used for supervised learning. As in figure 2, data filtering

and feature extraction are done at the input. The learning switch operates on a different
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principle. In the supervised system, the learning switch is driven by the change in the error

of the global system. The latter requires a set of data for which the correct answers are

known.

A more powerfiil version of this method is illustrated in figure 4. It shows how replication

of figure 2 and modification of the control process can be used to construct a multi-map

method which can learn to classify patterns based on two or more distinct types of features.

The multi-map method is of interest because it is known to occur in various kinds of biological

systems. The basic building block of the method is the self-organizing structure shown in

figure 2. The basic unit has been modified to allow the isolation of learning control from other

processes. This unit is replicated for each multi-map subsystem but the learning controls are

merged rather than replicated. This results in the structure shown in figure 4.

Previous work by Linsker [7] and by Rubner [8] has shown that simple learning rules that

update a neural network without using feedback are capable of generating layers of neural

processors. These maps have sensitivity profiles similar to sensitivity profiles found in the

visual system of mammals and to the Gabor basis functions [9] used in [10]. This leads to

the inquiry: How can these learning processes and the maps that they generate be combined

directly into a self-organizing system that allows the smoothing of the input data to occur

in parallel with pattern recognition and feature extraction?

The FAUST architecture provides a self-organizing method of feature extraction and

classification [4]. The FAUST architecture is one of several neural networks which provide

self-organizing multi-map capabilities. The structure used is a multi-map procedure similar

to those known to exist in the mid-level visual cortex [11]. As in previous work [12, 13,

14] the method must provide a parallel, multi-map, self-organizing, pattern classification

procedure. This is achieved using a feed-forward architecture which allows multi-map features

stored in weights acting as associative memories to be accessed in parallel and to trigger a

symmetrically controlled parallel learning process. A diagram of the FAUST system is shown

in figure 4. This method allows features of different data types, such as binary image patterns

and multi-bit statistical correlations, to be updated in parallel. This capabihty is provided

by the parallel pattern association and relevance paths shown in figure 4 and by the existence

of separate input modules for each path.

A pattern comparison method is used to form a centralized learning control which is

contained in the symmetric triggering learning control block. The triggering block gates

data into the learning block on the right of figure 4. This combined architecture is described

by the acronym FAUST (Feed-forward Association Using Symmetrical Triggering). The

three essential features of FAUST shown in this figure are: 1) Different feature classes use

individual association rules in the pattern comparison blocks. 2) Different feature classes

use individual learning rules as illustrated by the pattern modification blocks. 3) AH feature

classes contribute symmetrically to learning as illustrated by the functional symmetry of the

pattern and relevance paths. The number of feature classes is shown as two in figure 4 for

graphic clarity, but the architecture is not restricted to any number or type of feature classes.

3 Learning is an Optimization Problem

Assume that a set of features has been chosen and the number of hidden neurons has been

selected based on the expected complexity of the regions involved. The number of inputs is

the size of the set of features, and the number of output neurons is the number of classes. To

specify the network completely, values must be specified for all the weights; the choice of the
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weights determines how well the network clcissifies data. The desired criterion for choosing

weights is:

For all possible images, choose the weights so as to malce the fewest mistakes in

classifying.

This is both vague and impossible. A more reasonable criterion is:

For a given training set of images, choose the weights so as to make the fewest

mistakes in classifying.

If the the training set is sufficiently representative of the set of all the images to be classified

by the network, the test set, this method can be adequate. However, even this method is too

difficult, and the actual criterion used is usually:

For a given training set of imagess, choose the weights so as to minimize the sum
of squares of the errors in all the output values.

This, at last, is a fairly weU-defined mathematical optimization process. It may not, how-

ever, produce the desired network, as will be seen in the next section. Accomplishing this

optimization process can be done in many ways, and is a subject of ongoing research, since

optimizing a function of several hundred or thousand variables is not trivial. Finding the

optimum set of weights is usually impossible, but several different optimization attempts

may be made, each starting with a different random guess for the weights. Each attempt (in

general) reaches a different local minimum, and the best set of weights attained is chosen.

However, the best set may not be the set that reduces the sum of squares of the errors to the

lowest value.

4 Network Capacity Optimization

The networks, shown in figure 3 for a supervised system and in figure 4 for a self-organizing

network, can be modified to concurrently optimize information content by including a self-

organizing network that is used exclusively for information capacity mininzation. A network

of this type is shown in figure 5. This network is placed in the learning loop of the network

shown in figure 3 and this results in the network shown in figure 6. A similar network can

be added to the self-organizing system as a modification of the learning control block. This

modification results in the network shown in figure 7.

In both cases the additional optimization changes the objective of the optimization from:

For a given training set of images, choose the weights so as to minimize the sum

of squares of the errors in all the output values.

To:

For a given training set of images, choose the weights so as to minimize the network

information capacity and concurrently the sum of squares of the errors in all the

output values.

The minimum information capacity determination is made by comparing the generalization

capacity of the network with a specified entropy with the information needed to classify a

testing set of comparable entropy.
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5 Pruning and Information Capacity Reduction

A fully connected network is optimized using the Scaled Conjugate Gradient method (SCG)
developed by [15] and modified by Blue and Grother [5]. The SCG method is used as a

starting network for the Boltzmann weight pruning algorithm. The network has an input

layer with 128 input nodes, a hidden layer with 128 nodes and an output layer with five nodes.

The initial network is a fully connected network. The pruning was carried out by selecting a

normalized temperature, T, and removing weights based on a probability of removal:

Pi = exp(-lw.j/T)

The values of P, are compared to a set of uniformly distributed random numbers, Ri, on the

interval [0, 1). H the probability Pi is greater than Ri then the weight is set to zero. The

process is carried out for each iteration of the SCG optimization process and is dynamic,

ff a weight is removed it may subsequently be restored by the SCG algorithm; the restored

weight may survive if it has sufficient magnitude in subsequent iterations.

During this optimization process three important measures of information content are

calculated [16]. The information capacity of the network, C, is given by:

C = Au,t,((log2(|u;max
\

d" 1)

where N^^ts is the number of non-zero weights, Wmax is the weight with the largest magnitude,

and Wmin is the weight with the smallest magnitude. The entropy is given by:

^wts

H = C - log2 jw.j + - log2(Wmm)))
i=l

and the Shannon redundancy is given by:

Niuts

P =
(^ log 2 + Nujtsil - log2 {Wmin)))/C
1=1

The dynamic effects of weight removal are shown in figure 8 for nine temperatures between

0.001 and 0.2 starting from a fully converged but unpruned network. The dynamic effects

of weight removal are shown in figure 9 for the same nine temperatures between 0.001 and

0.2 starting from a fully converged and fully pruned network. The changes in capacity and

entropy starting with a fully connected network are shown figure 10. The change in capacity

starting with a fuUy pruned network is shown figure 11. As the size of the temperature

change increases the number of weights removed initially increases, but the effect of later

iterations of optimization is to decrease the rate at which weights are removed. The number

of weights in the initial network was 17157, including bias weights. At all temperatures the

initial iterations are very effective in reducing the weights. The decrease in the rate of pruning

is the result of a critical phenomena characterized by a critical temperature, Tc, at which the

new information added by the SCG training balances the information removed by pruning.

At this critical point networks trained on small training sets wiU achieve identical testing

and training accuracy even when tested on large test sets. The two curves plotted in figure

8 are the training set and testing set accuracy of the network. The training set accuracy is

initially greater than the testing accuracy. At a critical temperature, the testing accuracy

and training accuracy are identical. In figure 8, at the critical temperature of 0.125, read

5



from figure 8 by extropolating the low temperature crossing point, chaotic behavior occures

the vicinity of Tc due to critical weight removal.

The effect on the information content of the network can be evaluated by examining the

distribution of weights in the network as a function of temperature or by evaluation of the

information capacity of the network. The effect of the number of weights, can be seen

in figure 10, which shows the capacity reduction and entropy reduction. As the temperature

is increased, the recognition accuracy of the network decrecises slowly for temperatures up

to 0.15 as shown in figure 8. As the temperature approaches 0.2, the rate of weight removal

shown in figure 10 slows, and the rate of accuracy decay accelerates.

The effect of the near-zero weights is more important when viewed as information content.

The VC dimension and the information content are both approximately ^(log2 (|^c^|) + !)•

When large numbers of near-zero weights exist, their contribution to the sum dominates the

network information. Under these conditions the network is dominated by recently created

weights that have not been optimized by SCG iterations. This lowers network accuracy

without reducing VC dimension.

6 Conclusions

A method of network optimization has been developed which reduces the number of weights

required for moderately accurate fingerprint classification by 97%. The method is based

on achieving equilibrium between the information in the training set and the information

capacity of the neural network by concurrent weight creation usung SCG optimization and

Boltzmann weight removal. These reductions allow smaller training sets and smaller classifi-

cation networks to be used since the information capacity of the network and the information

capacity of the training and testing sets are matched.
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Figure 1: Data flow in a simple classification system.

Figure 2: Data flow in a simple self-organizing system.

Figure 3: Data flow in a simple supervised learning algorithm.
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Pattern Association

Figure 4: FAUST architecture disgram.

Figure 5: Data flow for a self-organizing information optimization network.
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Figure 6: Data flow for size optimization in a supervised system.

Figure 7: Data flow for size optimization in a multi-map network.
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Figure 8: Network testing and training accuracy as a function of temperature for T =
0.001, 0.01,0.05, 0.075, 0.0875, 0.9375, 0.1, 0.125, 0.15. The capacity initially was that of

an unpruned network.

Figure 9: Network testing and training accuracy as a function of temperature for T =

0.001, 0.01,0.05, 0.075, 0.0875, 0.9375, 0.1, 0.125, 0.15. The capacity initially was reduced

by annealing the network at a termerature of 0.2.
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Figure 10: Change in capacity and entropy as a function of temperature for a 128-128-5 network

after 300 iterations at each temperature starting with a network at T = 0.001.

Figure 11: Change in capacity and entropy as a function of temperature for a 128-128-5 network

after 300 iterations at each temperature starting with a network at T = 0.2.
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