
A111D3 floaflos

NISTIR 4866

Network Management Support
for OSI Systems (NeMaSOS)
Version 2.0
Programmer’s Reference Manual

Kevin G. Brady
James F. Fox
Robert Aronoff

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Computer Systems Laboratory

Gaithersburg, MD 20899

—QC—
100

.056

4866

1992

NIST

NISTIR 4866

Network Management Support
for OSI Systems (NeMaSOS)
Version 2.0
Programmer’s Reference Manual

Kevin G. Brady
James F. Fox
Robert Aronoff

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Computer Systems Laboratory

Gaithersburg, MD 20899

July 1992

U.S. DEPARTMENT OF COMMERCE
Barbara Hackman Franklin, Secretary

TECHNOLOGY ADMINISTRATION
Robert M. White, Under Secretary for Technology

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
John W. Lyons, Director

Preface

The work reported herein was sponsored jointly (under the NIST Joint Sponsors

of the Network Management Program) by the U.S. Air Force (TIC/TISC, Scott

AFB), the U.S. Army (USAISEC, Ft. Huachuca, AZ), the Defense Information

Systems Agency (JTC3A, Ft. Monmouth, NJ), and the National Institute of
Standards and Technology. For information on the program, contact Ms. Fran

Nielsen, Manager, Network Management Group, NIST, Technology Building

Room B2I7, Gaithersburg, Maryland 20899.

Table of Contents

1 Introduction 1

1.1 Organization of Programmer’s Reference Manual 1

IJ. Required Software Support 1

13 Overview of the Service Interface Routines 2

2 ACSE/ROSE Interface 3

2.1 Required Addressing Informatitm 3

2.1.1 The ISODE Entities Database 3

2.13

NSAP Addresses 5

23 Message Data Structures 6

23 ACSE/ROSE interface library of functitxis 7

Association Control 10

23.1 initialize 10

Association Establishment 1

1

233 make_association 11

233 accept_associati(Mi 12

Association Termination 13

23.4 release 13

233 release_resix)nse 14

23.6 cm^ abort 14

Message Queue Management 15

23.7 check iserver 15

233 check messages 16

23.9 extract_acse_message 18

23.10 extract cmip message 19

SeiKling CMIP/ROSE Messages 20

23.11 request 20

23.12 response 21

23.13 send_erTor 22

23.14 reject 23

2.4

Utilities 24

2.4.1 print ad 24

2.43 dear sd 25

2.43 acse fiee 26

2.4.4 mq)_operation 27

23 Routines 28

Association Establishment 28

23.1 associate_tetry 28

233 add qterations 29

Assodaticm Termination 29

2.53

ielease_ietry 29

2.5.4 delete_operations 302.53

rose_lose 30

Message Queue Management 31

23.6 add_acse_message 31

23.7 add_anq)_message 32

2.53

ros_init 33

2.5.9 ros_woik 33

Receiving CMIP/ROSE Messages 34

23.10 iequest_message_received 34

2.5.11 error_message_receive(i 35

2.5.12 result_message_received 36

23.13 accept_message 37

2.6 Tables 37

3 CMIS Operations 42

3.1 Introduction 42

3.1.1 Object Identifier (OID) 43

3.1.2 Presentation Element (PE) 43

3.2 CMIS M-SET operatirai 50

3.2.1 CMIS M-SET request 50

3.2.2 CMIS M-SET indication 51

3.23 CMIS M-SET response 52

33.4 CMIS M-SET confirm 53

33 CMIS M-GET operatirai 54

33.1 CMIS M-GET request 54

333 CMIS M-GET indication 55

333 CMIS M-GET response 56

33.4 CMIS M-GET confirm 56

3.4

CMIS M-ACnON q)eration 57

3.4.1 CMIS M-ACnON request 57

3.43 CMIS M-ACnON indication 58

3.43 CMIS M-ACnON response 59

3.4.4 CMIS M-ACnON confirm 59

33 CMIS M-DELETE operation 60

3.5.1 CMIS M-DELETE request 60

333 CMIS M-DELETE indication 61

333 CMIS M-DELETE response 61

3.5.4 CMIS M-DELETE confirm 62

3.6 CMIS M-CREATE operation 63

3.6.1 CMIS M-CREATE request 63

3.63 CMIS M-CREATE iixlication 64

3.63 CMIS M-CREATE response 65

3.6.4 CMIS M-CREATE ctmfirm 66

3.7 CMIS M-EVENT operation 67

3.7.1 CMIS M-EVENT request 67

3.7^ CMIS M-EVENT indication

3.73 CMIS M-EVENT respotse

3.7.4 CMIS M-EVENT confinn

33 CMIS M-CANCELGET q}eiation —
33.1 CMIS M-CANCELGET request — —
333 CMIS M-CANCELGET indication

333 CMIS M-CANCELGET response

33.4 CMIS M-CANCELGET confinn ...

3.9

CMIS M-UNKEDREPLY operation —
3.9.1 CMIS M-UNKEDREPLY request

3.93 CMIS M-UNKEDREPLY indication

3.93 CMIS delete error for M-UNKEDREPLY request and indication

3.9.4 CMIS action error for M-UNKEDREPLY request and itKlication

4 CMIS Errors —
4.1 CMIS access denied error

43 CMIS class instance conflict error

43 CMIS COTnplexity limitatitHi error

4.4 CMIS duplicate managed object instance error

43 CMIS get list error

4.6 CMIS invalid argument value error

4.7 CMIS invalid attribute value error

43 CMIS invalid filter error

4.9 CMIS invalid scope error

4.10 CMIS invalid object instance error

4.11 CMIS missing attribute value error

4.12 CMIS no such action error

4.13 CMIS no such argument error

4.14 CMIS no such attribute error

4.15 CMIS no such event type error

4.16 CMIS no such object class error

4.17 CMIS no such object instance errw

4.18 CMIS no such reference object ernwr

4.19 CMIS processing failure error

430 CMIS set list error

431 CMIS synchronization not supported error

432 CMIS mistyped operation error

433 CMIS no such invokeid error

434 CMIS operaticxi cancelled error

5 CMIS Parameter RU Functions

5.1 init operation struct

53 fill baseManagedObjectQass

53 fill_managedObjectClass

5.4 fill_attributeld

53 fill_baseManagedObjectInstance

5.6 fill_managedObjectInstance

68

68

69

70

70

70

71

71

72

72

72

74

75

76

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

97

98

99

100

101

102

103

104

106

V

5.7 fill_superioiObjectInstance

5J8 fill_referenceObjectIiistance

5.9 fiU accessContTol

5.10 fill_synchronizati<m

5.11 fill_scope

5.12fin_filter

5.13 £dl_inodificationList

5.14 fiU_attributeList

5.15 fill_attiibuteldlist

5.16 fiU currentTime

5.17 fill_eventTime

5.18 fiU getlnfoStatus

5.19 fill_setInfoStatus

5.20 fill_aciionValue

5.21 fiU eventValue

5.22 fiU attribute

5 fill_actionReply

5.24 fill_acrinnTnfo

5.25 fill_eventReply

5.26 fill_eventType

5.27 fill_actionType

5.28 fill_eventl<i

5.29 fill_actionId

5JO fill_eventInfo

5J1 fill_specificErrorInfo

5J2 fill_actioiiEirorIiifo

5J3 fill_deleteErroiInfo

6 Extract Functions

6.1 finee_operation_stnjct

6J extract_baseManagedObjectClass ..

6J extract managedObjectQass

6.4 extract baseManagedObjectlnstance

6J extract_managedObjectInstance

6.6 extract_referenceObjectInstance

6.7 extract_cieateObjectInstance

6£ extract_cuircntTime

6.9 extract_modificationlist

6.10 extract_attributeList

6.11 extract_accessControl

6.12 extract_synchronizati(Mi

6.13 extract_scope

6.14 extract_filter

6.15 extract_attiibute

6.16 extract_attributeld

6.17 extract attiibuteldlist

108

110

111

112

113

114

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

153

154

155

VI

6.18 extTact_setInfoStatiis

6.19 extract_getInfoStatus

6.20 extract_actioi)Info

6.21 extract actionReply

6.22 extract_actionType

6J3 extract_eventReply

6.24 extiact_evenlType

6.25 extract_eventInfo

6.26 extract_eventTime

6.27 extract_specificEiTorIiifo

6.28 e3ctract_Id

6.29 extract_value

6JO extract_actioi]EiTorInfo ...

6J1 extract deleteErrorlnfo

156

158

159

160

161

162

163

164

165

166

167

168

169

170

1. Introduction

1.1. Organization of Programmer’s Reference Manual

This Programmer’s Reference Manual is intended to provide suj^rt to ^>plication programmers using

the interface library of functions to CMIS/CMIP provided. Tte manual is divided into two basic

sections; the first describes the interface to the ACSE/ROSE protocol madiine provided with this

release, and the second describes the CMIS/P interface.

The ACSE/ROSE interface provides a straight-forward asynchronous interface which allows

manipulation of certain parameters while assuming default values for others at the ACSE/ROSE service

interface. Tables 3, 4 and 5 in this section provide a quick reference for the programmer to determine

which ACSE/ROSE service primitives are siqrported, which ISODE routines are associated with those

primitives, and which interface library routines are called to perform the services. The code for these

routines can be used "as is", with ordy a few simple modifications required to customize for the local

system. Alternatively, users desiring a more comprehensive implementation, in which additional

parameters can be controlled arxl default values are not assumed, can use the software provided as a

basis for a more extensive implementation and tqrply modifications to the code as necessary. This

ACSE/ROSE section is divided into two subsections; the first covering routines to be invoked by the

user, arKl the second subsection covering those routines that are invoked by the user-invoked routines

described in the first sub section. All routines are described in detail, thus providing the necessary

insight required for the implementor to modify the code for his/her particular application. The

implementation provided was used to test the CMIS/P interface and is, therefore, only as complete as

necessary to accomplish that purpose. Consequently, this implementation does not provide a complete

exercise of the ACSE/ROSE services (e.g., default values were used wherever possible).

The second pan of tiiis document provides a detailed description of the CMIS/P interface. The routines

provided allow a user to send and receive CMIP PDUs. Tables 13, 14, 15, 16, and 17 at the beginning

of this section provide a quick reference for the programmer to determine which CMIS service

prirrutives are supported, whi(±i parameters are associated with those primitives, and which interface

library routines are to be used to fill in ot extract information from those parameters in the given

service prinutive. Also in this section, each CMIS message type and its associated data stmcture are

described in detail. Since these data stractures are manipulated by the interface library routines to hide

their complexity from the rest of the user program, the complex structures representing these messages

are provided in the documentation for information purposes only (e.g., for users wishing to modify the

existing code). The final part of the CMIS/P interface section includes descriptions of each of the

routines used to fill in information, or extract information from, the data structures representing each

CMIS/P message type.

Version 2.0 of NeMaSOS implements the kernel, multiple object selection, cancel get, linked reply, aiKl

filter functional uiuts of the CMEP/CMIS versitm 1 IS stanch^, with the restrictions imposed by OIW
NMSIG Hiase I implementor’s a^eements. This version of NeMaSOS allows for ttie passage of the

access control parameter without providing interface support for filling or extracting the elements of this

data structure.

1.2. Required Software Support

Certain software is required to support the ACSE/ROSE and CMIS/P service interface library routines.

The "ISO Development Environment" (ISODE) was used to generate the routines to encode aiKl decode

the message structures, to provide the ACSE and ROSE functionality, aiKl to provide the upper OSI

layer functionality. Consequently, ISODE must be installed prior to use of this irtterface. ISODE 6.0 is

publicly available atKl can be anonymous FTP’d across the Internet from uu.psLcom [136.161.128.3].

The file isode/isode-6.tar should be retrieved in BINARY mode. This is a 10.5MB tar image. The file

isode^ode-6.tar.Z (3JMB) is the compressed tar image. To install ISODE, follow the installatitxi

procedures provided as part of the distribution software. Certain configuration files must be customized

1

for the systems involved Information assisting the user in customizing these configuration file entries is

discussed in the "NSAP addressing" sub section of the ACSE/ROSE section of this manual.

Just as ISODE provides sessicm layer, presentation layer, and part of the plication layer functionality,

the lower OSI layer functionality (i.e., transport layer (TP4) and below) is provided by SUNLINK OSI

for this software release. To support this configuration, SUNLINK OSI must be properly installed and

configured to work with the ISODE software. Alternative api^aches can be pursued but must be

properly configured to work with ISODE. The ISODE installation guide and reference manuals provide

guidance to possible alternative lower layer support options.

13. Overview of the Service Interface Routines

A user wishing to implement a basic network management system would need to:

(1) seiKl association (ACSE) requestA^sponse messages,

(2) receive associatitm (ACSE) requestAesponse messages,

(3) send CMIS/P request/response messages,

(4) receive CMIS/P requestAesponse messages,

(5) access a MIB to retrieve the requested information, and

(6) display information contained in each message.

The interface provided listens for messages. When new connections or messages on existing

connections are received, they are put into one of two queues. All messages dealing witib association

control (ACSE) are added to the A^E message queue. Messages dealing with either ROSE or CMIS/P
are added to the CMIP message queue. To process these messages, the user retrieves messages from

the queues, extracts the necessary information from the messages, and then takes the appropriate actions

based on the content of the messages. The existence of two queues enables the implementor to

establish a mechanism to allow for prioritized processing of messages, if so desired

In order to use this implementatimi "as is", the user need only provide in addition, the means (5 above)

for accessing the MIB (Le., the managed objects themselves) and retrieving the requested informatiorL

The interface code provided :

(1) allows tire association requests and responses to be sent and received

(2) allows the CMIS/P and ROSE messages to be sent and received,

(3) provides the means to fill the complicated structures representing these messages with do
knowledge of the data stmctures used artd

(4) im>vides the means to extract information from these messages.

DepetKling upon the implementor’s requirements, some screen interface (6 above) might be desired to

assist in input and ouqruL The implementor can develop his own screen interface, if desired, or use the

one provided The screen interface]m>vided in tl^ distribution was used to test the CMIS/P
implementation and was written for the SUNVIEW envirorunent The code whidi is included with this

release needs to be modified by the implementor to display any pertinent information contained in the

messages specific to die actual management infotmatim being conveyed

2

2. ACSE/ROSE Interface

The ACSE/ROSE loutmes provide an example of a straight-forward use of ACSE, exercising some, but

not all, q>tions of ACSE. To simplify the association establishment negotiation process, default values

where used where reasonable rather than requiring the user to fill in the parameter information. These

routines can be used "as is" for those users requiring only this level of functionality. This interface was

used for testing the CMIS/P interface and can be used by an implementor as an easily customizable

interface to ACSE and ROSE. For those users desiring a more complete implementation exercising

additional ACSE options, source code is provided which can be easily modified for those purposes. To
assist the user in this process, brief descr^tions of eadi routine follow and the source code is

commented to indicate where and what Idrxl of modifications are required.

Section 2.1 discusses the necessary entries to die locally resident directory data base required to

accomplish management associativity between peer management entities, including an explanation of

the syntax and semantics of the relevant network addressing. Section 2.2 provides an e:q>lanation of the

queuing mechanism used to manage two queues of received messages (one for ACSE messages and one

for CMIP/ROSE messages). In oxijunction with diat discussion, the two different data structures are

shown which are used to represent the two general types of messages, either ACSE or CMIP/ROSE,
and which can be stored in the respective queues. Section 2.3 presents a sample skeleton program

segment representing the necessary ACSE and ROSE related function calls to establish associations and

send and receive management information over diose associations. The subsections within section 2.3

describe each of the interface library routines, indicating dieir parameters and return values, which are

referenced or implied by this sample program segment Section 2.4 presents descriptions of those

library functions which can be useful in foe processing of messages from these queues. And finally,

section 2.5 describes foe lower level functions used to manage foe message queues.

2.1. Required Addressing Information

2.1.1. The ISODE Entities Database

The following is a brief overview of the use and structure of the isoentities database which is required

for proper functioning of foe ACSE interface. A more detailed description of foe ISODE Entities

Database can be foutKl in The ISODE Entities Database, Chapter 7, Volume 1 of foe ISODE manual.

The isoentities file is normally stored in foe /usr/local/etc directory.

To establish an assodadoo, a call is made to foe make_association() function (defined in section 13.1

of this document), passing the following two parameters in the call:

(1) sd - An integer pointer (ouqrut parameter) which will contain the file descriptor for the

association as assigned by the syston, and

(2) host - A charatxer string (itq>ut parameter) ctmtaining foe name of the host with which the

association is to be established.

The makejissociationO routine performs a lookup in foe isoentities database in order to get:

(1) foe calling tqqrlication entity information which identifies foe application process (and the

application entity within that ^plication process) that is initiating foe association,

(2) the Presentation Service Access Pointer (PSAP) address of foe assodatitm irutiator,

(3) foe called application entity information which identifies foe intended responding applicatitm

process (and the application entity within that application process), and

(4) foe PSAP addre^ of the resptmder.

3

Programmer's Referoice Manual ACSE^OSE Functions

The isoentities database stores the system addressing information neoled to establish an association

between two hosts. As an example, the following information must be available in tibe isoentities

database for use in association establishment when one host, "mgmt", wants to establish an association

with a host named "mgmt3". In order for the malce_association() routine to be able to fetch the

necessary information required to perform the ASCE A-ASSOCIATE request, the following entries

must be put into the isoentities database:

mgmt "network management" 1.17.4.0.13 \

#2/NS44700040003000308002001d82100

mgmt3 "network management" 1.17.4.0.13 \

#2/NS+4700040003000308002006alb200

Table 1 indicates the meanings for these information fields.

Information Example

Hostname mgmt

The service to be provided over the

association

network management

Objea Identifier definition of AET 1.17.4.0.13

TSEL used by osi.netd (Instructs

tsapd to use SUNLINK OSI)

#2/

Presentation address of host ex- NS44700040003000308002001d82100

pressed in string format

Authority and Format IdentifierfAFl) 47

SNPA 0004

Subnet 00030003

SNPA 08002001d821

NSEL 00

Hostname mgmt3

The service to be provided over the

assodaticm

network management

Object Identifier definition of AET 1.17.4.0.13

TSEL used by osi.netd (Instructs

tsapd to use SUNLINK OSI)

#2/

Presentation address of host ex- NS+4700040003000308002006alb200

pressed in string format

Authority and Format Identifier(AFI) 47

SNPA 0004

Subnet 00030003

SNPA 08002006alb2

NSEL 00

Table 1

Programmo-'s Referoice Manual ACSE/ROSE Functions

Before making the call to establish an association between host "mgmt" and host "mgmtS", the user.

(1) assigns the string "mgmt3" to the variable, host, and

(2) passes die address of die integer variable, sd.

When invoked, the make_association() routine uses the parameter, host, to perform a lookup of the

called host in the isoentities database and retrieve the necessary information needed to complete the

association request The name of the system on which the initiating sqiplication is running (in this case,

"mgmt") is used as the calling host name. The system name is discovered by the make_association()

routine and, dierefore, does not have to be passed as a parameter to the routine.

2.1.2. NSAP Addresses

To help clarify how addressing is represented, the following table shows the entries from the SUNLINK
hosts ffle and the corresponding entry in the isoentities database. The corresponding fields of the NSAP
address are outlined in the table. T^ Sunlink OSI file /etc/sunlink/osiyhosts has an entry defining the

service for localhost called CXIENT. Note that this entry is mandatory if you are running Sunlink

OSI release 5.2 or greater.

From die "/etc/sunlink/osi/hosts" file:

localhost { [(osinet)33; (802.osinet)08:00:20:01:d8:21; 0] \

[(tsel)0] [(ssel)"NULL"] \ /* Transport & Session selectors */

} CLIENT /* Service (uses FTAM CLIENT) */

From the "/usr/local/etc/isoenrities" file:

mgmt "network management" 1.17.4.0.13 \

#2/NS+4700040003000308002001d82100

SUNLINK vs. ISODE NSAP Addressing

Initial Domain Part
(TOP)

Domain Specific Part
(DSP)

Host

Authority and

Format
Idoitifier

(AFI)

Initial

Domain
Identifier

(IDD

Organization

ID
Subnet

Number
Field

Identifier

MAC
Address NSEL

SUNLINK

mgmt (osinet) 3 1
3 (802.osinet) 08:00:20:01 :d8:21 0

ISODE

mgmt 47 0004 0003 0003 08002001d821 00

Table 2

5

Programme's Reference Manual ACSE/ROSE Functions

2J2. Message Data Structures

Two generic message types are used for all messages in diis implementation; one for CMIP/S messages,

the other for ACSE messages. The messages are stored in one of two queues, depending upon whidi of

the two above mentioned types the received message is. The queues are implemented as linked lists of

messages. To retrieve messages from these queues, the user need tmly check for the existence of the

head of the list. Routines, to be described later, when invoked, automatically extract messages from the

queues until each queue is empty. This scheme allows the implementor to develop a priority based

system if desired (Le., different priorities can be assigned to each of die two message queues). Both of

the queues hold all information received widi the message, so all infonnaticm is available to the user.

CMIP/S message structiire:

struct message_list_type {

int association_id;

int invoke_id;

int link id;

int nolinked;

int qieration;

PE args;

char *raessagejpointer;

int rose operation;

strua message_list_type

}

/* Association-descriptor this message was received on /
/* Invoke ID of this message */

/* Linked Id of this message */

/* non-zero if no linked ID present */

I* CMIP operation number *!

/* Encoded User Data received with message (Presentation Element)*/

/ Pointer to the message structure /
/* Rose operation number */

next; /* Pointer to the next message */

ACSE message structure:

struct acse message list type
{

int qieration; j* ACSE operation number */

int association_id; /* Association-descriptor this message was received on /
int start_indicati<Mi_dis_type; /* ACSE message type one of: */

#define START 0
#define INDICATION 1

#define DISCONNECT 2

#define CONNECT 3

#define FINISH 4
#define ACSAP RELEASE 5

union acse type {

struct AcSAPstart start;

struct AcSAPindication indication;

stroct TSAPdisconnect disconnect;

struct AcSAPconnect connect;

struct RoSAPindication roi;

struct AcSAPrelease Telease_req)onse;

} start_indication; / pointer to die message based on above type /

struct acse_message_list_type next; / Pointer to die next message /
}

6

Programiiia‘'s Refa*ence Manual ACSE/ROSE Functions

23. ACSE/ROSE interface Ubrary of functions

This section describes the functions ttiat comprise the ACSE/ROSE interface. The ACSE/ROSE service

interface for all ACSl^OSE q)erations is composed of a library of functions called by the user, and

modifiable routines called by those routines (m behalf of the user. Please note that this interface is

provided for the novice user not wishing to implement all options of ACSE/ROSE. Users wishing a

more detailed implementation should consult the ISODE reference manuals directly.

Using this simplified ACSE interface, the following program segment demonstrates all calls a user must

make to;

(1) iiutialize variables,

(2) establish an association,

(3) dieck for messages received,

(4) process messages received, and

(5) send messages.

main (argc, argv)

int argc;

char **argv;

{

int sd;

initiali7.e (argc, argv); /* (1) Must be called first */

make_association("mgmt3",&sd) /* (2) */

for (;;)

{

check_iserver (); /* (3) */

dreck messages (); /* (4) */

send_any_message (sd); /* (5) *!

)

)

Each of these functions is described in detail in the following pages. Calls to the ACSE and ROSE
routines are also described to assist users interested in modifying the code to achieve greater control of

the AC^E aiKl ROSE parameters. The function check_iserver() is a provided routine that 1) checks for

activity on any association-descriptors, and 2) calls the designated routine (described later) to process

the received message and add it to the appropriate queue. The function checkjnessages() is a user-

modifiable routine which sends a response message or an error message to each request message

received from the remote systems. The skeleton of this function is provided in section 2.6,

demonstrating the di^rent actions to be taken based on the type of message received. The futKtion

send_anyjnessage(), a user-provided routine, sends request messages to remote systems by making

calls to the request() routine described later. Prior to sending, the aj^ropriate request message must

have been filled in with valid informaticm (described in the CMIS/P section). This routine must provide

the means for sending all valid CMIS/P request messages. The implementor must, therefore: 1) make
the qrpropriate calls to tire fill functicHis described later, and 2) call the request^ function with the

appropriate message type and the pointer to the newly created request message.

The following tables (tables 3, 4 and 5) provide a quick reference for the programmer to determine

which ACSE/ROSE service primitives are supported, which ISODE routines are associated with those

prirtutives, and whidi NeMaSOS interface library routines are called to perform the services.

7

Programmer's Reference Manual ACSE/ROSE Functions

Association Control (ACSE)

NeMaSOS ISODE function ACSE primitive Descriptimi of

Function called represented worit performed

makeassodationO AcAsynAssocRequestO A-ASSOCIATEREQUEST Create an association

associateretryO AcAsynRetiyRequest() A-ASS(X3ATKREQUEST Check for asynchronous Request

acceptassodationO AcAssocResponseO A-ASSOCIATRRESPONSE Respond to ^ assodation request

rdeaseO AcRelRequestO A-RELEASE.REQUEST Release an association

releaseretryO AcRelRetryRequestO A-RELEASE.REQUEST Check for asynchronous release request

rdease responseQ AcRelResponseO A-RELEASE.RESPONSE Respond to a release request

cmip abortO AcUAboitRequestO A-ABORTJIEQUEST Abort an assodation

Table 3

Message Control (ROSE)

NeMaSOS
Function

ISODE function

caDed

ACSE primitive

represented

Description of

work perfcH'med

acceptmessageO RyWaitO None Receive an inccnning message

request_message_receivedO

called by RyWaitO *
None RO-INVOKEJNDICATION Process a received CMIP request message

error_message recdvedO
called by RyWaitO * None

RO-ERROR.INDICATION
RO-U-REJECT.INDICATION

RO-P-REJECTJNDICATION

Process a received CMIP error message

Process a received CMIP user reject mes-

sage

Process a received CMIP provider reject

message

result_message receivedQ
* called by RyWaitO *

None RO-RESULTJNDICATION Process a received CMIP result message

send errorO RyDsErrorO RO-ERROR.REQUEST Send a CMIP error message

rejedO RyDsURejectO RO-UREJECTJIEQUEST Reject an invocation

requestO RyStubO RO-INVOKEJIEQUEST Send a CMIP Request message

resptmse RyDsResultO RO-RESULTJIEQUEST Send a CMIP result message

addoperationsO RoSetServiceO None Uses Presentation as the undetiying service

delete_operationsO RyDispatchO None Remove operations from an association

descriptor

ros inh AcInitO None Process an association request

ros_work None Nixie Process associate retry requests, release re-

try requests, or accept a request message.

ros_loseO RyLoseO None Clear all knowledge of an assodation from

ISODE

Table 4

8

Programiiia‘'s Referoice Manual ACSE/ROSE Functions

UtUities

NeMaSOS ISODE function Description of

Function called work performed

add_acse_messageO None Add an ACSE message to the ACSE mes-

sage queue

extract_acse_niessageO None Extract an ACSE message from the ACSE
message queue

add_cnup_niessageO None Add a CMIS/P message to the CMIP mes-

sage queue

extract_cniip_niessageO None Extract a CMIS/P message from the CMIP
message queue

check iserverO iserverwaitO Listen for incoming messages

checkmessagesQ None Check die queues for messages

clearsdO RyLoseO Clear an association descriptor

initializeO iserver_initO Initialize server

iserver initO TNetlistenO Initialize listening facility

iserver waitQ TNetAcceptO Listen for incoming messages

mapoperationO None Convert message type into array index

print_aciO None Print an ISODE AcSAPindication structure

printroiO None Print an ISODE RoSAPindication structure

acse_firee(id) None None

check_request_operationO None Verify that the request message to be sent

has all required fields filled

clieck_response_operationO None Verify that the response message to be sent

has ail required fields filled

Table 5

9

Programmer's Reference Manual ACSE/ROSE Functions

Association Control

23.1. initialize

int initialize (argc, aigv)

int argc;

char **argv;

Description The initializeO function is called to fill in tire ^plicaticm entity title of the system

on whidi the process is currently running. It lool^ up tire address from the isoenti-

ties database so that future calls to iserver_waU() will listen for incoming messages.

The fimction makes a call to iserver_init (see page 46, Volume 1 of the ISODE
manuals) to perform the mitialization. Ibis function must be called before any mes-

sage can be received.

Parameters

int argc Ii^t argc to main routine (Number of input parameters).

char **argv Input argv to main routine (Vector of ii^ut parameters).

NOTE: See the READ_ME file in the directory /NEMASOS for a detailed eTqrlanation of parame-

ter optitms.

10

Programmer's Reference Manual AC^E/ROSE Functions

Association Establishment

The following two routines deal with association establishment, allowing the user to create and ac-

cept association requests.

23,2. make_association

int make_association(sd, host

)

int *sd;

char *host;

Description The make_association() routine is used to establish an association between an initia-

tor (manager or agent) and a responder (agent or manager). This routine checks the

acceptability of the input parameters, and uses the address of the system upon which

the application is currently itmning as the address of die initiator. The add^s of the

host to be connected to is looked up in the isoentities database and the routine calls

AcAsynAssocRequestO to establish the association (see page 33, Volume 1 of the

ISODE manuals). If the call to make_association() is successful, a success indica-

tion (OK or CONNECnNG_2) is returned and the sd (association id) parameter is

assigned the value that references this association. Otherwise, NOTOK is returned.

Parameters

int *sd This parameter is assigned the assodation-desciiptor that references the newly created as-

sociation. Any time an qieration is to be performed over this association, this

association-descriptor should be used. (Output)

char *host This parameter is a character pointer to a string containing the host name of the in-

tended responder of die association. This parameter is used to locate the called ^pli-

cation entity information which identifies the intended responding aj^hcation process

(and the af^licatirxi entity within that application process). (Input)

Returns

OK The response message has been added to the ACSE message queue. The association is esta-

blished, the sd parameter contains die associatioi>-descriptor.

NOTOK An error occurred, the association is not established, retry the call.

CONNECTING_2 The response to this asynchronous request was not received in the allotted

time. Tte sd parameter contains the association-descriptor that will be used

when the association is established. The response message completing the as-

sociation establishment will be added to the ACSE message queue to notify

the user when it is received.

DONE The association was rejected for (me of die reasons listed in table 8. An ACSE message is

added to the ACSE message queue with an AcSAPindication structure containing this in-

formation.

U

Programmer's Reference Manual ACSE/ROSE Functions

233. aocept_associati<Hi

accept_assodatioD (acs)

stnict AcSAPstait *acs;

Description The accept_association() function is used to send an association resptHise over a

designated association. After receiving an association request, the data field of die

ACSE message contains the AcSAPstait structure containing the association informa-

tion. This data can be examined and modified by the user to set any association

parameteis desired. This function uses the data in this structure when responding.

The fimction calls AcAssocResponseO (see page 28, Volume 1 of the ISODE manu-

al) to resptXKl to die association request, and will (by default) accept the request

Parameters

struri AcSAPstart *acs A pointer to the AcSAPstait structure containing the association infor-

mation. This structure is stored in the received ACSE request message.

(Iiqmt)

Returns

OK The association was accepted and the association now exists.

NOTOK An error occurred while sending the message. TTie error message is also printed to the

ouq>ut window of the screen interface.

12

Programme* 's Reference Manual ACSE/ROSE Functions

Association Termination

Hie following three routines deal with association tennination, allowing the user to release and

abort associations.

23.4. release

int release (sd)

int sd;

Description The release() function is used to send a release request over a designated

association-descriptor. The function AcRelRequest() (see page 35, Volume 1 of the

ISODE manual) is called to send die release request

Parameters

int sd Association-descr^tor designating the particular association over which the message is to

be sent (Input)

Returns

OK The release request was sent and responded to. An ACSE message has been added to die

ACSE message queue. The message added to the queue will either be a RELEASE REJECT
(the release request was rejected) or a RELEASE_RESPONSE (the release was accepted and

the association terminated).

NOTOK An error occurred while sending the message. An ACSE ABORT message is added to

the ACSE message queue containing the reason for the error.

13

Programmer's Reference Manual ACSE/ROSE Functions

23^. release_response

int lelease response (sd)

int sd;

Description The release_responseO function is used to send a release response over a designated

association. Tliis function calls AcRelResponseO (see page 38, Volume 1 of the

ISODE manual) to send the release response message.

Parameters

int sd Association-descriptor designating the particular association over which the message is to

be sent (Input)

Returns

OK The release respxmse was sent and the association is terminated.

NOTOK An error occurred while sending the message. The error message is also printed to the

output window of the screen interface.

23.6. cmip_al>ort

int anip abort (sd) ’

int sd;

Description The cmip_abort() function is used to send an abort request over a designated associ-

ation. TIus function calls AcUAbortRequest() (see page 39, Volume 1 of the ISODE
manual) to setKl the abort message.

Parameters

int sd Association-descriptor designating the particular association over which the message is to

be sent (Input)

14

Programmer's Reference Manual ACSE/ROSE Functions

Message Queue Management

The following four routines deal with queue management, more specifically with inserting and ex-

tracting messages firom both the ACSE and CMIP message queues.

2J.7. dieck_iserver

int check_iseiver 0

Description The checkjserver() function is called with no parameters. It makes a call to

iserver_wait() (see page 47, Volume 1 of die ISODE manual) which: 1) checks for

activity (m any association-desci^tois, and 2) calls the appropriate routine (described

later) to process the received message and add it to the apprqiriate queue. This fiinc-

tion sboiUd be called as often as possible to receive messages.

R^nms NONE

15

Programmer's Reference Manna! ACSE/ROSE Functions

23^. dieck_messages

int cbeck:_messages Q

Description The check_messages() function is a skeleton routine tiiat die user can employ to ex-

tract messages from both the CMIP message queue and the ACSE message queue in

any order the user desires. This routine requires modification by the user to fill in

the necessary code to process the messages received. The messages should be pro-

cessed by the user code according to message type and die appropriate responses

should be taken. The following code segment is a sample for extracting the mes-

sages:

if ((result = extract_acse_message (&association_id, &operation, &type, &acse_ptr)) != NULL)

{

switch (operatimi)

{

case ACSE_RELEASE:

I* ACSE Release request occurred, data field contains a (struct AcSAPindication *) data;

Process message....

break;

case ACSE ERROR:
/* ACSE error occurred, data field contains a (struct TSAPdisconnect) data; */

Process message....

break;

case ACSE_ABORT:
I* ACSE ABORT occurred, data field ctmtains a (struct AcSAPindication *) data; ’"/

Process message....

break;

case RELEASE_REJECT:
/ ACSE RELEASE REJECT occurred, data field contains a (struct AcSAPrelease *) data; */

Process message....

break;

case ASS(X!IATE_INDICAT[ON:
/* ACSE ASSOCIATE REQUEST occurred, data field contains a (struct AcSAPstart *) data; */

Process message....

break;

case ASSOCIATE_RESPONSE:
I* ACSE ASSOCIATE RESPONSE occurred, data field contains a (struct AcSAPconnect *) data; *!

Process message....

break;

case RELEASE RESPONSE:
I* AC^E RELEASE RESPONSE occurred, data field contains a (struct AcSAPrelease *) data; *!

Process message....

break;

case RELEASE FINISH:

case RELEASE_END:
I* ACSE RELEASE RESPONSE (old style) occurred, data field contains a (struct RoSAPindication

Process message....

break;

}

16

Programme' 's Reference Manual ACSE/ROSE Functions

if ((result = extract_cmip_message(&association_id, &invoke_id, &link_id,

Anolinked, &mode, &rose_op, Aonip op, «5bnsg_ptr)) != NULL)

case ROI INVOKE:
/* RO-INVOKE REQUEST occurred, use cmip_op to process type /
Process message....

break;

case ROI RESULT:
/* RO-RESULT occuned, use cniip_op to process type */

Process message....

break;

case ROI ERROR:
I* RO-ERROR occurred, use cm^_op and rose_op to process type */

Process message....

break;

case ROI UREJECT:
/ RO-UREJECT occurred, use cmip_op and rose_op to process type /
Process message....

break;

case ROI PREJECT:
/* RO-PREJECT occurred, use cmip_<^ and rose_op to process type */

Process message....

break;

}

Returns As modified by die user.

Pit^aminer's Referooce Manual ACSE/ROSE Functions

23.9. extract_acse_message

int extract_acse message (association_id, operation, type, acse_ptr)

int *association_id;

int *q)eration;

int type;

struct acse type acsejjtr.

Description The extract_acsejnessage() function is used to retrieve ACSE messages from the

ACSE message queue. TTiis function is called from within the check_messages() rou-

tine, or an equivalent user routine, to check for messages in the ACSE message

queue. These messages are stored in the ACSE message queue in the stmcture

referenced in section 22. If this functicm returns "NULL", the message list is either

empty (on the first call), or exhausted (on subsequent calls).

Parameters

int association_id Assodation-descr^tor identifying die association on which the message was

received. (Ouqiut)

int operation The ACSE operation type of the message received. (Output)

One of; ACSE RELEASE, ACSE ERROR, ACSE ABORT, RELEASE REJECT,
ASSOOATE INDICATION, ASSOOATE RESPONSE, RELEASE RESPONSE,
RELEASE HNISH, RELEASE END.

int *type The type of the C structure for the message contained in the acse_ptr union. (Output)

One of: ACSAP START, ACSAP INDICATION, Aa FINISH, AQ ABORT
ACSAP DISCONNECT, ACSAP CONNECT, ACSAP HNISH, ACSAP RELEASE.

struct acse_type acsejptr A pointer to the structure defined by type.(Output)

Returns

SUCCE^ A message existed in die queue and information was extracted from it and stored in

the parameters.

NULL The message list is empty.

18

Progranuner's Refa*aice Manual ACSE/ROSE Functions

2J.10. extract_cnup_niessage

int extract_cimp_message (associatioD_id, invoke_id, link id, nolinked, mode,

rose_op, cin^_op, msg_ptr

)

int association_id;

int invoke id;

int linkid;

int nolinked;

int mode;
int roseop;
int cmipop;
char msg_ptr.

Description The extract_cmipjnessage() function is used to retrieve CMIP messages from the

CMIP message queue. This fimction is called from within the check_messages() rou-

tine, or an equivalent user routine, to chedc for messages in the CMIP message

queue. Messages are stored in the CMIP message queue in the structure referenced

in section 2.2. If die function returns "NULL", the message list is either empty (on

the first call), or exhausted (on subsequent calls).

Parameters

int *association_id Association-descriptor identifying die association on which the message was

received. (Output)

int *invoke_id The invoke ID of the message. (Ouqiut)

int *link_id The linked Id of the message. (Output)

int *nolinked Present if no linked ID exists. (Ouqiut)

int *mode The mode of the CMIP operatimi (Confirmed or Unconfirmed). (Output)

int *rose_op A number representing die ROSE cqieration type. (Output)

int •cmip op A number representing the CTMIP operation type. (Ouqiut)

char msg_ptr A pointer to the CMIP message. (Output)

R^ums

SUCCESS A message existed in the queue and information was extracted from it and stored in

the parameters.

NULL The message list is empty.

NO_SUCH_RO_OP The ROSE operation to be stored in the parameter "rose op" is not one of

the known ROSE operations.

NO_SUCH_MSG_TYPE The CMIP message to be stored in the parameter "cmip op" is not one

of the known QvflP messages.

19

Programmer's Reference Manual ACSE/ROSE Functions

Sending CMIP/ROSE Messages

The following four routmes allow the user to send requests, responses, errors and reject invoca-

tions.

23.11. request

int request (sd, msg_type, mode, in)

int sd;

int msg_type;

int mode;

caddr_t in;

Description The request) function setrds a CMIP request message over the association designat-

ed by the assodatioo-descriptor, sd. The "out" parameter is a pointer to the request

message which should have been previously allocated and filled in via calls to the

appropriate parameter fill routines. A call to RyStubO (see page 97, Volume 4 of the

ISODE manual) is made to send the request message.

Parameters

int sd Association-descriptor designating the particular association over which die message is to

be sent (Iiq)ot)

int msg_type The integer representation of the CMIP request message type (see table 12) (It^t)

int *mode The mode of the message (Confirmed(l) or Unconfirmed(O)). (Input)

caddr_t in A pointer to the C structure containing the CMIP operation’s argument. (Input)

Returns

OK The request message was sent

NOTOK An error occurred while sending the message. The error message is also printed to the

output window of the screen interface.

REQUEST_INCOMPLETE One of the required fields was not fiUed in fw fliis request mes-

sage.

20

Programmer's Reference Manual ACSE/ROSE Functions

23.12. response

int response (sd, id, msg_type, out, priority, linked)

int sd;

int id;

int msg_type;

caddr_t out;

int priority;

int linked;

Description The response() function sends a CMIP lespcmse message over the association desig-

nated by the association-descriptor, sd. The "out" parameter is a pointer to die

response message whidi should have been previously allocated and filled in via calls

to die jqipropriate parameter fill routines. A call to RyDsResult() (see page 102,

Volume 4 of the ISODE manual) is made to send the message. The linked parame-

ter specifies if this response is to be sent as part of a linked reply (set to 1), or if it

is to be sent as a single result (set to 0).

Parameters

int sd Associadon-descr^tor designating the particular association over which the message is to

be sent (Input)

int id ID of die ROS operadon invocadon being re^nded to. (Iiput)

msg_type CMIS qieradon type

caddr_t out A pointer to die C structure comaining the operadon’s result (Iiput)

int priority The priority of the response (use ROS_NOPRIO, if undetermined). (Input)

int linked Set to 1 if this response is to be sent as a linked-reply, set to 0 if diis is a single

response. (Ii^ut)

Returns

OK The response message was sent

NOTOK An error occurred while sending the message. The error message is also printed to the

ou^ut window of the soeen interface.

RESPONSE_INCOMPL£'IE A required field was not filled in for this response message.

21

Programmer's Reference Manual ACSE/ROSE Functions

23.13. send_eTor

int send_error (sd, id, err, out, priority, linked)

int sd;

int id;

int err,

caddr_t out;

int priority;

int linked;

Description The send_error() function sends a CMIP error message over a designated association

as indicated by the assodatira-descriptor, sd. The "out" parameter is a pointer to the

error message which should have been previously allocated aixl filled in via calls to

the ajqrropiiate parameter fill routines. A call is made to RyDsError() (see page 102,

Volume 4 of dte ISODE manual) to send fire message. The linked parameter

specifies if this response is to be sent as part of a linked reply (set to 1), or if it is to

be sent as a single result (set to 0).

Parameters

int sd Associatioo-descr^tor designating the particular association over which die message is to

be sent (Input)

int id ID of the ROS operation invocation being respon<ted to. (Irq>ut)

int err The integer representation of the error code being returned. (Ir^>ut)

caddr_t out A pointer to die C structure containing the error parameter, if any. Since some er-

rors do not have any paramenters, this can be a NULL pointer. (Ir^ut)

int priority The priority of the response (use ROS NOPRIO, if undetermined). (Input)

int linked Set to 1 if this response is to be sent as a linked-reply, set to 0 if this is a single

response. (Ir^t)

Returns

OK Hie error message was sent.

NOTOK An error occurred while sending the message. The error message is printed to the out-

put window of the screen interface.

22

Programmer's RtferoK^ Manual ACSE^OSE Functions

23.14. reject

int lejea (sd, id, leasoo, piiority)

int sd;

int id;

int reason;

int prionty.

Description The reject() function is used to reject an invocation. The input parameter, reason, is

filled with one of the reasons listed in table 9. A call to RyDsReject() (see page 103,

Volume 4 of the ISODE reference manual) is made to send the rejection.

Parameters

int sd Association-descriptor designating the particular association over which the message is to

be sent (Ii:^)ut)

int id ID of die ROS operation request invocation being rejected. (Ii^ut)

int reason The reason for the rejection (see table 9). (Iiqiut)

int priority The priority of die response (use ROS NOPRIO, if undetermined). (Input)

R^ums

OK The reject message was sent

NOTOK An error occurred while sending the m^sage. The error message is printed to the out-

put window of the screen interface.

23

Programmer's Referoice Manual ACSE/ROSE Functions

2.4. Utilities

The following utility routines are included to assist in the processing of messages.

2.4.1. print_ad

piint_aci (aci, additional_message, sd)

struct AcSAPindication "‘ad;

char additional_messageG;

int sd;

Description The print_aci() function prints an AcSAPindication structure to stdout, given the

pointer to the structure. The function uses internal information to determine the type

of indication the message contains (see table 6) and prints the appropriate informa-

tion. The additional message parameter allows the user to print additional informa-

tion, if necessary. Such additional information is optional.

Parameters

struct AcSAPindication *ad Pointer to the AcSAPiiKiication stnicture that is to be printed. The

table below identifies the different types of indicaticms and the rea-

sons contained in these types. (Input)

char additional_message[] Array of additional character data to be printed along with structure

information. (Iiput)

int sd Assodaticxi-descriptor identifying the association on which the message was received. (In-

put)

Returns NONE

AcSAPindication structure

Type Reason

Aa_FINISH ACF URGENT
ACF USERDEFINED

AOABORT

ACA USER
ACA PROVIDER
ACA LOCAL
ACS ACCEPT
ACS REJECT
ACS PERMANENT
ACS TRANSIENT

Table 6

Programmer's ReftfeiK^ Manual ACSETROSE Functions

2.4^. clear_sd

int clear_sd (sd)

int sd;

Description The clear_sd() function is used to clear a file descriptor when an error occurs on an

association. This function is automatically called for associations established by this

implementation. However, the function is iiKluded here for users who wish to create

th^ own associations. Use of tibds function prevents the fimction TNetAccept() frmn

listening for activity (m a file descriptor designating an association that has been

aborted due to the occurrence of a fatal error.

Parameters

int sd Association-descriptor designating the particular association to be cleared. (Ii^ut)

Returns NONE

25

Programmer's Reference Manual ACSE/ROSE Functions

2.4J. acse_free

int acse_£ree (id)

struct acse_type *id;

Description The acseJree{) function frees an ACSAP structure given the pointer to that struc-

ture. This function uses internal information to determine the structure type (see

table 7) arnl then frees all memory associated widi that structure.

Parameters

struct acse_type ^d Pointer to the AcSAP structure to be freed. This is the data field of an

ACSE message. (Input)

Returns NONE

Internal ACSE Message Types

Type Structure Released

ACSAP START AcSAPstart

ACSAP INDICATION AcSAPindication

AO FINISH AcSAPfinisb

ACI ABORT AcSAPabort

ACSAP DISCONNECT TSAPdisconnect

ACSAPCONNECT AcSAPconnect

ACSAP FINISH RoSAPindication

ACSAPRELEASE AcSAPrelease

Table 7

26

Programmer's Refereoce Manual ACSE/ROSE Functions

2.4.4. map_<^peration

m2q)_operatioD (rose_operati(m, cimp_operation)

int iose_opeiation;

int cin^_operation;

Description The map_operation() function provides access to a table whidi stores local

identifiers for both the range of CMIP request/response operation types, and tire

range of CMIP error types. Since this single table contains the integer representation

for die errors atxl the request/response types, and since these values overlap, this

function is needed to do tte rqrpropriate table lookup and provide the mapinng func-

ticm which returns the correct message type (Le., itKlex into the array) (see table 12).

Parameters

int rose_operation The ROSE operation number - listed in table 11 (Input),

int anip_operation The CMIP operation number • listed in table 1 1 (li^ut).

Returns The index element of the array (see table 12) representing the CMIP message to be pro-

cessed.

27

Programmer's Rtference Mannal ACSE/ROSE Fnnctioiis

2^. Routines

The following routines are called by the ftmcticms described in die previous section. Although the

following functions are not called direcdy by the user of the sample implementation provided widi

NeMaSOS, the descriptions of diese functions are provided here to assist those implementors who may
desire direct access to these functions or who may need to modify these functions to suit their

applicaticm.

Association Establishment

The foUowing two routines deal with association establishment.

2.5.1. associate_retry

int associate_ietry (sd)

int sd;

Description The associate_retry() function is called by ros_wo± to process an assodatitm retry

request message. An association retry will occur when a previously attempted asso-

datioD request is answered. The function AcAsynRetryRequest() (see page 34,

Volume 1 of the ISODE manuals) is automatically called and the result is added to

the AC^E message queue.

Parameters

int sd AsscxdatioD-desciiptor designating the particular assodadon on which the activity occurrecL

(Iiqiut)

Rdums

OK The association is established The sd parameter contains the assodation-descriptor.

NOTOK An error occurred The association is not established Retry the call

CONNECTlNG_2 The response was not recdved in the time allotted for Ms asynchronous re-

quest The sd parameter is updated with the assodaticm-desaiptor that will be

used, and a future response message will be added to the ACSE message

queue to notify the user when the asscxaation is established

DONE The assodadon was rejected for cme of the reasons listed in table 8. An ACSE message

will be added to the ACSE message queue with an AcSAPmdicadon structure ccmtainiog

this informadon.

28

Programme’ 's Refo’ence Manual ACSE/ROSE Functions

2.52. add_operations

static void add operations (sd)

int sd;

Description The add_operations() function is used in conjunction with the RyWait() routine (see

page 104, Volume 4 of the ISODE manual) to designate the operations that are al-

lowed to be performed over an association (you can only receive operaticms you

know about). Operations allowed include all CMIS (^rations (i.e., GET, SET,

DELETE...).

Parameters

int sd Association-descriptor of the association to which operations are to be added. (Input)

Returns NONE

Association T^mination

The following three routines deal with association terminaticm.

2.5J. release_retry

int release retry (sd)

int sd;

Description The release_retry() function is called by ros_work; to process a release retry request

message. A release retry will occur when a previously attempted release request is

answered. The function AcRelRetryRequest() (see page 37, Volume 1 of ttie ISODE
manuals) is automatically called aiKl the result is added to the ACSE message queue.

Parameters

int sd Association-descriptor designating the particular assodatitm on which the activity occurred.

(lrq)ut)

Returns

OK The message was received arnl the association terminated.

29

Programmer's Referoice Manual ACSE/ROSE Functions

2.5.4. delete_operations

static void delete_operations (sd)

int sd;

Description The delete_operations() function is used in conjunction with the RyDispatch() rou-

tine (see page 100, Volume 4 of the ISODE manual). This function removes opera-

tions allowed to be performed over an association (you can (mly receive operations

you know about). Gyrations allowed indude all CMIS operatimis (i.e., GET, SET,

DELETE...).

Parameters

int sd Assodation-descriptor designating the particular association frc»n which to delete the

operations. (Input)

2.5.5. rose_lose

static int ros lose (td)

struct TSAPdisconnect *td;

Description The rose_Iose() fimctitm is called by the initiator of an association (e.g., the

manager) when an association is terminated abnormally by the responder on the as-

sociation (e.g., the agent). It dears all knowledge of die association frmn memory
on the initiator’s system.

Paramders

struct TSAPdisconnect *td The TSAPdisccmnect structure returned fixan TNetAccept routine.

(Input)

Returns NONE

30

Progranuner's Refa*eiice Manual ACSEVROSE Functions

Message Qurae Management

The foUowing four routines deal with queue management for bodi the ACSE and CMIP message

queues.

2JS.6. add_acse_message

static void add_acse_message (associati«i_id, operation, data)

int '''association_id;

int operation;

char ’"data;

Description The add_acsejnessage() funcdon adds an ACSE message to the ACSE message

queue. Table 10 lists the possible operation types, the associated C defined constant

designators, and the ISODE structures for storing the operation informatioa This

function is called by mimerous routines any time an ACSE message is received.

Parameters

int *association_id Association-descriptor identifying the association on which the message was
received. (Input)

int operation The numeric value of the ACSE operation (see table 10). (Input)

char *data A character pointer to the message received. (Actual viewing of the message requires

type-casting to the aj^rropriate specific message type.) (Input)

Returns NONE

Programmar's Reference Manual ACSE/ROSE Functions

2.5.7. add_cinip_niessage

static void add_cmip_inessage (sd, id, value, rose_operation, cmis_operation)

int sd;

int id;

caddrjt value;

int rose_operalion;

int anis_operation;

Description The add_cmipjnessage() function adds a message to the CMIP message queue. The

association-descriptor the message was received on, the invoke Id, and a character

pointer to the message are stored. Table 11 lists the various CMIS q)erations and

ROSE operations that are stored.

Parameters

int sd Assodatimi-descriptor identifying the association on which the message was received. (In-

put)

int id The invoke ID of tire message. (Irq)ut)

caddr_t value A pointer to the CMIP message to be added to the CMIP message queue and

stored. (Irq>ut)

int rose_operation A number representing the ROSE q>eration type of the CMIP message being

added to the CMIP message queue. (Input)

int cmis_operation A number representing the CMIS (^ration type of the CMIP message being

added to the CMIP message queue. (Iiqrut)

Returns NONE

32

Programme' 's Reference Manual ACSE/ROSE Functions

2.5.8. ros_init

int ros_iiiit (veq), vec)

int veep;

char **vec;

Description The rosJnit() function is used in conjuncti(Mi with the iserver_wait() functitMi, (see

page 47, Volume 1 of the ISODE manual). It is called any time new activity occurs

on a file descriptor, signifying a new association request The parameter vec con-

tains the association data and veep contains the length of vec. The function processes

the Hara and adds an ACSE message to the ACSE queue for the association request

This function is registered with iserver_wait by using the function iserver_init() (see

page 46 , Volume 1 of the ISODE manuals).

Parameters

int veep The lengtii of the initialization vector, vec. (Input)

char **vec The initialization vector containing the association informatitm. (Input)

Returns

NOTOK An error occurred processing the message. An ACSE message was added to the ACSE
message queue cmitaining the error.

2.5S. ros_work

int ros_wOTk (sd)

int sd;

Description The ros_work() function is used in conjunction with the iserver_wait() function, (see

page 47, Volume 1 of the ISODE manual). It is called any time activity occurs on a

file descriptor, signifying a request/response on an association-descrq)tor. The
parameter sd ctmtains the association-descrqitor of die association cm which the ac-

tivity occurred. This function determines whetirer the request is 1) an association re-

try request, 2) a release retry request, or 3) a CMIP message. It then calls the £q>-

propriate routine to process the message.

Parameters

int sd Association-descriptor designating the particular assodatitm on which the activity occurred.

(Input)

Returns

OK The message was received and processed.

33

Programmer's Reference Manual ACSE/ROSE Factions

Receiving CMIP/ROSE Messages

The foUowing four routines allow the user to receive requests, responses, errors arxl reject invoca-

ti(HlS.

2.5.10. request_messj^e_received

int request_message_reoeived (sd, ryo, rox, in, roi)

int sd;

struct RyOperatiwi *ryo;

struct RoSAPinvoke *rox;

caddr_t in;

struct RoSAPitKlication *roi;

Description The requestjnessage_received() funcdcxi is automatically called by RyWait() (see

page 104, Volume 4 of the ISODE manuals), it signals the receipt of a CMIP re-

quest message and adds the message to the CMIP message queue. In order to be au-

tomatically called by RyWait() at die ^ropriam time, this function is registered by

using the function RyDispatch (see page 100, Volume 4 of the ISODE manuals).

Parameters

int sd Association-descriptor identifying the association on which the message was received. (In-

put)

struct RyOperation ryo The associated RyOperation stracture. (see page 97, Volume 4 of the

ISODE manual) (Input)

struct RoSAPinvoke rox Hie associated RoSAPinvoke structure, containing the invoke ID and

the operation type, (see page 97, Volume 4 of the ISODE manual)

(Irqiut)

caddr_t m A diaracter pointer to die message received. (Irqiut)

stiTict RoSAPindication rw A pointer to the RoSAPiudicaticMa structure, (see page 97, Volume
4 of the ISODE manual) (Irqmt)

R^ums

DONE Request message was received and enqueued.

34

Programmer's Reference Manual ACSE/ROSE Functions

2J.11. «Tor_message_received

int eiror_message_rcceived (sd, id, reason, value, roi)

int sd;

int id;

int reason;

caddr_t value;

struct RoSAPindication *Toi;

Description The error_message_received() function is automatically called by RyWait() (see page

104, Volume 4 of the ISODE manuals). It signals the receipt of a CMEP error mes-

sage and adds the message to the CMEP message queue. In order to be autmnatical-

ly called by RyWait() at the q^propriate time, this function is registered by using the

call RyDispatch() (see page 100 , Volume 4 of the ISODE manuals).

Parameters

int sd Assodaticm-descriptor identifying the association on which the message was received. (In-

put)

int id The invoke Id of die message. (Ii^ut)

int reason Tte reason for the error (see table 9). (Irqiot)

caddr_t value A character pointer to the error message.

struct RoSAPindication *roi A pointer to a RoSAPindication structure that is updated only if

the call fails (see page 58, Volume 1 of the ISODE reference

manual). (Input)

Returns

DONE Error message was received and enqueued.

35

Programmer's Reference Manual ACSE/ROSE Functions

2^.12. result_message_recdved

int result_message_received (sd, id, reason, value, roi)

int sd;

int id;

int reason;

caddr_t value;

struct RoSAPindication *roi;

Description The result_message_received() function is automatically called by RyWait() (see

page 104, Volume 4 of the ISODE manuals). It signals the receipt of a CMIP
response message and adds the message to the CMIP message queue. In order to be

automatically called by RyWait() at the ^propriate time, this function is registered

by using die function RyDispatch() (see page 100 , Volume 4 of the ISODE manu-

als).

Parameters

int sd Assodatitm-descriptor identifying the association on which the message was received. (In-

put)

int id The invoke Id of the message. (IiqKit)

int reason Identifies the type of the result message received. Values are either RY_RESULT or

RY_REJECrr. (Iiqnit)

caddr_t value A character pointer to the result message.

struct RoSAPindication *roi A pointer to a RoSAPindication structure that is updated only if

the call fails (see page 58, Volume 1 of the ISODE reference

manual). (Iiqiut)

Returns

DONE Result message was received and enqueued.

36

Progranuner's Refo’ence Manual ACSE/ROSE Functions

2.5.13. accept_message

int accept_inessage (sd)

int sd;

Description The accept_message() function is called by ros woric to process a CMIP message

and add it to the CMIP message queue. This function calls RyWait() (see page 104,

Volume 4 of the ISODE manuals) to receive the message.

Parameters

int sd Assodaticm-descriptor designating the particular assodaticm on which the activity occurred.

(Input)

Returns

OK The message was received and processed.

2.6. Tables

Association rejection Reasons

Error Return Value Meaning

Provider-Initiated

Aborts

(FATAL)

ACSADDRESS Address unknown

AC:S_REFUSED Connect request rehised on this network connection

ACSCONGEST Local limit exceeded

ACS PRESENTATION Presentation disconnect

ACS PROTOCOL Protocol error

ACS RESPONDING Rejected by responding ACPM
ACS ABORT Peer aborted association

User-Initiated

Rejections

(FATAL)

AC:S_PERMANENT Permanent

ACSTRANSIENT Transient

Interfatx Errors

(NON-FATAL)

ACSREJECT Release rejected

ACSPARAMETER Invalid parameter

ACS OPERATION Invalid operation

Table 8

37

Programmer's Reference Manual ACSE/ROSE Functions

Message rejection Reasons

Error Return Value Meaning

Provider'lnitiated

Aborts

(FATAL)

ROS ADDRESS Address unknown

ROSREFUSED Connect request refused on this netwoik connection

ROSSESSION Session Disccmnect

ROS PRESENTATION Presentati(» disconnect

ROS PROTOCOL Protocol error

ROS CONGEST Congestion at RoSAP

ROS REMOTE Remote system problem

ROSDONE Association done via async handler

ROSABORTED Peer aborted association

ROS RTS RTS disctMinect

ROS ACS ACS disconnea

Uso'-Initiated

Rejections

(FATAL)

ROS VALIDATE AuthenticatitMi failure

ROSBUSY Busy

Provider-Initiated

Rejects

(NON-FATAL)

ROS GP UNRECOG Unrecognized APDU
ROS GP MISTYPED Mistyped APDU
ROS GP STRUCT Badly structured APDU

Table 9

ACSE Message Types

Operation # define ISODE structure

ASSOCIATE INDICATION ACSAPSTART (struct AcSAPstart *) data

ACSE RELEASE ACSAP INDICATION (struct AcSAPindication *) data

ACSE ABORT ACSAP INDICATION (struct AcSAPindication *) data

RELEASE END ACSAP FINISH (struct RoSAPindication '^) data

RELEASE FINISH ACSAP FINISH (struct RoSAPindication *) data

ACSEERROR ACSAP DISCONNECT (struct TSAPdisconnect *) data

ASSOCIATE RESPONSE ACSAPCONNECT (struct AcSAPconnect *) data

RELEASE REJECT ACSAP RELEASE (struct AcSAPrdease *) data

RELEASE RESPONSE ACSAP RELEASE (struct AcSAPrdease *) data;

Table 10

38

Programmer's Reference Manual ACSE/ROSE Functions

CMIP and ROSE Operation Types

Rose Operation CMIP Operation Name (assigned by ISODE) Integer Rep

operati(Mi_CMIP_m_EventReport 0

operati(Hi_(rMIP_m_EventReport_Cbnfinned 1

operation CMIP m Linked Reply 2

operation CMIP m_Get 3

ROI INVOKE
ROI_RESULT

operation CM]P_m Set

operation_CMIP_m_Set Ctxifirmed

operati(xi CMIP m Action

4

5

6

operaticHt CMIP m Action Confirmed 7

operatim CMIP m Create 8

operaticm CMIP m Delete 9

operation_CMIP_m_CancelGet 10

error_CMIP_noSuchObjectQass 0

error_CrMIP_noSuchObjectInstance 1

error CMIP accessDenied 2

eiror_CMIP_syncNotSiipported 3

error CMIP invalidFilter 4

error CMIP noSucbAttribute 5

error CMIP invalidAttributeValue 6

error CMIP_getListError 7

error CMIP setlistError 8

error CMIP noSucbAction 9

error CMIP_processingFailure 10

ROI ERROR errorCMIPdupbcateManagedObjectlnstance 11

error CMIP noSucbReferenceObject 12

error CMIP noSucbEventType 13

error CMIP noSucbArgument 14

error CMIP invalidArgumentValue 15

error CMIP invalidScope 16

error_CMIP_invalidObjectInstance 17

error_CMIP_niissingAttTibuteValue 18

error CMIP classInstanceConflict 19

error_CMIP_complexityLimitation 20

enor_CMIP_inistypedOperation 21

error CMIP noSucbInvokeld 22

errorCMIPoperationCancelled 23

ROI PREJECT None Nwie

ROI UREJECT None Nwie

ROI FINISH None N(me

Table 11

39

Programmer's Reference Manual ACSE/ROSE Functions

CMIP Message Types (struct fiU table table_CMIP_fiIIs[])

Airay Element Message Type ISODE value CMIP value

0 NOSUCHOBJECTCLASS eiTor_CMIP_noSuchObjectQass 0

1 NO SUCH OBJECT INSTANCE eirorCMIPnoSuchObjectInstance 1

2 ACCESSDENIED eirorCMIPaccessDenied 2

3 SYNCNOTSUPPORTED errorCMIPsyncNotSuppoited 3

4 INVALID FILTER error CMIP invalidFilter 4

5 NO SUCH ATTRIBUTE errorCMIPnoSuchAttribute 5

6 INVAUDATTRIBUTEVALUE errorCMIPinvalidAttiibuteValue 6

7 GET UST ERROR error CMIP getListError 7

8 SET UST ERROR errorCMIPsetListError 8

9 NOSUCHACnON errorCMIPnoSuchAction 9

10 PROCESSING FAILURE error_CMIP_processingFailure 10

11 DUPLICATE MANAGED
OBJECT INSTANCE

erTor_CMIP_duplicateMaiiaged

ObjectInstance

11

12 NOSUCHREFERENCEOBJECT errorCMEPnoSuchReferenceObject 12

13 NO SUCH EVENT TYPE error CMIP noSudiEventType 13

14 NOSUCHARGUMENT errorCMIPnoSuchArgument 14

15 ENVAUDARGUMENTVALUE errorCMIPinvalidArgumentValue 15

16 INVALID SCOPE error_CMIP_invalidScq)e 16

17 INVALID OBJECT INSTANCE errorCMEPinvalidObjectlnstance 17

18 MISSINGATTRIBUTEVALUE error CMIP missingAttributeValue 18

19 CLASS DSrSTANCE CONFLICT errorCMIPclassInstanceConflict 19

20 COMPLEXITY LIMITATION errorCMIPcOTiplexityLimitation 20

21 MISTYPEDOPERATION error_CMIP_mistypedOperation 21

22 NOSUCHINVOKEID errorCMIPnoSuchInvokeld 22

23 OPERATION CANCELLED error CMIP operationCanceUed 23

40

Programmer's Reference Manual ACSE/ROSE Functions

CMIP Message Types (struct fill table table CMIP fills[])

(Continued)

Array Element Message Type ISODE value CMIP value

24 SET REQ
24 SET IND operation CMIP m Set or 4

26 SET RSP operation CMIP m Set Confinned 5

27 SETCNF

28 GET REQ
29

30

GET IND
GET RSP

operation CMIP m Get 3

31 GETCNF

32 EVENT REQ
33 EVENT IND operation CMIP m EventRepoit or 0

34 EVENTRSP operation CMIP m EventRepoit Confirmed 1

35 EVENTCNF

36 ACTION REQ
37 ACTION IND operaticm CMIP m Action or 6

38 ACTION RSP operation CMIP m Action Confirmed 7

39 ACnONCNF

40 CREATE REQ
41 CREATE IND

operation_CMIP_m_Cieate 8
42 CREATE RSP
43 CREATECNF

44 DELETE REQ
45 DELETE IND

operation_CMIP_m_Delete
46 DELETE RSP 9

47 DELETECNF

48

49
CANCEL REQ
CANCELIND (^)eration_CMIP_m_CancelGet 10

50 ACTION ERR None N/A
51 DELETEERR None N/A

52 UNKEDREPLY operation CMIP m Linked Reply 2

Table 12

41

Programmer's Referenoe Manual ACSE/ROSE Fonctions

3. CMIS Operatimis

3.1. Introduction

The CMIS service interface is comprised of a set of library fiinctioos resi^g in onislib.a. These

fimcticms, forming the CMIS service interface, provide die means for the user, when sending PDUs, to

allocate and iniriali7a data structures representing CMIP operation PDUs, to appropriately fill in the

parameter fields of these structures (using the "fill" functions), and to encode and send out die PDUs to

the peer management entity. When receiving CMIP PDUs, these functions enable the user to retrieve

incoming PDUs, recognize the operatitm type of die PDU, decode the PDUs, and extract the CMIS
parameter information frcnn the PDU (using the "extract" functions). The CNflS services supported by

these library functions include: M-GET, M-SET, M-ACTION, M-EVENT-REPORT, M-CREATE, M-
DELETE, and CMIS errors.

These library functions are organized into what could loosely be considered to be three basic types of

fimctions. The first category of library functions are used when sending request and response PDUs and

include the init_q)eration_structO. requestO, or the respwiseO functions. The init fimction is intended

to be the fiirst functicm called when initiating a CMIS service because it allocates and initializes the

basic data structure for the service message. The requestO and responseO fimctions are intended to be

the last functions called when a request or response is to be sent The requestO and responseO

functim, after checking that critical data structure fields are non-null, initiates the encoding and sending

of the message (PDU).

The second and third categories of functions are the mandatory and optional function calls, respectively,

used to fill in parameter informatioiL For each of the CMIS request and response services, the list of

fimcticHis are marked as marxlatory or optional. A mandatory fimction is one that should be called

because for that CMIS service die CMIS standard mandates that that parameter shall be provided. If a

mandatory fimction is not called, or if the user tries to fill this parameter by other means, the encoder

may fail when attempting to encode this parameter. An optional function, on the other hand, is one that

deals with a parameter that die CMIS standard does not mandate, but rather makes optional. The user

may call optional fimctions to fiU in qitional parameters when it is desired to pass information in these

parameters. Unlike the mandatory case, it is acceptable to not invoke die optional fimcticxis and thus

leave those corresponding message fields mill or as otherwise initialized by the init_operation_struct()

functimi.

When operating in the receive mode, to process CMIS indications and confirms, the sequence of

fimctimi calls is somewhat different from that used to send PDUs. First, the user invokes the

extract_cmip_message() function to retrieve the message firom the CMIP message queue and determine

the (MIS message type. Then, the appropriate "extract" functions are caUed, according to the message

type, to retrieve any desired parameter information from the message. And finally, the

free_operation_struct() function is c^ed to delete the message structure when it is no longer needed.

Also included in the (MIS library of fonctions are routines that enable the (MIS user to fill and extract

informaticm when it it necessary to s«id or receive a (MIS error.

For each (MEP operation and (MIS service primitive sujqiorting that operation, tables 13-17 list the

interface functions used to fill or extract information from the relevant parameters. These tables are

organized to show the relevant parameters for each qieration primitive and the qipropriate fill and

extract interface function to use in processing those parameters. The tables do not include the repetitive

statement of the common functions mentioned above which are to be used for all primitives to initialize

aiKl send die PDUs or to determine die type of received (MIS message and then to delete the message

when iK> longer needed.

42

Programmer's Reference Manual CMIS Optfations

3.1.1. Object Identifier (OID)

An object identifier is a sequence of nrai-negative integer values that represent a path in a tree.

The tree consists of a root connected to a number of labeled nodes via edges. Each label consists

of a non-negative integer value and possibly a brief textual descripticm. Each node may, in turn,

have child nodes of its own, termed subordinates, whidi are also labeled. This process may be re-

peated to an arbitrary depth.

For all functions in the CNQS/CMIP service interface library, when an object identifier is to be

passed as a parameter, a character string is used to represent the object identifier. The character

string should contain the integer values which specify the path duou^ the tree, starting at the root

and proceeding to the object in question. The integer values are separated by a period (dot).

3.1.2. Presentation Element (PE)

A presentation elemait is a data structure which is used to represent data in a machine-

independent form. The typedef PE is a pointer to a PElement structure. The structure contains

several elements, most of which are uninteresting to the user of the NeMaSOS library. Please

reference volume 1, page 124 of the ISODE manuals for a complete description of a presentation

element

There are several routines which can be used to translate between the machine-independent

representation of die element and machine-specific objects such as integers, strings, and the like. It

is extremely important that programs use d^se routines to perform the translation between objects.

They have been carefully coded to present a simple, uniform interface between machine-specifics

and the machine-independent encoding protocol, please reference volume 1, page 125 of the

ISODE manuals for a list of available functions.

Most presentation elements used in the fill and extract functions should be created by the encode

and decode routines provided by PEPY. The user need only call die encode functions passing a

pointer to a presentation element (PE) and the structure to be encoded. Then the user calls the ap-

propriate fill routine passing the pointer to the PE returned containing the encoded data. For tte

decoding functions, call the appropriate extract routine and then call die correct decode function

with the returned PE.

43

Programme* 's Refa*eiice Manual CMIS Operations

M'GET Operation

CMIS Se'vke CMIS Parameter NeMaSOS Fill Ftinctitm NeMaSOS Extract Function

M-GET Request

baseManagedObjectQass

baseManagedObjectInstance

accessControl

synchronizatioD

scope

filter

attribute identifier List

fillbaseManagedObjectOass

fill_baseManagedObjectInstance

fill_accessControl

fill_syndironizati(xi

fill_scope

fill_filter

fill_attributeldlist

extract_baseManagedObjectQass

extract baseManagedObjectInstance

extractaccessControl

extract_synchronization

extract scope

extractfilter

extract_attributeldlist

M-GET Result

managedObjectOass

managedObjectiDStance

cunentTime

attributelist

fill_managedObjectQass

fill_managedObjectInstance

fill_cuirentTime

fiU_attributeList

extract_managedObjectClass

extractmanagedObjectlnstance

extractcunentTime

extract_attributeList

M-GET Errors

accessDenied classInstanceCoofiict complexityLimitatioD

getlistError invalidHlter invalidScope

noSuchObjectdass noSucbObjectlnstance processingFailuie

syncNotSuf^ited operationCancelled

M-SET Operation

CMIS Sorice CMIS Parameta: NeMaSOS FUl Function NeMaSOS Extract Funt^on

M-SET Request

baseManagedObjectQass

baseManagedObjectInstance

accessControl

synchronization

scope

filter

modification List

fill_baseManagedObjectClass

fill_baseManagedObjectInstanoe

fill_accessControl

fill_synchronizatioo

fill scope

fiUfilter

fill_modificati(»]List

extractbaseManagedObjectOass

extractbaseManagedObjectInstance

extraaaccessControl

extractsynchronization

extractscope

extractfilter

extractmodificationlist

M-SET Result

managedObjectOass

managedObjectInstance

cunentTime

attributeList

fill_managedObjectQass

fill_managedObjectInstance

fill currentUme

fill_attributeList

extractmanagedObjectClass

extractmanagedObjectlnstance

extractcunentTime

extract attributeList

M-SET Errors

accessDenied classInstanceConflict complexityLimitation

invalidHlter invalidScope noSuchObjectOass

noSucbObjectlnstance processingFailuie setListError

syncNotSuppoited

Table 13

44

Programmer's Referoice Manual CMIS Operations

M-ACTION Operation

CMIS Service CMIS Parameter NeMaSOS Fill Functirm NeMaSOS Extract Function

M'ACTION Request

baseManagedObjectQass

baseManagedObjectInstance

accessCoDtrol

syncbronizati(«i

scq)e

filter

action Information

fiU_baseManagedObjectClass

fill_baseManagedObjectInstance

fill_accessContiol

fill_synchronization

fill_scope

fiU filter

fill actioninfo

extractbaseManagedObjectClass

extractbaseManagedObjectlnstance

extractaccessCwitrol

extractsynchronization

extractscope

extract filter

extractactioninfo

M-ACnON Result

managedObjectClass

managedObjectInstance

cunentTime

actionReply

fill_managedObjectClass

fill_managedObjectInstance

fill_cunentTime

fiU_actionReply

extractmanagedObjectQass

extractmanagedObjectInstance

extract cunentTime

extractactionReply

M-ACnON Errors

accessDenied dassInstanceConflict complexitylimitation

invalidScqpe invalidArgumentValue invalidFilter

iK>SuchAction noSuchA^gument noSuchObjectClass

noSuchObjectInstance processingFailure syncNotSuppoited

M-EVENT-REPORT Operation

CMIS Service CMIS Parameter NeMaSOS Fill Flmctimi NeMaSOS Extract Function

M-EVENT-REPORT
Request

managedObjeaClass

managedObjectInstance

eventTime

eventType

eventinfo

fill_managedObjectClass

fill_managedObjectInstance

fill eventTime

fill_eventType

fill eventinfo

extractmanagedObjectClass

extract managedObjectInstance

extracteventTime

extracteventType

extracteventinfo

M-EVENT-REPORT
Result

managedObjectClass

managedObjectInstance

cunentTime

eventReply

fill_managedObjectClass

fill_managedObjectInstance

fill_cunentTime

fill_eventReply

extract_managedObjectQass

extract_managedObjectInstance

extract_cunentTime

extract_eventReply

M-EVENT-REPORT
Errors

invalidArgumentValue noSudiArgument noSuchEventType

noSuchObjectOass noSuchObjectInstance processingFailure

Table 14

45

Programmer's Reference Manual CMIS Operations

M'CREATE Operation

CMIS Service CMIS Parameter NeMaSOS Fill Function NeMaSOS Extract Function

M-CREATE Request

managedObjectdass

managedObjectlnstance

superioiObjectlnstance

accessC(»tiol

referenceObjectTastance

attribute List

fill_managedObjectdass

fill_managedObjectInstance

fill superioiObjectlnstance

fill_accessControl

fiIl_ieferenceObjectInstance

fill_attributeList

1

extract_managedObjectdass
i

extiactcieateObjectlnstance

extractaccessControl

extract refeienceObjectlnstance
j

extractattributeList
^

1

M-CREATE Result

managedObjectdass

managedObjectlnstance

cunentTime

attributeList

fill_managedObjectdass

fill_managedObjectInstance

fill_ctiirentTime

fill_attributeList

i

extractmanagedObjectdass
j

extractmanagedObjectInstance
1

extract cunentTime

extractattributeList

M-CREATE Errors

accessDenied

invalidAttributeValue

noSuchAttribute

noSucbReferenceObject

classInstanceConfiict

invalidObjectlnstance

noSudiObjectdass

processin^ailure

dupUcateManagedObjectlnstance

missingAttributeValue

noSuchObjectInstance

M-DELETE Operation

CMIS Service CMIS Parameter NeMaSOS Fill Function NeMaSOS Extract Function

M’DELETE Request

baseManagedObjectdass

baseManagedObjectlnstance

accessCmitFcd

synchronization

scope

filter

fill_baseManagedObjectdass

fill_baseManagedObjectlnstance

fillaccessControl

fill_syncfaronization

fill_scope

fill_filter

extractbaseManagedObjectClass

extractbaseManagedObjectInstance

extract_accessControl

extractsynchronization

extract scope

extractfilter

M-DELETE Result

managedObjectdass

managedObje(^Instance

currentUme

fill_managedObjectdass

fill_managedObjectlnstance

fill cunentTime

extract_managedObjectdass

extract_managedObjectInstance

extract cunentTime

M-DELETE Errors
accessDenied

invalidHlter

noSuchObjectInstance

classInstanceConfiict

invalidScope

processingFailuie

complexityLimitatimi

noSuchObjectClass

syncNotSupported

Table 15

46

Programmer Reference Manual CMIS Opo^tions

M-CANCELGET Operation

CMIS Service CMIS Parameta* NeMaSOS Fill Function NeMaSOS Extract Function

M-CANCELGET Request Invokeld fill_invoke_id extract invoke id

M-CANCELGET Result
None None None

M-CANCELGET Errors mistypedOpeiatioD noSuchlnvokeld processingFailure

M-LINKEDREPLY Operation

CMIS Service CMIS Parameter NeMaSOS Fill Function NeMaSOS Flxtract Function

M-UNKEDREPLY Request See Section 3.9 See Section 3.9 See Section 3.9

M-UNKEDREPLY Result
See Section 3.9 See Section 3.9 See Section 3.9

M-UNKEDREPLY Errors mistypedOperadon noSuchlnvokeld processingFailure

Table 16

47

Programmer's Reference Manual CMIS Oparations

ERRORS

CMIS Error CMIS Parameta* NeMaSOS Fill Function NeMaSOS Extract Function

accessDenied NONE NONE NONE

dassInstanceConflict baseManagedObjectQass

baseManagedObjectlnstance

fill_baseManagedObjectQass

fill_baseManagedObjectInstance

extraa_baseManagedObjeaClass

extraabaseManagedObjectInstanc

complexityLimitation
scope

filter

syncfarooizatioD

fill_scope

fill_filter

fillsynchronization

extraa_scope

extraa_filter

extract_synchronization

duplicateManagedObject

Instance

managedObjectInstance fillmanagedObjectInstance extraa_managedObjectInstance

getlistError

managedObjectClass

managedObjectInstance

cuirentTime

getlnfolist

fiUmanagedObjeaClass

fillmanagedObjectInstance

fillcunentTime

fillgetInfoStatus

extraamanagedObjectQass
extract_managedObjectInstance

extraacuirentTime

extraa_getInfoStatus

invalidArgumentValue actionValue or

eventValue

fill actionValue or

filleventValue

extraa_value

extract_value

invalidAttributeyalue Attribute fiUattribute extraa_attribute

invalidFOta* filter fill filter extract_filter

invalidScope scope fill_scope extract_scope

invalidObjectInstance managedObjectInstance fillmanagedObjectInstance extraa_managedObjectInstance

missingAttribnteValoe Attributeld fiUattiibuteld extradattiibuteld

noSudiAction managedObjectClass

actionType

fiUmanagedObjeaClass

fiU_actionType

extraa_managedObjectQass

extraa_actionType

Table 17

48

Programmer's Referoice Manual CMIS Operations

ERRORS

CMIS Error CMIS Parameter NeMaSOS Fill Function NeMaSOS Extract Function

noSudiArgumoit acti(»ild or

eventid

fill_actionId

fill_eventld

extract_Id

extract_Id

noSudiAttribnte Attributeld fiUattributeld extractattributeld

noSudiEvratType managedObjectdass

eventType

fiUmanagedObjectClass

fiUeventType

extractmanagedObjectdass

extract_eventType

noSudiObjectClass managedObjectdass fiUmanagedObjectClass extractmanagedObjectdass

noSuchObjectlnstance managedObjectlnstance fill managedObjectlnstance extractmanagedObjectInstance

noSncfaReferenceObject managedObjectInstance fiU_managedObjectInstance extractmanagedObjectlnstance

processingFailure
managedObjectdass

managedObjectlnstance

spedficEirorlnfo

fiU managedObjectdass
fill managedObjectlnstance

fiU specificEiTorInfo

extract managedObjectdass

extract_managedObjectInstance

extract spedficEirorlnfo

s^ListError

managedObjectdass

managedObjectlnstance

cuiientTime

setInfoList

fiU_managedObjectClass

fiUmanagedObjectInstance

fiU currentTime

fiUsetInfoStatus

extractmanagedObjectdass

extiact_managedObjectInstance

extract currentTime

extract_setInfoStatus

syncNotSupported synchronization fiU_synchroni2ation extractsynchnHuzation

mistypedOperation NONE NONE NONE

noSudilnvokeld NONE NONE NONE

opo'ationCancelled NONE NONE NONE

Table 18

49

Programmer's Reftfence Manual CMIS Operations

3^. CMIS M-SET operation

The CMIS M-SET citation is used to modify attribute values of managed objects by setting them

to the values specified in the M-SET request There are four services associated with this opera-

tion in the confirmed mode: M-SET request, M-SET indication, M-SET response, and M-SET
confirm. In the unconfirmed mode, cmly die request and indicaticm services are used. These four

services are described in the following subsections.

Please note diat in the confirmed mode, the response and coofirm services are only used when the

operation has been fiiUy successful. When the operation has been only partially successful or un-

successful, responses take the form of errors which are returned using the appropriate error services

and functions described in this document

3,2.1. CMIS M-SET request

The CMIS M-SET request service enables the user to issue a request for the M-SET operation to

be performed and enables die user to pass the information necessary to support the performance of

this (^ration. Several functions comprise the support for the M-SET request service. Except for

the fimt and last of these functions, the order in which diey are called is not critical. The first

functitm called must be init_operation_structO; die last function called must be requestQ. The fol-

lowing list designates those library functitms available to the CMIS user to formulate and execute

an M-SET request Detailed descriptions of diese functions, along with the function parameters,

are provided later in this manual.

init_operation_structO

fillbaseManagedObjectClassO

fillbaseManagedObjectInstanceO

fill_accessControlO

fill_synchF(xiizationO

fill_scopeO

fillfilterO

fill_modificationListO

requestQ

- mandatory function call (must be first).

- mandatory function call.

- mandatory function call.

- optional functicxi caU.

- optional function call.

- optional function call.

- optional hmcticm call.

- marxlatory function call.

- mandatory function call (must be last).

50

Programmer's Reference Manual CMIS Opo'ations

3^2. CMIS M>SET indication

The CMIS M-SET indicalicm signals the recent of an M-SET request and ctmtains the infonnation

passed in the M-SET request PDU. The functicxis listed below allow die user to eioract die infor-

mation from the M-SET indicaticm message and place it in local data structures. The order in

which these functions are invtdced by the user is not critical other than that the

extract_anip_messageO hmction must be the first function called because all other functions act on

the message returned by this function call. Naturally, the free operation structO functim should

not be called until the message is no longer needed, since it deallocates the message structure.

extract_cmip_messageO

extractbaseManagedObjectQassQ

extract_baseManagedObjectInstance()

extract_accessControlO

extract_synchronization 0
extract_scope()

extraa_filterO

extract_modificationlistO

free_operation_structO

Data Structure

The following data structure (i.e., type_CMIP_SetArgument) contains the CMEP parameter informaticm

for both an M-SET request and an M-SET indication:

struct type_CMIP_SetArgument {

struct type_CMIP_ObjectClass *baseManagedObjectQass;

struct type_CMIP_ObjectInstance *baseManagedObjectInstance;

struct type_CMIP_AccessControl accessControl;

struct type_CMIP_CMISSync '''synchrcHiization;

struct type_CMIP_Sc<q)e *scope;

struct type_CMIP_CMISHlter *filter,

struct member_CMIP_7
{

struct element_CMIP_l 1

{

straa type_CMIP_ModifyC)perator modifyOperator,

struct type_CMIP_AttributeId *attributeld;

PE attributeValue;

} *member_CMIP_8;
struct member_CMIP_7 next;

} modificationList;

51

Programmer's Reference Manual CMIS Opo’ations

3J23. CMIS M*SET response

The CMIS M-SET response operation is used to respond to an M-SET request after having per-

formed the requested M-SET operation, and to c<mvey information associated with the successful

result of that q>eration. Sever^ functions comprise the support for the M-SET response service.

Except for the first and last of diese functions, the order in which they are called is not critical.

The first function called must be init_q)eration_structO; the last functicm called must be responseQ.

The following list designates tiiose library functimis available to the CMIS user to formulate and

execute an M-SET resptHise. Detailed descripticms of these functions, along with the function

parameters, are provided later in this manual.

init_q)eration_structO

fillmanagedObjectClassO

fill_managedObjectInstanceO

fill_curTentTimeO

fill_attributeList()

responseQ

- mandatory function call (must be first).

- q)tional function call

- optional function call

- optional function call.

- optional function call.

- mandatory function call (must be last).

52

Programmo’^s Reference Manual CMIS Operations

3^.4. CMIS M*SET confirm

The CMIS M-SET cxmfinn signals tiie recent of an M-SET response and contains the information

passed in the M-SET lesptHise PDU. The functions listed below allow the user to extract the infor-

mation from the CMIP M-SET confirm message atKl place it in local data structures. The order in

which these functions are invoked by the user is not critical odrer than drat the

extract_cmip_messageO function must be the first function called because all odier functions act on

the message structure returned by this function call. Naturally, the free_operation_structO function

should rx>t be called until the message is no longer needed, since it deallocates the message struc-

ture.

extract_cmip_message()

extraamanagedObjectClassO
extract_managedObjectInstanceO

extract_curTentTime()

extract_attributeList()

fiee_operation_stmct()

Data Structure

The following data structure (i.e., type_CMEP_SetResult) contains the CMIP parameter information for

an M-SET response and an M-SET confirm:

struct type_CMIP_SetResult {

struct type CMIP ObjectQass *managedObjectClass;

struct type_(MIP_ObjectInstance *managedObjectInstance;

struct type_UNrV_GeneralizedTime *curTentTime;

strua member CMIP IO {

struct type_CMIP_Attribute *Attribute;

stmct member_CMIP_10 *next;

} ^attributelist;

};

53

Programmer's Reference Manual CMIS Opo^tions

33. CMIS M-GET <^>erad<m

The CMIS M-GET operatiixi is used by a CMISE-service-user to retrieve attribute values from a

peer CMISE-service-user. There are four services associated with this operation; M-GET request,

M-GET indicatirm, M-GET response, and M-GET confirm. In accordance with the standard, tiie

CMIS M-GET service is only provided in the confirmed mode. These four services are described

in the following subsections.

Please iK>te that the response and confirm services are only used when the operation has been fully

successful. When the operation has been oidy partially successful or unsuccessful, responses take

the form of errors which are returned using the appropriate error services and functions described

in this document

33.1. CMIS M-GET request

The CMIS M-GET request service enables tlw user to issue a request for the M-GET operaticm to

be performed and enables die user to pass the information necessary to support the performance of

this operatioa Several functions comprise the support for the M-GET request service. Except for

the first and last of these functions, the order in which they are called is not critical. The first

fimcticxi called must be init_operation_structO; the last function called must be requestQ. The fol-

lowing list designates those library functions available to the CMIS user to formulate and execute

an M-GET request Detailed descriptions of tirese functions, along with the fimction parameters,

are provided in this manual.

init_<^)eration_struct()

fiUbaseManagedObjectdassO

fill_baseManagedObjectInstance()

fiUaccessControlO

fill_synchr(X]izationO

fiUscopeO

fill_filt^)

fill_attributeIdlistO

requestO

- mandatory function call (must be first).

- mandatory function call.

- mandatory function call.

- optional function call.

- optional functicm caU.

- optiotud functitm call.

- optional functitm call.

- mandatory function call.

- marKlatory function call (must be last).

54

Programmer's Reference Manual CMIS Operations

33J2. CMIS M-GET indication

The CMIS M-GET indicati<xi signals die receipt of an M-GET request and contains die infonna-

tim passed in the M-GET request PDU. The functions listed below allow tbe user to extract the in-

formation from the M-GET indication message and place it in local data structures. The order in

which these functions are invoked by the user is not critical other than that die

extract_cmip_message() function must be the first function called because all odier functions act on

the message returned by this function call. Naturally, die free_operation_struaO functitxi should

not be called until the message is no longer needed, since it deallocates the message stmcture.

extract_cmip_messageO

extract_baseManagedObjectClassO

extractbaseManagedObjectInstanceO

extract_accessControlO

extraa_synchronization()

extractscopeQ

extract_filterO

extractattributeldlistO

fiee_operation_structO

Data Structure

The following data structure (i.e., type_CMIP_GetArgument) ccmtains the CMIP parameter information

for both an M-GET request and an M-GET indication;

struct type_CMIP_GetArgument {

struct type_Ch^_ObjectQass *baseManagedObjectQass;

struct type_CMIP_ObjectInstance *baseManagedObjectInstanoe;

struct type_CMIP_AccessControl *accessControl;

stroct type_CMIP_CMISSync *synchromzation;

struct type_CMIP_Scope *scope;

struct type CMIP_CMISHlter *filter;

struct member_CMIP_4 {

struct type_CMIP_AtttibuteId *AttributeId;

strucx member_CMIP_4 *next;

} ^attributeList;

55

Programmer's Reference Manual CMIS Opa*ations

333. <3MIS M-GET response

The CMIS M-GET response operation is used to respond to an M-GET request after having per-

formed the requested M-GET operation, and to convey information associated with the successful

result of that q)eration. Several ftmctions comprise the support for the M-GET response service.

Except for the first and last of these functions, the order in which they are called is not critical.

The first function called must be iDit_q>erati(m_structO; tire last function called must be responseQ.

The following list designates those library functions available to the CMIS user to formulate and

execute an M-GET response. Detailed descriptions of these functions, alcmg witii the fimction

parameters, are provided later in this manual.

mandatory function call (must be first).init_q)eration_struct()

fiUmanagedObjectQassO

fillmanagedObjectlnstanceO

fillcurrentTimeO

fill_attributeList()

responseO

optional fimction call

optional fimction call,

optional fimction call,

optional fimction call

mandatory fimction call (must be last).

33.4. CMIS M-GET confirm

The CMIS M-GET confirm signals the receipt of an M-GET response and ccmtains the information

passed in the M-GET response PDU. The functions listed below allow the user to extract the in-

formation from the CMIP M-GET confirm message and place it in local data structures. The order

in which these functions are invoked by die user is not critical otiier than that the

extract_cmip_message() function must be the first function called because all other functions act on

the message structure returned by tiiis fimction call. Naturally, the firee_operation_structO fimction

should rmt be called until the message is no longer needed, since it deallocates the message struc-

ture.

extract_cmip_messageO

extraamanagedObjectdassO
extractmanagedObjectlnstanceO

extract_currentTime()

exiract_attributeList()

fiee_operation_struct()

Data Structure

The following data structure (i.e., type CMIP GetResult) contains the CMIP parameter information for

both an M-GET response and an M-GET confirm:

struct type CMIP GetResult {

struct type CMIP ObjectQass *managedObjectClass;

struct type CMEP Objectlnstance *managedObjectInstance;

stract type UNTV GeneralizedTime cunent'Iime;

struct member_CMIP_6 {

struct typ)e_CMIP_Attribute *Attiibute;

struct member_CMIP_6 *next;

} attributeList;

};

56

Prograiiiina‘'s Reference Manual CMIS Operations

3.4. CMiS M-ACnON operatim

The CMIS M-ACnON q>eratioD is used by a CMISE-service-user to request a peer CMISE-
service-user to perform an action on managed object(s). There are four services associated with

this operation in the confirmed mode: M-ACnON request, M-ACTION iiKlication, M-ACTION
response, and M-ACTION confirm. In the unconfirmed mode, only die request and indication ser-

vices are used. These four services are described in the following subsections.

Please note diat in the confirmed mode, die response and ctmfirm services are only used when the

operation has been fully successful. When the operaticxi has been only partially successful or un-

successful, responses take the form of errors which are returned using the jqipropriate error services

and functions described in this document

3.4.1. CMIS M-ACHON request

The CMIS M-ACnON request service enables the user to issue a request for the M-ACnON
operation to be performed and enables die user to pass the information necessary to support the

perfoimance of this operation. Several functions ctmiprise the sui^ort for die M-ACTION request

service. Except for tte first and last of these functions, the order in whidi they are called is not

critical. The first function called must be init operation stnictO; the last functicxi called must be

requestO- The following list designates those library functions available to the CMIS user to for-

mulate and execute an M-ACTION request Detailed descrqitions of these functions, along with

the fimction parameters, are provided later in this manual.

init_operation_struct()

fill_baseManagedObjectClassO

fillbaseManagedObjectlnstanceQ

fillaccessConirolO

fill_synchronization()

fiUscopeO

fillfilterO

fiUactionlnfoO

requestO

- mandatory function call (must be first).

- mandatory function call.

- mandatory function call.

- optional function call.

- optional functim call.

- optional functirx) call.

- optional function call.

- mandatory function call.

- mandatory function call (must be last).

57

Programme’ 's Referent Manual CMIS Operations

3.4^. CMIS M-ACTION indication

The CMIS M-ACnON indication signals the receipt of an M-ACTION request and contains the

infonnaticm passed in the M-ACTION request PDU. The functions listed below allow the user to

extract the infotmatirai from the M-ACTION indication message and place it in local data struc-

tures. The order in which these functions are invoked by the user is not critical other than tiiat the

extract_cmip_message() function must be the first function called because all other functions act on

the message returned by this function call. Naturally, the fiee_operation_structO functitm should

not be called until die message is no longer needed, since it deallocates the message structure.

extract_cmip_messageO

extractbaseManagedObjectQassQ

extract_baseManagedObjectInstance()

extractaccessControlO

exlractsynchronizationO

extractscopeO

extractfilterO

extractactiwiInfoO

firee_operation_struct()

Data Structure

The following data structure (i.e., type_CMIP_ActionArgument) contains the CMIP parameter informa-

ti(Hi for both an M-ACIION request and an M-ACTION indication;

struct type_CMIP_Acti<xiArgument {

struct type CMIP Objectaass baseManagedObjectQass;
struct type_CMIP_ObjectInstance *baseManagedObjectInstance;

struct type CMIP AccessControl accessControl;

struct type CMIP CMISSync *synchronization;

struct type CMIP Scope *scope;

struct type CMIP CMISFilter filter,

struct type_CMIP_ActionInfo *actiMiInfo;

);

58

Prograinina‘'s Refa*ence Manual CMIS Operations

3.43. CMIS M-ACnON response

The CMIS M-ACnON response operation is used to respond to an M-ACTION request after hav-

ing performed the requested M-ACTION (^ration, and to convey information associated with the

successful result of that operation Sever^ functions comprise die support for the M-ACnON
response service. Except for the first and last of these functitxis, the order in which they are called

is not critical The fimt function called must be init_operation_structO; the last function called

must be response(). The following list designates those library functions available to the CMIS
user to formulate and execute an M-ACTION response. Detailed descriptitms of these functions,

almrg with the function parameters, are provided later in this manual.

- mandatory function call (must be first).initoperationstructO

fiUmanagedObjeaQassO
fillmanagedObjectlnstanceO

fillcurrentTimeO

fillactionReplyO

responseO

- optional function call

- optional function call

- optional fimction call.

- optional function call

- mandatory functitm call (must be last).

3.4.4. CMIS M-ACTION confirm

The CMIS M-ACnON confirm signals the recent of an M-ACJIION response and contains the in-

formation passed in the M-ACTION response PDU. The functions listed below allow the user to

extract the information from the CMIP M-AC7TION confirm message arnl place it in local data

structures. The order in which these functions are invoked by the user is not critical other than

that die extract cmip messageO function must be the first function called because all other fiinc-

ticMis act on the message structure returned by this fimction call. Naturally, the

fiee_operation_stru(^() function should not be called until the message is no longer needed, since it

deallocates the message structure.

extractcmipmessageO
extractmanagedObjectClassO

extractmanagedObjectlnstanceO

extractcurrentTimeQ

extractactionReplyO

&ee_operation_stract()

Data Structure

The following data structure (i.e., type_CMIP_ActionResult) contains die CMIP parameter information

for bodi an M-ACTION resprmse and an M-ACTION confirm !

struct type CMEP ActionResult {

stract type CMIP ObjectQass "‘managedObjectClass;

struct type_CMIP_ObjectInstance *managedObjectInstance;

stract type_UNrV_GeneralizedTime *currentTime;

stract type_CMIP_ActionReply actionReply;

};

59

Programmer's Reference Manual CNnS Optfations

3^. CMIS M'DELETE operation

The CMIS M-DELETE operation is used by an invoking CMISE-service-user to request a peer

CMISE-service-user to delete a managed object instance and to de-register its identification. There

are four services associated wifii this operation; M-DELETE request, M-DELETE indication, M-
DELETE response, and M-DELETE ccmfirm. In accordance with the standard, the CMIS M-
DELETE service is only provided in the confirmed mode. These four services are described in the

following subsections.

Please note that the response and confirm services are only used when the operation has been fully

successful. When the (^ration has been only partially successful or unsuccessful, responses take

the form of errors which are returned using the appropriate error services and functions described

in this document.

3.5.1. CMIS M-DELETE request

The CMIS M-DELETE request service enables the user to issue a request for the M-DELETE
operation to be performed atKl enables tire user to pass the information necessary to support the

performance of tiiis operation. Several functions comprise the support for the M-DELETE request

service. Except for tte first and last of these functions, tiie order in which they are called is not

critical. The first function called must be the init_operati(xi_structO; the last function called must

be the request(). The following list designates those library functions available to tire CMIS user

to formulate and execute an M-DELETE request Detailed descriptions of these functions, along

with tile function parameters, are provided later in this manual.

initoperationstructO

fiUbaseMana^dObjectClassO

fillbaseManagedObjectInstanceO

fill_accessControl()

fiU synchronization 0
fillscopeO

fill_filter()

requestO

- mandatory function call (must be first).

- mandatory function call.

- mandatory function call.

- optional functirm call.

- optional fimcticm call.

- optitmal functitxi call.

- optional functicm call.

- mandatory function call (must be last).

60

Programmer's Reference Manual CMIS Opa*ations

3.5^. CMIS M-DELETE indication

The CMIS M-DELETE indication signals the receipt of an M-DELETE request and ctmtains the

infnimarion passed in the M-DELETE request PDU. The functions listed below allow the user to

extract the infoimatirai from the M-DELETE indication message and place it in local data stnic-

tures. The order in which these functions are invoked by the user is not critical other dian that die

extract_cmip_message() function must be the first function called because all other functions act on

the message returned by this function call. Naturally, the free_operation_stTuct() function should

not be called until the message is no longer needed, since it deallocates the message structure.

extract_cmip_messageO

extractbaseManagedObjectQassO

extract_baseManagedObjectInstance()

extractaccessControlO

extract synchronization 0
extractscopeO

exiract_filter()

fiee_operation_struct()

Data Structure

The following data structure (i.e., type_CMIP_DeleteArgument) contains the CMIP parameter informa-

tion for both an M-DELETE request and an M-DELETE indicaticMi:

struct type CMEP DeleteArgument {

struct type_CMIP_ObjectClass *baseManagedObjectQass;

struct type CMIP ObjectInstance *baseM2magedObjectInstance;

struct type CMIP AccessControl *accessControl;

struct type CMIP CMISSync ^synchronization;

struct type_CMIP_Scq)e *scq)e;

struct type_CMIP_CMISFilter filter,

};

3.53. CMIS M-DELETE response

The CMIS M-DELETE response operation is used to respond to an M-DELETE request after hav-

ing performed the requested M-DELETE operation, and to convey information associated with the

successful result of that qieration. Sever^ functions cranprise the suj^rt for die M-DELETE
response service. Except for the first and last of these functims, the order in which they are called

is not critical The first function called must be init operation structO; the last function called

must be respraiseO- The following list designates those library functions available to the CMIS
user to formulate and execute an M-DELETE response. Detailed descripticMis of these functions,

alraig with the function parameters, are provided later in this manual.

init_operation_structO

fill_managedObjectClassO

fill_managedObjectInstanceO

fiUcunentTimeQ

responseO

- mandatory functicm call (must be first).

- optional function calL

- optional function call

- optional function call.

- mandatory function call (must be last).

61

Programmer's Reference Manual CMIS Opo'ations

3.5.4. CMIS M-DELETE confirm

The CMIS M-DELETE confinn signals the receipt of an M-DELETE resptmse and contains the in-

formation passed in the M-DELETE response PDU. Tlie functions listed below allow the user to

extract the information from the CMIP M-DELETE confirm message and place it in local data

structures. The order in whidi these fimctions are invoked by the user is not critical other than

that the extract_cmip_message() function must be the first function called because aU other func-

titms act <m the message structure returned by this function call. Naturally, die

free_operation_struct() function should not be called until the message is no longer needed, since it

deallocates the message structure.

extractcmipmessageO
extractmanagedObjectClassO

extractmanagedObjectlnstanceO

extractcurrentTimeO

fiee_operation_structO

Data Structure

The following data structure (i.e., type_CMIP_DeleteArgument) contains the CMIP parameter informa-

ti(Ki for an M-DELETE response and M-DELETE confirm:

struct type_CMIP_DeleteResult {

struct type_CMIP_Objectaass managedObjectClass;

struct type CMIP ObjectInstaiice ^managedObjectlustance;

struct type_UNIV_GeneralizedTime *current’Iime;

};

62

Programmer's Referoice Manual CMIS Operations

3.6. CMIS M'CREATE operation

The CMIS M-CREATE operation is used by an invoking CMISE-service-user to request a peer

CMISE-service-user to create and register a local identifier for a itew managed object instance,

complete with its identification and values for associated management information. Tbeie are four

services associated with this (^ration; M-CREATE request, M-CREATE indication, M-CREATE
response, arnl M-CREATE confirm. In accordarx^e widi the starxlard, die CMIS M-GET service is

only provided in the confirmed mode. These four services are described in die following subsec-

tions.

Please note diat in the confirmed mode, die response and confirm services are only used when the

operation has been fiiUy successful. When die operaticxi has been only partially successful or un-

successful, responses take the form of errors whidi are returned using the appropriate error services

and functions described in this document

3.6.1. CMIS M-CREATE request

The CMIS M-CREATE request service enables the user to issue a request for the M-CREATE
operation to be performed and enables the user to pass the information necessary to support the

performance of this operatioa Several functions comprise the support for the M-CREATE request

service. Except for the first and last of these functions, die order in which they are called is not

critical. The first function called must be init_operation_struct(); the last function called must be

request(). The following list designates those library functions available to the CMIS user to for-

mulate and execute an M-CREATE request Detailed descriptions of these functions, along with

the function parameters, are provided later in diis manual.

initoperationstructO

fill_managedObjectQass()

fiIl_superiorObjectInstanceO or fill_managedObjectInstance()

fiUaccessControlO

fillreferenceObjectInstanceO

fill_attributeList()

requestO

- mandatory fimction call (must be first).

- mandatory fimction call.

- mandatory fimction call.

- optional fimctitm call.

- mandatory fimction call.

- mandatory fimction call.

- mandatory fimction call (must be last).

Prt^anuner's Rtfarence Manual CMIS Operations

3.62. CMIS M-CREATE indication

The CMIS M-CREATE indicadon signals the receipt of an M-CREATE request and contains the

infonnati(Xi passed in the M-CREAIE request PDU. The functions listed below allow the user to

extract the infoimaticm frtxn the M-CREATE indication message and place it in local data struc-

tures. The order in which these functions are invoked by the user is not cntical otiier titan that the

extract_cmip_message() function must be the first fimction called because all other functions act on

the message returned by this function call. Naturally, the fiee_operation_stiuct() functicai should

not be called until the message is no longer needed, since it deallocates the message stnictuie.

extract_cmip_messageO

extract_managedObjectQassO

extract_createObjectInstance 0
extractaccessControlO

extract_referenceObjectInstance 0
extractattributelistO

free_operation_stnic^)

Data Structure

The following data structure (i.e., type_CMIP_CreateArgument) contains the CMEP parameter informa-

ti(x) for both an M-CREATE request and an M-CREATE indication;

struct type CMIP CreateArgument {

struct type_CMIP_ObjectClass *managedObjectQass;

struct dioice_CMIP_l {

int offset;

#define dioice_CMIP_l_distinguishedName 1

#define choice_CMIP_l_nonSpecificForm 2

#define choice_CMIP_l_localI)istinguishedName 3

#define choice_CMIP_l_superiorObjectInstance 4
union {

struct type_CMIP_DistinguishedName "'distinguishedName;

struct qbuf *nonSpecificForm;

struct type_CMIP_RDNSequence *localDistinguisbedName;

struct type_CM]P_ObjectInstance *superiorObjectInstance;

) un;

) element_CMIP_2;

struct type CMIP AccessCwrtrol *accessCcmtrol;

struct type_CMIP_ObjectInstance *referenceObjectInstance;

struct member_CMIP_2 {

struct type CMIP Attribute *Attribute;

struct member_CMIP_2 *next;

) ’"attributelist;

};

64

Programmer's Refa^nce Manual CMIS Operations

3.63. CMIS M>CREATE response

The CMIS M-CREATE response qreration is used to respond to an M-CREATE request after hav-

ing performed the requested M-CR^TE operation, and to convey infoimaticm associated with the

successful result of that operation. Several functions comprise the suj^rt for the M-CREATE
response service. Except for the first and last of these functions, the order in which they are called

is not criticaL The first function called must be ioit_operation_structO; the last function called

must be responseQ- The following list designates those library functions available to the CMIS
user to formulate and execute an M-CREATE resptmse. Detailed desctiptimis of these functions,

al(xig with the function parameters, are provided later in this manual.

init_operation_structO

fill_managedObjectQassO

fillmanagedObjectlnstanceQ

fill_currentTimeO

fill_attributeListO

responseO

- mandatory functimi call (must be first).

- optional function call

- optional function calL

- optional function call.

- optional function call

- mandatory functitm call (must be last).

65

Programmer's Reference Manual CMIS Opo’ations

3.6.4. CMIS M-CREATE confirm

The CMIS M-CREATE confirm signals the receipt of an M-CREATE response and contains die

infonnation passed in the M-CREATE response PDU. The functions listed below allow die user to

extract the infonnation fitm the CMIP M-CREATE confirm message and place it in local data

structures. The order in which these functions are invoked by the user is not critical other dian

that the extract_cmip_messageO function must be the first function called because all other func-

tions act (Ml the message structure returned by this function call. Naturally, the

£ree_operation_struct() function should not be called imtil the message is no longer needed, since it

deallocates the message structure.

extract_cmip_messageO

extract_managedObjectClassO

extract_managedObjectInstanceO

extraacurrenttimeO

extract_attributeListO

fiee_operation_stiuct()

Data Structure

The following data structure (i.e., type_CMIP_CreateResult) contains die CMIP parameter informaticMi

for both an M-CREATE response and an M-CREATE confirm :

struct type CMIP CreateResult {

struct type CMIP ObjectQass *managedObjectClass;

struct type_CMIP_Obje<Mlnstance *managedObjectInstanoe;

struct type_UNrV_Generalize(n’ime *currentTime;

struct member_CMIP_3
{

struct type_CMIP_Atttibute Attribute;

struct member_CMIP_3 *next;

} attributeList;

);

Prograin]na''s Refivaice Manual CMIS Opo'ations

3.7. CMIS M-EVENT operation

The CMIS M-EVENT operation is used by a CMISE-service-user to report an event to a peer

CMISE-service-user. Th^ are four services associated witii tins operati(» in the confirmed mode:

M-EYENT request, M-EVENT indicaticHi, M-EVENT resp>onse, aird M-EVENT amfirm. In the

unccHifirmed mode, only the request and indication services are used. These four services are

described in the following subsections.

Please note that in the confirmed mode, the response aiKl ctmfirm services are only used when die

operation has been fully successful. When the operatioi has been only partially successful or un-

successful, responses take the form of errors whicii are returned using the appropriate error services

and functions described in this document

3.7.1. CMIS M-EVENT request

The CMIS M-EVENT request service enables the user to issue a request for the M-EVENT opera-

ticm to be performed and enables the user to pass the information necessary to support the p^or-
marrce of this operatioa Several functions comprise die support for the M-EVENT request service.

Except for the first and last of these functions, the order in which they are called is not critical.

The first function called must be init_(^ration_structO; the last function called must be requestQ.

The following list designates those library functions available to the CMIS user to formulate and

execute an M-EVENT request. Detailed descriptions of these functions, along with the function

parameters, are provided later in this manual.

init_q)erati<m_structO

fill_managedObjectQass()

fill_managedObjectInstanceO

filleventTimeQ

fill_eventType()

fill_eventlnfo0

requestO

- matKlatory function call (must be first).

- mandatory function call.

- mandatory function call.

- optional functicm call

- optional fimcticm call.

- optional function call.

- mandatory function call (must be last).

€7

Programmer's Reference Manual CMIS Oparations

3.7^. CMIS M'EVENT indication

The CMIS M-EVENT indication signals the receipt of an M-EVENT request and contains the in-

fonnation passed in the M-EVENT request PDU. The functions listed below allow the user to ex-

tract the i^ormadon from the M-EVENT indication message and place it in local data structures.

The order in which these functions are invoked by the user is not critical other than that the

extract_cmip_message() frmction must be the first function called because all other functions act on

the message returned by this function call. Naturally, the free_operation_structO functitm should

not be called until the message is no longer needed, since it deallocates the message structure.

extract_cmip_messageO

extract_managedObjectQassO

extract_managedObjectInstance()

extract_eventTimeO

extract_eventTypeO
extract_eventlnfo0

free_operation_struct()

Data Structure

The following data structure (i.e., type_C!MIP_EventRepoitArgument) contains the CMIP parameter in-

formation for botfi an M-EVENT request and an M-EVENT indication;

struct type_CMIP_EventReportArgument {

struct type CMIP_ObjectQass *managedObjectClass;

struct type_CMIP_ObjectInstance *managedObjectInstance;

struct type_UNrV_GeneralizedTime eventTime;

struct type_CMIP_EventTypeId *eventType;

PE eventlnfo;

};

3.73. CMIS M-EVENT response

The CMIS M-EVENT refuse operation is used to respond to an M-EVENT request after having

performed the requested M-EVENT operation, and to ctxivey information associated widi the suc-

cessful result of t^ operation. Sever^ functions comprise the support for the M-EVENT response

service. Except for the first and last of these fimctions, the order in which they are called is not

critical. The first function called must be init_operation_struct(); the last fimcticm called must be

responseO- The following list designates those library functitms available to the CMIS user to for-

mulate and execute an M-EVENT response. Detailed descriptions of diese functions, along with

the function parameters, are provided later in this manual.

init_q)eration_struct()

fill_managedObjectClassO

fill_managedObjectInstance()

fiill_curTentTime()

fill_eventReplyO

responseO

- mandatory function call (must be first).

- optional function call

- optional function call

- optional function call.

- optional function call

- mandatory function call (must be last).

68

Programinar's Referaace Manual CMIS Operations

3.7.4. CMIS M-EVENT confirm

The CMIS M-EVENT confiim signals the receipt of an M-EVENT respcMise and contains the infor-

madtxi passed in die M-EVENT response PDU. The functions listed below allow the user to ex-

tract the information finnn the CMIP M-EVENT confiim message and place it in local data struc-

tures. The order in wbidi these fiinctions are invoked by the user is not critical other than that the

extiact_cmip_messageO function must be the first function caUed because all other functions act on

the message structure returned by diis fimctitm call. Naturally, the fiee_opeiation_struct() fiinction

should not be called until the message is no longer needed, since it deallocates the message struc-

ture.

extract_cmip_message()

extract_managedObjectClassO

extiact_managedObjectInstanceO

extiact_cuiientTimeO

extract_eventReplyO

free_opeiation_struct()

Data Structure

The following data structure (i.e., type CMIP EventReportResult) contains the CMIP parameter infor-

mation for both an M-EVENT response and an M-EVEOT confiim;

struct type_CMIP_EventReportResult {

struct type_CMIP_ObjectQass *managedObjectClass;

struct type_CMIP_ObjectInstance *managedObjectInstance;

struct type_UNIV_GeneralizedTime cuirentTime;

struct type_CMIP_Ev«itReply *eventReply;

};

69

Programmer's Reftfence Manual CMIS Opa*ations

3^. CMIS M'CANCELGET operation

The CMIS M-CANCELGET operation is used to halt die current execution of a previously issued

M-GET request by spedlying the invoke identifier of the M-GET in the M-CANCELGET request

There are four services associated with this operaticm in the confirmed mode: M-CANCELGET re-

quest, M-CANCELGET indication, M-CANCELGET response, and M-CANQELGET confirm.

These four services are (ksctibed in the following subsections.

Please note that in the confirmed mode, the response and confirm services are only used when the

operation has been fully successful. When the operation has been only partially successful or un-

successful, responses take the form of enors which are returned using the appropriate error services

and functions described in this document

3,8.1. CMIS M-CANCELGET request

The CMIS M-CANCELGET request service enables the user to issue a request for tte M-
CANCELGET q)eration to be performed and enables the user to pass die information necessary to

support the performance of this operatitxt Several functions comprise the support for the M-
CANCELGET request service. Except for the first and last of these functions, the order in which

they are called is not critical. The first function called must be init_operation_struct(); the last

functicm called must be requestQ. The following list designates those library functions available to

the CMIS user to formulate and execute an M-CANCELGET request. Detailed descriptitHis of

these fimcticHis, along with the function parameters, are provided later in this manual.

init operation structO ~ mandatory function call (must be first).

fiU_invoke_id() - mandatory function call.

requestO - mandatory function call (must be last).

3.8.2. CMIS M-CANCELGET indication

The CMIS M-CANCELGET indication signals the receipt of an M-CANCELGET request and con-

tains the information passed in the M-CANCELGET request PDU. The functions listed below al-

low the user to extract die information from the M-CANCELGET indication message and place it

in local data structures. The order in which these functions are invoked by the user is not critical

other than that the extract_cmip_message() function must be the first function called because all

other functions act cm the message returned by this function call Naturally, the

free_operation_struct() function should not be called until the message is no longer needed, since it

deallocates the message structure.

extract_cmip_messageO

extraa_invoke_id()

firee_operation_struct()

Data Structure

The following data structure (Le., type_CMIP_InvokeIDType) contains the C3MIP parameter informatirxi

for both an M-CANCELGET request and an M-CANCELGET indication:

struct type_CMIP_InvokeIDType
{

integer parm;

};

70

Prognunma-'s Reference Manual CMIS Opa*ations

3.8 CMIS M-CANCELGET response

The CMIS M-CANCELGET response operation is used to respond to an M-CANCELGET request

after having perfonned the requested M-CANCELGET operatitm. Several functicxis comprise the

suppoit for the M-CANCELGET response service. Except for the first and last of these fimctions,

the order in which they are called is not critical. The first fiinction called must be

init_operation_stnictO; the last fiinctirai called must be responseO- The following list designates

those library fimctions available to the CMIS user to formulate and execute an M-CANCELGET
response. Detailed descr^tions of these functions, along with the function parameters, are provid-

ed later in tins manual

init_operation_structO - mandatory function call (must be first).

responseO - mandatory function call (must be last).

3.8.4. CMIS M-CANCELGET confirm

The CMIS M-CANCELGET confirm signals tire receipt of an M-CANCELGET response and con-

tains the information passed in the M-CANCELGET response PDU. The functions listed below al-

low the user to extract the information fiom the CMIP M-CANCELGET confirm message and

place it in local data structures. The order in which these functions are invoked by the user is not

critical other than that the extract_cmip_messageO function must be the first function called be-

cause all other functions act on the message structure returned by this function call. Naturally, the

free_operation_structO function should not be called until the message is no longer needed, since it

deallocates the message structure.

extract_cmip_messageO

firee_operation_stractO

Data Structure

No data structure is associated with this response.

71

Programiner's Reference Manual CMIS Oparations

3.9. CMIS M'LINKEDREPLY operation

The CMIS M-LINKEDREPLY operation is used to send a linked response. There are two services

associated with diis q)eration; M-ONKEDREPLY request, and M-UNKEDREPLY indicatioa

These two services are described in the following subsectitHis.

3.9.1. CMIS M-UNKEDREPLY request

The CMIS M-UNKEDREPLY request service enables the user to issue a request for die M-
LINKEDREPLY operation to be performed and enables tte user to pass the information necessary

to support the performance of d^ operatioa Several functions comprise the support for the M-
LINKEDREPLY request service. Decoding on wbidi type of linked reply the user wishes to send

will determine the fiinctions to fill this request In the table below is a list of the different types of

linked replies that can be sent, along with the corresponding section in diis document that specifies

the functions to be called to fill the information for that type.

linked reply type section for fill

functions decriptions

getResult 3.3.3

getlistError 4.5

setResult 3.2.3

setUstError 4.20

actionResult 3.4.3

processingFailure 4.19

deleteResult 3.5.3

actionEtior 3.9.3

deleteError 3.9.4

After filling the parameter information for diis linked reply die user needs to call the responseQ func-

tion to send this linked reply. When die user calls the response function they must set the linked

parameter to a 1 to specify that this is a linked reply.

3.9.2. CMIS M-UNKEDREPLY indication

The CMIS M-UNKEDREPLY indicatimi signals the receipt of an M-UNKEDREPLY request and crm-

tains the information passed in the M-UNKEDREPLY request PDU. Depending on which type of

linked reply the user received, will determine the functions to extract the information from this request.

In the table below is a list of the different types of linked replies that can be received, along with the

corresponding section in this document that specifies the functions to be called to extract the informa-

tion for that type.

linked reply type section for fill

functions decriptions

getResult 3.32

getlistError 4.5

setResult 3.2.2

setUstError 4.20

actionResult 3.4.2

processingFailure 4.19

deleteResult 3.5.2

actionError 3.93

deleteError 3.9.4

72

Programmer's Referance Manual CMIS Operations

Data Structure

The following Hata structure (Le., type_CMIP_LinkedReplyArgument) contains the CMEP parameter

information for an M-LINKEDREPLY request and an M-LINKEDREPLY indication:

strua type_CMIP_LinkedReplyArgument {

int offset;

#define type_CMIP_LinkedReplyArgument_getResult

#define type_CMIP_LinkedReplyArgument_getListError 2

#define type_CMIP_LinkedReplyArgument_setResult

#define type_CMIP_LinkedReplyArgument_setListError 4

#define type_CMlP_LinkedReplyArgument_actionResult 5

#define type_CMIP_LinkedReplyArgument_processingFailuie

#define type_CMIP_LinkedReplyArgument_deleteResult 7

#define type_CMIP_LinlQedReplyArgument_actionError 8

#define type_CMIP_LinkedReplyArgument_deleteError 9

union {

struct type_CMIP_GetResult *getResult;

strua type CMIP_GetListErTor getlistError,

strua type_CMIP_SetResult setResult;

strua type_CMIP_SetLisfEtror setlistError;

strua type CMIP ActionResult actionResult;

strua type_CMIP_ProcessingFailure *processingFailure;

strua type CMIP DeleteResult *deleteResult;

strua type_CMlP_ActionError actionError;

struct type_CMIP_DeleteError deleteError,

} un;

};

So the sequence to filling the above data structure to send a M-LINKEDREPLY request is: first

determine the type of linked reply you are sending (i.e, getResult), then fill the structure (i.e, getResult)

by calling the fimctions in the appropriate section of tiiis document Q.e, 33.3), then finally to send the

M-LINKEDREPLY request call the requestQ fimction with the linked parameter set to 1. Likewise to

extraa the informati<m £ran the above data structure to receive a M-UNKHDREPLY request: first

determine die type of linked reply you are receiveing (Le, getResult), and then extraa the structure (i.e,

getResult) information by calling the fimctions in die tqipropriate section of this document (i.e, 3.33).

1

3

6

73

Programme* Reference Manual CMIS Operations

3.93. CMIS delete error fw M>LINKEDREPLY request and indication

The CMIS delete error is used to indicate that the requested linked operation was not performed

because acess was denied. Several functions comprise the support for tite CMIS delete error. Ex-

cept for the first and last of these functions, the order in whi^ tiiey are called is not critical. The

first fiinction called must be init_operation_struct(); the last fimction called must be responseQ.

The following list designates those library functions available to the CMIS user to formulate and

execute a CMIS delete error. Detailed descriptions of these functions, along with the function

parameteis, are provided later in this manual. To send tiiis linked reply message, use the following

functions:

init_operation_stiuct()

fill_managedObjectClass()

fill_managedObjectInstance()

fiUcurrenttimeO

fiUdeleteErrodnfoO

responseQ

To receive this linked reply message and extract the information fiom it, use the following functions:

extract_cmq)_messageO

extractmanagedObjectClassO

extract_managedObjectInstance()

extract_currenttimeO

extract_deleteEirorInfo(

)

£ree_operati(m_structO

Data Structure

The following data structure holds ti»e CMIP parameter information for a CMIS delete error.

struct type_CMIP_DeleteError
{

struct type_CMIP_Objectaass *managedObjectClass;

struct type_CMIP_ObjectInstance *managedObjectlnstance;

struct type_UN[V_GeneralizedTime *currentTime;

integer deleteErrorInfo;

#define int_CMIP_deleteErrorInfo_accessDenied 2

};

74

Programmer's Refo^ice Manual CMIS Operations

3.9.4. CMIS action errm* for M-LINKEDREPLY request and indication

The CMIS action error is used to indicate that the requested linked operation was not performed

because of (me of the following reasons: access denied, no such action, no such argument, invalid

argument value. Several functions comprise the support for die CMIS action error. Except for the

first and last of diese functions, the ord^ in whicdi they are called is not critical. The first function

called must be init_operation_structO; die last fimction called must be responseQ- The following

list designates those library functions available to the CMIS user to formulate and execute a CMIS
action error. Detailed desaipticms of diese functions, along widi the fimctitm parameters, are pro-

vided later in this manual. To send this linked reply message, use the following functions:

init_operation_struct()

fill_managedObjectClass()

fiIl_managedObjectInstanceO

fill_currentdmeO

fiIl_actionErrorInfoO

responseQ

To receive this linked reply message and extract the information frtxn it, use the following functions:

extract_cm^_message()

extract_managedObjectClass()

extract_managedObjectInstance()

extract_currenttimeO

extract_actionErrorInfo()

£ree_<^rati(m_stiuctO

Data Structure

The following data structure holds the CMIP parameter informaticm for a CMIS action error

struct type CMIP ActionError {

struct type_CMIP_ObjectQass *managedObjectClass;

struct type_CMIP_ObjectInstance *managedObjectInstance;

struct type_UNIV_GeneralizedTime currentTime;

struct type_CMIP_ActionErrorInfo *actionErrorinfo;

};

75

Programmo’^s Referance Manual CMIS Operations

4. CMIS Errors

When a CMIS confirmed operation is requested, a response is expected in return. Previous sec-

tions of this programmer’s reference manual discussed ^ropriate responses and response pro-

cedures when the confirmed operation was performed successfully. This section discusses the al-

ternative situation when a ctmfirmed operation was iK>t successfully accomplished. In particular,

when a CMIS crafirmed operation was either partially or fuUy unsuccessful, the response takes the

form of an error. The CMIS user is resptMisible both for determining if an error has occurred and

for sending the appropriate error response for tiie given CMIS q)eration, as specified in the CMIS
standard. The mechanisms used to send and receive CMIS errors are discussed below.

After determining the ^propriate error message to be sent, the user should formulate and send the

message in the foUowing way; 1) initialize the message data structure using the

init_operation_struct() function, 2) fill in the message structure with any tqrprc^riate parameter in-

formation using the "fill_.." functioirs, and 3) call the send_errorO fimcticHi to send the error PDU.
Since the same basic set of functions is used for all errors, the "msg type" parameter provides an

input to each of these functions to indicate tiie particular error type that is to be initialized, filled,

or sent

For receiving error messages, the following mechanisms are provided to die CMIS user. The user

first calls the extract_cmq)_message() function to retrieve a pending message fircxn the CMIS
queue. By looking at the message type of this message, the user should know the nature of the

contents of that message. Based on this knowledge of the message type, the user should then call

the appropriate "extract_...()’' function(s) to obtain the message information. After retrieving all

the iiifoTmation from the message, when the message structure is no longer needed, the user should

delete the message using the ftee_operation_structO function to firee the previously allocated space.

What follows is a listing of all possible CMIS errors, altmg with the functions used to send and re-

ceive these errors. As mentioned above, only an error fiom the set of errors appr(q>riate for a

given CMIS operation (as specified in tire CMIS standard) should be sent in response to a partially

or completely failed operation.

4.1. CMIS access denied error

The CMIS access denied error is used to indicate that the requested operation was not performed

for reasons related to the security of the open system. Two furKrtions comprise the support for the

CMIS access denied error. The first function called must be init_operation_struct(); the last func-

tion called must be send errorQ- Because no parameter mformation is passed with tiiis error, no
"fiU_.." functions are needed. The following list designates those library functions available to the

CMIS user to formulate and execute an CMIS access denied error. Detailed descriptions of these

functitms, along witii the function parameters, are provided later in tibis manual.

init_operation_structO - (must be first).

send_errorO - (must be last).

To receive this error message and extract the information from it, use the followmg functions:

extract_cntip_messageO

fiee_operation_structO

Data Structure

No data structure is associated with this error.

76

Programmer's Reforence Manual CMIS Errors

CMIS class instance conflict errmr

The CMIS class instance conflict error is used to signify that the requested q>eration was not per-

fonned because the spedfled managed object instance is not a member of the specified base

managed object class. Several functions OHnpiise the su[^it for the CMIS class instance conflict

error. Except for the first and last of these fiinctions, the order in which they are called is not crit-

icaL The first function called must be init_operation_stnict(); die last function called must be

send_errorO. Ifie following list designates those library functions available to the CMIS user to

formulate and execute a CMIS class instance conflict error. Detailed descrqitions of diese func-

tions, along with die function parameters, are provided later in this manual To send this error

message, use the following functions:

init_q)eration_structO

fill_baseManagedObjectQassO

fill_baseManagedObjectInstance()

send_error()

To receive this error message and extract the information from it, use the following functions:

extract_cm^_messageO

extract_baseManagedObjectaassO

extract_baseManagedObjectInstance()

fiee_operation_structO

Data Structure

The following data structure holds the CMIP jiarameter information for a CMIS class instance conflict

error

struct type CMIP BaseManagedObjectId {

struct type CMIP Objectaass *baseManagedObjectQass;

struct type_CMIP_ObjectInstance *baseManagedObjectInstance;

};

77

Programme' 's Referoice Manual CMIS Errors

4J. CMIS complexity limhation error

The CMIS complexity limitatioD eiror is used to indicate that the requested operation was not per-

formed because a parameter was too complex. Several fimcticxis comprise die support for the

CMIS complexity limitation error. Except for the first and last of these functions, the order in

which they are called is not critical. The first functicxi called must be init_q)eration_struct(); the

last functicMi called must be send_errorO- The following list designates those library functions

available to the CMIS user to formulate and execute a CMIS complexity limitation error. Detailed

descriptions of these functions, along with the function parameters, are provided later in this manu-

al. To send this error message, use the following functicxis;

init_operation_stract()

fill_filterO

fill_scope()

fill_synchronizati(xi()

serjd errorO

To receive this error message and extract the information from it, use the following functions:

extract_cm^_messageO

extractfilterO

extract_scope()

extract_synchronizationO

&ee_operation_structO

Data Structure

The following data structure holds the CMIP parameter information for a CMIS complexity limitation

error.

struct type_CMIP_ComplexityLimitation {

stmct type_CMIP_Scope scope;

struct type_CMIP_CMISFilter *filter,

struct type_CMIP_CMISSync sync;

};

78

Pit^raminer's Reference Manual CMIS Errors

4.4. CMIS duplicate managed object instance error

The CMIS duplicate managed object instance enor is used to indicate that the requested operation

was not performed because die specified managed object instance is not a member of the specified

class. Several functions compiise the suppoit for the CMIS duplicate managed object instance er-

ror. ExcejA for die first and last of these fimctions, the order in which they are called is not ciiti-

caL The first function called must be init_operati(Mi_struct(); the last functirm called must be

send_eiToiO- The following list designates those Ubraiy functions available to the CMIS user to

formulate and execute a CMIS duplicate managed object instance error. Detailed descriptions of

these functions, along with the function parameters, are provided later in this manual. To send diis

error message, use the following functions:

init_operation_struct()

fill_managedObjectlnstance()

said errorO

To receive this error message and extract the information from it, use the following functimis:

extract_cmip_message()

extract_managedObjectInstance()

fitee_q)erati<Hi_stTuctO

Data Structure

The foUowing data structure holds the CMIP parameter information for a CMIS duplicate managed ob-

ject instance error

struct type_CMIP_ObjectInstance {

int ofEset;

#define type_CMIP_ObjectInstance_distinguishedName 1

#define type_CMIP_ObjectInstance_nwiSpecificForm 2

#define type_CMIP_ObjectInstance localDistinguisbedName 3

union
{

strua type_CMIP_DistinguishedName *distinguishedName;

struct qbuf *nonSpecificFbrm;

struct type_CMIP_RDNSequence ^localDistinguisbedName;

} uii;

};

79

Prograinina‘'s Refereoce Manual CMIS EIrrors

4^. CMIS get list error

The CMIS get list error is used to indicate that one or more attribute values were not read for one

of the following two reasons: 1) access denied - Le., the requested operation was not performed

for reasons pertinent to the security of die open system; or 2) no such attribute ~ Le, the identifier

for the specified attribute or attribute group was not recognized. The attribute values that could be

read are returned along with the error in^cation for those that could not be read. Several fimc-

titxis comprise the suj^rt for the CMIS get list error. Except for the first and last of these func-

tions, the order in whidi they are called is not critical. The first fimction called must be

init_operation_struct(); the last fimction called must be send_enorO- The following list designates

those library functions available to the CMIS user to formulate and execute a CMIS get list error.

Detailed descriptions of these fimctions, altxig with the fimction parameters, are provided later in

this manual To send this error message, use the following functions;

init_operation_stractO

fill_managedObjectaass()

fiUmanagedObjectlnstanceO

fill_currentTimeO

fillgetInfoStatusO

send_errorO

To receive this error message arKl extract the information from it, use the following fimctitHis:

extract_cmq>_messageO

extract_managedObjectQassO

extractmanagedObjectInstanceO

extract_currentTimeO

extractgetInfoStatusO

free_operaticm_struct()

Data Structure

The following data structure bolds the CMIP parameter information for a CMIS get list error.

struct type CMIP GetListError {

struct type_CMIP_Objectaass *managedObjectClass;

struct type_CMIP_ObjectInstance *managedObjectInstance;

struct type_UNIV_GeneralizedTime *currentTime;

struct member CMIP S {

struct type_CMIP_GetInfoStatus *GetInfoStatus;

struct member_CMIP_5 *next;

} getInfoList;

};

80

Programmer's Refo'ence Manual CMIS E^rrors

4.6. CMIS invalid argument value errm*

The CMIS invalid argument value error is used to indicate that the information value specified in

the operation request was out of range, or odierwise impropriate. This error can be sent for one

of two reasons; this was either an iiuqrpropriate acticxi value, or an iipprqrriate event value.

Depending upon the reason for which diis error is being sent, the CMIS user need to call the

^ropiiate M function: either fill_actionValoe() or fill eventValue. Several fimctions comprise

tte support for the CMIS invalid argument value error. Except for the first and last of these func-

tions, the order in whidi they are called is not criticaL The first function called must be

init_operation_struct(); the last fimction called must be send_error(). The following list designates

those library functions available to the CMIS user to formulate and execute a CMIS invalid argu-

ment value error. Detailed descriptions of these functitHis, along with the fimction parameters, are

provided later in this manual To send this error message, use the following functions:

init_operatiMi_structO

fill_acti(mValueO or fill_eventValue()

send_errorO

To receive this error message and extract the information from it, use the following functions:

extract_cmip_messageO

extract_valueO

free_operation_struct()

Data Structure

The following data structure holds die CMIP parameter information for a CMIS invalid argument value

error

struct type_CMIP_InvalidArgumentValue {

int ofrset;

#define type_CMIP_InvalidArgumentValue_actionValue 1

#define type_CMIP_InvalidArgum«itValue_eventValue 2
union

{

struct type_CMIP_ActionInfo *actionValue;

stmct element_CMIP_8 {

struct type_CMIP_EventTypeId *eventType;

PE eventlnfo;

} eventValue;

} um
};

81

Programmer's Reference Manual CMES E^rrors

4.7. CMIS invalid attribute value error

The CMIS invalid attribute value error is used to indicate that an attribute value specified in the

operation request was out of range, or otherwise inqrpropriate. Several functitMis comprise the sup-

port for the CMIS invalid attribute value error. Except for the first and last of these functions, the

order in which they are called is not criticaL The first function called must be

init_operation_struct(); the last function called must be serKl_error(). The following list designates

those library functions available to the CMIS user to formulate and execute a CMIS invalid attri-

bute value error. Detailed descriptions of these functions, along with the function parameters, are

provided later in this manual To send this error message, use the following functions:

init_operation_structO

fiUattributeO

send errorO

To receive this error message arnl extract the information from it, use the following functions:

extract_cmip_messageO

extractattributeO

fiee_operation_slnictO

Data Structure

The following data structure holds the CMIP parameter information for a CMIS invalid attribute value

error

struct type CMIP Attribute {

struct type_CMIP_AttributeId *attributeld;

PE attributeValue;

};

82

Programmer's Refereice Manual CMIS E^rrors

4^. CMIS invalid filter error

The CNQS invalid filter error is used to indicate that the filter parameter contains an invalid asser-

ticHi or an unrecognized logical operator. Several fimctions comprise the support for the CMIS in-

valid filter error. Excq)t for the first and last of diese functions, the order in which they are called

is not criticaL The fimt function called must be init_operation_structO; the last function called

must be send_enorO- The following list designates those library fimctimis available to the CMIS
user to formulate and execute a CMIS invalid filter error. Detailed descriptions of these functions,

along with the function parameters, are provided later in this manual. To send this error message,

use the following functions:

init_operation_stiuctO

fill_filtei()

senderroiO

To receive this error message and extract the information from it, use die following functions:

extractcmipmessageO

extract_filter()

fiee_operation_struct()

Data Structure

The following data structure holds die CMIP parameter information for a CMIS invalid filter error,

stmct type_CMIP_CMISFilter {

int offset;

#define type_CMIP_CMISFilter_item 1

#define type_CMIP_CMISRlter_and 2

#defiDe type_CMIP_CMISRlter_or 3

#define type_CMIP_CMISRlter_not 4

union {

struct type_CMIP_HlterItem item;

struct member_CMIP_0 {

struct type_CMIP_CMISFilter *CMISFilter,

struct member_CMIP_0 *next;

} and;
struct member_CMIP_l {

struct type_CMIP_CMISRlter CMISHlter;
struct member_CMIP_l next;

} *or,

struct type_CMIP_CMISFilter not;

} um

83

Programniia''s Reference Manual CMIS Errors

4.9. CMIS invalid scope error

The CMIS invalid scope error is used to indicate that the value of tibe scope parameter is invalid.

Several functions conpiise the support for the CMIS invalid scq>e error. Except for the first and

last of these functions, the order in which they are called is not critical. The ^t function cal

must be init_operation_structO; the last function called must be send_error(). The following

designates those library functions available to the CMIS user to formulate and execute a CMIS
valid scope error. Detailed descrq)tions of these functions, along witib the function parameters,

provided later in this manual To send this error message, use the following functions:

init_operation_structO

fillscopeO

send errorO

To receive this error message and extract the information from it, use die following functions:

extractcmipmessageO

extractscopeO

fireeoperationstructO

Data Structure

The following data structure holds the CMIP parameter information for a CMIS invalid scqie erron

struct type_CMIP_Scq)e
{

int offset;

#define typeCMIPScopel 1

#define type_CMIP_Scc^_iiKiividualLevels 2

#define type_CMIP_Scq)e_baseToNthLevel 3

union {

integer choice_CMIP_3;

#define int_CMIP_choice_CMIP_3_baseObject 0

#define int_CMIP_cboice_CMIP_3_firstLevelOnly 1

#define int_CMIP_choioe_CMIP_3_wholeSubtree 2

integer individualLevels;

integer baseToNthLevel;

} un;

};

84

lli

§

Programmar's Ref(U*aice Manual CMIS Errors

4.10. CMIS invalid object instance error

The CMIS invalid object instance em>r is used to indicate that the object instance name specified

implied a violation of the naming niles. Several functions comprise the support for the C^S in-

valid object instance error. Except for the first and last of these functions, the order in which they

are called is not critical. The first function called must be init_operation_structO; die last function

called must be send_errm(). The following list designates those library fimctimis available to the

CMIS user to formulate and execute a CMIS invalid object instance error. Detailed descriptions of

these functions, along with the function parameters, are provided later in this manual. To send this

error message, use the foUowing functions:

initoperationstractO

fillmanagedObjectInstanceO

send errorO

To receive this error message and extract the information from it, use the foUowing functions;

extractcmqimessageO

extractmanagedObjectInstanceO

fiee_operation_struct()

Data Structure

The foUowing data structure holds the CMIP parameter information for a CMIS invalid object instance

error

struct type_CMIP_ObjectInstance
{

int offset;

#define type_CMIP_ObjectInstance_distinguishedName 1

#define type_CMIP_ObjectInstance_n(MiSpecificForm 2
#define type_CMIP_ObjectInstance_locaIDistinguishedName 3

union {

struct type_CMIP_DistinguishedName *distinguishedName;

struct qbuf *nonSpecificForm;

struct type_CMIP_RDNSequence *localDistinguishedName;

} un;

);

85

Programina‘'s Refo^K^e Manual CMIS Errors

4.11. CMIS missing attribute value error

The CMIS missing attribute value enor is used to indicate that a required attribute value was not

supplied, and a default value was not available. Several functions comprise the support for die

C^S missing attribute value error. Except for the first and last of these functions, the order in

which they are called is not critical. The first function called must be init_q)eration_stiuctO; the

last fimctitm called must be send_error(). The following list designates those library functions

available to the CMIS user to formulate and execute a CMIS missing attribute value error. De-

tailed descriptions of these functions, altmg with the function parameters, are provided later in dds

manual To send this error message, use the following functions:

init_operation_stractO

fill_attributeld()

send errorO

To receive this error message and extract the information from it, use die following fimctions;

extractcmipmessageO

extractattributeldO

ftee_operation_stnict()

Data Structure

The following data structure holds the CMIP parameter information for a CMIS missing attribute value

error

struct type_CMIP_Pseudo ^missingAttributeValue
{

struct type_CMIP_AttributeId *AttributeId;

struct type_CMIP_Pseudo_missingAttributeValue *next;

};

struct type_CMIP_AttributeId {

int offset;

#define type_CMIP_AttributeId_globaIForm 1

#define type_CMIP_AttributeId_locaIForm 2

union {

OID globalForm;

imeger localForm;

} un;

};

86

Programmer's Reference Manual CMIS E^rrors

4.12. CMIS no sudi actiwi error

The CMIS no such action error is used to indicate that the requested q)eration was not performed

because the specified managed object instance is not a member of the specified managed object

class. Several fimctions comprise the support for the CMIS no such action error. Excq>t for foe

first and last of foese functions, foe order in wbidi they are called is not criticaL The first fimction

called must be init operation structO; the last fimctirm called must be serKl_errorO. The following

list designates those library functions available to foe CMIS user to formulate and execute a CMIS
no such action error. Detailed descripticxis of foese functions, along with the function parameters,

are provided later in this manual. To send this error message, use foe foUowing functions;

init_operation_stractO

fill_managedObjectGlassO

fill_acti(mTypeO

send errorO

To receive this error message and extract foe information from it, use foe following fimctions:

extract_cmq)_messageO

extractmanagedObjectClassO

extractactionTypeO

&ee_operation_structO

Data Structure

The following data structure holds foe CMIP parameter information for a CMIS no such action error

struct type_CMIP_NoSuchAction
{

struct type_CMIP_Objectaass *managedObjectClass;

struct type_CMIP_ActionTypeId *actionType;

);

«7

Programmer's Reference Manual CMIS Errors

4.13. CMIS no sodi argument error

The CMIS no such argument error is used to indicate that either the event informaticMi specified

was not recognized or the action information specified was not supported. Several fiinctions

comprise the support for the CMIS no such argument error. Except for the first and last of these

fimctions, the or^r in which they are called is not critical, llie first function called must be

init_operation_struct(); the last fimction called must be send_error(). The following list designates

those library fimctions available to the CMIS user to formulate and execute a CMIS no such argu-

ment error. Detailed descriptions of these functions, along wifii the function parameters, are pro-

vided later in this manual. To send this error message, use the following functions:

init_operation_structO

fiU actionldO, or

fill_eventld()

send errorO

To receive this error message and extract the information from it, use the following functions:

extract_cmip_messageO

extract_IdO

free_operation_structO

Data Structure

The following data structure holds the CMIP parameter information for a CMIS no such argument error

struct type_CMIP_NoSuchArgument
{

int offset;

#define type_CMIP_NoSuchArgument_actionId 1

#define type_CMIP_NoSudiArgument_eventId 2
union {

struct element_CMIP_9
{

struct type_CMIP_Objectaass *managedObjectClass;

struct type_CMIP_ActionTypeId actionType;

} ^actionld;

straa element CMIP lO {

struct type_CMIP_ObjectClass *managedObjectClass;

struct type_CMIP_EventTypeId *eventType;

) eventid;

} un;

};

88

Programmo-'s Ref(n'ence Manual CMIS Ekrors

4.14. CMIS no sudi attribute error

The CMIS no such attribute error is used to indicate that an attribute specified in the operation re-

quest was not recognized. Several fiinctions comprise the support for die CMIS no such attribute

error. Except for the first and last of these functions, the order in which they are called is not crit-

ical. The first fimction called must be init_q>erati(»i_structO; the last fimctitxi called must be

sendjerrorO. The following list designates Aose library functions available to the CMIS user to

formulate and execute a CMIS no such attribute error. Detailed descr^tions of these fimctions,

along with the function parameters, are provided later in this manual. To send tibis error message,

use die following fimctions:

init_operation_structO

fill_attributeld0

send errorQ

To receive this error message and extract the information from it, use the following fimctimis:

extract_cmip_messageO

extract_attributeIdO

fiee_operation_structO

Data Structure

The following data structure holds the CMIP parameter information for a CMIS no such attribute error

struct type_CMIP_AttributeId {

int offset;

#define type_CMIP_AttributeId_globaIFoim 1

#define type_CMIP_AttributeId_localForm 2

union {

OID globalFoim;

integer localForm;

} un;

89

Prograiiima’'s Reference Manual CMIS Errors

4.15. CMIS no sudi event type errm*

The CMIS no such event type error is used to indicate diat die requested event type was not recog-

nized. Several functions comprise the support for die CMIS no such event type error. Except for

the first and last of these functions, the order in which diey are called is not criticaL The first

functitxi called must be init_q)eration_structO; die last function called must be send errorQ- The

following list designates diose library fimctitMis available to the CMIS user to formulate and exe-

cute a CMIS no such event type error. Detailed descriptions of diese functions, along with the

functioQ parameters, are provided later in this manual. To send this error message, use the follow-

ing functions:

init_operation_stractO

fill_managedObjectClassO

fill_eventType()

send errorO

To receive this error message and extract the information from it, use die following functicHis:

extTact_cmip_messageO

extract_managedObjectClass()

extract_eventTypeO

fiee_operatiai_structO

Data Structure

The following data structure htdds the CMIP parameter information for a CMIS no such event type er-

ror

struct type_CMIP_NoSucdiEventType
{

struct type CMDP ObjectQass *managedObjectClass;

struct type_CMIP_EventTypeId *eventType;

};

90

Programme’ 's Refa*eiice Manna! CMIS Errors

4.16. CMIS no such object dass error

The CMIS no such object dass error is used to indicate that die dass of the specified managed ob-

ject was not recognized. Several functions comprise the support for the CMIS no such objea class

error. Except for the first and last of these functions, the order in which they are called is not crit-

ical. The first function called must be init_q>eration_stiua(); the last function called must be

send errorO- The following list designates those library functions available to the CMIS user to

formulate and execute a CMIS no such object dass error. Detailed descriptions of these functions,

along with the fimcfion parameters, are provided later in this manual. To send this error message,

use the following functions:

init_opeTation_stiuctO

fill_managedObjectQassO

send_errorO

To receive this error message and extract the information from it, use the following functicms:

extiact_cmip_messageO

extractmanagedObjectQassO

free_operatiwi_structO

Data Structure

The foUowing data stmcture holds the CMIP parameter information for a CMIS no such object dass er-

ror

struct type_CMIP_ObjectClass
{

int offset;

#define type_CMIP_ObjectClass_globalForm 1

#define type_CMIP_ObjectClass_locaIForm 2
union

{

OID globalForm;

integer localForm;

} un;

);

91

Programmer's Refo'^ice Manual CMIS Errors

4.17. CMIS no sudi object instance error

The CMIS no such object class error is used to indicate that the specified managed object instance

was not recognized, ^veral functions comprise the support for die CMIS no sudi object instance

error. Except for the first and last of these fimctions, the order in which they are called is not crit-

ical. The first function called must be init_<^ration_structO; the last functicHi called must be

send_error(). The foUowing list designates those library fimctions available to the CMIS user to

formulate and execute a CMIS no such object instance error. Detailed descriptions of these func-

tions, along with the function parameters, me provided later in this manual To send this error

message, use the following functions:

init_q)eration_stroctO

fill_maiiagedObjecthistanceO

send etrorO

To receive this error message and extract the information from it, use the following fimctitms:

extract^cmipmessageO

extract_managedObjectInstance()

free_(^rati(m_strurtO

Data Structure

The following data structure holds the CMIP parameter information for a CMIS no such object instance

error

struct type CMIP ObjectInstance {

int ofiset;

#define type_CMIP_ObjectInstance_distinguishedName 1

#define type_CMIP_ObjectInstance_iKMiSpecificForm 2

#defiDe type_CMIP_ObjectInstance_localI)istinguishedName 3

union {

struct type_CMIP_DistinguishedName distinguishedName;

strua qbuf nonSpecifid^rm;

struct type_CMIP_RDNSequeoce *localDistinguisbedName;

) un;

};

92

Prograiiima‘'s Reference Manual C3V1IS Errors

4.18. CMIS no sudi reference object oror

The CMIS no such reference objea error is used to indicate that the reference object instance was

not recognized. Several functions comprise the support for the CMIS no such reference object er-

ror. Except for the first and last of th^ fimctions, the order in which they are caUed is not criti-

cal. The first function called must be init_operati(m_structO; the last functicm called must be

sendjerrorO. The following list designates those library functions available to the CMIS user to

formulate and execute a CMIS no such reference object error. Detailed descriptioos of these func-

tions, along with the function parameters, are provided later in this manual To send this error

message, use the following functions:

init_operation_stractO

fill_managedObjectInstanceO

send errorO

To receive this error message atKl extract the infmmation from it, use the following functions:

extract_cmip_messageO

extract_managedObjectInstance()

&ee_operation_struct()

Data Structure

The following data stracture holds the CMIP parameter information for a CMIS no such reference ob-

ject error

struct type_CMIP_ObjectInstance
{

int o^t;
#define type_CMIP_ObjectInstance distinguishedName 1

#define type_CMIP_ObjectInstance_nonSpecificForm 2
#define type_CMIP_ObjectInstance_localDistinguishedName 3

union {

struct type_CMIP_DistinguishedName *distinguisbedName;

struct qbuf *nonSpecificForm;

struct type_CMIP_RDNSequence *localDistinguisbedName;

} um
};

93

Programmer's Reference Manual CMIS Errors

4.19. CMIS processing faflure error

The CMIS processing failure error is used to indicate that a general failure in processing the opera-

tic was encountered. Several functions comprise die suppoit for die CMIS processing failure er-

ror. Except for the first and last of these fimctions, the order in which they are called is not criti-

cal. The first function called must be init_operati(xi_structO; the last functic called must be

send_error(). The following list designates diose library fimctions available to the CMIS user to

formulate and execute a CMIS processing failure error. Detailed descriptics of these fimctions,

along with the function parameters, are provided later in this manual. To send tins error message,

use the following fimctions:

init_operation_struct()

fill_managedObjectClass()

fill_managedObjectInstanceO

fill_specificErrorInfoO

send_errorO

To receive this error message and extract the information from it, use die following functions:

extract_cmip_messageO

extract_managedObjectaassO

extractmanagedObjectlnstanceO

extract_specificErrorInfo()

fiee_operatiMi_struct()

Data Structure

The following data structure holds the CMEP parameter information for a CMIS processing failure error

struct type_CMIP_ProcessingFailure {

struct type CMIP Objectaass ’“managedObjectClass;

struct typ)e_CMIP_ObjectInstance '''managedObjectInstance;

PE specificErrorlMo;

);

94

Prograiiiiiia*'s Refo’oice Manual CMIS Elrrors

4JIO. CMIS set list aror

The CMIS set list error is used to indicate that one or more attribute values were not modified for

one of the following three reasons: 1) access denied — i.e, the requested operation was not per-

formed for reasons pertinent to die security of the open system; 2) invalid attribute value — Le, die

attribute value specified was out of range or otherwise iiuqiprqiriate; or 3) no such attribute — Le,

the identifier for the specified attribute or attribute group was not recognized. The attribute values

that could be modified, were modified. Several functions ctHnprise tte support for the CMIS set

list error. Except for die first and last of these functions, the order in which they are called is not

critical. The first function called must be init_operation_structO; die last function called must be

send_errQr(). The following list designates those library functions available to the CMIS user to

formulate and execute a CMIS set list error. Detailed descrqitions of these functions, along with

the functicHt parameters, are provided later in this manual To send this error message, use the fol-

lowing functions:

init_operation_stract()

fiUmanagedObjectdassO

fill_managedObjectInstance()

fill_cunentTimeO

fill_setInfoStatus()

send errorO

To receive this error message and extract the infcmnation from it, use die following functioos:

extract_cmip_messageO

extract_managedObjectClass()

extract_maDagedObjectInstance()

extractcurrentTimeO

extractsetlnfoStatusQ

free_operati<Hi_structO

Data Structure

The foUowing data structure holds the CMIP parameter information for a CMIS set list error

struct type CMIP SetListError {

struct type_CMIP_ObjectQass *managedObjeaClass;

struct type_CMIP_ObjectInstance "'managedObjectlnstance;

struct type_UNIV_Geiierali2edTime *currentTime;

struct setlnfolist {

struct type_CMIP_SetIiifoStatus ^SetlnfoStatus;

struct setlnfoList ^xt;
} *setInfoList;

};

95

Programnia*'s Referaice Manual CMIS Errors

42L CMIS syndironization not sapp<Nrted error

The CMIS synchronizadixi not supported error is used to irnlicate that the requested operati(Hi was

not performed because the type of synchronization specified is not suf^rted. Several fimctions

comprise the support for the CMIS synchronizatim not supported error. Except for die first and

last of diese functions, the order in wbidi they ate called is not critical. The first function called

must be init_q)eration_structO; die last functitm called must be send_error(). The following list

designates those library functions available to the CMIS user to formulate and execute a CMIS
synchronization not supported error. Detailed desorptions of diese fimctions, along with the fiinc-

titm parameters, are provided later in this manuaL To send diis error message, use the following

functions:

init_operation_struct()

fill_synchronizati(HiO

send error()

To receive this error message and extraa the information from it, use the following fimcticms:

extract_cmp_messageO

extractsynchronizationO

free_operation_structO

Data Structure

The following data structure holds die CMIP parameter information for a CMIS syncbronizatitxi not

supported error.

struct type_CMIP_CMISSync {

integer parm;

#define int_CMIP_CMISSync_bestEffort 0

#define int_CMIP_CMISSync_atomic 1

};

96

Prograinina''s Reference Manual CMIS Errors

4^ CMIS mistyped operation error

The CMIS mistyped q)eratioD error is used to indicate that the requested cancel-get operaticHi was

not performed because the invoke identifier specified did not correspond to a GET request Two
fimctitxis comprise the support for the CMIS mistyped operation error. The first function called

must be init_operation_struaO; the last function called must be send errorO. Because no parame-

ter infoimarinn is passed with this eiTor, no "fill_.." functions are needed. The following list desig-

nates those library functions available to the CMIS user to formulate and execute a CMIS mistyped

operation error. Detailed descriptions of these functions, along with the function parameters, are

provided later in this manual

init_operation_structO - (must be first).

send_enorO - (must be last).

To receive this error message and extract the information fiom it, use the following fimcticxis:

extract_cmip_messageO

fiee_operation_structO

Data Structure

No data structure is associated with this error.

4J3. CMIS no sudh invokeid error

The CMIS no sucfi invokeid error is used to iixlicate diat the requested cancel GET operation was

not performed beacause die invokid specified did not exist Two functions ctxnprise die suf^rt
for the CMIS no such invokeid error. The first functicm called must be init_operation_struct(); the

last fiincticm called must be send_eirorO- Because no parameter information is passed with this er-

ror, no "fill_.." functions are needed. The following list designates diose library functions available

to the CMIS user to formulate and execute an CMIS no such invokeid error. Detailed descriptions

of these functions, along with the functicm parameters, are provided later in this manuaL

init_operation_structO - (must be first).

send_errorO - (must be last).

To receive this error message and extract the information from it, use the following fimctirais:

extractcmipmessageO

free_operation_stractO

Data Structure

No data structure is associated with this error.

97

Programing* 's Refa'ence Manual CMIS E^rrors

4.24. CMIS operation canceDed error

The CMIS operation cancelled error is used to indicate that the requested cancel GET operation

was perfonned. This error is sent back with the invokid of the original get request, the cancel-get

request is resprxided to with a cancel-get response to that invokeid. Two functions comprise tire

support for the CMIS qreration cancelled error. The first hmction called must be

init_operation_structO; the last function called must be send errorO- Because no parameter infor-

matics is passed with this error, no "fi]l_..'' functions are rreeded. The following list designates

those library functicss available to tire CMIS user to formulate and execute an CMIS operation

cancelled error. Detailed descriptions of these functions, along with the function parameters, are

provided later in this manual

init_operation_stiuctO - (must be first).

setKl_errorO - (must be last).

To receive this error message and extract the information from it, use the following functicms:

extract_cmip_messageO

frce_operation_struct()

Data Structure

No data stmcture is associated with this error.

98

Programiner's Ref(n*eiice Manual Fin Flmctions

5. CMIS Parameter FlU Flinctions

This section provides a description of all the parameter fill functions contained in the CMIS inter-

face. These functions are contained in "cmislib.a". The descriptions that follow contain descrip-

tive overviews, ir^ut and ou^ut parameters, and parameter value and ranges, where appropriate.

The following two structures are used extensively tiuou^out die fiU aixl extract routines, and are

defined here for brevity.

union ID

int localForm;

char *global_Foim;

};

union Instance

{

struct distinguisbedName

{

char *type;

PE v^ue;

int RDN_flag;

} DistinguisbedName;

struct qbuf *nonSpecificForm;

99

Programmer's Reference Manual FID Functions

5.1. init_operation_struct

int init_q)eration_stnict(insg_type, msg_ptr)

int msg_type;

char insg_pti;

Description

The init_operation_struct() routine aUocates and initializes the outermost data structure used for

sending CMIP messages (in particular, requests, responses, and errors). Since different CMIP
operations require different information, and therefore different data structures, this function allo-

cates the 2q>piopriate data structure based on the operaticxi type indicated by the value of the iiq)ut

parameter "msg_type". Initialization of this data structure includes setting the pointers to contained

structures for each of die CMIS parameters to NULL. In addition, the msg_ptr is set to point to

this newly allocated data structure. Upon return from this function, diis pointer is used as an iiqiut

parameter to associated functions for this operation in order to point to the structure in whidi new

information is to be inserted for the C^MIP (^ration message.

Parameters

msg_type CMIS qieration type

Range of Values

NO SUCH OBJECT CLASS, NO SUCH OBJECT INSTANCE, ACCESS DENIED,
SYNC NOT SUPPORTED, INVAUD FILTER, NO SUCH ATTRIBUTE,
INVAUD ATTRIBUTE VALUE, GET UST ERROR, SET UST ERROR,
NO SUCH ACnON, PROCESSING FAILURE,
DUPUCATE_MANAGED_OBJECT_INSTANCE, NO SUCH REFERENCE OBJECT,
NO SUCH EVENT TYPE, NO SUCH ARGUMENT, INVALID ARGUMENT VALUE,
INVAUD SCOPE, INVAUD OBJECT INSTANCE, MISSING ATTRIBUTE VALUE,
CLASS INSTANCE CONFUCr, COMPLEXITY LIMITATION,
SET REQ, SET RSP, GET REQ, GET RSP, EVENT REQ,
EVENT RSP, ACnON REQ, A(mON_RSP, CREATE REQ,
CREATE RSP, DELETE REQ, DELETE RSP.

msg_ptr This function sets diis pointer to point to the newly allocated CMIP operation structure

so that upon return from this fiinctitxi, the msg_ptr can be the pointer to the CMIP
(^ration data structure.

Return Values SUCCESS, NO MEM, NO SUOI MSG TYPE, FIELD DOES NOT EXIST

Programmer's Reference Manual Fin Functions

5^ fiDJbaseManagedObjectOass

int fill_baseManagedObjectClass(id_type, id, msg_type, insgj)tr)

int id_type;

union ID id;

int msg_type;

char **msg_ptr;

Description

The fillJtaseManagedObjectClassO routine fills the CMIS field for die basemanagedObjectQass

iden^er. This fimcticHi checks the acceptability of the input parameters. If they are all within

range, the function allocates the data structure to hold the class designation and sets the

baseManagedObjectClass pointer in the CMIP operation structure to point to diis newly allocated

structure. Then the managed object class structure is filled with either the localForm or globalForm

identifier, depending on which one was passed in by the CMIS user. The function then returns a

SUCCESS ideation. If any errors are detected prior to a successfiil ccnnpletion of this function,

the function is terminated at that point with the sqiprqiriate error indication.

Parameters

idjtype Indicates whether the Managed Object Class designation, as passed in by the CMIS user,

is in local or global form. This parameter is used by the function to determine what type

to use in woiidng with the id union.

Range of Values LOCAL or GLOBAL

id Either an integer that specifies the Managed Object Qass identifier in local form or a Charac-

ter string containing die object dass identifier in global form, (see section 3.1.1 for explana-

tion of treatment of object identifiers by these interface functions)

Range of Values If local form, an integer value between 1 and 2(32)-l; if global form, die first

integer value represented in the string must be 0, 1, or 2. The second value

must be between 0 through 39 if the first dement is 0 or 1. Subsequent values

must be non-negative numbers and each value is separated by a dot(.).

Sample Values local form = 35, global_fotm = (The quotes in the global form sig-

nify diat it is a character string.)

msg_type CMIS qieration type.

Range of Values

SET REQ, GET REQ, ACHON REQ, DELETE REQ, CLASS INSTANCE CONFUCT.

msg_ptr Pointer to die CMIP message containing all information for this CMIS operatioiL

Return Values

SUCCESS, NO SUCH MSG TYPE, FIELD_DOES_NOT_EXIST,
NULL MSG PTR, FIELD ALREADY FILLED

101

Prognunina''s Reference Manual FQl Functions

S3. fin_managedObjectClass

int fill_managedObjectQass(id_type, id, msg_type, msgjJtr)

int id_type;

union ID id;

int msg type;

char msg_ptr.

Description

The filljnamgedObjectClassO routine fills the CMIS field for die managedObjectQass identifier.

This fiincdon checks die acceptability of the ii^t parameters. If diey are all within range, the

function allocates the data structure to hold the class designation and sets the managedObjectQass

pointer in die CMIP qieration structure to point to this newly allocated structure. Then the

managed object class stmcture is filled with eidier die localForm or globalForm identifier, depend-

ing on which cme was passed in by the CMIS user. The function then returns a SUCCESS indica-

tioa If any errors are detected prior to a successful ctxnpletion of this function, the function is

terminated at that point with die appropriate error indicaficm.

Parameters

idjtype Indicates whether Managed Object Qass designation, as passed in by the CMIS user, is

in local or global form. This parameter is used by the function to determine what type to

use in working with the id union.

Range of Values LOCAL or GLOBAL

id Either an integer diat specifies the Managed Objea Class identifier in local form, or a Charac-

ter string containing the object class identifier in global form, (see section 3.1.1 for e}q>lana-

don of treatment of objea identifiers by these interface functions)

Range of Values If local form, an integer value between 1 and 2(32)-l; if global form, the first

integer value represented in the string must be 0, 1, or 2. The second value

must be between 0 through 39 if the first element is 0 or 1. Subsequent values

must be non-negative numbers and each value is separated by a dot(.).

Sample Values local form = 35, global form = "1.17J244.5" (The quotes in the global form sig-

nify that it is a diaracter string.)

m^ type CMIS (^ration type.

Range of Values

CREATE REQ, CREATE RSP, SET RSP, GET RSP, ACTION RSP,

DELETE RSP, EVENT REQ, EVENT RSP, NO SUCH OBJECT CLASS,
GET UST ERROR, SET UST ERROR, NO SUOI ACnON,
PROCESSING FAILURE, NO SUCH EVENT TYPE, DELETE ERR, ACTION ERR.

msg_ptr Pointer to the CMIP message containing all information for this CMIS operation.

Return Values

SUCCESS, NO SUCH MSG TYPE, HELD DOES NOT EXIST,
NULL MSG PTR, FIELD ALREADY FILLED

102

Programmer's Refivence Manual Fill Functions

5.4. fill_attributeld

int fill_atlributeld(id type, id, msg_type, msg_ptr)

int id_type;

union ID id;

int msg type;

char **msg_ptr.

Description

The fill_attributeld() routine fills the CMIS field for the attribute identifier. This function checks

the acceptability of the input parameters. If they are all within range, the function allocates the

data structure to hold the attribute ID designation and sets the attiibuteld pointer in the CMIP
operation structure to point to this newly allocated structure. Then the attribute ID structure is

filled with either the localForm or globalForm identifier, depending cm which ot^ was passed in by

the CMIS user. The functira then returns a SUCCESS indication. If any errors are detected prior

to a successful completion of diis fimction, the fiiiKtion is terminated at that point with the ap-

propriate error indication.

Parameters

id_type Indicates whether attribute ID designation, as passed in by the CMIS user, is in local or

global form. This parameter is used by the function to determine what type to use in

working widi the id union.

Range of Values LOCAL or GLOBAL

id Either an integer diat specifies the attribute identifier in local form, or a Character string con-

taining the attribute identifier in global form, (see section 3.1.1 for explarution of treatment of

object identifiers by these interface functirms)

Range of Values If local form, an integer value between 1 and 2(32)-l; if global form, the first

integer value represented in the string must be 0, 1, or 2. The second value

must be between 0 through 39 if the first element is 0 or 1. Subsequent values

must be non-negative numbers and each value is separated by a dot(.).

Sample Values local_form = 35, global_form = "1.17.244.5" (The quotes in the global_form sig-

nify that it is a character string)

msg_type CMIS qreration type.

Range of Values

NO SUCH ATTRIBUTE , MISSING ATTRIBUTE VALUE.

msg_ptr Pointer to the CMIP message containing all information for this CMIS operation.

Return Values

SUCCESS, NO SUCH MSG TYPE, FIELD DOES NOT EXIST,
NULL MSG PTR, FIELD ALREADY FILLED

103

Programina*'s Referaice Manual Fill Flinctions

5.5. fiDJbaseManagedObjectInstance

int fill_baseManagedObjectIiistance (instance_type, instance msg type, msgjptr)

int instancetype;

uni(Hi Instance instance;

int msgtype;

char *msg_ptr.

Description

The fill_baseManagedObjectInstance() routine fills the CMIP PDU field for the basemanagedObjec-

tlnstance name. This fuiKtion checks the acceptability of the input parameters. If they are all

within range, the function allocates the data structure to hold the name designation and sets the

baseManagedObjectInstance pointer in the CMIP operation structure to point to diis newly allocat-

ed structure. Then the managed object instance structure is filled with either die distinguishedname,

localdistinguishedname, or nonspedficfoim, depending upcm which name typie was passed in by the

CMIS user. NOTE: For this phase, if the user wishes to pass a nonspedficfoim, he may do so by
filling it in himself and talcing responsibility for die aj^ropriate filling of this parameter. If this

parameter is not filled correcdy the program could fail.

The name structure is a distinguished name and is constituted as follows; a Distinguished Name
(DN) is a sequence of one or more Relative Distinguished Names (RDNs). For this reason, a DN
is also referred to as an RDN sequence. Each RDN, in turn, is a sequence of one or more Attri-

bute Value Assertions (AVAs). And finally, an AVA is a pairing of an attribute type and an attri-

bute value. Because of the complex nature of the name structure, this function may have to be

called several times to build the entire name. The name can potentially consist of a linked list of

linked lists of name elements. That is, the DN can be a linked list of RDNs which can, in turn, be

linked lists of AVAs.

The following sequence of calls to this function should be followed to properly build the name
structure. When the CMIS user is beginning the creation of a new distinguished name QON), the

RDN_flag in the union instaiK:e should be set to BEGIN_RDNSEQUENCE. After the initial step,

when beginning a new RDN, set this flag to ADD_RELATIVEDISTINGUISHEDNAME. When
the CMIS user is adding an attribute value assertion (AVA) to an already existing RDN, this flag

should be set to ADD_ATTRIBUTEVALUEASSERTION.

This functiiMi returns a SUCCESS iiKlication. If any errors are detected prior to a successful com-

pleticm of each fiinction, the function is terminated at that point with die appropriate error indica-

tioa As can be seen from the sequence of calls to this functirm, die name structure must be filled

in starting with the root of die DN naming tree and dien filling in each AVA of die RDN at a

given node in die path before progressing to the next RDN in the pathname. This procedure is

reiterated until all l^Ns in the RDN sequence have been filled in.

Parameters

instance_type Indicates if the user is filling a distinguishedName, nonSpedficFoim, or localDis-

tinguisbedName.

Range of Values

DISTINGUISHEDNAME, NONSPEOHCFORM, or LOCALDISTINGUISHEDNAME.

instance This union supplies the necessary infoimatitMi to fill either the distinguishedname, local-

distinguishedname, or nonspedficfoim. For the distinguishedname and local dis-

tinguishedname forms, the union contains the AVA as well as a flag indicating the

current stage in building the name. This flag can take on one of three values:

Range of Values

BEGIN RDNSEQUENCE, ADD RELATTVEDISTINGUISHEDNAME,
or ADD ATTRIBUTEVALUEASSERTION

104

Programmer's Ref(H*ence Mannal Fill Flmctions

msg_type CMIS (^ladon type.

Range of Values

SET REQ, GET REQ, ACTION REQ, DELETE REQ, CLASS INSTANCE CONFLICT

msg_j>tr Pointer to die CMIP message containing all information for this CMIS operation.

Return Values

SUCCESS, BAD NAME TYPE. GLOB RANGE, NO SUCH MSG TYPE,
FIELD DOES NOT EXiCT. NULL MSG PTR, NEW DN RANGE,
NO MEM, FIELD ALREADY FILLED, BAD FORM

105

Programmer's Refo’cnce Manual FID Factions

5.6. fiD_managedObjectInstance

int fiU_managedObjectInstance (instance_type, instance msg_type, msg_ptr)

int instance_type;

union Instance instance;

int msgtype;

char *msg_ptr,

Description

The filljnanagedObjectlnstanceO routine fills the CMIP PDU field for the managedObjectInstance

name. This fhnction checks die acceptability of the ii^ut parameters. If they are aU within range,

the function aUocates die data structure to hold the name designation and sets the managedObjec-

tInstance pointer in the CMIP operaticm structure to point to this newly allocated structure. Iben

the managed object instance structure is filled with either the distinguisbedname, localdis-

tinguishedname, or nonspecificfoim, depending upon which name type was passed in by the CMIS
user. NOTE: For this {^ase if the user wishes to pass a nonspecificfoim, he may do so by filling it

in himself and taking responsibility for the qipn^iiate filling of this parameter. If this parameter

is not fiUed correcdy the program could fail.

The name structure is a distinguished name and is constituted as follows: a Distinguished Name
(DN) is a sequence of (me or more Relative Distinguished Names (RDNs). For this reason, a DN
is also referred to as an RDN sequence. Eadi RDN, in turn, is a sequence of one or more Attri-

bute Value Assertions (AVAs). And finally, an AVA is a pairing of an attribute type and an attri-

bute value. Because of the complex nature of the name structure, this function may have to be

called several times to build the entire name. The name can potentially consist of linked lists of

linked lists of name elements. That is, the DN can be a linked list of RDNs which can, in turn, be

a linked list of AVAs.

The foUowing sequence of calls to this function should be followed to propedy build the name
structure. When the CMIS user is beginning the creation of a new distinguisbed name (DN), tire

RDN flag in the unicxi instance should be set to BEGIN RDNSEQUENCE. After the initial step,

when beginning a new RDN, set this flag to ADD RELATIVEDISTINGUISHEDNAME. When
the CMIS user is adding an attribute value assertion (AVA) to an already existing RDN, this flag

should be set to ADD ATTRIBUTEVALUEASSERTION.

This ftmctiim returns a SUCCESS indication. If any errors are detected prior to a successful com-

pletion of each function, the function is terminated at that point with tiie appropriate error indica-

tioa As can be seen ftnm the setpience of calls to this functicxi, the name structure must be fiUed

in starting with the root of the DN naming tree and then filling in each AVA of the RDN at a

given node in the path before progressing to the next RDN in the pathname. This procedure is

reiterated until all ^Ns in the RDN sequence have been filled ia

Parameters

instaiice_type Indicates if the user is filling a distinguishedName, nonSpedficFoim, or localDis-

tinguishedName.

Range of Values

DISTINGUISHEDNAME, NONSPEOHCFORM, or LOCALDISTINGUISHEDNAME.

instance This union supplies the necessary information to fiU either the distinguisbedname, local-

distinguishedname, or non^cificfoim. For the distinguisbedname and local dis-

tinguistmdname forms, the onion contains the AVA as well as a flag indicating the

current stage in building the name. 'Ibis flag can take on one of three values:

Range of Values

BEGIN RDNSEQUENCE, ADD RELATTVEDISTINGUISHEDNAME,
or ADD ATTRIBUTEVALUEASSERTION

106

Programmer's Reference Manual Fin Functions

msg_type CMIS q>eiation type.

Range of Values

CREATE REQ, CREATE RSP, SET RSP, GET RSP, ACTION RSP,

DELETE RSP, EVENT REQ, EVENT RSP, GET UST ERROR, SET UST ERROR,
NO SUCH OBJECT INSTANCE, NO SUCH REFERENCE OBJECT,
INVAUD OBJECT INSTANCE, PROCESSING FAILURE,
DUPUCATE MANAGED OBJECT INSTANCE, DELETE ERR, ACTION ERR.

msg_ptr Pointer to the CMIP message containing all information for this CMIS operaticm.

Return Values

SUCCESS, BAD NAME TYPE, GLOB RANGE, NO SUCH MSG TYPE,
FIELD DOES NOT EXIST, NULL MSG PTR, NEW DN RANGE,
NO MEM, FIELD ALREADY FILLED, BAD FORM

107

Programmer's Reference Manual FID Functions

5.7. fiD_superiorObjectInstance

int fill_superiorObjectIiistance (instance_type, instance, msg_type, msg_ptr)

int instance_type;

uni(xi Instance instance;

int msg_type;

char **msg_ptr.

Description

The fill superiorObjectInstanceO routine fills the CMIP PDU field for the superioiObjectlnstance

name. This fimction checks die acceptability of the input parameters. If they are all within range,

the fimctitMi allocates the data structure to bold the name designation and sets the superiorObjectln-

stance pointer in the CMIP operation structure to point to this newly allocated structure. Then die

superior object instance structure is fiUed with either the disdnguishedname, localdistinguisbed-

name, or nonspedficform, depending upon which name type was passed in by die CMIS user.

NOTE: For this phase, if the user wishes to pass a nonspecdficform, be may do so by filling it in

himself and taking responsibility for the s^propriate filling of this parameter. If diis parameter is

not filled correcdy the program could faU.

The name structure is a distinguished name and is constituted as follows: a Distinguished Name
(DN) is a sequence of one or more Relative Distinguished Names (RDNs). For this reason, a DN
is also referred to as an RDN sequence. Each RDN, in turn, is a sequence of one or more Attri-

bute Value Assertions (AVAs). And finaUy, an AVA is a pairing of an attribute type and an attri-

bute value. Because of the complex nature of the name structure, this function may have to be

called several times to build the entire name. The name can potentially consist of a linked list of

linked lists of name elements. That is, the DN can be a linked list of RDNs which can, in turn, be

linked lists of AVAs.

The following sequence of calls to this fimcticHi should be followed to propedy build the name
structure. When the CMIS user is beginning the creation of a new distinguished name (DN), the

RDN_flag in die unitm instance should be set to BEGIN_RDNSEQUENCE. After the initial step,

when beginning a new RDN, set this flag to ADD_RELATTVEDISTINGUISHEDNAME. When
the CMIS user is adding an attribute value assertion (AVA) to an already existing RDN, diis flag

should be set to ADD ATTRIBUTEVALUEASSERTION.

This function returns a SUCCESS indication. If any errors are detected prior to a successfiil com-

pleticMi of each fimction, the function is terminated at that point with the appropriate error indica-

tioa As can be seen from the sequence of calls to diis function, the name structure must be filled

in starting with the root of the DN naming tree and then filling in each AVA of die RDN at a

given node in die path before progressing to the next RDN in the pathname. This procedure is

reiterated until all ^Ns in the RDN sequence have been filled in.

Parameters

instaiM;e_type Indicates if the user is filling a distinguisbedName, nonSpedficForm, or localDis-

tinguisbedName.

Range of Values

DISTINGUISBEDNAME, NONSPECMCFORM, or LOCALDISUNGUISHEDNAME.

instaiKe This union supplies the necessary informatirm to fill either the distinguishedname, local-

distinguishedname, or nonspedficform. For the distinguishedname and local dis-

tinguisbedname forms, the union contains the AVA as well as a flag indicating the

current stage in building the name. This flag can take on one of three values:

Range of Values

BEGIN RDNSEQUENCE, ADD RELATTVEDISTINGUISHEDNAME,
or ADD ATTRIBUTEVALUEASSERTION

108

Programmer's Reference Manual Fin Functions

CMIS operation type.

Range of Values

CREATEREQ.

msgjptr Pointer to tbs CMIP message containing all information for this CMIS operaticm.

Return Values

SUCCESS, BAD NAME TYPE, GLOB RANGE, NO_SUCH_MSG_TYPE,
FIELD DOES NOT EXICT, NULL MSG PTR, NEW DN RANGE,
NO MEM, FIELD ALREADY FILLED, BAD FORM

109

Programina''s Refa*ence Manual Fin Flinctions

5.8. fiU_referenceObjectInstan(%

int fill_referenceObjectInstance (instance_type, instance msg type, msgj)tr)

int instancejtype;

uni<» Instance instance;

int insg_type;

char **msg_ptr,

Description

The fill referenceObjectInstanceO routine fills the CMIP PDU field for the refeienceObjectlnstance

name. This function checks the acceptability of the iiq)ut parameters. If they are all within range,

the function allocates die data structure to hold the name designation and sets the lefeienceObjec-

tlustance pointer in the CMIP operaticm structure to point to this newly allocated structure. Tben

the reference object instance structure is filled with either the distinguishedname, localdis-

tinguishedname, or nonspecificform, depending upon which name type was passed in by the CMIS
user. NOTE: For diis phase if the user wishes to pass a nonspecificform, he may do so by filling it

in himself and taking responsibility for the appropriate filling of this parameter. If diis parameter

is not filled correctly die program could fail.

The name structure is a distinguished name and is constituted as follows: a Distinguished Name
(DN) is a sequence of cme or more Relative Distinguished Names (RDNs). For this reason, a DN
is also referred to as an RDN sequence. Eadi RDN, in turn, is a sequence of one or more Attri-

bute Value Assertions (AVAs). Arxl finaUy, an AVA is a pairing of an attribute type atKl an attri-

bute value. Because of the complex nature of the name structure, this function may have to be

called several times to build the entire name. Tbe name can potentially consist of a linked list of

linked lists of name elements. That is, the DN can be a linked list of RDNs which can, in turn, be

linked lists of AVAs.

The following sequence of calls to this function should be followed to properly build the name
structure. When the CMIS user is beginning the creation of a new distinguished name (DN), die

RDN flag in die unitm instance should be set to BEGIN RDNSEQUENCE. After the initial step,

when beginning a new RDN, set this flag to ADD_RELATTVEDISTINGUISHEDNAME. When
the CMIS user is adding an attribute value assertion (AVA) to an already existing RDN, diis flag

should be set to ADD_ATTRIBUTEVALUEASSERTION.

This function returns a SUCCESS indicatitm. If any errors are detected prior to a successful com-

pletitm of each function, the function is terminated at that point with the ^propriate error indica-

tioa As can be seen fimn the sequence of calls to this function, the name structure must be filled

in starting with the root of the DN nanung tree and then filling in each AVA of the RDN at a

given node in die path before progressing to the next RDN in the pathname. This procedure is

reiterated until aU RDNs in the RDN sequence have been filled iiL

Parameters

iiistance_type Indicates if the user is filling a distinguishedName, nonSpecificForm, or localDis-

tinguisbedName.

Range cf Values

DISTINGUISHEDNAME, NONSPEOHCFORM, or LOCALDISTINGUISHEDNAME.

instance This union supplies the necessary informatitm to fill either the distinguishedname, local-

distinguishedname, or nonspecificform. For the distinguishedname and local dis-

tinguishedname forms, the onion contains the AVA as well as a flag indicating die

current stage in building the name. This flag can take on one of three values:

Range of Values

BEGIN RDNSEQUENCE, ADD RELATTVEDISTESIGUISHEDNAME,
or ADD ATTRIBUTEVALUEASSERTION

110

Prognmuner's Rrference Manual FID Functions

nisg_type CMIS q)eration type.

Range of Values

CREATEREQ.

iiisg_ptr Pointer to die CMIP message containing all infonnation for this CMIS operatitHi.

R^nrn Values

SUCCESS, BAD NAME TYPE, GLOB RANGE, NO SUCH MSG TYPE,
FIELD_DOES_NOT EXIST, NULL_MSG_PTR, NEW DN RANGE,
NO MEM, FIELD ALREADY FILLED, BAD FORM

5.9. fill_accessControl

int fill_accessContioI(access, msg_type, msgjitr)

int access;

int nisg_type;

char *msg_ptr.

Description

This function fills the access control field of the CMIP PDU. The fill_accessControl() routine

checks the acceptability of the iiqiut parameters. If diey are within range, the function allocates

the data structure to hold the access crmtrol information and sets die accessControl pointer in the

CMIP operation structure to point to this newly allocated structure. Then the access control field is

filled with the access control informadmi passed in by the CMIS user. The function then returns

with a SUCCESS indication. If any errors are detected prior to a successful completion of this

functicHi, the function is terminated at that point with the aj^rqiriate error indication.

NOTE: For diis version of the implementation, since no agreements have been reached concerning

the nature of access control information, a default version of die information (a single integer

value) will be filled in by this function and the input parameters will be disregarded. In later ver-

sions, this functirm will be qigraded to allow for passing of actual access control informaticMi.

Parameters

access The integer value for access coitroL

Range cf Values Irtteger values between 1 and 2(32)-

1

Sample Values 22

iiisg_tyi>e CMIS operation type.

Range of Values

SET REQ, GET REQ, ACmON REQ,
CREATE REQ, DELETE REQ.

iiisg_ptr Pointer to die CMIP message containing all information for this CMIS operaticm.

Retiim Values

SUCCESS, NO SUCH MSG_TYPE, FIELD DOES NOT EXIST,
NULL MSG PTR, NO~MEM, FIELD ALREADY FILLED

111

Prograiiuna*'s Refo'ence Manual FID Functions

5.10. fiIl_syndu‘onization

int fill_synchionization(sync, msg_type, msg_ptr)

int sync;

int msg_type;

char msgj)tr;

Description

This function fills file synchronizaticm field of the CMEP PDU. The fill_synchronization() routine

checks the acceptability of the iiqiut parameters. If they are within range the function allocates the

data structure to hold the synchronization information and sets the synchronization pointer in the

CMIP operation structure to point to this newly allocated structure. Then the syncbiWzation field

is filled with file synchronization information (Le., BESTEFFORT or ATOMIQ passed in by file

CMIS user. The fimction then returns with a SUCCESS indication. If any errors are detected pri-

or to a successful completion of this function, file function is terminated at fiiat point with the ^
propriate error indication.

NOTE; If the function is not called, nothing will be put into the CMIP operatitMi structure and

upon receipt, this NULL field will indicate to die other CMIS provider that the default case of best

effort should be used for synchronizatitMi.

Parameters

sync Eifiier besteffort or atomic.

Range of Values BESTEFFORT or ATOMIC

insg_type CMIS qieradon type.

Range of Values

SYNC NOT SUPPORTED, COMPLEXITY LIMITATION,
SET REQ, GET REQ, ACTION REQ, DELETE REQ.

nsg_ptr Pointer to file CMIP message containing all information for this CMIS operation.

Return Values

SUCCESS, NOT SUPPORTED SYNC, NO MEM, FTKT.D AT.READY FILLED,
NULL MSG PTR

112

Programmer's Referoice Manual FiD Functions

5.11. fin_scope

int fill_scope(scope_type, scope value, msg_type, msgj)tr)

int scope type;

int scope_value;

int msg type;

char msg_ptr,

Description

This function fills the scq)e field of the CMIP PDU. The fill_scope() routine checks the accepta-

bility of the input parameters. If they are within range, the function allocates tiie data structure to

hold the scq)e information and sets the scope pointer in the CMEP operation structure to point to

this newly allocated structure. Then the scope field is filled with the scope level information passed

in by the CMIS user. The function then returns with a SUCCESS indicatiorr If any errors are

detected prior to a successful completion of this function, the function is terminated at that point

witii the appropriate error indication.

NOTE; If this function is not called, nothing will be put into the CMIP operation structure and

upon receipt, this NULL field will indicate to tire peer CMIS provider that the default case of base

object alone is to be used for scoping.

Parameters

scope_type Indicates type of scoping to be performed; baseObject (the base object alone),

firstLevelOnly (the first level subordinates of the base object), wholeSubtree (the base

object aiKl all of its subordinates), individualLevels (the Nth level subordinates of the

base object), or baseToNthLevel (the base object arxl all of its subordinates down to

and including the Nth level

Range of Values

One of: BASEOBJECT, FIRSTLEVELONLY, WHOLESUBTREE,
INDIVIDUALLEVELS, or BASETONTHLEVEL.

scope_valae Indicates the value for either the individualLevel that is to be scq>ed, or the Nth

level to stop at when using baseToNthLevel scoping. If scoping is done with

baseobject, firstlevelonly or wholeSubtree, tiiis value should be set to 0.

Range of Values NULL, or integer value £r«n 1 to 2(32) - 1.

msg_type CMIS qreration type.

Range of Values

INVAUD SCOPE, COMPLEXITY LIMITATION, SET REQ,
GET REQ, ACnON REQ, DELETE REQ.

msg_ptr Pointer to the CMIP message containing all information for this CMIS operaticm.

Return Values

SUCCESS, SCOPE TYPE OUT OF RANGE, SCOPE VALUE OUT OF RANGE,
NO SUCH MSG TYPE, FIELD DOES NOT EXIST, NO MEM,
FIELD ALREADY FUJLED, NULL MSG PTR

113

Programmer's Reference Manual Fill Functions

5.12. fill filter

int fill_filter(cq)erator_type, item_typel, itein_type2, not_flagl,

not_flag2, id_typel, id_type2, idl, id2, att_vall,

att_val2, substring_typel, substring_type2, msg_type, msg_ptr)

int operator_type;

int item_typel;

int item_type2;

int not_flagl;

int not_flag2;

int id_typel;

int id_type2;

union id *idl;

union id id2;

PE att_vall;

PE ad_val2;

int substring_typel;

int substring_type2;

int msgtype;

char **msg_ptr.

Description

The fill_filter() routine diecks the acceptability of die input parameters. If they are within range,

the function allocates the data stnicture to hold the filter information and sets the filter pointer in

the CMIP operation structure to point to diis newly allocated structure. Then the filter field is filled

with the filter information passed in by the CMIS user. The function then returns with a SUC-
CESS indicatioa If any errors are detected prior to a successful completicm of this function, the

function is terminated at diat point with the appropriate error indicatioa

Parameters

operator_type This parameter is limited to die following 5 different filter constructions; Not

(item_typel And item_type2) (NAND), Not (item typel Or item_type2) (NOR),

item_typel And item_type2 (AND), item typel Or item_type2 (OR), item typel

(NULL).

Range of Values NAND, NOR, AND, OR, NULL

item_t7pel This parameter specifies what the user would fike to filter on for the first Item.

Range of Values

EQUALITY, GREATEROREQUAL, LESSOREQUAL, PRESENT, SUBSTRINGS,
SUBSETOF, SUPERSETOF, NONNULLSETINTERSECnON

item_t7pe2 This parameter specifies what the user would like to filter on for the second Item.

Set to NULL if operator type = NULL.

Range of Values

EQUALITY, GREATEROREQUAL, LESSOREQUAL, PRESENT, SUBSTRINGS,
SUBSETOF, SUPERSETOF, NONNULLSETINTERSECnON

not_flagl If the user chooses to Not the first Item then set this to TRUE.

Range of Values TRUE or FALSE

not_flag2 If the user chooses to Not the second Item then set diis to TRUE.

Range of Values TRUE or FALSE. Set to FALSE if <^rator_type = NULL.

id_typel Indicates whether attribute ID designation, as passed in by the CMIS user, is in local or

114

Prograiiiina‘'s Referaice Manual FID Functions

global fonn. Ibis parameter is used by the function to determine what type to use in

working with the idl unioa This is the OID type for item_typel.

Range of Values LOCAL or GLOBAL

idl Either an integer that specifies die attribute identifier in local form, or a Character string con-

taining the attribute identifier in global form, (see section 3.1.1 for eiqilanation of treatment

of object identifieis by diese interface functions)

Range of Values If local form, an integer value between 1 and 2(32)-l; if global form, the first

integer value represented in the string must be 0, 1, or 2. The second value

must be between 0 through 39 if the first element is 0 or 1. Subsequent values

must be non-negative numbers and eadi value is separated by a dot(.).

Sample Values local_form = 35, global_fonn = "1.17.244.5" (The quotes in the global form sig-

nify that it is a diaracter string) This is the OID for item_typel.

id_type2 Same as parameter id typel except that this is the OID type for item_type2.

id2 Same as parameter idl except that this is the OID for item_type2.

att_vall Pointer to die PE containing the encoded information for item_typel.

att_vaI2 Pointer to the PE containing the encoded information fm item_type2. Set this to NULL
if operatortype = NULL.

substring_typel If item_typel is set to SUBSTRINGS, dien die user must indicate (by setting

diis parameter) what part of the string they wish to filter oil Set to NULL if

item_typel does not equal SUBSTRINGS.

Range of Values INTTIALSTRING, ANYSTRING, FINALSTRING

substring_type2 If item_type2 is set to SUBSTRINGS, then the user must indicate (by setting

this parameter) what part of the string they wish to filter oa Set to NULL if

item_typel does not equal SUBSTRINGS or if operator type equals NULL.

Range of Values INITLALSTRING, ANYSTRING, FINALSTRING

msg_t3qie CMIS (^ration type.

Range of Values

INVAUD FILTER, COMPLEXITY LIMITATION, SET REQ,
GET REQ, ACnON REQ, DELETE REQ.

msgjiitr Pointer to the CMIP message containing all information for this CMIS operation.

Return Values

SUCCESS, OPERATOR TYPE RANGE, NO SUCH MSG TYPE,
FIELD DOES NOT EXIST, NULL MSG PTR, BAD FORM,
NO MEM, ITEM TYPE RANGE, FIELD ALREADY FILLED

115

Progranuner's Reference Manual FID Functions

5.13. fill_niodificationList

int fill_modificationList(modify_q)eratioii, id_type, id, att value, msg_type, insg_ptr)

int modify_operation;

int id_type;

unim ID id;

PE att_value;

int msg_type;

char *msg_ptr,

Description

This function fills the modification list of the C!MIP PDU. If the iiput paramaters are within

range, the function allocates the data structure to hold the modification list information and sets the

mo^cation list pointer in the CMIP qjeration structure to point to this newly allocated structure.

Then the modification list structure is filled with the modify operation, attribute value and either

the globalForm identifier or the localForm identifier. The attribute value is passed in by the user

in the form of a presentatitm element (PE). It is the responsibility of the CMIS user to create the

PE by calling the tqjproptiate encode function for that attribute value. The function then returns

with a SUCCESS indicatioa If more than one attribute is to be included in the modification list,

the CMIS user should call the fill_modificationList() function one time for each of the attributes. If

any errors are detected prior to a successful completion of this functioa the function is terminated

at that point witir the ^jpropriate error indicatioa

Parameters

modify_(^>eration Indicates which of the four possible types of modification is to be performed

on the attribute.

Range of Values int_CMIP_ModifyC)perator_replace, int_CMIP_ModifyOperator_removeValues,

int_CMIP_ModifyOperator_addValues, int_CMEP_ModifyC)perator_setToDefault

idjtype Indicates whether the attribute id, as passed in by tire CMIS user, is in the local or glo-

bal form. This parameter indicates which of the two forms represented by the id union is

to be used.

Range of Values type_CMIP_ObjectClass_globalForm, type_CMIP_ObjectClass_localForm

id Either an integer drat specifies the attribute identifier in local form or a Character string con-

taining the identifier in global form.

Range of Values For global form, the first integer value represented in the string must be 0, 1, or

2. The second value must be between 0 and 39, if the first element is 0 or 1.

Subsequent values must be non-negative numbers arxl each value is separated by

a dot(.). For local form, an integer between 0 arxl 2"32 - 1.

Sample Values Global Form = "1.17.244.5" (The quotes in the global form signify that it is a

character string.) Local Form = 35

att_Talae The encoded attribute value (in the form of a PE) as returned from the encode routine

that the user calls.

msg type CMIS (^ration type.

Range of Values SET_REQ

insg_j}tr Pointer to the CMIP message containing all information for this CMIS operaticm.

Return Values

SUCCESS, BAD FORM, GLOB RANGE, INVALID MSG TYPE,
FIELD DOES NOT EXIST, NULL_MSG_PTR, NO MEM,
UNABLE TO COPY PE

116

Programiiia*'s Reference Manual Fin Functions

5.14. fin_attribatelist

int fill_attributeList(id type, id, att_value, msg_type, msg_ptr)

int id_type;

unicKi ID id;

PE att_value;

int insg_type;

char *msg_ptr.

Description

This function fills the attribute list of the CMIP PDU. The fill_attributeList() routine checks the

acceptability of the input parameters. If they are within range, the function allocates die data

structure to hold the attribute list information aod sets the attribute list pointer in the CMIP opera-

tic structure to point to this newly allocated structure. Then die attribute List structure is filled

widi the attribute value and either the localForm or globalForm identifier, depending on which one

was passed in by the CMIS user. The attribute value is passed in by the user in die form of a

presentation element (PE). It is the responsibility of the Cl^S user to create the PE by calling the

tqiptopriate encode function for that attribute value. Hie function then returns with a SUCCESS
i^catic. If more than one attribute is to be included in the attribute list, the CMIS user should

call the fill_attributeList() function ce time for eadi of the attributes. If any errors are detected

prior to a successful completion of this function, the function is terminated at that point with the

appropriate error indicatioa

Parameters

id_type Indicates whether the attribute id, as passed in by the CMIS user, is in the local or glo-

bal form. This parameter indicates which of the two forms represented by the id union is

to be used.

Range of Values LOCAL or GLOBAL.

id Either an integer that specifies the attribute identifier in local form or a Character string con-

taining the identifier in global form.

Range of Values If local form, an integer value between 1 and 2(32)-l; if global form, die first

integer value represented in the string must be 0, 1, or 2. The second value

must be between 0 and 39, if die first element is 0 or 1. Subsequent values

must be non-negative numbers and each value is separated by a dot(.).

Sample Values local form = 35, global_form = "1.17.244.5" (The quotes in the global form sig-

nify that it is a character string.)

att_valne The encoded attribute value (in the form of a PE) as returned from the encode routine

that the user calls.

msg_type CMIS qieration type.

Range of Values

SET REQ, SET RSP, GET RSP, CREATE REQ, CREATE RSP.

msgjiitr Pointer to the CMIP message containing aU information for this CMIS operation.

Return Values

SUCCESS, BAD FORM, GLOB RANGE, NO SUCH MSG TYPE,
FIELD DOES NOT EXIST, NULL_MSG_PTR, NO MEM

117

Programmer's Refo'aKe Manual FID Functions

5.15. fill_attributeldlist

int fill_attributeldlist(id type, id, msg_type, msg_ptr)

int id_type;

union ID id;

int msg_type;

char **msg_ptr,

Description

This fiinctim fills the attribute list of the CMIP PDU. The fill_attributeldlist() routine checks the

acceptability of die input parameters. If they are within range, the function allocates the data

structure to hold the attribute ID list information and sets the attributeldList pointer in die CMIP
operation structure to point to this newly allocated structure. Then the attribute ID list structure is

filled with either the localForm or globalForm identifier, depending on which one was passed in by

the CMIS user. The functimi then returns with a SUCCESS indicatiorL If more than one attribute

id is to be included in the attribute list, the CMIS user should call the fill_attributeldlist() fimction

one time for each of the attribute ids. If any errors are detected prior to a successful completion of

this function, the function is terminated at that point with the appropriate error indication.

Parameters

id_type Indicates whether the attribute id, as passed in by the CMIS user, is in the local or glo-

bal form. This parameter is used by the fimction to determine what type to use in work-

ing with the id uniorr

Range of Values LOCAL or GLOBAL.

id Hdier an integer that specifies the attribute identifier in local form or a character string con-

taining the identifier in global form.

Range of Values If local form, an integer value between 1 and 2(32)-l; if global form, the first

integer value represented in the string must be 0, 1, or 2. The second value

must be between 0 and 39 if the first element is 0 or 1. Subsequent values must

be ncm-negative numbers and each value is separated by a dot(.).

Sample Values local form = 35, global_form = "1.17.244.5" (The quotes in the global form sig-

nify that it is a character string)

msg type CMIS q)eration type.

Range of Values GET_REQ,

msgjptr Pointer to tire CMIP message containing all information for this CMIS operation.

Return Values

SUCCESS, BAD FORM, GLOB RANGE, NO SUCH MSG TYPE,
FIELD DOES NOT EXIST, NO MEM

118

Programma-'s Refa*aice Manual Fin Flmctions

5.16. fin_cuiTeDt'njne

int fill_cunentTime(cimenttime, nisg_type, insg_ptr)

char *cunenttiine;

int msg type;

char msg_ptr.

Description

This fiiocticHi fills Ae currentTime field of the CMIP PDU. The fill_curren(rime() routine checks

the acceptability of the input parameters. If they are within range, the function allocates the data

structure to hold the currentTime infonnation and sets the currentTime pointer in the CMIP opera-

tion structure to point to this newly allocated structure. Then die currentTime field is filled with the

currentTime information passed in by the CMIS user. The fimction then returns with a SUCCESS
indicatioa If any errors are deteaed prior to a successful completion of this fimction, the fimction

is terminated at that point with die qrproptiate error indicatioa

Parameters

currenttune A string that represents the time at which die operation occurred.

Sample Values The string 19890613123012.333-0500 represents a local time of 12:30:12 (and

333 msecs) on 13th June 1989, in a time zone which is 5 hours behind GMT.

msg type CMIS qieration type.

Range of Values

GET UST ERROR, SET UST ERROR, SET RSP,

GET RSP, EVENT REQ, EVENT RSP,

ACnON RSP, CREATE RSP, DELETE RSP.

DELETE ERR, ACTION ERR.

m^jptr Pointer to die CMIP message containing all information for this CMIS operatioa

Return Values

SUCCESS, NO SUCH MSG TYPE, FIELD DOES NOT EXIST,
NULL MSG PTR, FIELD ALREADY FILLED

119

Programmer's Refa*ence Manual FQl Functions

5.17. fill_event'nme

int fill_eventTime(cunenttime, msg type, insg_ptr)

char ^currenttime;

int msg type;

char **msg_pti;

Description

This function fills the eventTime field of the CMIP PDU. The fill_evenfrime() routine checks the

acceptability of the ii^ut parameters. If they are within range, the function allocates the data

structure to hold die eventTime information and sets the eventTime pointer in the CMIP operation

structure to point to this newly aUocated structure. Then the eventTime field is filled with the

eventTime iriformation passed in by the CMIS user. The function tiien returns with a SUCCESS
indicatioa If any errors are detected prior to a successful completion of this function, the function

is terminated at that point with the t^propriate error conditicm.

Parameters

currenttime A string that represents the time at which the event occurred.

Sample Values The string 19890613123012.333-0500 represents a local time of 12:30:12 (and

333 msecs) on 13th June 1989, in a time zone which is 5 hours behind GMT.

msg_type CMIS operation type.

Range of Values

GET UST ERROR, SET UST ERROR, SET RSP,

GET RSP, EVENT REQ, EVENT RSP,

ACnON RSP, CREATE RSP, DELETE RSP.

msg_ptr Pointer to die CMIP message containmg all information for this CMIS operation.

Return Values

SUCCESS, NO SUCH MSG TYPE, FIELD DOES NOT EXIST,

NULL MSG PTR, FIELD ALREADY FILLED

120

Prop’amma-'s Refo-ence Manual FID Functions

5.18. tiD getInfoStatus

int fill_getInfoStatus(eiTOr_type, enor_status, id_lype, id, att_value, insg_type, msgj)tr)

int enor type;

int enor_status;

int id type;

unicHi ID id;

PE att value;

int msg type;

char **msg_ptr.

Description

The fill getInfoStatusO routine fills the CMIS field Iot the get info status. This function diecks the

acceptaWity of the input parameters. If they are all within range, the function allocates die data

structure to hold the get info status designaticm and sets the GetInfoStatus pointer in die CMIP
operation structure to point to this rtewly allocated structure. Then the get info status structure is

filled widi either the localForm or ^obalForm identifier, depending mi which one was passed in by

the CMtS user. The filljgetInfoStatusO function should be caUed one time for each attribute that is

included in a get list error. The functiMi normally returns a SUCCESS indication. If any errors are

Elected prior to a successful completion of this function, the function is terminated at that point

with die qipropriate error indication.

Parameters

error_type Indicates whether an error occurred on this particular attribute.

Range of Values ERROR or NOERROR

eiTor_status Error that occurred. If no error, set to NULL.

Range of Values STATUS ACCESSDENIED, STATUS_NOSUCHATTRIBUTE, NULL

id_typ€ Indicates whether the attribute ID designation, as passed in by the CMIS user, is in local

or global form. This parameter is used by the function to determine what type to use in

working with the id union.

Range of Values LOCAL or GLOBAL

id Eidier an integer that specifies the attribute identifier in local form or a character string con-

taining the attribute identifier in global form.

Range of Values If local form, an integer value between 1 and 2(32>-l; if global form, the first

integer value represettted in the string must be 0, 1, or 2. Hie second value

must be between 0 and 39, if the first element is 0 or 1. Subsequent values

must be non-negative numbers aiKl each value is separated by a dot(.).

Sample Values local_form = 35, global_form = ”1.17.244.5’' (The quotes in the global_form sig-

nify that it is a diar^:ter string.)

att_valne If, for this attribute, the GET qieration was successfiil, this att_value is die encoded at-

tribute value dmt is returned from the encode routine that the user calls. If, for this at-

tribute, the GET operation was unsuccessful, this att_value should be set to NULL be-

came there is no value that was sent

iii^_type CMIS (^ration type.

Range of Values GET_LIST_ERROR.

msg_ptr Pcnnter to the C^flP message containing all information for diis CMIS operatiML

Return Values

SUCCESS, BAD FORM, GLOB RANGE, NO_SUCH_MSG_TYPE, NO MEM,
INVALID_ERROR_STATUS, HELD_DOES_NOT_EXIST, NULL_MSG_PTR

121

Programmer's Reference Manual Fin Factions

5.19. fin_seCInfoStatus

int fill_setIiifoStatus(error_type, error_status, modify_operation, id_type, id, att_value, msg_type, msgj)tr)

int eiror_type;

int eiTOT_status;

int modify_operation;

int id type;

union ED id;

PE att_value;

int msg type;

char *msg_ptr.

Description

The fiU_setInfoStati4s() routine fills the CMIS field for the set info status. This function checks the

acceptability of the input parameteis. If they are all within range, the function allocates the data

structure to hold the set info status designation and sets die SetlnfoStatus pointer in the CMIP
operation structure to point to this newly allocated structure. Then the set info status structure is

filled with either the localFonn or globalForm identifier, depending tm which one was passed in by

the CMIS user. The fill_setIirfoStatus(

)

function should be called one time for each attribute that is

included in a set list error. The function normally returns a SUCCESS indicatioa If any errors are

detected prior to a successful completion of this fiinction, the function is terminated at that point

with the ^propriate error indication.

Parameters

error_type Indicates whether an error occurred on this particular attribute.

Range of Values ERROR or NOERROR

error_status Error that occurred. If no error, set to NULL.

Range of Values

STATUS ACCESSDENIED, STATUS NOSUCHATTRIBUTE,
STATUS INVALTOATTRIBUTEVALUE, NULL

modify_<^eration Specifies one of four ways the to operate on the specified attributes.

Range of Values int_CMIP_ModifyOpCTation_replace int_CMIP_ModifyOperation_removeValues

int_CMIP_ModifyC^)eration_addValues

int_CMIP_ModifyOperation_setToDe£ault

id_type Indicates whether the attribute ED designafitm, as passed in by the CNnS user, is in local

or global form. This parameter is used by the fimction to determine what type to use in

working with the id union.

Range of Values LOCAL or GLOBAL

id Eidier an integer that specifies the attribute identifier in local form or a character string con-

taining the attribute identifier in global form.

Range of Values If local form, an integer value between 1 and 2(32)-l; if global form, die first

integer value represented in the string must be 0, 1, or 2. The second value

must be between 0 and 39, if the first element is 0 or 1. Subsequent values

must be non-negative numbers and each value is separated by a dot(.).

Sample Values local_form = 35, global_form = ”1.17.2443"

att_value If, for this attribute, the SET operation was successful, this att_vtdue is the encoded at-

tribute value that is returned fiiom the encode routine that the user caUs. If, for this td-

tribute, the SET operation was unsuccessful, this att_value should be set to the value

received in the SET request

msg_tyi)e CMIS qieration type.

122

Prop'aininar's Reference Manual Fill Functions

Range of Values SEr_LIST_ERROR.

msgjsti* Pointer to tbe CMEP message containing all information for this CMIS operation.

Return Values

SUCCESS, BAD FORM, GLOB RANGE, NO_SUCH_MSG_TYPE, NO MEM,
INVALID_ERROR_STATUS, EDELD DOES NOT EXIST, NULL MSG PTR

5,20. iiIl_actionyalue

int fill_actionValue(id_type, id, att_value, msg_type, msgjJtr)

int id_type;

onion ID id;

PE att_value;

int msg_type;

char **msg__ptr;

Description

The fiUjzctionValueO routine fills the CMIS field for the action value. This function checks the

acceptability of the input parameters. If they are all within range, die function allocates the data

structure to hold the action value designation and sets the actionValue pointer in the CMIP opera-

tion structure to point to this newly allocated structure. Then the type_CMIP_ActioiiInfo structure

is filled with eitter tbe localForm or globalForm identifier, depending on which ooe was passed in

by the CMIS user. Also filled in this structure is the att_value. The functicHi normally returns a

SUCCESS indicatioa If any errors are detected prior to a successful cranpletion of diis function,

tbe fimction is terminated at that point with tbe qipropriate error indicatioa

Parameters

id_type Indicates whether tbe action ID designation, as passed in by tbe CMIS user, is in local or

global form. This parameter is used by the function to determine what type to use in

working widi tbe id unioa

Range of Values LOCAL or GLOBAL

id Htber an integer that specifies die actitm identifier in local form or a character string contain-

ing tbe acticHi identifier in global fcmn.

Range of Values If local form, an integer value between 1 and 2(32)-l; if global form, die first

integer value represented in the string must be 0, 1, or 2. The second value

must be between 0 and 39 if the first element is 0 or 1. Subsequent values must

be non-negative numbers and each value is separated by a dot(.).

Sample Values local_foim = 35, global_fonn = "1.112M5” (The quotes in the global form sig-

nify that it is a character string.)

att_valae The encoded action value (in die form of a PE) as returned fixMn tbe encode routine

that tbe user caUs.

msg type CMIS qieration type.

Range of Values ACTION REQ, INVAIJD ARGUMENT VALUE.

msg_ptr Pointer to tbe CMIP message containing dl information for this CMIS operaticHi.

Return Values

SUCCESS, BAD FORM, GLOB RANGE, NO SUCH MSG TYPE,
FIELD DOES NOT EXIST, NULL_MSG_PTR, NO MEM, FIELD ALREADY FILLED

123

Programmer's Reference Manual Fill Functions

SJll. fill_evaitValue

int fill_eventValue(id_type, id, att_value, msg_type, msg_ptr)

int id_type;

union ID id;

PE att_value;

int msg_type;

char **msg_ptr.

Description

The fill_eventValue() routine fills the CMIS field for the event value. This function checks the ac-

cept^ility of the input parameters. If they are all within range, the fimctitHi allocates the data

structure to hold the event value designation and sets the eventValue pointer in the CMIP operation

structure to point to this newly allocated structure. Then the event structure is filled with either the

localForm or globalForm identifier, depending on which one was passed in by die CMIS user.

Also filled in this structure is the att_value. llie function normally returns a SUCCESS indication.

If any errors are detected prior to a successful completion of this function, the function is terminat-

ed at that point with die appropriate error condition.

Parameter's

id_type Indicates whedier the event ID designation, as passed in by the CMIS user, is in local or

global form. This parameter is used by the function to determine what type to use in

working with the id union.

Range of Values LOCAL or GLOBAL

id Eidier an integer that specifies the event identifier in local form or a character string contain-

ing the event identifier in global form.

Range of Values If local form, an integer value between 1 and 2(32)-l; if global form, the first

integer value represented in the string must be 0, 1, or 2. The second value

must be between 0 and 39 if the first element is 0 or 1. Subsequent values must

be non-negative numbers and each value is separated by a dot(.).

Sample Values local_foim = 35, global_foim = ”1.17.244.5" (The quotes in the global_form sig-

nify that it is a character string.)

att value The encoded event value (in die form of a PE) as returned fitmi die encode routine

that the user calls.

msg type CMIS qieration type.

Range of Values INVALID ARGUMENT VALUE
msg_ptr Pointer to die CMIP message containing all information for this CMIS operatitHi.

Retui'D Values

SUCCESS, BAD FORM, GLOB RANGE, NO SUCTI MSG TYPE, NO MEM,
FIELD DOES NOT EXIST, NULL MSG PTR, FIELD ALREADY FILLED

Programmer's Refa'aice Manual Fill Functions

SJ2. fi]l_attribute

int fill_attribute(id_type, id, att_valae, msgjype, insg_ptr)

int id_type;

umon ID id;

PE att_value;

int msgtype;
char **fns£jtr;

Description

The fill attributeO routine fills the CMIS field for the attribute. This function cbedcs the accepta-

bility of the input parameters. If they are all within range, the function allocates the data structure

to bold the attribute designation and sets the attribute pointer in the CMIP operatitm structure to

point to tiiis newly allocated stmcture. Then the type CMIP_Attribute structure is filled with either

the localForm or globalForm identifier, depending on which one was passed in by the CMIS user.

Also filled in tins structure is the att_valoe. The fimction normally returns a SUCCESS indicatioa

If any errors are (ktected prior to a successful completion of this function, the fimction is terminat-

ed at that point with the rqppropriate error indicatioa

Parameters

id_type Indicates whether the attribute ID designatioa as passed in by the CMIS user, is in local

or global form. This parameter is used by the fimction to determine what type to use in

working with the id unioa

Range of Values LOCAL or GLOBAL

id Either an integer that specifies the attribute identifier in local form or a character string con-

taining the attribute identifier in global form.

Range of Values If local form, an integer value between 1 and 2(32)-l; if ^obal form, the first

integer value represerued in the string must be 0, 1, or 2. The second value

must be between 0 and 39 if the first element is 0 or 1. Subsequent values must

be ntm-negative numbers and each value is separated by a dot(.).

Sample Values local_form = 35, global_form = "1.17244J" (The quotes in the global form sig-

rtify tiuit it is a character string.)

att_value The encoded attribute value (in the form of a PE) as returned from the encode routine

that the user calls.

msg_type CMIS qreration type.

Range of Values INVAUD ATTRIBUTE VALUR
msg_ptr Pointer to tire CMIP message containing all irrformation for this CMIS operation.

Return Values

SUCCESS, BADJFORM, GLOB RANGE, NO SUCH MSG TYPE,
FIEID DOES NOT EXIST, NO MEM, FIELD ALREADY FILLED

125

Programmer's Reference Manual Fin Functions

5JK3. fin_actionReply

int fill_actiwiReply(id_type, id, att_value, msg_type, msgjJtr)

int id_type;

um(» ID id;

PE att_value;

int msg_type;

char **msg_ptr.

Description

The Jill actionRepfyO routine fills the CMIS field for the acticMi reply. This function checks the

acceptability of the input parameters. If they are all within range, the function allocates the data

structure to hold the action reply designation and sets die acdooReply pointer in the CMIP opera-

tic) structure to point to this newly allocated structure. Then the type_CMIP_Acti(xiReply structure

is filled with eitter the localForm or globalForm identifier, depending on which oe was passed in

by the CMIS user. Also filled in this structure is die att_value. The fimcdo normally returns a

SUCCESS indicadoa If any errors are detected prior to a successful ccnpledon of diis function,

the function is terminated at that point with the appn^riate error indication.

Parameters

id_type Indicates whether the actionreply ID designation, as passed in by the CMIS user, is in lo-

cal or global form. This parameter is used by the function to determine what type to use

in working with the id union.

Range of Values LOCAL or GLOBAL

id Either an integer diat specifies die actionreply identifier in local form or a charaaer string con-

taining the actionreply identifier in global form.

Range of Values If local form, an integer value between 1 and 2(32)-l; if global form, the first

integer value represented in the string must be 0, 1, or 2. The second value

must be between 0 and 39 if the first element is 0 or 1. Subsequent values must

be ntm-negative numbers and each value is separated by a dot(.).

Sample Values local form = 35, global_form = "1.17.244.5” (The quotes in the global_form sig-

nify that it is a character string.)

att_value The encoded actionreply (in the form of a PE) as returned from the encode routine diat

the user calls.

msg_type CMIS qieration type.

Range of Values ACTION RSP.

msgjptr Pointer to the CMIP message containing all information for this CMIS operation.

Return Values

SUCCESS, BAD FORM, GLOB RANGE, NO SUCTI MSG TYPE, NO MEM,
FIELD DOES NOT EXIST, NULL MSG PTR, FIELD ALREADY FILLED

12<>

Programmer's Referoice Manual FID Functions

SJ2A. fiD_actionInfo

int fill_actiOTlnfo(id type, id, att_value, msg type, insgj)tr)

int id_type;

uniixi ID id;

PE att_value;

int msg_type;

char *insg_ptr.

Description

The fill_actionInfo() routine fills the CMIS field for the action info. This function checks die ac-

ceptability of the input parameters. If they are all within range, it allocates the data structure to

hold die action info designatitm and sets tte actioninfo pointer in the CMIP qieration structure to

point to this newly allocated structure. Then the type_CMIP_ActionInfo stnictuie is filled with ei-

ther the localForm or globalForm identifier, depending on wbidi one was passed in by the CMIS
user. Also filled in this structure is the att_value. The function normally returns a SUCCESS iiKli-

cation. If any errors are detected prior to a successful completion of this functim, the function is

terminated at that point with the appropriate error indicatioiL

Parameters

id_type Indicates whether d^ actioninfo ID designation, as passed in by the CMIS user, is in lo-

cal or global form. This parameter is used by the function to determine what type to use

in working with the id uniorL

Range of Values LOCAL or GLOBAL

id Either an integer that specifies die the actioninfo identifier in local form or a character string

containing the the acticminfo identifier in global form.

Range of Values If local form, an integer value between 1 and 2(32)-l; if global form, the first

integer value represented in the string must be 0, 1, or 2. The second value

must be between 0 and 39 if the first element is 0 or 1. Subsequent values must

be ncm-negative numbers and each value is separated by a dot(.).

Sample Values local form = 35, global_form = "1.17.244.5’’ (The quotes in the global_form sig-

nify that it is a character string.)

att_value The encoded the actioninfo (in the form of a PE) as returned from the encode routine

that the user calls.

msg_type CMIS qieration type.

Range of Values ACT10N_REQ.

msg_ptr Pointer to the CMIP message containing all information for this CMIS operation.

Return Values

SUCCESS, BAD FORM, GLOB RANGE, NO SUCH MSG TYPE, NO MEM,
FIELD DOES NOT EXIST, NULL MSG PTR, FIELD ALREADY FILLED

127

Programmer's Referaice Manual FID Factions

5^5. fiD_eventRepIy

int fiU_eventReply(id_type, id, att_value, insg_type, insg_ptr)

int id_type;

union ID id;

PE attvalue;

int msg_type;

char msg_ptr;

Description

The fill_eventReply() routine fills the CMIS field for the event reply. This fimction checks the ac-

ceptability of the input parameters. If they are all within range, die fimctitm allocates the data

structure to hold die event reply designation and sets the eventReply pointer in the CMIP operation

structure to point to this newly aUocated structure. Then the type_CMIP_EventRq>ly structure is

fiUed with either the localForm or globalFonn identifier, depending (xi which one was passed in by

the CMIS user. Also fiUed in this structure is the att_value. The functimi normally returns a SUC-
CESS indicatitm. If any errors are detected prior to a successful completitm of this fimction, the

functitm is terminated at diat point with the appropriate error indication.

Parameters

id_type Indicates whether the eventreply ID designation, as passed in by the CMIS user, is in lo-

cal or global form. This parameter is used by the function to determine what type to use

in working with the id unioiL

Range of Values LOCAL or GLOBAL

id Either an integer that specifies the eventreply identifier in local form or a character string con-

taining the eventreply identifier in global form.

Range of Values If local form, an integer value between 1 and 2(32)-l; if global form, the first

integer value represented in the string must be 0, 1, or 2. The second value

must be between 0 and 39 if the first element is 0 or 1. Subsequent values must

be non-negative numbers and each value is separated by a dot(.).

Sample Values local form = 35, global_form = "1.17.244J" (The quotes in the global_form sig-

nify that it is a character string.)

att_valae The encoded eventreply (in the form of a PE) as returned from the encode routine that

the user calls.

msg type CMIS q)eration type.

Range of Values EVENT_RSP.

msg_ptr Pointer to tiie CMIP message containing all information for tiiis CMIS operation.

Return Values

SUCCESS, BAD FORM, GLOB RANGE, NO SUCH MSG TYPE, NO MEM,
FIELD DOES NOT EXIST, NULL MSG PTR, FIELD ALREADY FILLED

Programmer's Reference Manual FID Functions

5^ fiIl_ev«otType

int fill_eventType(id type, id, msg_type, msgj)tr)

int id_type;

union ID id;

int msg_type;

char **msg_ptr,

Description

The fill_eventType() routine fills the CMIS field for the event Type. This function checks the ac-

ceptability of tte ii^ut parameters. If they are all within range, the function allocates the data

structure to hold the event Type designation and sets die eventType pointer in the CMIP operation

stnicture to point to this newly allocated structure. Then the type_CMIP_EventTypeId structure is

filled with either the localForm or globalForm identifier, depending cm which one was passed in by

the CMIS user. The fiinction normaUy returns a SUCCESS indication. If any errors are detected

prior to a successful ctunpledon of this function, the function is terminated at that point with the

appropriate error indicatioa

Parameters

id_type Indicates whedier eventtype ID designatioa as passed in by the CMIS user, is in local or

global form. This parameter is used by the function to determine what type to use in

working witib the id unioa

Range of Values LOCAL or GLOBAL

id Eidier an integer that specifies the eventtype identifier in local form or a character string con-

taining the eventtype identifier in global form.

Range cf Values If local form, an integer value between 1 and 2(32>1; if global form, the first

integer value represented in the string must be 0, 1, or 2. The second value

must be between 0 and 39 if the first element is 0 or 1. Subsequent values must

be non-negative numbers and each value is separated by a dot(.).

Sample Values local form = 35, global_form = "1.17.244.5" (The quotes in the global_form sig-

nify that it is a character string.)

msg_type CMIS q)eration type.

Range of Values EVENT_REQ

msgj[>tr Pointer to die CMIP message containing all information for this CMIS operatitML

Return Values

SUCCESS, BAD FORM, GLOB RANGE, NO_SU(3I_MSG_TYPE, NO MEM,
FIELD DOES NOT EXIST, NULL MSG PTR, FEELD ALREADY FILLED

129

Programmer's Referasce Manual Fill Flinctions

SJn. fiD_actionType !

int fill_acti(HiType(id_type, id, msgjype, msg_ptr)
!

int id_type; ,

unicm ID id;
|

int msg_type;
j

char *msg_ptr,

Description

The fill_actionType() routine fills die CMIS field for the action Type. This function checks the ac-

ceptability of t^ ii^ut parameters. If they are all within range, the function allocates the data >1

structure to hold the action Type designation and sets the actionType pointer in the CMIP opera-
{

tiwi structure to point to this newly allocated structure. Then the type CMIP ActionTypeld struc-

ture is filled with either the localForm or globalForm identifier, depending on which (me was
!

passed in by the CMIS user. The function normally returns a SUCC^S indication. If any errors s;

are detected prior to a successful completicm of this function, the functicm is terminated at that

point with die appropriate error indicaticm.
'

\\

Parameters

id_type Indicates whether actiontype ID designation, as passed in by die CMIS user, is in local

or global form. This parameter is used by the function to determine what type to use in

working with the id unioiL

Range of Values LOCAL or GLOBAL ;

id Either an integer that specifies the actiontype identifier in local form or a character string con- >

taining the actiontype identifier in global form. :•

Range of Values If l(x:al form, an integer value between 1 and 2(32)-l; if global form, die first

integer value represertted in the string must be 0, 1, or 2. The second value
|

must be between 0 and 39 if the first element is 0 or 1. Subsequent values must

be non-negative numbers and each value is separated by a dot(.).

Sample Values local form = 35, global_foim = "1.17.244.5" (The quotes in the global_form sig-

nify that it is a character string.)

msg_type CMIS (^ration type.

Range of Values NO SUCH ACTION

msg_ptr Pointer to the CMIP message ctxitaining all information for this CMIS operation.

Return Values

SUCCESS, BAD FORM, GLOB RANGE, NO SUCH MSG TYPE, NO MEM, |

FIEID DOES NOT EXIST, NULL MSG PTR, HELD ALREADY FILLED
;_ _ _
^

h
1

%

130

Programme's Reference Manual Fill Functions

5^ fill^eventld

int fill_eventld(id_type, id, event_type, event, msg_type, msgjptr)

int id_type;

unicHi ID id;

int event_type;

union ID event;

int msgtype;
char **msg_ptr.

Description

The fill_eventld() routine fills the CMIS field for die event Id. Ihis fiinction checks the acceptabil-

ity of the input parameters. If they are all within range, die function allocates die data structure to

hold the event Id designation and sets the eventid pointer in the CMIP qieration structure to point

to this newly allocated structure. Then both the managedObjectClass and eventType in the struc-

ture are filled with either the localForm or globalForm identifier, depending on which one was

passed in by die CMIS user. The function ntmnally returns a SUCCESS indicatioiL If any errors

are detected prior to a successful completion of this function, the functicHi is terminated at that

point with the t^ropriate error indicatioa

Parameters

id_type Indicates whedier eventtype ID designation, as passed in by the CMIS user, is in local or

global form. This parameter is used by the fiinction to determine what type to use in

working with the id unioa

Range of Values LOCAL or GLOBAL

id Either an integer diat specifies the eventtype identifier in local form or a character string con-

taining the the managed objea class identifier in global form.

Range of Values If local form, an integer value between 1 and 2(32)-l; if global form, the first

integer value represented in the string must be 0, 1, or 2. The second value

must be between 0 and 39 if the first element is 0 or 1. Subsequent values must

be n(xi-negative numbers and each value is separated by a dot(.).

Sample Values local_form = 35, global form = "1.17.244.5" (The quotes in the global_form sig-

nify that it is a character string.)

event_type Same as id type except it specifies die eventid designation,

ev^ Same as id except it specifies the eventid designation,

msg type CMIS qieration type.

Range of Values NO_SU(3I_ARGUMENT.

msg_ptr Pointer to die CMIP message containing all information for this CMIS operatimi.

Return Values

SUCCESS, BAD FORM, GLOB RANGE, NO SUCH MSG TYPE,
NULLMSGPTR, NOMEM, FIELDALREADYFTLLED

131

Programmer's Refa*eiice Manual Fin Functions

5^9. fin_actionId

int fiIl_actionId(id_type, id, actionjype, action, msg_type, msg_ptr)

int id_type;

union ID id;

int actiontype;

union ID action;

int msgtype;
char **msg_ptr;

Description

The fill_actionId() routine iSUs die CMIS field for the action Id. This fimction diecks the accepta-

bility of die input parameters. If they are all within range, the fimction allocates the data structure

to hold the action Id designaticxi and sets the actionid pointer in the CMIP operation structure to

point to this newly allocated structure. Then both the managedObjectQass and actionType in the

structure are filled with either the localFonn or globalForm identifier, depending (m which one was

passed in by the CMIS user. The function normally returns a SUCCESS indicatioa If any errors

are detected prior to a successful completion of this function, die functitm is terminated at that

point with the t^propriate error indicatioa

Parameters

id_type Indicates whedier the managed object class ID designatioa as passed in by the CMIS
user, is in local or global form. This parameter is used by the function to determine what

type to use in working with the id unioa

Range of Values LOCAL or GLOBAL

id Either an integer that specifies die managed object class identifier in local form or a character

string containing the managed object class identifier in global form.

Range of Values If local form, an integer value between 1 and 2(32>1; if global form, the first

integer value represented in the string must be 0, 1, or 2. The second value

must be between 0 and 39 if the first element is 0 or 1. Subsequent values must

be non-negative numbers and each value is separated by a dot(.).

Sample Values local_farm = 35, global_form = "1.17.244.5" (The quotes in the global form sig-

nify that it is a character string.)

action_type Same as id type excqit it specifies the actirmid designatioa

action Same as id except it specifies the acticmid designatioa

m^_type CMIS qieration type.

Range of Values NO SUCH ARGUMENT.

msg_ptr Pointer to the CMIP message containing all information for this CMIS operatirm.

Return Values

SUCCESS, BAD FORM, GLOB RANGE, NO SUCH MSG TYPE,
NULL_MSG_PTR, NO MEM, FIELD ALREADY FILLED

132

Prop'simmer's Ref«‘@ice Mannal Fin Flmctions

530. fiOjeTOitliifo

int fill_eventInfo(att_value, msg_type, insg_ptr)

PE att_value;

int msg type;

char **msg_ptr;

Description

The fill_eventJnfo() routine sets the CMIS attribute value field to point to the piesentaticHi element

(PE) passed in as att_value. This fiinction checks die acceptability of the iiqiut parameters. If diey

are all widiin range, die function allocates the data structure to hold the PE and sets the eventinfo

pointer in the CMIP operation structure to point to this newly allocated structure. The function nor-

mally retunK a SUCXZ^S indicatioa If any errors are detected prior to a successful completion of

this function, the function is terminated at that point with die ^ropiiate error indication.

Parameters

att_valae The encoded event value (in the form of a PE) as returned from the encode routine

that the user calls.

msg_type CMIS qieration type.

Range cf Values EVENT_REQ.

iiisg_ptr Pointer to the CMIP message containing all information for this CMIS operation.

Return Values

SUCCESS, NUli,_MSG_PTR, NULL

133

Programmer's Reference Manual Fill Functions

53L fill_specificErrorInfo

int fill spedficEnorliiftK att_value, msg_type, insgj)tr)

PE att value;

int msg type;

char msg_ptr.

Description

The fill_specificErrorIrrfo() routine sets the CMIS attribute value field to point to the presentation

element (PE) passed in as att_value. This fimction checks the acceptability of the input parame-

ters. If they are all within range, the function allocates the data structure to hold the PE aiKl sets

the spedficErrorlnfo pointer in the CMIP operation structure to point to tins newly allocated struc-

ture. The function normally returns a SUC<3ESS indicatioa If any errors are detected prior to a

successful completion of this function, the function is terminated at that point with the appropriate

error indication.

Parameters

att_value The encoded specific error info value (in the form of a PE) as returned from the en-

code routine that the user calls.

msg_type CTMIS q)eration type.

Range of Values PROCESSING_FAILURE.

msgjptr Pointer to die CMIP message containing all information for this CMIS operaticHi.

Return Values

SUCCESS, NO SUCH MSG TYPE, FIELD DOES NOT EXIST, NUUL MSG PTR

134

Programmer's Referent Manoal Fin Flmctions

532. fiD actionErrorlnfo

mt fiU_actioiiEiiorInfo(eiTOT_status, id[_typel, IDl, id_type2,

ID2, att_value, msg type, msg_ptr)

int errorstatus;

int idtypel;

unioD id IDl;

int id_type2;

union id ID2;

PE att_value;

int msgtype;

char **msg_ptr;

Description

The fill_actionErrorInfo() routine checks the acceptability of the input parameters. If they are

within range, die function allocates die data structure to hold the action&rorinfo information and

sets the msg_ptr pointer in the CMIP operation stmcture to point to this newly allocated structure.

Then the action&rorlnfo structure is filled with the actionEiroilnfo information passed in by the

CMIS user. The function dien returns with a SUCCESS indication. If any errors are detected pri-

or to a successful completion of diis function, the function is terminated at that point with the ap-

propriate error indicatioa

Parameters

errorStatus The user should set this parameter to the appropriate error they want to send.

Range of Values ACCESSDENIED, NO SUCH ACnON, NO SUCH ARGUMENT,
INVALID_ARGUMENT_V/iUE

id typel Indicates whether attribute ID designatioa as passed in by the CMIS user, is in local or

global form. This parameter is used by the function to determine what type to use in

woridng with the IDl unioa

Range of Values LOCAL or GLOBAL

IDl Either an integer that specifies the attribute identifier in local form, or a Character string

containing the attribute identifier in global form, (see section 3.1.1 for explanation of treat-

ment of object identifiers by these interface functions)

Range of Values If local form, an integer value between 1 and 2(32)-l; if global form, the first

integer value represented in the string must be 0, 1, or 2. The second value

must be between 0 throu^ 39 if the first element is 0 or 1. Subsequent values

must be non-negative numbers and each value is separated by a dot(.).

Sample Values local form = 35, global_form = 'T.17J244J" (The quotes in the global_form sig-

nify that it is a character string)

id_type2 Same as parameter id typel.

1D2 Same as parameter idl except

att_valne Pointer to the PE containing the encoded information,

msg type CMIS qperation type.

Range of Values INVALID FILTER, COMPLEXITY LIMITATION, SET REQ, GET REQ,
ACnON REQ, DELETE REQ.

msg_ptr Pdnter to the CME* message containing all information for this CMIS operation.

Return Values

SUCCESS, GLOBE RANGE, NO SUCH MSG_TYPE, NULL_MSG_PTR, BAD FORM, NO MEM
INVALID ERROR STATUS.

135

Programmer's Refo'ence Manual FiO Functions

533. fin_deleteErrorInfo

int fill_deleteEiTorInfo(msg_type, msgj)tr, deleteEnorlnfo)

int msg_type;

char **msg_ptr,

int deleteEirorlnfo;

Description

This function fills the deleteEnorlnfo field of the CMIP PDU. The fill_deleteErrorInfo() routine

checks the acceptability of die input parameters. If diey are within range, the deleteEnorlnfo field

is filled with d^ deleteEnorlnfo information passed in by die CMIS user. The function then re-

turns with a SUCCESS indication. If any errors are detected prior to a successful ctHnpletion of

this function, the function is terminated at that point with the appropriate error indicatiotL

Parameters

msg_type CMIS (^ration type.

Range of Values DELETE_ERR, ACnON ERR.

msg_ptr Pointer to the CMIP message containing all information for this CMIS operatitML

deleteEirorlnfo The integer value for deleteEirorlnfo.

Range of Values Integer values between 1 and 2(32)-l

Return Values SUCCESS, NO SUCH MSG TYPE

136

Programma-'s Reference Manual Extract Functions

6. Extract Functions

This section provides a descr^tion of all the parameter extract functions contained in the CMIS
interface. These fimctions are contained in "cmis]ib.a". The descr^tions that follow contain descriptive

overviews, iiq)ut and output parameters, and parameter value and ranges, where ^ropriate. The
following two structures ate used extensively diroughout the fill aiKl extract routines, ami are defined

here for brevity.

union ID

{

int local_Form;

char global_Fotm;

};

union Instance

{

struct distinguishedName

{

char *type;

PE value;

int RDNflag;

} DistinguishedName;

struct qbuf *nonSpecificFotm;

137

Programmer's Refo’ence Manual Extract Functions

6.1. free_operation_struct

int free_operation_struct(msg_type, msg_ptr)

int msg_type;

char **msg_ptr;

Description

The free_operation_struct() routine frees the entire data structure used for sending/receiving CMIP
messages (in particular, requests, responses, and errors). Since different CMIP operations require

different information, and therefore different data structures, this functirm calls die rq^ropiiate

ISODE free routine based on the operation type indicated by the value of tire input parameter

"msgtype".

Parameters

msg_type CMIS q)eration type

Range of Values

NO SUCH OBJECT CLASS, NO SUCH OBJECT INSTANCE, ACCESS DENIED,
SYNC NOT SUPPORTED, INVAUD FILTER, NO SUCH ATTRIBUTE,
BSTVALID ATTRIBUTE VALUE, GET UST ERROR, SET UST ERROR,
NO SUCH ACnON, PROCESSING FAILURE,
DUPUCATE MANAGED OBJECT INSTANCE, NO SUCH REFERENCE OBJECT,
NO SUCH EVENT TYPE, NO SUCH ARGUMENT, INVALID ARGUMENT VALUE,
INVAUD SCOPE, INVAUD OBJECr iNSTANCE, MISSING ATTRIBUTE VALUE,
CLASS INSTANCE CONFUCT, COMPLEXTTY LIMITATION,
SET REQ, SET RSP, GET REQ, GET RSP, EVENT REQ,
EVENT RSP, ACnON REQ, ACTION RSP, CREATE REQ,
CREATE RSP, DELETE REQ, DELETE RSP.

msg_ptr This function frees the entire structure pointed to by msg_ptr.

Return Values

SUCCESS, N0_SU(3I_MSG_TYPE, NULL MSG PTR

138

Programmer's Reference Manual Extract Functions

6J1. extract_baseManagedObjectClass

int extract_baseManagedObjectaass(id_type, id, msg_type, msg_j)tr)

int •id_type;

union ID *id;

int msgtype;

char msg_ptr.

Description

The extract baseManagedObjectClassO routine retrieves the CMIS field for the basemanagedOb-

jectQass identifier from the particular CMIS message indicated by the insg_ptr parameter. Since

the managed object class identifier can be represented in either a local or global form, this fimction

retrieves the base managed object class identifier in the tq^ropriate form as sent by the peer CMIS
user, aiKl indicates in which form the identifier is provided. The fimction normally returns a SUC-
CESS indicaticm. If any errors are detected prior to a successful completion of this fimction, the

fimcticm is terminated at that point widi the appropriate error indicatioa

Parameters

id_type Irnlicates whether the Managed Object Class designation is in local or global form.

Range of Values LOCAL or GLOBAL

id Either an integer that specifies the Managed Object Qass identifier in local form, or a charac-

ter string containing the object class identifier in global form, based on the id type parameter.

Range of Values If local form, an integer value between 1 and 2(32)-l; if global form, the first

integer value represented in the string must be 0, 1, or 2. The second value

must be between 0 and 39, if the first element is 0 or 1. Subsequent values

must be non-negative integers.

Sanq>le Values local form 35, global form "1.17.244.5"

msg_type Type of CMIS service message fi'om which dm parameter information is to be extract-

ed

Range of Values

SET REQ, SET IND, GET REQ, GET IND, ACTION REQ, ACTION IND,

DELETE REQ, DELETE IND, CLASS INSTANCE CONFUCr

msgjptr Pointer returned from the extract_cmip_message function, which designates the received

CMIS message from which the information is to be extracted.

Return Values

SUCCESS, NULL MSG PTR, NO SUCH MSG TYPE,
BAD FORM, NULL_m6_PTR

139

Programmer's Refermice Manual Extract Functions

63. extract_managedObjectQass

int extractjnanagedObjectQass(id_type, id, msg_type, msg_ptr)

int id_type;

unirai ID ^id;

int msg type;

char *msg_ptr.

Description

The purpose of the extractjnamgedObjectClass() routine is to extract the CMIS field for the

basemanagedObjectQass identifier. The function then returns a SUCCESS indication. If any errors

are detected prior to a successful completion of this function, the function is terminated at drat

point with the appropriate error condition.

Parameters

id_type ItKlicates whether the Managed Object Class designation is in local or global form.

^ange of Values LOCAL or GLOBAL

id Eidrer an integer that specifies dre Managed Object Qass identifier in local form, or a charac-

ter string containing the object class identifier in global form, based on the id_type parameter.

Range of Values If local form, an integer value between 1 and 2(32)-l; if global form, the first

integer value represented in the string must be 0, 1, or 2. The secotKl value

must be between 0 and 39, if the first element is 0 or 1. Subsequent values

must be non-negative integers.

Sample Values local form 35, global form "1.17344.5"

msg_type Type of CMIS service message fiom which the parameter information is to be extract-

ed. I

Range of Values

CREATE REQ, CREATE IND, CREATE RSP, CREATE CNF, SET RSP,

SET CNF, GET RSP, GET CNF, ACTION CNF, ACTION RSP,
DELETE RSP, DELETE CNF, EVENT REQ, EVENT IND, EVENT RSP,

j

EVENT CNF, NO SUCH OBJECT CLASS, GET UST ERROR, SET UST ERROR, I

NO SUCH ACnON, PROCESSING FAILURE, NO SUCH EVENT TYPE, DELETE ERR, ACTIO

msg_ptr Pointer returned fixim the extract_cmip_message functicHi, which designates the received

CMIS message fiom which the informaticm is to be extractecL

R^um Values

SUCCESS, NULL_MSG_PTR, NO SUCH MSG TYPE

140

Programmer's ReferoMre Manual Extract Functions

6.4. extract_baseManagedObjectInstance

int extract_baseManagedObjectInstance (instance_type, instance, msg_type, msg_ptr)

int instance_type;

union Instance ^instance;

int msg_type;

char msg__ptr.

Description

The extractJmseManagedObjectInstanceO routine retrieves the base managed object instance name
from the CMIS message indicated by the msg_ptr argument Since die base managed object in-

stance can be represented in three different formats (distinguishedName, nonSpecificFoim or local-

DistinguishedName), diis function retrieves the base managed object instance in the appropriate

form as sent by die peer CMIS user, and indicates in whidi form the name is provided. The fiinc-

ti(xi then returns one of three values: MORE_RDN indicates more relative distinguished names ex-

ist; MORE AVA indicates more attribute value assertions exist; and NO_MORE_RDN signifies the

name is cmnplete. If any errors are detected prior to a successful completion of this function, the

functitm is terminated at diat point widi the appropriate error indicatiorL

Parameters

iQstaDce_type Specifies which name form is used (distinguishedName, nonSpecificForm, or local-

E>istinguishedName).

Range of Values DISTINGUISHEDNAME, NONSPECIFICFORM, or LOCALDISTINGUISHED-
NAME

instance This union contains the necessary information to represent the instance name as either

the distinguishedname, localdistinguishedname, or ncmspedficform, based on the above

type.

msg_type Type of CMIS service message from which die parameter information is to be extraa-

ed.

Range of Values

SET REQ, SET IND, GET REQ, GET IND, ACmON REQ, ACTION IND,
DELETE REQ, DELETE IND, CLASS'lNSTANCE CONFUCT

msg_ptr Pointer returned frtHn the extract_cmip_message function, which designates the received

CMIS message frmn which the information is to be extracted.

R^um Values

NULL MSG PTR, NO_SUCH_MSG_TYPE, BAD FORM,
NO DISTINGUISHED NAME, MORE AVA, MORE RDN, NO MORE RDN

141

Programmer's Reftf^nce Manual Extract Functions

6.5. extract_managedObjectInstance

int extract_managedObjectIastance (instance_type, instance, msg_type, msg_ptr)

int instance_type;

union Instance ^instance;

int msg_type;

char *msg_ptr.

Description

The extractjmmgedObjectInstancei) routine retrieves ttie managed object instance name fircHn die

CMIS message iri^cated by the msg_ptr argument. Since the managed object mstance can be

represented in three di^rent formats (distinguishedName, ncmSpecificFoim or localDistinguished-

Name), this furK:tion retrieves die managed object instance in the appropriate form as sent by the

peer CMIS user, and indicates in which form die name is provided. The function then returns one

of three values: MORE_RDN indicates more relative distinguished names exist; MORE_AVA indi-

cates more attribute value assertitms exist; and NO_MOR£_RDN signifies the name is complete.

If any errors are detected prior to a successful completion of this function, the fimction is terminat-

ed at that point with the appropriate error indicatioiL

Parameters

instance_type Specifies which name form is used (distinguishedName, nonSpecificForm, or local-

I>istinguishedName).

Range of Values

DISTINGUISHEDNAME, NONSPECIHCFORM, or LOCALDISTINGUISHEDNAME

instance This unicm contains the necessary information to represent the instance name as either

the distinguishedname, localdistinguishedname, or nonspedficform, based on the above

type.

msg type Type of CMIS service message from whidi the parameter information is to be extract-

ed

Range of Values

CREATE REQ, CREATE IND, CREATE RSP, CREATE CNF, SET RSP,

SET CNF, GET RSP, GET CNF, ACTION CNF, ACnON RSP,

DELETE RSP, DELETE CNF, EVENT REQ, EVENT IND, EVENT RSP,
EVENT CNF, GET UST ERROR, SET UST ERROR,
NO SUCH OBJECT INSTANCE, NO SUCH REFERENCE OBJECT,
DSrVALID OBJECr iNSTANCE, PROCESSING FAILURE,
DUPUCATE MANAGED OBJECT INSTANCE, DELETE ERR, ACnON ERR.

msg_ptr Pointer returned from the extract_cmip_message functicm, which designates the received

CMIS message from which the information is to be extracted.

Return Values

NULL MSG PTR, NO SUCH MSG TYPE, BAD FORM,
NO DISTINGUISHED NAME, MORE AVA, MORE RDN, NO MORE RDN

142

Prograiiiina*'s Refa*aice Manual Extract Functions

<1.6. extract_referenceObjectInstance

int extract_referenceObjectInstance (instance_type, instance, msg_type, msgjjtr)

int instance_type;

uni(Mi Instance ^instance;

int msgtype;

char *msg_ptr.

Description

The extractj-eferenceObjectInstanceO routine retrieves the reference object instance name from the

CMIS message indicated by the msg_ptr argument Since die reference object instance can be

represented in diree di^rent formats (distinguisbedName, ncxiSpedficFonn or localDistinguished-

Name), this function retrieves the reference object instance in the appropnatjs form as sent by the

peer CMIS user, and indicates in which form the name is provided. The function then returns one

of three values: MORE RDN indicates more relative distinguished names exist; MORE_AVA indi-

cates more attribute value assertions exist; and NO_MOR£_RDN signifies the name is complete.

If any errors are deteaed prior to a successful completion of this function, die function is terminat-

ed at that point with the q>propriate error indicatiorL

Parameters

instaiice_type Specifies which name form is used (distinguishedName, nonSpecificForm, or local-

EtistinguishedName).

Range of Values

DISTINGUISHEDNAME, NONSPECMCFORM, or LOCALDISTINGUISHEDNAME

instance This union contains the necessary information to represent the instance name as either

the distinguishedname, localdistinguishedname, or nonspecificform, based on the above

type.

msg_type Type of CMIS service message from which the parameter information is to be extract-

ed

Range of Values

CREATE REQ, CREATE IND.

msgjptr Pointer returned fix)m the extract cmip message functicHi, which designates the received

CMIS message from which the information is to be extracted

Return Values

NULL MSG PTR, NO SUCH MSG TYPE, BAD FORM,
NO DISTINGUISHED NAME, MORE AVA, MORE RDN, NO MORE RDN

143

Programmer's Refo'aice Manual Extract Functions

6.7. extract_createObjectInstance

int extract_createObjectInstance (objectjtype, instance_type, instance, msg type, msgjptr)

int *object_type;

int *instance_type;

union Instance "instance;

int msg_type;

char *msg_pti;

Description

The purpose of ttie extract_createObjectInstance() routine is to retrieve tbe CMBP PDU field for

the managed object instance name in the Create Argument structure. The object_type parameter

indicates whether die name is a superior object instance (choice_CMIP_l_superiorObjectInstance),

or a managed object instance (NULL). Since tbe superior object instance or managed object in-

stance can be represented in three different formats (distinguishedName, nonSpecificForm or local-

DistinguishedName), this function retrieves die object instance in the ^rpropriate form as sent by

the peer C!MIS user, and indicates in whidi form tbe name is provided. The function then returns

one of three values: MORE RDN indicates more relative distinguished names exist; MORE AVA
indicates more attribute value assertions exist; and NO MORE RDN signifies the name is com-

plete. If any errors are detected prior to a successful completion of this function, the function is

terminated at that point with the tqipropriate error indicaticm.

Parameters

object_type This parameter indicates if tbe name represents a superior object instance, or a

managed object instance.

Range of Values choice_CMIP_l_superiorObjectInstance, NULL

uistance_type Specifies which name form is used (distinguishedName, nonSpecificForm, or local-

DistinguisbedName).

Range of Values DISTINGUISHEDNAME, NONSPEOHCFORM, or LOCALDISTINGUISHED-
NAME

instance This unitm contains tbe necessary information to represent tbe instance name as either

tbe distinguisbedname, localdistinguishedname, or nonspedficform, based on the above

type.

msg_type Type of CMIS service message from which the parameter information is to be extract-

ed.

Range of Values CREATE_REQ, CREATE_IND.

msg_ptr Pointer returned fiom the extract_cmip_message functicm, which designates the received

CMIS message from which the information is to be extracted

Return Values

NO SUCH MSG TYPE, FIELD DOES NOT EXIST, NULL MSG PTR,
NO DISTINGUISHED NAME, MORE AVA, MORE RDN, NO MORE RDN

144

Programmer's Refo-ence Manual Extract Functions

6.8. extract_carrentTime

int extract currcntTime (time, msg_type, msg_ptr)

char *tiine;

int msgtype;

char •msg_ptr.

Description

This functitm extracts the currentTime field of the CMIP PDU. The currentTime field is returned

in the first parameter of this function. The fimction then returns with a SUtZCESS indication. If

any errors are detected prior to a successful completion of tibis fimction, die fimcticm is terminated

at diat point with the ^piopriate error indicatioa

Parameters

time A string that represents the time at which an qieration occurred.

Sample Values Hie string 19890613123012.333-0500 r^resents a local time of 12:30:12 (and

333 msecs) on 13th June 1989, in a time zone which is 5 hours behind GMT.

msg_type Type of CMIS service message from which the parameter information is to be extract-

ed

Range of Values

GET UST ERROR, SET UST ERROR, SET RSP, SET CNF, GET RSP,

GET CNF, EVENT REQ, EVENT IND, EVENT RSP, EVENT CNF, ACTION RSP,

ACTION CNF, CREATE RSP, CREATE CNF, DELETE RSP, DELETE CNF,
DELETE ERR, ACHON ERR.

msg_ptr Pointer returned from the extract_cmip_message fimctimi, which designates the received

CMIS message from which the information is to be extracted.

Return Values

SUCCESS, NUUL MSG PTR, FIELD_DOES_NOT_EXIST, NO SUCH MSG TYPE

145

Progranuner's Refo'Oice Manual Extract Functions

6.9. extract_niodificationlist

int extract_modificationlist(modify_operation, id_type, id, att_value, msg_type, msg_ptr)

int *modify_operation;

int id_type;

union ID *id;

PE att_value;

int msg_type;

char *msg_ptr,

Description

The extract_modificatiordist() function extracts individual attribute information from the

modification list from a CMIP M-SET PDU. The extract_modificationlist() function should be

called one time for each attribute that is to be extracted from die modification list The value of

the attribute is assigned to the attribute parameter pointed to by att value. This value is still in the

form of an encoded presentation element (PE). It is the responsibility of the CMIS user to call the

appropriate decode function fm* this attribute value. The function then returns widi die number of

attributes remaining in the Ust to be extracted. If NULL(O) is returned, no attributes remain to be

extracted. Attributes are extracted from the tail end of the list, reducing the list size by one after

each extractiorL

Parameters

modify_operation Indicates die type of modify operation the sender wishes the receiver to per-

form with the object attribute.

Range of Values int CMEP_ModifyOperator_replace, int_CMIP_ModifyOperator_removeValues,

int CMIP_ModifyC^)erator_addValues, int_CMIP_ModifyOperator_setToDefault

id_type Indicates whether the attribute designation is in local or global form.

Range of Values type_CMIP_ObjectC3ass_globalForm, type CMIP_ObjectQass_localForm

id Either an integer that specifies the attribute identifier in local form, or a character string con-

taining the attribute identifier in global form, based on the id_type parameter.

Range of Values If local form, an integer value between 1 and 2(32)-l; if global form, die first

integer value represented in the string must be 0, 1, or 2. The second value

must be between 0 and 39, if die first element is 0 or 1. Subsequent values

must be non-negative integers.

Sample Values local form 35, global form "1.17244.5"

att_value Pointer to the PE ctxitaining the encoded attribute value.

msg_type Type of CMIS service message from which the parameter information is to be extract-

ed.

Range of Values SET_REQ, SET_IND

insg_ptr Pointer returned from the extract_ctnip_message functicxi, which designates the received

CMIS message from which the information is to be extracted.

Return Values

SUCCESS, NULL MSG PTR, FIELD DOES NOT EXIST, INVALID_MSG_TYPE,
NULL MOD UST PTR, NULL MO PTR, BAD FORM, UNABLE TO COPY PE

146

Programmar's Refa*aice Mannal Extract Functions

6.10. extract_attribDteList

int extract_attributeList(id_type, id, att_value, msg_type, msg_ptr)

int *id_type;

union ID *id;

PE *att_value;

int msg_type;

char *msg_ptr;

Description

The extract_attributeUst() function extracts individual attribute infonnaticxi from the attribute list

from a CMIP PDU. The extract_attributeList() function should be called one time for each attri-

bute that is to be extracted frran the attribute list. The value of the attribute is assigned to the at-

tribute parameter pointed to by att_value. This value is still in die form of an encoded presenta-

tion element (PE). It is the resp<»isibility of the CMIS user to call the appropriate decode function

for this attribute value. The frinction then returns with the number of attributes remaining in the

list to be extracted. If NULL(0) is returned, no attributes remain to be extracted. Attributes are ex-

tracted frcHn the tail end of the list, reducing the list size by one after each extracticxL

Parameters

id_type Indicates whether the attribute designation is in local or global form.

Range of Values LOCAL or GLOBAL

id Eidier an integer that specifies the attribute identifier in local form, or a diaracter string con-

taining the attribute identifier in global form, based on the id type parameter.

Range of Values If local form, an integer value between 1 and 2(32)-l; if global form, the first

integer value represented in the string must be 0, 1, or 2. The second value

must be between 0 and 39, if the first element is 0 or 1. Subsequent values

must be non-negative integers.

Sample Values local form 35, global form "1.17.244.5”

att_value Pointer to the PE ccmtaining the encoded attribute value.

msg_tyi>e Type of CMIS service message firom which the parameter information is to be extract-

ed.

Range of Values

SET REQ, SET IND, SET RSP, SET CNF, GET RSP, GET CNF,
CREATE REQ, CREATE IND, CREATE RSP, CREATE CNF,

msg_ptr Pointer returned from the extract_cmip_message function, which designates the received

CMIS message frnm whidi the information is to be extracted.

Return Values

SUCCESS, NULL MSG_PTR, FIELD DOES NOT EXIST, NO_SUCH_MSG_TYPE,
NULL_ATT_LIST~PTR, NULL MO PTR, BAD FORM

147

Programing* 's Reference Manual Extract Functions

6.11. extract_accessControl

int extract_accessCoDtTol(access, msg_type, msg_ptr)

int *access;

int msg_type;

char *msg_ptr.

Description

This function retrieves the information contained in die access control field of the CMIP PDU.
The extract_accessControl() routine fills in the access parameter with the access control informa-

tion retrieved from the message. The function dien returns with a SUCCESS indicarioiL If any er-

rors are detected prior to a successful completion of diis function, the function is terminated at that

point with the appropriate error indication.

NOTE: For this version of the implementation, since no agreements have been reached concerning

the nature of access control information, a default version of the information (a single integer

value) will be retrieved by this functioiL In later versions, this function will be upgraded to allow

for passing of actual access control informaricm.

Parameters

access The integer value for access ccmtroL

Range of Values Integer values between 1 and 2(32)-

1

Sample Values 22

msg type Type of CMIS service message from whidi the parameter information is to be extract-

ed

Range of Values

SET REQ, SET IND, GET REQ, GET IND, ACHON REQ, ACTION IND,

CREATE REQ, (3lEATE_mD, DELETE REQ, DELETE IND.

msgjptr Pointer returned from the extract cmip message funcricxi, which designates the received

CMIS message from which the information is to be extracted.

Return Values

SUCCESS, NULL MSG PTR, FIELD DOES NOT EXIST,
NO SUCH MSG TYPE, NULL ACCESS PTR

148

Programmer's Reference Manual Extract Functions

6.12. extract_synchronization

int extract synchronizationC sync, msg_type, msg_ptr)

int sync;

int msg_type;

char *msg_ptr,

Description

This function retrieves the information contained in the synchronization field of the CMIP PDU.
The extract_synchromzation() function fills the sync parameter with the synchronizati(» infotma-

tioo contained in the message. The function then returns widi a SUCCESS indication. If any errors

are detected prior to a successful completion of this function, the fimctitHi is terminated at that

point with the ^ropiiate error indicatitm.

NOTE: If the functitm detects a NULL in this field, it will return the synchronization default

value of best effort

Parameters

sync Either besteffort or atomic.

Range of Values BESTEFFORT or ATOMIC

msg_tyi>e Type of CMIS service message fiom which the parameter information is to be extract-

ed.

Range of Values

SYNC_NOT_SUPPORTED, COMPLEXITY LIMITATION, SET REQ, SET IND,

GET REQ, GET IND, ACTION REQ, ACHON IND, DELETE REQ, DELETE IND.

msgjptr Pointer returned fix>m the extract_cmip_message functitHi, which designates the received

CMIS message fiom which the information is to be extracted.

Return Values

SUCCESS, NULL MSG PTR, FIELD DOES NOT EXIST,

NO_SUCH_MSG_TYPE, NOT SUPPORTED SYNC

149

Prograinma‘'s Referoice Manual Extract Functions

6.13. extract_scbpe

int extiact_scope(scope_type, scope_value, msg type, msg_ptr)

int *sc<^_type;

int scope_vjdue;

int msg_type;

char msgjjtr.

Description

This function retrieves the information contained in the scope field of the CMIP PDU. The

extract_scope() routine retrieves the scope level information contairred in the CMIP message, and

places it in the scope type and scope value parameters. The function titen returns with a SUC-
CESS irKlicatitXL If any errors are detected prior to a successful completitxi of this function, the

function is terminated at that point with the appropriate error indicatioa

NOTE: If the function detects a NULL in this field, it will return tire scope default value, base ob-

ject.

Parameters

scope_type Represents the type of scoping specified: baseObject, firstLevelOnly, wholeSubtree,

individualLevels, or baseToNthLevel.

Range of Values BASEOBJECT, FIRSTLEVELONLY, WHOLESUBTREE, INDIVIDUALLEV-
ELS, or BASETONTHLEVEL.

scope_yahie If scoping is done witii baseobject, firstievelonly or wholeSubtree, tins value should

be set to NULL. Otherwise, if either imlividualLevel or baseToNthlevel is to be

scoped, this value should be a positive integer in the specific range.

Range of Values NULL, or integer value from 1 to 2(32) - 1.

insg_type Type of CMIS service message from wbidi tire parameter information is to be extract-

ed. data structure so that it can retrieve tire desired information correctly.

Range of Values

mVAUD SCOPE, COMPLEXTTY LIMITATION, SET REQ, SET IND,

GET REQ, GET IND, ACTION REQ, ACnON IND, DELETE REQ, DELETE IND.

msg_ptr Pointer retunred from the extract_cmip_message functitm, whidi designates the received

CMIS message from which the information is to be extracted.

Return Values

SUCCESS, NULL MSG PTR, FIELD DOES NOT EXIST, NO SUCH MSG TYPE

150

Programmer's Referoice Manual Extract Functions

6.14. extract_filter

int extract_filteT(operator_type, item_typel, item_type2, id_typel, id_type2,

not_flagl, not_£lag2, kil, id2, substring typel,

substring_type2, att_vall, att_val2, msg_type, msg_ptr)

irrt operatortype;

int itemtypel;

int item_type2;

int idtypel;

irtt id_type2;

int not_flagl;

int not_flag2;

union id idl;

onion id *id2;

int substringtype 1

;

int substring_type2;

PE *att_vall;

PE att_val2;

int msgtype;

char *msg_ptr.

Description

The extractJilter() routine extracts the filter field of tbe CMIS message. Upon returning from this

functitxi, aU of the parameters passed to the fimctitMi have been filled in widi the filter

information(except for msg type and msg_ptr which are ii^uts to the extractJdter() routine).

S(»ne of the parameters may have been set to NULL depending on the value of the operator type

parameter. If the value of the parameter "operator_type" is NULL after you make the

extractJilter() call then all parameters ending with the munber ”2", such as item_type2, will be

NULL. The information contained in eadi parameter is described in the parameters section below.

The function then returns a SUCCESS indicarioa If any errors are detected prior to a successful

completitx) of this fimcticHi, the function is terminated at that point with the apprt^riate error indi-

caritxi.

Parameters

opei^tor_type This parameter will be one of the following 5 different filter corrstructions: Not

(item typel And item_type2) (NAND), Not (item typel Or item_type2) (NOR),

item typel And item_type2 (AND), item_typel Or item_type2 (OR), item_typel

(NULL).

Range of Values NAND, NOR, AND, OR, NULL

item_typel This parameter shows what to check for, in the filter, for the first Item.

Range of Values

EQUALITY, GREATEROREQUAL, LESSOREQUAL, PRESENT, SUBSTRINGS,
SUBSETOF, SUPERSETOF, NONNULLSETINTERSECnON

item_type2 This parameter shows what to check for, in the filter, for the second Item.

Range of Values

EQUALITY, GREATEROREQUAL, LESSOREQUAL, PRESENT, SUBSTRINGS,
SUBSETOF, SUPERSETOF, NONNULLSETINTERSECnON

not_flagl If ttiis parameter is TRUE dien this indicates NOT item_typel.

Range of Values TRUE or FALSE

not_flag2 If this parameter is TRUE then fins indicates NOT item_type2.

151

Programmer's Refa'^iice Manual Extract Functions

Range of Values TRUE or FALSE.

id_t7pel Indicates whether the attribute ID designation, as contained in the message, is in local

or global form.

Range (rf Values LOCAL or GLOBAL

idl Eidier an integer that specifies the attribute identifier in local form, or a charaaer string con-

taining the attribute identifier in global form, based on the id_type parameter.

Range cf Values If local form, an integer value between 1 and 2(32)-l; if global form, die first

integer value represented in the string must be 0, 1, or 2. The second value

must be between 0 and 39, if the first element is 0 cnr 1. Subsequent values

must be non-negative integers.

Sample Values local form 35, global form ’T.17J244.5"

id_type2 Same as parameter id typel except that this is the OID type for item_type2.

id2 Same as parameter idl except that this is the OID for item_type2.

att_vall This parameter contains the encoded portion of the attribute in the form of a presenta-

tion element (PE) for item_typel. It is the responsibility of the CMIS user to call the

appropriate decode function for this attribute value.

att_val2 Same as att vall.

substring_typel If item_typel is set to SUBSTRINGS, tiren tiiis parameter indicates what part of

the string to ^ply the filter to for item typel. This parameter will be NULL if

item_typel does tK>t equal SUBSTRINGS.

Range of Values DSHTIALSTRING, ANYSTRING, FINALSTRING

substring_type2 If item_type2 is set to SUBSTRINGS, then this parameter uKhcates what part of

the string to apply die filter to for item_type2. This parameter will be NULL if

item_type2 does not equal SUBSTRINGS or if operator_type equals NULL.

Range of Values INTTIALSTRING, ANYSTRING, FINALSTRING

msg_type Type of CMIS service message from which the parameter information is to be extract-

ed.

Range of Values

DSrVALID FILTER, COMPLEXITY LIMITATION, SET REQ, SET IND,
GET REQ, GET IND, ACnON REQ, ACnON IND, DEUETE REQ, DELETE IND.

msgjptr Pmnter returned from the extract_cmip_message functitxr, which designates the received

CMIS message from which the information is to be extracted.

R^um Values

SUCCESS, BAD FORM, NULL MO PTR, INVALID FILTER, OPERATOR TYPE RANGE

152

Pr(^aiiima''s Reference Manual Extract Functions

6.15. extract_attribnte

int extract_attribute(id_type, id, att_value, msg_type, msgjJtr)

int *id_type;

unioD ID *id;

PE *att_value;

int msgtype;

char *msg_ptr.

Description

The extract_attribute() routine extracts the attribute field of the CMIS message. Upon returning

from this function, the id parameter contains the attribute identifier either in localForm or global-

Form, depending on which one was contained in the message. Also returned is die att_value, con-

taming tte encoded portion of the attribute in the form of a presentation element (PE). It is die

responsibility of die CMIS user to call the appropriate decode fimction for this attribute value.

The function then returr^ a SUCCESS indication. If any errors are detected prior to a successful

completicxi of this fimctitxi, the function is terminated at that point widi the qipropriate error indi-

cation.

Parameters

id_type Indicates whedier the attribute ID designation, as contained in the message, is in local or

global form.

Range of Values LOCAL or GLOBAL

id Either an integer that specifies the attribute identifier in local form, or a character string con-

taining the attribute identifier in global form, based on die id_type parameter.

Range of Values If local form, an integer value between 1 and 2(32)-l; if global form, die first

integer value represented in die string must be 0, 1, or 2. The second value

must be between 0 and 39, if the first element is 0 or 1. Subsequent values

must be non-negative integers.

Sample Values local form 35, global form "1.17.244.5"

att_value Pointer to the PE containing the encoded attribute value.

msg type Type of CMIS service message from which the parameter information is to be extract-

ed

Range of Values INVALID_ATTRIBUTE_VALUE.

msg_ptr Pointer returned from die extract_cmip_message functitm, which designates the received

CMIS message from which the information is to be extracted

Return Values

succ:ess, null_msg_ptr, field does not exist, no such msg type,
NULL MO PTR, BAD FORM

153

Programme* 's Reference Manual Extract Functions

6.16. extract_attributeld

int extract_attributeld(id_type, id, msg_type, msgj>tr)

int id_type;

union ID *id;

int msg_type;

char *msg_ptr.

Description

The pmpose of the extract_attributeld() routine is to extract the attribute identifier field from tiie

CMIS message. The function then returns a SUCCESS indicatioa If any errors are detected prior

to a successful completion of this functioa the function is terminated at fiiat point with the

propriate error iiKlicatioa

Parameters

id_type Indicates whether the attribute ID designation is in local or global form.

Range of Values LOCAL or GLOBAL

id Either an integer that specifies the attribute identifier in local form, or a character string con-

.

raining the attribute identifier in global form, based on die id_type parameter.

Range of Values If local form, an integer value between 1 and 2(32>1; if global form, the first

integer value represented in the string must be 0, 1, or 2. The second value

must be between 0 and 39. if die first element is 0 or 1. Subsequent values

must be non-negative integers.

Sample Values local form 35, global form "1.17.244.5"

msg type Type of CMIS service message fiom which the parameter information is to be extraa-

ei

Range of Values NO_SUCH_ATTRIBUTE, MISSING_ATTRIBUTE_VALUE. Pointer returned

from the extract_cmip_message function, which designates the received CMIS
message firmn which the information is to be extracted.

SUCCESS, NULL MSG PTR, FEELD DOES NOT EXIST, NO SUCH MSG TYPE,
NULL ATT UST PTR, NULL MO PTR, BAD FORM

R^um Values

Programmer's Refo'ence Manual Extract Functions

6.17. extract_attril>uteldlist

int extract_attributeldlist(i(i_type, id, insg_type, insg_ptr)

int id_type;

union ID *id;

int msg_type;

char *msg_ptr.

Description

The extract_attributeldlist() function extracts individual attribute IDs fimn the attribute ID list con-

tained in a CMIP PDU. The extract_attributeldlist() function should be called one time for each

attribute ID that is to be extracted frtMn the attribute ID list The function then returns with the

number of attribute IDs remaining in the list to be extraaed. If NULL(0) is returned, no attribute

IDs remain to be extracted. Attribute IDs are extracted from the tail end of the list reducing the

list size by one after each extractioiL

Parameters

id_type IiKlicates whether the attribute ID designation is in local or global form.

Range of Values LOCAL or GLOBAL

id Either an integer that specifies the attribute identifier in local form, or a character string con-

taining the attribute identifier in global form, based on the id_type parameter.

Range of Values If local form, an integer value between 1 and 2(32)-l; if global form, the first

integer value represented in the string must be 0, 1, or 2. The second value

must be between 0 and 39, if the first element is 0 or 1. Subsequent values

must be non-negative integers.

Sample Values local form 35, global form "1.17.244.5"

msg_type Type of CMIS service message from which the parameter information is to be extract-

ed.

Range of Values GET_REQ, GET_IND.

msg_ptr Pointer returned from the extract_cmip_message functitxi, which designates the received

CMIS message from whidi the information is to be extracted.

R^ura Values

SUCCESS, NULL_MSG_PTR, FIELD DOES NOT EXIST, NO SUCH MSG TYPE,
NULL ATT UST PTR, NULL MO PTR, BAD FORM

155

Programmer's Reference Manual Extract Functions

6.18. extract_setInfoStatus

int extract_setInfoStatus(eiTor_type,error_status, modify_operation, id_type, id, att_value, insg_type, msg_ptr)

int *eiror_type;

int *eiTor_status;

int modify operation;

int *id_type;

uni(Mi ID id;

PE *att_value;

int msg type;

char *msg_ptr,

Description

The extract setInfoStatusO routine retrieves set info status information from the CMIS message.

This function should be called one time for each attribute that is to be extracted from the attribute

list The value of the attribute is assigned to the attribute parameter pointed to by att value. This

value is still in the form of an encoded presentatira element (PE). It is the responsibility of the

CMIS user to call the aj^ropriate decode functitxi for this attribute value. The function then re-

turns with the number of attributes remaining in die list to be extracted. If NULL(0) is returned, no

attributes remain to be extracted. Attributes are extracted from the tail end of the list, reducing the

list size by one after each extraction.

Parameters

error_type Indicates whether an error occurred on this particular attribute.

Range of Values ERROR or NOERROR

error_status Error that occurred. If no error, it wiD be set to NULL.

Range of Values

STATUS ACCESSDENIED, STATUS NOSUCHATTRIBUTE,
STATUS_INVALIDATTRIBUTEVALUE, NULL

modify_operation Specifies one of four ways the to qierate on die specified attributes.

Range of Values int_CMIP_ModifyOperation_replace int_CMIP_ModifyOperation_removeValues

int_CMIP_ModifyC^>eration_addValues

int_CMIP_ModifyOperation_setToDefiault

id_t7pe Indicates whether the attribute designation is in local or global form.

Range of Values LOCAL or GLOBAL

id Either an integer that specifies the attribute identifier in local form, or a character string con-

taining the attribute identifier in ^obal form, based cm the id type parameter.

Range of Values If local form, an integer value between 1 and 2(32)-l; if global form, the first

integer value represented in the string must be 0, 1, or 2. The second value

must be between 0 and 39, if the first element is 0 or 1. Subsequent values

must be non-negative integers.

Sample Values local form 35, global form "1.17.244.5"

att_value Pointer to the PE that will contain either the original attribute information if the opera-

tion failed for this attribute, or the new attribute information if the operation succeeded

for this attribute.

msg_type Type of CMIS service message from which the parameter information is to be extract-

ed

Range of Values SET_LIST_ERROR.

156

Programma''s Refo'ence Manual Extract Functions

msg_ptr Pomter letumed from the extract_cmip_message fimction, which designates the received

CMTS message from which the infonnatioo is to be extracted.

Return Values

NULL MSG PTR, FIELD DOES_NOT_EXIST, NO_SUCH_MSG_TYPE,
INVAUD ERROR STATUS, NULL_ATr_UST_PTR, NULL MO PTR, BAD FORM

157

Programmer's Reference Manual Extract Functions

6.19. extract_getInfoStatus

int extract_getInfoStatus(error_type, error_status, id_type, id, att_value, msg type, msgjptr)

iut *eiTor_type;

int *error_status;

int *id_type;

union DD ’"id;

PE ’''att_value;

int msg_type;

char ’*‘msg_ptr.

Description

The extract getInfoStatusO routine retrieves get info status information frcan the CMIS message.

This function should be called one time for eadi attribute diat is to be extracted from the attribute

list. The value of the attribute is assigned to the attribute parameter pointed to by att value. This

value is still in the form of an encoded presentaticm element (PE). It is the responsibility of the

CMIS user to call the aiq)ropriate decode functicxi for this attribute value. The function then re-

turns with the number of attributes remaining in die list to be extracted. If NULL(0) is returned, no

attributes remain to be extracted. Attributes are extracted from the tail end of the list, reducing die

list size by one after each extraction.

Parameters

erTor_type Indicates whether an error occurred on this particular attribute.

Range of Values ERROR or NOERROR

error_status Error that occurred. If no error, tins will be set to NULL.

Range of Values STATUS ACCESSDENIED, STATUS_NOSUCHATTRIBUTE, NULL

id_type Indicates whether the attribute designation is in local or global form.

Range of Values LOCAL or GLOBAL

id Either an integer that specifies the attribute identifier in local form, or a diaracter string con-

taining the attribute identifier in global form, based on the id type parameter.

Range of Values If local form, an integer value between 1 and 2(32)-l; if global form, the first

integer value represented in die string must be 0, 1, or 2. The second value

must be between 0 and 39, if the first element is 0 or 1. Subsequent values

must be non-negative integers.

Sample Values local form 35, global form "1.17244.5"

att_value Pointer to the PE that will contain either the original attribute information if die opera-

tion failed for this attribute, or the new attribute information if the operation succeeded

for this attribute.

msg_tyi>e Type of CMIS service message from whidi the parameter information is to be extract-

ed

Range of Values GET_LIST_ERROR.

msg_ptr Pointer returned from the extract_cniip_message functimi, which designates the received

CMIS message from whidi die information is to be extracted

Return Values

NULL MSG PTR, FIELD DOES NOT EXIST, NO SUCH MSG TYPE,
NULL ATT UST PTR, NULL_MO_PTR, BAD FORM, INVAUD ERROR STATUS

158

Programmer's Reference Manual Extract Functions

6^0. extract_actionInfo

int extract_actionInfo (id_type, id, att_value, insg_type, msg_ptr)

int *id_type;

union ID *id;

PE att_value;

int msg_type;

char *msg_ptr.

Description

The extract actiordnfoi

)

routine extracts die action info field of the CMIS message. The action in-

formation is returned in the form of a presentation element (PE). It is the responsibility of the

CMIS user to call the ^>propriate decode functions to decode this action information. The func-

tion then returns a SUCC^S indicatioa If any errors are detected prior to a successful comple-

tion of this function, the function is terminated at that point with the apprt^riate error indication.

Param^ers

idjtype Indicates whether the action designation is in local or global form.

Range of Values LOCAL or GLOBAL

id Either an integer that specifies the action identifier in local form, or a character string contain-

ing the action identifier in global form, based on the id type parameter.

Range of Values If local form, an integer value between 1 and 2(32)-l; if global form, the first

integer value represented in the string must be 0, 1, or 2. The second value

must be between 0 and 39, if the first element is 0 or 1. Subsequent values

must be non-negative integers.

Sample Values local form 35, global form "1.17.244.5"

att_value Pointer to the PE containing the encoded action informaticxr.

msg_type Type of CMIS service message from which die parameter information is to be extract-

ed

Range of Values ACnON_REQ, ACnON_IND.

msgjptr Pointer returned firom die extract_cmip_message fimcticm, which designates the received

CMIS message from which the information is to be extracted.

Return Values

SUCCESS, NULL MSG PTR, FIELD DOES NOT EXIST,

NO_SUCH_MSG_TYPE, NULL MO PTR, BAD FORM

159

Prograiiiina*'s Referoice Manual Extract Functions

6J21. extract_actionReply

int extract_actionReply (id type, ID, att_value, msg_type, insg_ptr)

int idtype;
union ID *1(1;

PE attvalue;

int msgtype;

char msg_ptr,

Description

The extract actionReplyO routine extracts the action reply field of the CMIS message. The action

reply is returned in the form of a presentation element (PE). It is the responsibility of the CMIS
user to call the s^propriate decode functions to decode this action reply. Ifie function then returns

a SUCCESS indication. If any errors are detected prior to a successful completion of this fimcdon,

the function is terminated at that point widi the vpgtoprme error indicatioiL

Parameters

id_type Indicates whether the action designatitm is in local or global form.

Range of Values LOCAL or GLOBAL

id Eidier an integer that specifies the action identifier in local form, or a character string contain-

ing the actitxi identifier in global form, based on die idjtype parameter.

Range of Values If local form, an integer value between 1 and 2(32)-l; if global form, the first

integer value represented in the string must be 0, 1, or 2. The second value

must be between 0 and 39, if the first element is 0 or 1. Subsequent values

must be non-negative integers.

Sample Values local form 35, global form "1.17.244.5"

att_value Pointer to the PE containing the enoided action reply informatitHi.

msg_type Type of CMIS service message from which the parameter information is to be extract-

ed

Range of Values ACTION_RSP, ACnON_IND.

m%_ptr Pointer returned from the extract_cmip_message fiinctimi, which designates the received

CMIS message from which the information is to be extracted

Return Values

SUCCESS, NULL_MSG_PTR, FIELD DOES NOT EXIST,

NO SUCH MSG TYPE, NULL MO PTR, BAD FORM

Programmer's Referem^ Manual Extract Functions

6J22. extract_actionType

int extract actionType (id_type, id, msg type, msgjptr)

int idtype;

union ID *id;

int msg_type;

char msg_ptr.

Description

The extract_actionType() routine extracts die action type field of the CMIS message. The function

then returns a SUCC^S indicatiocL If any errors are detected prior to a success^ completion of

this function, the function is terminated at that point with the appropriate error indicatioa

Param^ers

id_type Indicates whether action type designaticn is in local or global form.

Range of Values LOCAL or GLOBAL

id Either an integer drat specifies die action identifier in local form, or a character string contain-

ing the action identifier in global form, based on die id type parameter.

Range of Values If local form, an integer value between 1 and 2(32)-l; if global form, the first

integer value represented in the string must be 0, 1, or 2. The second value

must be between 0 and 39, if the first element is 0 or 1. Subsequent values

must be non-negative integers.

Sample Values local form 35, global form "1.17244.5"

msg_type Type of CMIS service message fiom which die parameter information is to be extract-

ed.

Range of Values NO SUCH ACTION

msg_ptr Pointer returned from the extract_cmip_message function, which designates the received

CMIS message from which the information is to be extracted.

Return Values

SUCCESS, NULL MSG_PTR, FIELD DOES NOT EXIST,

NO_SUCH_MSG_TTPE, NULL MO PTR, BAD FORM

161

Programmer's Refa*aice Manual Extract Functions

6^. extract_eventReply

int extract_eventReply(id_type, id, att value, insg_type, insg_ptr)

int *id_type;

unicMi ID *1(1;

PE att_value;

int *msg_type;

char ''‘msg_ptr,

Description

The extract_eventReply() routine extracts the event reply field of the CMIS message. The event

reply is returned in the form of a presentation element (PE). It is the responsibility of the CMIS
user to call the apprqrriate decode functions to decode diis event reply, llie function then returns

a SUCCESS indicaficm. If any errors are detected prior to a successful completion of diis function,

the fimction is terminated at that point with the rq>prq)riate error indicatioa

Parameters

id_type Indicates whether the event designation is in local or global form.

Range of Values LOCAL or GLOBAL

id Either an integer that specifies the event identifier in local form, or a character string contain-

ing the event identifier in global form, based on the id_type parameter.

Range of Values If local form, an integer value between 1 and 2(32>1; if global form, the first

integer value represented in the string must be 0, 1, or 2. The second value

must be between 0 and 39, if the first element is 0 or 1. Subsequent values

must be non-negative integers.

Sample Values local form 35, global form "1.17244.5"

att_value Pointer to the PE ctmtaining the encoded event reply information.

msg type Type of CMIS service message from whidi the parameter information is to be extract-

ed.

Range of Values EVENT_RSP, EVENT_CNF.

msg_ptr Pointer returned from the extract_cmip_message functitm, which designates the received

CMIS message from which the information is to be extracted.

Return Values

SUCCESS, NULL MSG PTR, FIELD DOES NOT EXIST,

NO SUCn MSG TYPE, NULL MO PTR, BAD FORM

Programmer's Reference Manual Extract Functions

6.24. extract_eventType

int extract_eventType(id_type, id, att_value, insg_type, msg_ptr)

int *id_type;

unicm ID *id;

PE attvalue;

int *msg_type;

char insg_ptr.

Description

The extract evenfTypeO routine extracts the eventType field of the CMIS message. The event type

is returned in the form of a presentation element (PE). It is die responsibility of the CMIS user to

caU the appropriate decode functions to decode this event type. The function then returns a SUC-
CESS indication. If any errors are detected prior to a successful completitMi of this function, die

fimcticxi is terminated at that point with the appropriate error indicatioa

Parameters

id_type Indicates whether the event designation is in local or global fonn.

Range of Values LOCAL or GLOBAL

id Either an integer that specifies the event i^ntifier in local form, or a character string contain-

ing the event identifier in global fonn, based on the id type parameter.

Range of Values If local form, an integer value between 1 and 2(32)-l; if global form, die first

integer value represented in the string must be 0, 1, or 2. The second value

must be between 0 and 39, if the first element is 0 or 1. Subsequent values

must be non-negative integers.

Sample Values local fonn 35, global form "1.17.244.5"

att value Pointer to the PE containing the encoded event type information.

msg_type Type of CMIS service message firom which the parameter infomiation is to be extract-

ed.

Range of Values EVENT_REQ, EVENT_IND.

msg_ptr Pointer returned from the extract_cmip_message function, which designates the received

CMIS message from whidb the information is to be extracted.

Return Values

SUCCESS, NULL MSG PTR, FIELD DOES NOT EXIST,

NO SUCH MSG TYPE, NULL MO PTR, BAD FORM

Programing* 's Refer^ce Manual Extra<^ Functions

6^5. extract_eventInfo

int extract eventinfo (att value, msg_type, msg_ptr)

PE *att_value;

int msgtype;

char msg_ptr.

Description

This extract_eventlTrfo() routine extracts the eventTime field of the CMIP PDU. The event infor-

mation is returned in the form of a presentation element (PE). It is the responsibility of the CMIS
user to call the appropriate decode functions to decode this event informatioa The function then

returns a SUCCESS indication. If any errors are detected prior to a successful cmnpletion of this

function, the fimction is terminated at that point widi the a{^rq>riate errOT indication.

Parameters

att_value Pointer to the PE ccmtaining the encoded event informatioa

msg_type Type of CMIS service message from whidi the parameter information is to be extract-

ed.

Range of Values EVENT_REQ, EVENT_IND.

msg_ptr Pointer returned from the extract_cmip_message fimcticHi, which designates the received

CMIS message fi’om which the information is to be extracted.

Return Values

SUCCESS, NO SUCH MSG TYPE, NULL MSG PTR

164

Programmer's Reforoice Manual Extract Functions

6.26. e3rtract_eventTime

int extract_eventTime(cunenttime, msg_type, msg_ptr)

int cunenttime;

int msg_type;

char *msg_ptr.

Description

This extract_evenfrime() routine extracts the eventTime field of the CMIP PDU. The eventTime

field is returned in the first parameter of this fimctioa The function then returns with a SUCCESS
indication. If any errors are detected prior to a successful completion of this function, the fimction

is terminated at that point with the t^ropriate error indicatiorL

Parameters

currenttime A string that represents the current time that the operation occurred.

Sample Values The string 19890613123012.333-0500 represents a local time of 12:30:12 (and

333 msecs) on 13th June 1989, in a time zone which is 5 hours behind GMT.

msg_type Type of CMIS service message fiom which the parameter information is to be extract-

ed-

Range of Values

GET UST ERROR, SET UST ERROR, SET RSP, SET CNF,
GET RSP, GET_ClSrF. EVENT REQ, EVENT IND, EVENT RSP, EVENT CNF,
ACnON RSP, ACnON CNF, CREATE RSP, CREATE CNF, DELETE RSP, DELETE CNF.

msg_ptr Pointer returned fi-om the extract_cmip_message function, which designates the received

CMIS message from whidi the information is to be extracted.

Return Values

SUCCESS, NULL MSG PTR, FIELD DOES NOT EXIST, NO SUCH MSG TYPE

165

Programing' 's Refu'ence Manual Extract Factions

6.27. extract_speciiicErrorIiifo

int extract_specificErrorInfo(att_value, msg type, msg_ptr)

PE att_value;

int msg type;

char *msg_ptr.

Description

The extract_specificErrorInfo() routine extracts die specific error infonnation firtan the CMIS mes-

sage. The specific error information is retumed in the form of a presentation element (PE). It is die

responsibility of the CMIS user to call the aj^ropriate decode functions to decode this specific er-

ror information. The function then returns a SUCCESS indication. If any errors are detected prior

to a successful completion of this function, the function is terminated at that point with the ^
propriate error indication.

Parameters

att_value Pointer to the PE ccmtaining the encoded specific error informatioa

msg type Type of CMIS service message from which the parameter infonnation is to be extraa-

ed.

Range of Values PROCESSING FAILURE.

msg_ptr Pointer returned from the extract cmip message functicHi, which designates the received

CMIS message from which the information is to be extracted.

Return Values

SUCCESS, NULL MSG PTR, FIELD DOES NOT EXIST, NO SUCH MSG TYPE

166

Programme* 's Reference Manual Extract Functions

6^ extract_ld

int extract id (type, bmoc type, Ixnoc, id_type, id, msg_type, msg_ptr)

int *type;

int *bmoc_type;

union ID *bnioc;

int idtype;

union ID *id;

int nisg_type;

char *msg_ptr.

Description

The extractJd() routine extracts the field for the action Id, or event Id, from the CMIS message.

The type parameter is set to indicate die form (action Id or event Id) of the ID parameter. Die

functicm tten returns a SUCCESS indication. If any errors are detected prior to a successful com-

pletion of this function, the function is terminated at that point with the appropriate error condition.

Parameters

type Indicates whether the ID parameter is an actirxi Id or event Id.

Range of Values typ)e_CMIP_NoSudiArgument_actionId or

type_CMIP_NoSuchArgument_eventId

bmoc type Indicates whether die Managed Object Qass designation is in local or global form.

Range of Values LOCAL or GLOBAL

bmoc Either an integer that specifies the Managed Object Class identifier in local form, or a

character string containing the object class identifier in global form, based on the id type

parameter.

Range of Values If local form, an integer value between 1 and 2(32)-l; if global form, the first

integer value represented in the string must be 0, 1, or 2. The second value

must be between 0 and 39, if die fint element is 0 or 1. Subsequent values

must be non-negative integers.

Sample Values local form 35, global form ”\.\12AA.5”

id_type Indicates whether the action Id/event Id designation is in local or global form.

Range of Values LOCAL or GLOBAL

id Either an integer that specifies die action/event identifier in local form, or a character string

containing the action/event identifier in global form, based on the id type parameter.

Range of Values Same as bmoc above.

msg_type Type of CMIS service message from whidi the parameter information is to be extract-

ed.

Range of Values NO SUCH ARGUMENT.

msg_ptr Pointer returned from die extract_cmip_message function, which designates the received

CMIS message from which the information is to be extracted.

Return Values

SUCCESS, NO_SUCH MSG_TYPE,
HELD DOES NOT EOST, NULL_MSG_PTR, NO MEM

167

Programmer's Refa*ence Manual Extract Functions

6J,9. extract_valoe

int extract_value(acti<xi_or_event, id_type, id, att_value, msg_type, msg_ptr)

int action_or_event;

int *id_type;

union DD "‘id;

PE att_value;

int msg_type;

char *msg_ptr.

Description

The extract_yalue() routine extracts the invalid argument field fi^om the CMIS message. The infor-

matitm is returned in the form of a presentation element (PE). It is the responsibility of the (}MIS

user to caU the aj^ropriate decode funcfitxis to decode this information. The function then returns

a SUCCESS indication. If any errors are detected prior to a successful completicxi of fids function,

the function is terminated at that point with the appropriate error indication.

Parameters

action_or_ev^t Indicates whether the invalid argument error contained in the CMIS message is

for an action or an event.

Range of Values ACT'10N_ERR, EVENT_ERR

id_type Indicates whether the action/event designation is in local or global form.

Range of Values LOCAL or GLOBAL

id Either an integer that s{>ecifies the actiott/event identifier in local form, or a character string

containing die action/event identifier in global form, based (m the id type parameter.

Range of Values If local form, an integer value between 1 and 2(32yi; if global form, the first

integer value represented in the string must be 0, 1, or 2. The second value

must be between 0 and 39, if the first element is 0 or 1. Subsequent values

must be non-negative integers.

Sample Values local form 35, global form "1.17.244.5"

att_value Pointer to the PE crmtaining the encoded information.

msg_type Type of CMIS service message from which die parameter information is to be extract-

ed

Range of Values INVALID ARGUMENT VALUE

msgjjtr Pointer returned from the extract_cmip_message function, which designates the received

CMIS message from which the information is to be extracted

Return Values

SUCCESS, NO SUCH MSG TYPE, FIELD DOES NOT EXIST,

NULL MSG PTR, NO MEM

168

Progranima‘'s Reference Manual Extract Functions

630. extract_action£rrorlnfo

int extract_acti(MiEnorInfo(erTor_status, id_typel, IDl, i(i_type2,

ID2, att_value, msg_type, msg_ptr)

int *eiTor_status;

int *id_typel;

union id *101;

int id_type2;

union id ''‘n>2;

PE att_value;

int msgtype;

diar *msg_ptr,

{

Description

The extract_actionErrorInfoO routine extracts the actionErrorInfo field of the CMIS message.

Upon returning from this fiinction, all of die parameters passed to the function have been filled in

witii the actionErrorInfo information(except for msg_type and msg_ptr which are ii^iuts to the

extract_actionErrorInfo(

)

routine). The information contained in each parameter is described in the

parameters section below. The functioo then returns a SUCCESS indication. If any errors are

detected prior to a successful completion of this fiinction, the fiinction is terminated at that point

with the qipropriate error indication.

Parameters

errorStatus This parameter will be filled in with the error that was received.

Range of Values ACCESSDENIED, NO SUCH ACTION, NO SUCH ARGUMENT,
INVALIDARGUMENTVALUE

id_typel Indicates whether the attribute ID designation, as contained in the message, is in local

or global form.

Range of Values LOCAL or GLOBAL

idl Either an integer that specifies the attribute identifier in local form, or a character string con-

taining the attribute identifier in global form, based on the id_type parameter.

Range of Values If local form, an integer value between 1 and 2(32)-l; if global form, the first

integer value represented in the string must be 0, 1, or 2. The second value

must be between 0 and 39, if die first element is 0 or 1. Subsequent values

must be non-negative integers.

Sample Values local form 35, global form ”1.17344.5"

id_type2 Same as parameter id_typel.

idl Same as parameter idl.

att_value Pointer to the PE containing the encoded informatiorL

msg_t7pe Type of CMIS service message from which die parameter information is to be extract-

ed

Range of Values

INVALID FILTER, COMPLEXITY LIMITATION, SET REQ, SET IND,

GET REQ, GET IND, ACnON REQ, ACnON IND, DELETE REQ, DELETE D^D.

msg_ptr Pointer returned from the extract_cmip_message funcricxi, which designates the received

CMIS message fitim which the information is to be extracted.

Return Values

169

Programina''s Refaroice Manual Extract Functions

SUCCESS, NO SUCH MSG TYPE, NULL_MSG_PTR, BAD FORM, NO MEM
INVALID ERROR STATUS.

631. extract_ddeteEjT<M*Info

int extract_deleteErrorInfo(msg_type, msgjJtr, deleteEnorlnfo)

int msg_type;

char *msg_ptr,

int *deleteEiTorInfo;

Description

This function retrieves the information contained in the deleteEnorlnfo field of the CMIP PDU.
The extract_deleteErrorInfo() routine fills in the deleteEnorlnfo parameter with the deleteEnorlnfo

information retrieved fiom the message. The fimctitm then returns with a SUCCESS indication. If

any enors are detected prior to a successful completion of this function, the functicm is terminated

at that point witii the appropriate error indicatioa

Parameters

msg type Type of CMIS service message fiom whidr the parameter information is to be extract-

ed.

Range of Values DELETE_ERR, AC110N_ERR.

insg_ptr Pointer returned firom die extract_cmip_message function, which designates the received

CMIS message fiom which the information is to be extracted.

deleteElrrorlnfo The integer value for deleteEnorlnfo.

Range of Values Integer values between 1 and 2(32)-l

Return Values SUCCESS, NO SUCH MSG TYPE

170

Prograiiiiiitt‘'s Refa*aice Manual Ebitract Functions

ERROR CODES

Return Values Meaning

NO SUCH MSG_TYPE Operation value out of range, not a valid CMIS message type.

NO MEM Insufficient memory available to aUocate necessary structure.

SCOPE VALUE OUT OF RANGE The scope value is out of range.

SCOPE TYPE OUT OF RANGE The scope type is out of range.

BAD FILTER Certain critical values of filter were set incorrect or NULL.

NULL MSG PTR NULL CMIS message pointer.

BAD FORM Name type was not in LOCAL or GLOBAL.

GLOB RANGE Object identifier value out of range.

FIELDDOESNOTEXIST This fill function is not appropriate for the operation you ate trying

to perform. If this is a return from init_c5)erati{» structO then the

filLh table was corrupted or modified.

FIELDALREADYFILLED By calling this fill function you are trying to fill something that is al-

ready allocated and possibly filled.

REQUEST INCOMPLETE A mandatory function for this request operation was not called.

RESPONSE INCOMPLETE A mandatory function for this response operation was not called.

BADNAMETYPE Value out of range.

DNRANGE On first call, instarrce type was not (me of distinguished name, local

distinguished name or ncm-specificform. On subsequent calls, in-

stance type was changed while adding RDNs and AVAs.

INVALID MODE Mode value was not Confirmed or UnconfirmecL

INVALID ERROR STATUS Error status parameter on get/set Info status was out of range.

NULL MO PTR The managed object class pointer was NULL.

NULL ATT LJST PTR The atnibute list pointer was NULL.

NULL ACCESS PTR The access control pointer was NULL

NOT SUPPORTED SYNC Synchronization is not suj^rted on this operaticm.

NO DISTINGUISHED NAME The distinguished name pointer was NULL.

Table 19

171

’.™h .>*’V

;;;}iSr=:A-S')!‘*^.'S'"Wlfe5S

j”'
' .‘fy*-*

:'5‘i--;
‘ -•j'f7 vr;*’-'-

^ '
''^^J. — .

|L —^----^ '‘*w»4r>«« >iT«»'<t>»»-'i»ii<FtiW»,'i^>^V"“W,'»*^*'^

. s;i^'^.?‘i'
*;?>• *4® ^ SiTr-

^

-

! Ijr

?
-

'5r .'’''.ji,?.-;'*^#- <

^ i^Kaa.

i;
hs;fe£3^;}^'^Ki^ >--3« •‘^'^

, ,

.*-./ . ,.nt ,.• •.• ., - .t,..-t v .-AiVd '•.jwi*Ji‘ifc%?4’V^'0rni'

') :.v
-- ,, ^

i
'

;

’
' ”

"
((- .y^ ---

.

'

V .

”

k I y 1'.“?^-;' '^.v m =t4!jj5tsy^_«^ts53, skv?;^
• --‘C V' ..

?‘ *
T

J:3M ..fc;^ ’f/t
*

LJa

r*-
L-,....

J:%. V'

lir'^ L.^’j^v ' A if

tilfi

^ 6^>«‘ h

NIST-114A U.S. DEPARTMENT OF COMMERCE
(REV. 3-90) NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY

BIBLIOGRAPHIC DATA SHEET

1. PUBUCATION OR REPORT NUMBER

NISTIR 4866
2. PERFORMING ORGANIZATION REPORT NUMBER

3. PUBUCATION DATE

JULY 1992
4. TITLE AND SUBTITLE

Network Management Support for OSI Systems
(NeMaSOS) Version 2.0
Proerannner's Reference Manual

5. AUTHOR(S)

Kevin Brady Robert Aronoff
Jim Fox

^

6. PERFORMING ORGANIZATION (IF JOINT OR OTHER THAN NIST, SEE INSTRUCTIONS)

U.S. DEPARTMENT OF COMMERCE
NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY
GAITHERSBURG, MO 20899

7. CONTRACT/GRANT NUMBER

8. TYPE OF REPORT AND PERIOD COVERED

9. SPONSORINQ ORGANIZATION NAME AND COMPLETE ADDRESS (STREET, CITY, STATE, ZIP)

10. SUPPLEMENTARY NOTES

11. ABSTRACT (A 200-WORD OR LESS FACTUAL SUMMARY OF MOST SIGNIFICANT INFORMATION. IF DOCUMENT INCLUDES A SIGNIFICANT BIBUOGRAPHY OR
liTERATURE SURVEY, MENTION IT HERE.)

The NIST Network Management Support for Open Systems (NeMaSOS) project developed a

prototype network manager conforming strictly to the CJMIS/CMIP IS version 1, and
the OSI Workshop Implementors Agreements of December 1991. This document describes
libraries of functions implemented to provide the services of CMIS/P, ACSE, and
ROSE. The service interface for UNIX systems using ISODE is also described.

12. KEY WORDS (6 TO 12 ENTRIES; ALPHABETICAL ORDER; CAPITALIZE ONLY PROPER NAMES; AND SEPARATE KEY WORDS BY SEMICOLONS)

Association Control Service Element (ACSE) ; Common Management Information Services and
Protocol (CMIS/CMIP); ISO Development Environment (ISODE); Network Management; OSI

Network Management Implementor’s Agreements; OSI Network Management Standards; Remote
Operations Service Element (ROSE)

.

13. AVAILABILITY 14. NUMBER OF PRINTED PAGES

X UNUMITED 180
FOR OFFICIAL DISTRIBUTION. DO NOT RELEASE TO NATIONAL TECHNICAL INFORMATION SERVICE (NTIS).

ORDER FROM SUPERINTENDENT OF DOCUMENTS, U.S. GOVERNMENT PRINTING OFFICE,
WASHINGTON, DC 20402.

15. PRICE

A09X ORDER FROM NATIONAL TECHNICAL INFORMATION SERVICE (NTIS), SPRINGHELD,VA 22161.

ELECTRONIC FORM

,

'

T33MeAtm 3iH'IAJ}SoBlte|:

® .’
. a;

'

-^ -mi I'.rju'.

><

^ -tlf

;-V- .

'- ?">•:'
, I

if

'

'
1

.
- -Mf

l»M«Klr^>'^!>1

-. Kr^n-’ ’'i'
‘' 'v '’'>^'

‘

. .V £ ; .
'

•

'•

'. :r<d. .

Wfl»>*,-.,*^,.i,,,, ..-, ^ .,,, „

M:jmt3lt$-‘
'

,.i.-i:.'W!(w'''4;' fl) .) '.u. ^,, :v.,

:»Pf'i I

,'•.:
' l'. ...{.'f)/. >13 :>!, <^44 wiVlVV/rPt ‘a0 bs | f

5

^ '

. .r^

'
'

'.
/' ^:'.

. ,
_

's '\'0

i-fC'

I .'

.

' '.^ '

'

'

'-
'

', '

‘W?
•.'.•> >.'

'

'i n<'j
" ' " •• - - --^ .

'

.
-^ ''- ’1, -v'l '.

,
'Myi

'
.a-&;;fi;f 2. is"

i- ^
C' . M-i o^nS.-i-^-.X^O

, ^

i-v
.,J

.i*

(iiiltt* .VJ ;w „. ' ""ft, >
-

' T»¥5’*i

1" j 'rr^

