
Binocular Spherical Disparity:

A Study in Representation for a
Forward Translating Camera

Don J. Orser
Sensory Intelligent Group

*U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Robot Systems Division

Bldg. 220 Rm. B124
Gaithersburg, MD 20899

QC
100

.056

//4865

ivjisr





NISTIR 4865

Binocular Spherical Disparity:

A Study in Representation for a
Forward Translating Camera

Don J. Orser
Sensory Intelligent Group

*U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Robot Systems Division

Bldg. 220 Rm. B124
Gaithersburg, MD 20899

June 1992

U.S. DEPARTMENT OF COMMERCE
Barbara Hackman Franklin, Secretary

TECHNOLOGY ADMINISTRATION
Robert M. White, Under Secretary for Technology

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
John W. Lyons, Director





BINOCULAR SPHERICAL DISPARITY: A STUDY IN

REPRESENTATION FOR A FORWARD TRANSLATING
CAMERA

Don J. Orser

Robot Systems Division

Manufacturing Engineering LabOTatory

National Institute of Standards and Technology

Gaithersburg, Md 20899

ABSTRACT

The problem of interpreting optical flow and binocular disparities for a

forward translating camera is addressed. A solution is offered in the form of

image remappings which convert the images to the analogous well understood

case for a laterally translating camera.

After reviewing this latter case, a binocular camera-retina imaging model

utilizing spherical projection and foveal peripheral resolution is described for

analyzing both binocular disparity and optical flow. The result provides the

basis for analyzing both types of disparities within a single framework for the

purpose of understanding how these “orthogonal” sources of information can

be exploited in a computational model.

The process of image remapping, called “normalization,” is then defined

for four 1-D parameterizations of 3-D space: range, depth, looming and clear-

ance. These latter parameterizations are based on work by Raviv. It is shown

that normalization transforms optical flow into a form analogous to that for the

laterally translating camera. In addition, it is shown how to obtain these same

normalizations from standard planar projection images.

A binocular wire frame scene simulator is used to experimentally verify

the ideas. In addition a program for normalizing real iconic planar projection

imagery is applied to several example images and the results demonstrated.

We conclude that while the spherical projection model has advantages for

purposes of analysis, computational equivalency can be had using planar pro-

jection images.
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Disparity Representation for a Forward Translating Camera

“If sight were to deceive us as to the position and distance of external objects,

we should at at once become aware of the delusion on attempting to grasp or
approach them. This daily verification by our other senses of the impressions

we receive by sight produces so firm a conviction of its absolute and complete
truth that the exceptions taken by philosophy or physiology, however well

grounded they may seem, have no power to shake it."

Herman von Helmholtz, 1869

1. INTRODUCTION

This report describes research carried out at the Robot Systems Division of the

National Institute of Standards and Technology (NIST). This research has had as its

objective the development of a camera-retina imaging model motivated by con-

siderations going beyond those found in the standard monocular planar projection

model. This research is part of a larger effort of the Robot Systems Division whose

goal is the creation of a general purpose low-level artificial vision system incorporat-

ing both pre-attentive and attentive components.

1.1. STRUCTURE AND SUMMARY OF THIS REPORT

The work reported on in this report addresses the problem of extracting and

interpreting binocular and optical flow disparity for a forward translating camera.

The problem is looked at as one of iconic image representation, and in particular,

the question of whether spherical projection provides any additional utility over con-

ventional representations is addressed.

In section 2, optical flow is reviewed, and the problem of two dimensional

extraction and interpretation of optical flow disparity for a laterally translating cam-

era viewing a dynamic scene described in terms of the aperture problem. An algo-

rithm is described which provides for segmenting the image into regions of

differential rigid body motion.

Section 3 defines a binocular spherical projection model for which both optical

flow and binocular disparity can be characterized. Foveal-peripheral resolution is

introduced and shown to provide as a by product a representation, the logarithmic

isometric plane, which transforms the radial optical flow for a forward translating

camera into a form analogous to that for a laterally translating camera. Hence the

techniques and algorithm for that case, as described in section 2, become applicable

for converting optical flow into range. (In this report, we will refer to the Euclidean

distance to a point as range, and will use the term depth to refer to the forward

component of range.)

This concept is extended to three other 1 -dimensional parameterizations of 3-

dimensional space: depth, looming and clearance and is based on work by Raviv

[RAVIV3].

1
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In the last half of section 3, the relationship between spherical projection and

planar projection is used to derive the mathematical relationships for computing the

logarithmic isometric representations from planar projections. Hence the question of

whether spherical projection has some intrinsic merit over planar projection is

answered in the negative.

Section 4 contains a description of a binocular spherical projection, wire frame

scene simulator modeling the binocular spherical projection model developed in the

first half of section 3. Several examples of its use are given. It generates both optical

flow and binocular disparity in several representations.

In section 5, several experiments, utilizing the simulator, and demonstrating the

theoretical correctness of the ideas developed in section 3 are described. In addi-

tion, sample computations mapping planar projection images to the logarithmic

isometric plane are given.

A summary of applications and conclusions is given in section 6, which is

readable by itself.

1.2. BACKGROUND

The mental reconstruction of the physical world via the sense of vision has

been the source of wonder and speculation among philosophers, scientists and young

children from tirhe immemorial. The advent of the computer has turned this passive

speculation into creative action directed toward the creation of electro-optical dev-

ices capable of performing this act of “vision”. This activity has gone on for some

thirty-five years, and while some success has been achieved in specialized tasks,

markedly little progress has been obtained, either in understanding the principles by

which our own vision system operates or in our attempts at creating an artificial

vision system.

Progress has been made, however, in understanding the naivete of some of the

original attempts in computer vision. With no regard for incorporating perspective,

image to image correspondence or other basic components of an imaging model,

optimistic researchers imagined themselves the beneficiaries of a tireless omniscient

processor of visual information, but were in fact forced to retreat to minimal claims

for overly complicated systems performing simple tasks under highly controlled con-

ditions.

While we make no claim to special knowledge, we do have the advantage of

twenty-twenty hindsight directed at past attempts at a general purpose artificial

vision system. In doing this, one of the conclusions one comes to is that past pro-

gress has in large part been linked to advances in the model used to describe the

image formation process and its implicit geometry, e. g., the incorporation of a pro-

jection model, the realization that an image sequence should be the source of input

and not isolated frames, etc.

2
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We suggest that additional elaboration of the geometry of imaging and initial

low-level iconic image representation will result in even more progress. While ela-

boration of vision tasks and image processing architectures is important, it is the

detailed understanding of the precise nature of the information potentially available

to us in an image sequence which sets the bounds within which these subsequent

activities must operate.

This report will address these issues within the context of low level vision pro-

cessing, and in particular, will address the issues in the context of the extraction and

geometric interpretation of disparity in binocular image sequences.

Initially, those working toward the goal of an artificial vision system took their

ideas firom the emerging field of computer science and were for the most part preoc-

cupied with applying techniques which were successful in related applications of

that technology. In particular, digital image processing [PRATT], the successful use

of the computer for performing image restoration, enhancement, bandwidth compres-

sion, etc., was the precursor of many techniques applied to the generally unappreci-

atedly more difficult problem of computer vision. Success, for the most part, was

achieved when the ultimate consumer of the image was a human perception system,

but the automation of this last step has yet to be realized.

Historically, the viewer of a “picture” was a human being using a visual pro-

cessing system adapted to survival in a physically hostile world. Because it was the

drawer’s intent that these pictures be processed by a human visual system, they took

on the specific and peculiar geometry dictated by the human imaging system. This

system was adapted to the perception of rigidity of 3-D shape from continuously

changing 2-D retinal projections. As a result, cave drawings, and the subsequent

mathematical description of planar projection during the Renaissance by Alberti and

its application to the perfection of this geometry, has created a momentum which

has expressed itself in the form of the modem camera. As a result, the engineering

design decision of how imagery is to be formed and represented has, for the most

part, been made by default through the use of cameras emulating the geometry

arrived at for a completely different set of circumstances. We believe that this deci-

sion needs to be reexamined and consciously made against a backdrop of other pos-

sibilities.

For those interested in exploring this decision, it is of interest to note that

attention was paid to this by intellectual heirs of the first cave painters, the Cubists

(and others), during the first part of this century. This attention, in part, resulted

from the needs of the creative artist to come to terms with the burgeoning popularity

of photography, and in fact was a demonstration of the limitations of the planar pro-

jection camera. Alternative choices have been popularized by Picasso and others,

albeit usually to the mystification of the general public.

3



Disparity Representation for a Forward Translating Camera

In fact, the issue addressed by the Cubists is one of central importance to the

artificial vision research community: What is the proper relationship between invari-

ant solid shape and a 2-D representation of it, so as to maximize the predictive

capacity of the 2-D representation under a set of rules devised by the artist [GOM-
BRICH]?

More recently, the experimental psychologist J. J. Gibson [GIBSON] has

addressed this question from the biological information processing point of view:

How is it that organisms react to the visually invariant objective properties of the

physical world rather than to their constantly changing retinal projections? His intro-

duction of the concept of visual flow enabled him to provide a qualitative model in

which the cues for the perception of e. g., solid shape, are contained in the invari-

ance properties of the relationship between the 3-D visual world and their ever

changing retinal images.

The implication is that the organism creates an internal model of the 3-D por-

tion of the world in its visual field, and via the predictive capacity of that model, is

able to provide a temporally invariant interpretation of those fleeting retinal images

consistent with the world. Although Gibson’s work is lacking in quantitative detail,

his concept of visual, or optical flow, and the cues available from it has provided the

inspiration for much recent work in visual motion understanding [ALBUS,

RAVIVl], and provides, in part, the motivation for what is contained in this report.

Initially, research in artificial vision was relatively far removed from parallel

research in understanding the vision of natural organisms, including primates and

man. However, with the apparent lack of progress made toward the achievement of

artificial vision, more attention is now being paid to what is understood (and not

understood) about biological vision [NAKAYAMA, KAUFMAN, SCHWARTZ]. In

this regard, the German physiologist and physicist Herman L. F. Von Helmholtz

(1821-1894), founder of the science of perceptual physiology, can hardly go unmen-

tioned, as a very large amount of what is known about the functional capacities of

human vision are due to his conceptual and experimental genius. His Treatise on

Physiological Optics [HELMHOLTZ] is still relevant today.

Clearly, the massively parallel organization of the brain contrasts sharply with

the serial organization of the Von Neumann computer model. The significance of

this has not been lost on those pursuing multiple instruction/multiple data architec-

tures, neural net architectures, optical computing architectures and other architectures

exhibiting a high degree of connectivity in which the operations are brought to the

data. This “in-place” massively parallel architecture seems particularly relevant for

computer vision, and it is with these potential architectures in mind that we present

the ideas in this report.

Other aspects of past mainstream computer vision research also contrast sharply

with biological vision. In particular, biological vision is binocular and the
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exploitation of the resultant binocular disparity, in conjunction with the temporal

disparity of optical flow, provides a potentially richer environment within which

computational algorithms may be sought Recognition of this is now developing

within the computer vision research community. (Note that the practice of stereo

photogrammetry in remote sensing is a related, but different problem.)

A natural adjunct to a binocular camera-retina is the idea of “active vision”.

Here, the need for visual fixation of a moving target gaze direction control etc., is

accomplished by the introduction of a predict/compare control servo loop for con-

trolling binocular divergence and convergence (vergence), focus and iris control, etc.

In this way, the images are not passively acquired, but are acquired actively so as to

maintain a “visual equilibrium” with respect to some visual subtask. While these

ideas are obviously modeled on biological vision, they also seem to have appropriate

counterparts in a design for an artificial vision system.

The modem camera has inherited two features which contrast sharply with bio-

logical vision. One of these is the uniform resolution of the imaging process, leaving

it to the human viewer to apply variable resolution via the radially decreasing den-

sity of the rods and cones of his saccading retina when viewing the picture. The

discovery of the logarithmic spiral nature of this decreasing density in conjunction

with the “digitization” of the field of view was first made by Schultze and pub-

lished in 1866 [SCHULTZE]. This highly regular tessellation of the retina and its

subsequent mapping to the visual cortex has been given considerable attention and a

large literature now exists on the subject from the point of view of descriptive ana-

tomy [DOW, MAUNSELL, NAKAYAMA, SCHWARTZ], electrical engineering

[ESSEN], prescriptions for artificial vision [FISHER, ROJER, WEIMAN], and other

points of view.

One may imagine a human visual field with a constant resolution, and hence

the reason that it isn’t may be only one of economy. However, the body of this

report will describe an imaging model in which varying resolution is a natural pro-

duct of other design decisions.

The second sharp difference between biological imaging and the modem cam-

era concerns the geometry of the surface, or manifold, on which the projected image

is formed. In the modem camera, this manifold is flat or planar, while for the retina

it is, to a first approximation, spherical. The significance of this is still unclear, but

as win be elaborated on later in this report, for purposes of analysis, the spherical

projection model provides new insights. With respect to computation, we will show

how planar projection images can be transformed to spherical projections, as

mapped to the plane, and hence the spherical projection in principle provides no

information not found in a planar projection.

While the modem camera is capable of precisely recording color images, the

exploitation of color information is not within the objectives of the work reported on

5
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here. Rather, the images we will be concerned with may be thought of as either

black and white, or colored, and it will be left to future research to understand how

exploitation of color may be accomplished.

This report will elaborate on the above ideas in conjunction with their applica-

tion to a camera-retina imaging model and attempts to integrate them into a con-

sistent whole. However, this should in no way be construed to mean that we propose

to model any portion of biological vision.

13. THE OBJECTIVES OF THIS RESEARCH

Research of necessity takes place within a larger context than just that one

aspect worked and reported on. The objective of the larger context and our research

methodology are as follows:

Objective: The realization of general purpose real-time low-level (pre and

attentive) artificial vision. Such a system would provide a robust geometric

interpretation of the information inherent in iconic imagery, i. e., pictures, and

would serve as the precursor for higher level symbolic processing associated

with specialized tasks.

Methodology: The creation of a detailed (mathematical) model of binocular

camera-retina imaging structures together with low level iconic image, i. e.,

picture, processing, whose purpose is to go beyond the standard static monocu-

lar planar projection imaging model. In particular, we are interested in a non-

standard iconic image representation motivated by the need to simplify optical

flow and stereo disparity extraction and interpretation, as we believe these pro-

vide fundamental cues to biological vision systems.

1.4. THE METHODOLOGICAL COMPONENTS OF THE VISION

RESEARCH REPORTED ON HERE

The research reported on here may be thought of as being part of several com-

plimentary components. These components are described in the following (1)

through (3) elements.

(1) Analytic/Geometric Model: The analytic/geometric model is concerned with

the description of how iconic images and iconic image sequences are formed,

transformed, represented and interact, together with mathematically idealized

lenses, manifolds, coordinate frames etc., for describing the model.

A dynamic control portion is concerned with the description of what is required

to control binocular convergence/divergence (vergence), iris control, gaze direc-

tion, compensating camera-retina motion control for fixation etc.

In this report we will be primarily concerned with the geometric portion of the

spherical projection model, and will refer the reader to readily available descriptions

6



Disparity Representation for a Forward Translating Camera

of planar projection [HARALICKl].

The projection model also contains additional non-standard components charac-

terized by the following;

• The “ego-sphere” and its modeling in the form of spherical projection.

• Foveal-peripheral resolution in which the “resolution” of the image falls

off radially.

• The “normalization” of optical flow so as to make its extraction and

interpretation computationally simpler.

• The integration of two camera-retinas in support of a binocular visual field

in which the integration of stereo disparity and optical flow disparity can

be “fused” into a single monocular interpretation.

(2) Computational Model: A massively parallel computational model, assumed to

be operating within an implementation of the geometric and dynamic control

model, for making explicit such information as the spatial and temporal gra-

dients, disparities etc. It provides the raw information for maintaining the inter-

nal representation, e. g., world model, at the lowest level.

We have indicated only the most rudimentary kinds of information in the com-

putational model, but understand that information extracted from imagery must also

be combined with task information, integrated past imagery etc. For the purpose of

this report, we will be primarily concerned with the camera-retina imaging represen-

tations and associated low-level processing for optical flow and stereo disparity

extraction and interpretation.

(3) Model Simulator: A computer simulation of (1), the geometric model, for the

purpose of

• Demonstrating concepts

• Performing experiments

• Acting as a design tool for both the geometric model (1) and the computa-

tional model (2).

• Suggesting new relations as a result of its being specific and detailed.

In section 4 a computer simulator for the analytic/geometric model is described.

It will be used to demonstrate the ideas and properties of the geometry with respect

to the extraction and geometric interpretation of optical flow and stereo disparity.

Historically, the goal of vision research has been to develop techniques for

inferring a 3-D dynamic description of the world from two dimensional projected

sequences [THORPE]. While this may still be an objective for certain applications,

it seems to us that interaction with task behavior must be emphasized: an iterated

perception followed by action cycle, e. g., an object is grasped by iteratively

decreasing the difference between the non-grasped state of affairs and its desired
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grasped state. In this way the world acts as its own model, accessed by active

camera-retinas, so that within limits, the need for a detailed internal model of the

world is minimized.

This is in contrast to calculating an a priori trajectory from a detailed internally

generated 3-D map followed by its subsequent execution.

We invite the reader to infer the basic nature of the vision task from the fol-

lowing.

At the lowest level, the internal behavioral task is to control vergence, fixation,

focus, gaze direction etc., in support of searching and accessing the external world.

At the next level, the external behavioral task is e. g., obstacle detection, and hence

avoidance, based on “looming” and/or “time to collision”, detection, vergence and

fixation of moving “point” targets, and the determination of rigid body motions at

discrete ranges, all in support of spatially directed mobility.

The design of an artificial vision system to achieve these tasks seems feasible

given that we can extract and interpret optical flow and stereo disparity, and their

linear combinations, from camera-retinas which can be controlled, and would seem

to be basic for a self-guiding vehicle operating in an unstructured (no road) environ-

ment, for example.
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2. REVIEW OF OPTICAL FLOW
The temporal change of incident light intensities making up the projection of

the 3-D world on a camera-retina is informally called the optical flow.

More precisely, one should distinguish between motion flow constituting the

actual motion of the surfaces of the objects in the scene from the optical flow stem-

ming from the change in location of incident light features. For example, the motion

flow of a rotating reflective sphere will result in a zero optical flow, while if the

sphere remains stationary while a (point) source of illumination moves, the optical

flow will be nonzero. A motion picture or television screen operates by exploiting

the latter. Unfortunately, the only visual cue available for detecting actual motion, i.

e., motion flow, is optical flow. Fortunately, for most uncontrived benevolent scenes,

optical flow and motion flow are highly correlated, and for purposes of this report

will be considered identical. Note that optical flow and motion flow are both two

dimensional vector fields defined on the imaging plane.

The theoretical study of optical flow has two aspects: (1), the characterization

of induced optical flow given camera-retina relative motion and 3-D scene geometry,

i. e., the optical flow field equations, and (2), the converse, the numerical extraction

and geometric interpretation of optical flow given camera-retina projective imagery.

The first is part of the geometric model, while the second is part of the computa-

tional model.

In practical engineering applications, e. g., for a camera on a self-guiding vehi-

cle, camera motion and gaze direction will be available in the computation model

whose goal might be the detection and avoidance of obstacles. Other combinations

of known and desired unknown quantities come readily to mind in such applications

[HERMAN].

2.1. THE PLANAR PROJECTION OPTICAL FLOW FIELD EQUATIONS

We briefly describe the equations characterizing the induced optical flow result-

ing from motion of a camera using planar projection in order that it may be con-

trasted in a latter section with the spherical projection analog. A more detailed

derivation is provided in Appendix Al, or is readily available in the literature

[BRUSS, HORN2].

For concreteness, we may imagine a panning, tilting planar projection camera

mounted on a vehicle for which the primary motion is one of translation in the

direction of the optical axis of the camera, and further, that the environment through

which the vehicle moves is static. A camera centered X-Y-Z coordinate system, in

which the optical axis is aligned with the X-axis and the y-z image plane is located

2XX = f results in the planar projection equations

=/Y»
and 2 =/|-, 2.1.1

9
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where / is the focal length. See figure Cl.

• dy . dz
The resulting instantaneous velocity y = -p and z s — of the intensity pat-

dt dt

terns, i. e., the optical flow, in the image is then the sum of the translational and

rotational components in the y and z directions of the image: y = y/ + and

z = z, + z^ , where

f

/

-V +y

Y
+z

Y

f

£
/

and

and

y z-C (y^ + f) + jy

^=Biz^.n-Cyz-fy.

2.1.2a

2.1.2b

In these equations, t/, V and W are the instantaneous translational velocities along,

and A , B and C are the instantaneous angular velocities about, the X , T and Z

axes, respectively.

Globally, we may think of the point P as lying on a surface defined by a

“depth” function” X(Y,Z), which is positive for all values of Y and Z. Given

such a surface, we can associate with a camera motion an optical flow defined in the

image plane by 2.1.2, and think of this optical flow as being generated by this sur-

face and the camera motion.

Several intuitively experienced observations concerning 2.1.2 can be made:

(1) Under general motion, the induced flow field has the property that it is depen-

dent on image location, and not just on the motion parameters and depth func-

tion X(Y,Z). This has the implication that the interpretation of optical flow as

depth is a global operation requiring knowledge of where in the image the opti-

cal flow is located, and hence complicates an in place parallel algorithm.

(2) The rotational component tV;-, i;.] is independent of the depth X. For example,

if the camera pans or tilts with zero translation, then the resulting optical flow

is independent of the distance to any object in front of the camera.

(3) As the depth becomes very large, optical flow due to the translation component

[y, , i, ] goes to zero.

(4) Setting LVf , i/ ] = 0 and solving, one obtains the coordinates

(y =VIU,z = M^/C/ ) of the point where the translational component of optical

flow is zero. This point is called the focus of expansion. Similarly, one can

solve [y^., Z;.] = 0 and [y, i] = 0 as is done in [RAVIVl] to obtain zero-flow

circles.
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PLANAR PROJECTION CAMERA
IMAGING MODEL

/

i

P(X,Y,Z)

Figure Cl: The camera centered coordinate system used for planar projection

optical flow. U,V,W are the translation velocities, and A, B, C the angular
velocities. The world coordinate point P(X , Y, Z) projects to the image point

p(y,
11



APERTURE PROBLEM

(d) (e)

Figure C2: (a) and (b) are the before and after situations in looking through an
aperture. If (c) is the actual situation seen in (a), then two motions, either (d) or

(e) or a combination of the two, can account for what is seen in (b).

12
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(5) Camera motion and the depth enter into generating optical flow only as a ratio

between the component of motion along the depth, and the depth, i. e., U IX.

If two translational motions generate the same optical flow, then at best it can

only be said that one scene is a scaled version of the other. This means at

least one of C/ or X must be known absolutely to determine the other.

For the case of pure rotation, it can be shown that two distinct rotations will

give rise to two distinct optical flow fields. This can be seen by assuming the con-

trary and equating the respective X and Y components, from which one immediately

concludes that the rotations are the same.

TTie case in which the camera translates in the plane perpendicular to its optical

axis, e. g., U = A = B = C = 0, V ^ 0, W ^ 0, as would be the case for a camera

looking straight down from an airplane, results in a particularly simple flow field,

one which is independent of y and z , and hence one in which when these assump-

tions hold, has a simple geometric interpretation in the computation model in terms

of the depth function X(y, Z). This case will be elaborated on later in this section.

2.2. THE NUMERICAL EXTRACTION OF OPTICAL FLOW
Optical flow for a video camera is induced by the image frame to frame

difference of some invariant, i. e., “constant”, feature as it moves relative to the

camera.

The fundamental problem in numerically extracting optical flow from an image

sequence is the problem of correspondence: given two or more images, determine

the image coordinates of each which correspond to the same real-world feature. The

resultant frame to frame coordinate differences, or temporal disparity, in principle

allow one to compute the distance to the feature point by a simple triangulation.

This is the so called “correspondence based method”, which for a small number of

feature points is a feasible solution. However, explicitly calculating correspondences

for n such features results in an computation, and hence will be computation-

ally expensive for computing a dense depth map.

One method of finessing the correspondence problem is to make the time

difference between image frames so small that “adjacent” features in three dimen-

sional spatio-temporal space may be assumed to be the same real-world feature.

This of course places a limit on the velocity that features may have for a given

frame frequency, typically not more than that needed to induce a disparity of one

picture element per frame. These methods include, among others, gradient based

[HORNl], spatio-temporal filters [HEEGER] and correlation [RAVrV2] of various

flavors.

13
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These “non-correspondence” methods lend themselves to massively parallel

algorithms acting locally. However, as a result, they are much more dependent upon

local manifold geometry for both extracting and interpreting optical flow. It is this

dependence we wish to review here.

2.2.1. THE OPTICAL FLOW CONSTRAINT EQUATION

The non-correspondence based methods have as their basis the visual flow con-

straint equation [SCHUNK] defined on spatio-temporal space:

dy dt dz dt dt'

In words, given some motion invariant distinguished image feature I at image coor-

dinates y , z , I’s instantaneous trajectory in spatio-temporal space is constrained to

dy dz
lie along a contmuous path obeying the above equation. The terms -p and — , i.

dt dt

e., y and i, are in fact identified with the coordinate components of the resultant

optical flow vector field as given by equations 2.1.2.

An important point concerning this constraint equation is that it does not deter-

mine the two velocity components, but constrains them to a single degree of free-

dom. This is because only the component of motion in the direction of the light

intensity change can be extracted. This problem, known as the aperture problem,

and its solution will be elaborated on in the next section.

In order that the inverse problem of optical flow extraction not be confused

with the description of the optical flow field equations of the previous section, we

use the notation

AlyU +AI,v =-A/^, 2.2.1.2

where Aly and A/^ are the numerically estimated components of the spatial gradient,

AI, is the estimated temporal gradient and u and v are the possible y and z com-

ponents of optical flow in the observed image.

The direct application of the optical flow constraint equation results in the gra-

dient based method for extracting optical flow, i. e., the component of optical flow

V
I

in the direction of the intensity change is given by

2.2.1.3

(For a derivation of the individual components u and v as well as this equation see

Appendix A3.)

14
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The application of this equation to real imagery is complicated by several

issues: spatial, temporal and intensity discretization, and by the fact that typically,

real world features do not always remain intensity invariant under changing illumi-

nation or changing point of view. e. g., specular reflections. As a result, a number

of algorithms have been explored by a number of researchers in which the in

equation 2.2.3 has taken on different interpretations. These have typically been

weighted sequences of images: weighted sequences of intensity as well as temporal

and/or spatial convolutions with one, two and three dimensional Gaussian distribu-

tions and its derivatives.

The extraction algorithms will typically have limitations: within the context of

using gradient based algorithms, the numerically extracted optical flow magnitude

|w, v| must lie, a priori, within the range 0 < |m, v|< 1, where the unit is pixels per

frame.

In this report we will not be concerned so much with the particular method

used to extract optical flow as we will the geometric nature of the underlying flow

field and its impact on the resulting extraction and interpretation geometry.

23. THE GEOMETRIC INTERPRETATION OF OPTICAL FLOW
The extraction of optical flow is followed by its geometric interpretation. While

the actual computations may be relatively unrelated, they are implicitly related

through the geometry of the manifold on which the iconic imagery is represented.

We may imagine a camera viewing a scene, possibly containing other translat-

ing objects, while translating laterally to the scene, as would a camera viewing the

ground from a plane, or pointed out a side window of a forward translating car. The

resulting extracted optical flow, as recorded by a planar projection camera, has a

particularly simple geometric interpretation owing to its linear nature.

In this section we elaborate this situation, and in particular, show that the gen-

eral case is intrinsically a two dimensional problem. This is due to the fact that opti-

cal flow extracted from edges, as opposed to computing optical flow from point to

point correspondences, does not uniquely determine relative motion.

This is elaborated here at length as it represents an ideal situation for their

interpretation, and is fundamental to understanding both optical flow and binocular

disparity.
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23.1. THE APERTURE PROBLEM

When a moving point feature is viewed through a camera, it is in principle pos-

sible to calculate the relative displacement of the point in two successive images,

and hence calculate the optical flow for that point. For straight edges, the situation

is more complex. If the relative motion of the camera with respect to the edge is not

known, then a continuum of possible motions could account for what is observed.

This is known as the aperture problem, and is depicted in figure C2. While its

implications must eventually be understood for all combinations of camera motion,

we will present it here primarily in terms of the simple case in which a camera-

retina is translating, without rotation, parallel to its focal plane.

The solution to this problem is to observe that only the normal component of

the edge motion can be unambiguously calculated from two successive images. This

then resolves the problem into two cases: (1), that for a camera viewing a static

scene in which typically the camera direction of translation is known, and (2), the

case in which the camera is viewing independently translating objects with no a

priori knowledge of their relative magnitude and direction of motion.

For the first case, the known direction of camera motion may be used to calcu-

late the point to point optical flow of the edge by compensating for the fact that the

direction of camera motion is at a known angle with the edge.

More precisely, denote the known camera velocity direction (with respect to the

image plane of the camera) by (j) and the magnitude of the extracted normal com-

ponent by v| = + v^. This latter magnitude will have image coordinate com-

ponents u and v and direction within the image of 0 = tan ^ —
, where the image

coordinate axis for u is aligned with the direction of camera motion. Then the true

optical flow magnitude, i. e., as would be calculated for a point, (7, is related to

the observed magnitude ^ , v] by

v| = |t/, V|cos((j)-0). 2.3.1.1

Hence numerically extracted optical flow is always less than or equal in magnitude

to the actual magnitude as would be determined by a point to point correspondence

method.

For example, assuming that (j> is measured from the y axis, with the camera

translating parallel to the y axis, ^ will be zero, and an edge will be foreshortened

by cos 0, where 0 is the angle the edge normal makes with the y axis. Hence, if

the edge is perpendicular to the motion, the edge normal makes an angle 0 = 0 and

the extracted and actual are the same. However, an edge parallel to the motion has
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0 = 90° and hence has no apparent observed motion in the image.

Applying this to the computation of equation 2.2. 1.3 implementing the gradient

paradigm of optical flow extraction, results in computing the “true” optical flow,

|(£/, or what will be called the compensated normal component:

I';''! ,cos( ({) - 6)

u cos (|) + V sin (|)

Equation 2.3. 1.2 tells us how to calculate this true optical flow when the direc-

tion of relative motion is known.

For the case of a camera translating parallel to the Y axis viewing a static

scene, i. e., case (1) above,
(f)

is constant, and without loss of generality ^ can be

aligned with, i. e., measured from, the Y axis, and hence equation 2.3. 1.2 becomes

-A//

V’V\=-^. 2.3.1.3

y

This computation can be performed using one dimensional correlation, numerical

gradients etc.

Hence, the problem of extracting optical flow for the case of a translating cam-

era viewing a static scene is not affected by the aperture problem, and does not

require the more complex computation required for the second case. This latter

problem is two dimensional in an essential way.

The second case, involving a camera viewing a scene containing multiple

translating objects, results in several unknown relative motions, and hence a

nonunique (j). However, because the optical flow fields linearly superimpose, it is

still possible to determine respective relative motions from two or more optical flow

vectors. This will be elaborated on in the next section.

2J.2. THE CASE OF A LATERALLY TRANSLATING CAMERA VIEWING
A DYNAMIC SCENE

The optical flow generated by a laterally translating camera is referred to as

being “linear”. This is due to its simple inverse relationship to depth: two equal

optical flow vectors have the same interpretation if and only if they are projections

of two points having the same depth. This property makes its interpretation particu-

larly simple, even for a dynamic scene.
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The geometric properties of such linear optical flow will be elaborated in the

next several subsections together with a robust algorithm for exploiting this pro-

perty. Later, when the case for a forward translating camera is considered, it will be

seen that this linear property can be achieved for nonlinear images by “waiping”

them appropriately.

Assume again, as in section 2.1, a X-Y-Z world model coordinate system cen-

tered at the camera with the camera’s optical axis aligned with the X axis. Then the

planar perspective image plane coordinates y and z are related to the camera coordi-

nates by

>' =/ no
X(0

and 2 =/ Z(0
X(0-

2.3.2.

1

Referring back to equations 2.1.2, and assuming no rotation, i. e., A = B = C = 0,

and further, X (r ) = f/ =0, and denoting Y and Z by V and W respectively, the

induced optical flow vector field has components y and i at any point in the image

given by

=/ Y and 2 =/^-. 2.3.2.2

For such a translating camera, an edge in the scene, either background or a

translating object, will be at some unknown arbitrary angle 6, 0 < 0 < 180°, with

respect to the direction (j) = tan”^ -p- of camera translation.

For the purpose of computing relative motion from optical flow it is the magni-

tude and direction of these vectors which is important, not their location in the

image. To this end we plot magnitude versus orientation: the extracted optical flow

vector magnitude m s v| is plotted on the graph’s horizontal axis M

,

while its

orientation 0 is plotted on the vertical axis -180° < 0 < 180°. We arbitrarily

locate the camera direction (j) = 0 at Q = 0, so that scene background edges perpen-

dicular to the camera motion, i. e., having 0 = 0, will map to Q = 0.

In this magnitude-orientation plot, as it will be referred to, each optical flow

vector will result in a point which corresponds to its magnitude and direction. (In

fact, the value stored may be thought of as being proportional to the total number of

vectors in the scene of that magnitude and orientation, so that what results is a two

dimensional histogram.)

A camera translating relative to and viewing a circular disk will generate an

image in which every angle an edge could make with respect to the translating

direction is represented. It thus provides a contour whose optical flow normal
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component magnitude varies continuously from some maximal amount at its two

points whose normals are parallel to the relative direction of motion, down to a

magnitude of zero at the points 90° from these points. Figure Dl-(a) depicts this

situation for a disk translating to the right with respect to the camera.

Figure Dl-(b) depicts the magnitude-orientation plot of the optical flow for the

disk. The characteristic shape that results, i. e., the cosine curve cos (<j) - 0), (j) = 0,

is fundamental to the interpretation of numerically extracted optical flow for a

laterally translating camera: all normal components extracted from background

objects and at the same depth will fall somewhere along this loci of normal com-

ponents with respect to (j) = 0.

For an arbitrarily shaped stationary object, its optical flow normal components

will fall with some shape characteristic varying density along it In fact any optical

flow vector computed from parallel edges and having the same relative motion and

depth, irrespective of image location, will map to the same point on the locus of

normal components. Stationary objects at a differing depth will map to a second dis-

tinct locus having a differing maximum magnitude, but all centered on = 0.

A static point feature will move in the image in a manner prescribed by x and

y, while the optical flow components of an object translating in the scene will be

y '^yobj ^ known optical flow components induced by

the camera and the unknown object translation.

Because of the linear nature of the flow field, the numerically extracted optical

flow components will still reflect the relative motion, but with the location of the

locus of normal components shifted along the Q axis by the angle co between the

camera direction and the translating object’s direction.

This situation, using actual data from a laterally translating camera viewing

three disks at different depths, one of which is moving at right angles for a relative

direction of 45°, is shown in figure Dl-(c)

The task of determining these objects against a background of other features is

that of locating the “peaks” of the cosine curves, i. e., the points of largest magni-

tude. In general, there may not even be data points at this location if there is no

contour perpendicular to the relative motion.

In the section following the next an algorithm for locating these peaks is

described.

Binocular disparity complements optical flow disparity in the following way:

two cameras translating in parallel and offset from each other along a line perpen-

dicular to their motion, will generate four sets of disparities offset by 45° in
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orientation in the magnitude-orientation plot These disparities result from computing

the differences between image 1 at time 1 and image 1 at time 2 (optical flow

disparities), image 1 and image 2, both at time 1 (binocular disparities), and the

“mixed disparities’’: image 1 at time 1 and image 2 at time 2, and vice versa. Good

edges will reinforce one another, while noisy ones will not

23.3. THE GEOMETRY OF LINEAR OPTICAL FLOW FIELDS

In this subsection the informal discussion of the previous section concerning

the interpretation of optical flow for a translating camera viewing a dynamic scene is

summarized more formally. The reader may skip to the next section without loss.

Optical Flow Normal Component Theorem; Let ^,y\ be the optical flow field

induced by a laterally translating camera in direction (j). Then all optical flow nor-

mal components v| resulting from features at a fixed distance from the camera

must lie along the loci of points parameterized by edge normal directions 0,

(1)
- 90° < e < (j) + 90°,

v| = |r, y|cos((j) - 0), 2.3.3.

1

or in terms of its X —axis and Y -axis components,

u = (t, y| cos 0 cos((l) - 0) 2.3.3.2

V = fc, y| sin 0 cos((l) - 0).

_i V
COROLLARY: Relative camera velocityJdepth p , V\ and direction <I> = tan 1^

uniquely determined by two distinct optical flow vectors.

Proof: Solve the following simultaneous equations for p , V\ and <I>:

p,V\^
C0S(<1> “ 0i) C0S(O - 02)

Let the two optical normal component dat

V
j

V2

01 = tan“^— and m 2 = ^2» ''2i>

—

~

Ml M2

Solving for p , V\ and d> yields

![/ ^
' cos(({)-0/)’

/ = 1 or 2

O = tan ^

»»

mi cos 02 - m 2 cos 01

/n2 sin 01 - /wi sin 02

2.3.3.3(a)

2.3.3.3(b)
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Figure Dl: In (a) the optical flow is shown for a circular disk which is translat-

ing to the right, while in (b), the optical flow is plotted in magnitude-orientation

space. In (c), the magnitude-orientation plot for three translating disks, two in the

same direction but with differing magnitudes and the third at 45°, is plotted, (d)

is the Hough transform space of (c), in which clusters indicate the magnitude and

orientation of the relative motions.
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or in terms of the x and y components,

+ Vl)(i^2 + v|)[(m, - Vif+(U 2 - V 2
)^ - 2UiVi - 2U2V2I

p » V'l
—

d> = tan
^

U2V1-U1V2

“2(«f + V?) - Mi(«2 + )

2.3.3.4(a)

Vi(Mf + vf)-V2(wi + vf)
2.3.3.4(b)

The solution to these two equations, p , V\ and <{), are the magnitude and orientation

of the optical flow field which would give rise to these two particular normal com-

ponents.

COROLLARY: Moving curved edges generate more distinct pairs of optical flow

vectors and hence yield more information than straight edges.

COROLLARY: A loci of normal components is characterized by two parameters,

camera velocity magnitude M = |I7, V| and direction O.

COROLLARY: Two distinct loci intersect in one point if and only if

0° < Oj - O2 < 90°,

23A. AN ALGORITHM FOR SEGMENTING LINEAR OPTICAL FLOW
FIELDS

The interpretation of optical flow following its numerical extraction using gra-

dient or correlation methods requires the use of clustering or similar techniques in

order that the highly overconstrained system of resulting vectors leads to robust

solutions. In addition, real scenes often result in many noisy vectors whose lack of

mutual support must be used as a basis for their being discarded.

We briefly describe here an algorithm, based on a form of Hough [DUDA] or

Radon [DOUGHERTY] transform, to segment an image using optical flow extracted

from a laterally translating camera viewing a dynamic scene containing multiple

translating objects at the same or differing depths. Components of motion along the

camera optical axis are ignored, as would be the case for a downward directed cam-

era in an aircraft viewing vehicles translating on the ground with no such com-

ponent.

In such a scenario, the objects are relatively small compared with the depths

involved, so that the task of image segmentation into regions of relative rigid motion

at distinct depths is appropriate.

The vision task is to (1), determine the number n of moving objects, as deter-

mined by similar motion and depth, (2), for each object determine its translation
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vector (as projected in the camera image plane),and (3), segment the image by clas-

sifying each pixel, for which optical flow can be computed, as to which of the n+l

objects and background it belongs to in the scene.

This is the situation shown in figure Dl-(c), where the optical flow for three

objects, moving relative to the camera against a background of noise, is depicted in

a magnitude-orientation plot

The optical flow normal components extracted induce a natural two parameter

Hough transform. For each “point” of normal component magnitude ^,v| and

1 V
orientation 0 = tan“^— , compute the “Hough transform” curve, from equation

2.3. 1.2, given by

2 2

m. =— “
.

. e-90°<(}); <0 + 90° 2.3.4.

1

u cos (}),• + V sm 9/

This curve, plotted as a two dimensional histogram in the same magnitude-

orientation (m-(t)) space, represents all possible motions and relative normal orienta-

tions which could give rise to the given normal component. Two normal com-

ponents coming from the same rigid body motion, irrespective of normal direction,

will intersect at a common point, the magnitude and orientation of the relative

motion common to both. A cluster of such solutions generates a peak in the histo-

gram and represents many such common solutions all coming firom the same rigid

body motion. The number of such distinct clusters is the number of translating

bodies. Noise is plotted randomly and is not reinforced. Figure Dl-(d) is the Hough

transform corresponding to Figure Dl-(c). Note the three clusters at locations

corresponding to the cosine peaks of figure Dl-(c).

Segmentation of the original image is performed by a second step: each optical

flow vector is classified by computing its compensated value for all solutions, and

determining that one which is closest to accounting for this data point Those vec-

tors which exceed a given threshold for the best solution may be assumed to be

noise.

The resulting pixel-wise classification may then used to segment the original

image by relative motion classification, or to collect like moving features with the

intent of interpreting them as a single partially occluded object etc. A more

detailed description of the algorithm is given in appendix 3.

We have included this algorithm here because it is capable of generating robust

solutions to the interpretation of linear optical flow disparity fields. By linear is

meant that two disparity vectors can be of equal magnitude and orientation if and
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only if they have the same interpretation as relative motion.

This result will be used in a later section to segment images created by a for-

ward translating camera, but “warped” by a nonlinear sampling procedure in such a

way as to make the optical flow linear in the above sense. This process will be

called normalization.
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3. THE BINOCULAR SPHERICAL PROJECTION CAMERA-RETINA
IMAGING MODEL

In the natural world both predators and prey have binocular vision. While it

can be argued that this binocularity was originally the product of bilateral symmetry,

it is clear that higher life forms have exploited the resulting mix of geometry, optics,

and control above and beyond that needed for control of two distinct monocular

eyes.

The problem of exploiting the information inherent in the differences between

two images formed by two eyes parallels the problem of exploiting the information

inherent in the differences over successive instants of time for a monocularly formed

image. In fact, we have every reason to believe that natural life forms exploit the

mixing of both spatial (binocular) differences and temporal (optical flow)

differences. We will argue here that an artificial vision system must aim to do the

same.

In human vision we “see” monocularly in the region of convergence (normally

within the fovea) though we have two eyes. For nearby feature points at a slightly

different range, the resulting binocular disparity is perceived as differential range (in

a proportional manner up to a point), after which this monocular vision degrades

into “double vision”.

Historically, the development of techniques for understanding how to extract

and interpret binocular images, i. e., stereo, was developed as part of quantitative

photogrammetry. There, the primary objective was to support the economic demands

of cartography, and hence the techniques developed were subservient to the manual

processes of map making. In particular, the problem of correspondence, i. e., the

problem of identifying the same real world feature in two images, is performed

manually, point by point As a result, photogrammetry has not been a precursor of

artificial vision and is viewed by most vision researchers as relatively irrelevant

However, photogrammetry has been very successful in solving the technical

problems that have arisen in understanding the geometric interpretation of stereo

disparity under many geometrically differing conditions. While these techniques are

not applicable to vision research for the most part, this success has been in large

part due to the highly developed analytical models of the stereo imaging process

[GHOSH].

Artificial vision researchers have developed their own “stereo” imaging

models, based primarily on planar projection. Work has also been done in the

development of methods for simultaneously exploiting both stereo and optical flow

[WAXMAN, GROSSO].
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In this section we will describe an analytical imaging model which is motivated

by the need to characterize both optical flow and binocular disparity within a single

framework. Further, it is based, not on planar projection as is usual, but on spherical

projection. It is this basic framework which will be described here, and we view it,

or something like it, as a precursor to any characterization of these vector fields, this

latter being a much larger research topic [HOFFMAN, KOENDERINK, NELSON,

RAVIVl].

We first describe a binocular spherical projection imaging model in which

binocular (stereo) disparity plays a key role. The geometry of the resulting iconic

images is that of a spherical manifold. As is well known, a sphere is not easily

mapped to conventional computer memory, whose underlying differential geometry

is that of the plane. Since there is no way to perform this mapping without distort-

ing the Euclidean metric (keeping the distance between two points independent of

their location in the image), our solution is to abandon this metric entirely, and pro-

vide for a mapping which has other desirable properties, e. g., we introduce a

foveal-peripheral resolution.

In the next subsection we describe within a single context three types of

camera-retina centered coordinate frames.

(1) The standard spherical projection coordinates, symmetrically placed about the

optical axis, will be used to define and compute optical flow for each camera-

retina.

(2) A second spherical projection, in elevation and azimuth coordinates, will be

used to define control variables for vergence and gaze control for each

camera-retina, as well as define and compute binocular disparity.

(3) The third will be a binocular gaze direction and vergencC centered coordinate

system, one which provides a one-to-one mapping between points in space and

the combined degrees of freedom of pan and tilt for the two camera-retinas.

3.1. BINOCULAR CAMERA-RETINA GEOMETRY

Let two camera-retinas, labeled L and R respectively, be centered at ±d along

the Y axis of a right handed Cartesian coordinate system X-Y-Z, as shown in

figure C3. By camera-retinas we mean hemispheres of radius r oriented so that

their concave sides, i. e., retinas, are directed toward the positive X axis. A lens is

used to focus light from the environment onto the retinas through their respective

idealized nodal points ±d, thus creating spherical projection images on the retinas.

We will also refer to these nodal point locations as L and R . (The lenses will not be

developed here.) We will refer to these as (binocular) camera-retinas. In this report
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the value of r will be made 1, and all other distances will be given implicitly as a

multiplicative factor of it.

Given a point T, Z), the plane containing it and the Y axis will be called

the plane of elevation, and will intersect both retinas in identical great circles of

elevation. This plane will make an angle, referred to as the angle of elevation, with

the X-T horizontal plane. The X-Z plane will be called the median plane.

For each of the two retinas we define its optical axis to be collinear with an

auxiliary Y axis located at L and R. That is, we define Y^ and T/, to be parallel to

y, but offset from it by izf. Variables measured in these Y coordinates will have a

subscript of r or /, or r// when used as a variable subscript They are related to the

y axis variable y by y^. = y + and Yi = Y - d.

The points L and R will serve as the centers of rotation for the camera-retinas.

However, for the moment, one should think of them as fixed, “staring straight

ahead’’.

We next define two “spherical projections’’ via two spherical coordinate sys-

tems.

3.1.1. BI-SPHERICAL COORDINATES

Given a point P(X, Y ,Z), its spherical coordinates azimuth , eccentricity

and range R^/i will be defined by (See figure C4):

tan ^r/i = tan =
^r/l

Note that the “optical axis’’, the direction in which eccentricity 0 is zero, is aligned

with the X axis.

In figure C3 we have traced out on the camera-retina R lines of constant spher-

ical azimuth and eccentricity. The azimuth ((), 0 < (j) < 360°, is measured about the

optical axis clockwise (viewed down the positive X axis), and the eccentricity 0,

0 < 0 < 90°, is the off optical axis angle.

The inverse relations are given by

X — Rf/i cos Qf/i,

Yrfl = ^r/l sin 0^/ cos 3.1.1.2

Z =R,^i sin 0^/; sin 0,//.

//
+ Z‘

and R,n=-W r̂tl + Z‘ 3.1. 1.1
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BINOCULAR SPHERICAL PROJECTION

CAMERA-RETINAS

Z-axis

A

Median Plane

X-axis

Figure C3: Two hemispherical camera-retinas, labeled ^
and L, are positioned

with their centers located ±d to either side of the origin. Curves of consmt

spherical azimuth and eccentricity are shown on R ,
while curves of constant bi-

retinal azimuth and elevation are shown on L

.
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SPHERICAL COORDINATES

Figure C4: The relationship between a world coordinate point P(X, T, Z) and

its spherical coordinates is shown. Note that the tangents for eccentricity 0 and

spherical azimuth (|) can be' easily read from the figure.
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These equations define, respectively, the right and left bi-spherical coordinates

for the camera-retinas. In addition, they define the right and left camera-retina bi-

spherical projections, p [({>;., 6;.]^ and p [{])/, 6/]/ of the point P(X, T, Z).

Bi-spherical coordinates will be used to characterize optical flow, which will

now be done in analogy with section 2.1. As there, let t/, V and W be the instan-

taneous translational velocities along, and A , B and C be the instantaneous rota-

tional velocities about the X, T and Z axis respectively. Further, denote by

6 = Qldt and isf = d ^Idt the resultant optical flow, in spherical coordinates, on the

camera retina. (Note that the right/left subscript will be dropped for the moment,

since the resultant characteri2Lation is identical for both.)

Then the optical flow is given by

e

k

+ z^

0

XY

-Z

y^-i-z^

xz

R2yfj^T^r^

Y

Y^ + Z^

U -BZ +CY
V -CX +AZ
W - AY + BX_

3.1. 1.3

The X, Y, Z terms of the center matrix are easily found using the chain rule, i. e..

dQ ^ ^ ^
dt dx dt dy dt dz dt ’

so that for example, the upper left hand entry is obtained by

d(d ^ d tan"^ <Y^ + Z^

dx dx X

Now substituting the right hand sides of definition 3. 1.1.2 for X, Y and Z into

3. 1.1.3 and simplifying, we have,

e
]_

R

—sin 6

0

cos 0 cos (j)

-sin (|)

sin 0

cos 0 sin (|>

cos (|)

sin 0

U -BZ +CY
V -CX +AZ
W - AY BX

3.1. 1.4

The most noteworthy fact of these expressions is that when optical flow is

expressed as in equation 3. 1.1.4 it is readily seen that the angular velocities of a

moving point in space are identical to its angular velocity on the camera-retina. This

is due to the property of spherical projection whereby a points angular coordinates

in 2-D image space are the same as its angular coordinates in 3-D space.
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3.1.2. BI-RETINAL COORDINATES

K figure C3, we have drawn another set of lines of constant elevation and

azimuth on the left camera-retina L

.

These are the second coordinate system we will

define, the bi-retinal coordinates of azimuth y and elevation 5. This also defines a

spherical projection, which to avoid confusion, we wLU refer to as the azimuthal

(spherical) projection. (Note that both coordinate frames of reference for both types

of spherical projection are being defined on both camera-retinas.)

More specifically, we have the following, referring to figure C5.

Given a point F(X, T,Z), the plane of elevation containing it defines P’s

angle of elevation 5, -90° < 5 < 90°. This angle will serve as the projection eleva-

tion coordinate for both retinas for the azimuthal projection of the point P

.

Unlike the elevation, which is identical for both retinas, the azimuths and

Y/, -90< Yr, ¥/ - 90°, are distinct They are defined to be the angle, measured in

the plane of elevation, between the median plane and the vertical plane containing

the point P and the respective retina center. Note that Yr Y/ measured in

opposite directions, so that if the point P is at infinity, Yr + Y/ 0.

Referring again to figure C5, we have the following relationships:

X =
2 d cos S

tan Yr + tan Y/
’ tan Yr

d + Y

tan Yr “ tan Y/
Y = d —

tan Yr + tan Y/

2 - 2 d sin 5

tan Yr + tan Y/
’

tan Y/ = d - Y

y!x^ + z^
3.1.2.1

(The tangents can be read off figure C5, while the Cartesian coordinates must be

algebraically derived.)

These equations define, respectively, the right and left bi-retinal coordinates

of the point P(X, y,Z). In addition, they also define the right and left camera-

retina azimuthal spherical projection coordinates p[Yr»5]^ and p[Y/>5]/ for the

point P(X, r,Z).

The relationship between bi-spherical

given by

and bi-retinal projection coordinates is

tan
sin 5

tan Yr//

and tan Q^/i

Vsin^ 5 + tan^ Yr//

cos 6
3. 1.2.2

and the inverse by
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BI-RETINAL COORDINATES

Figure C5: Bi-retinal azimuths \|/^/; are measured in the plane of elevation, mak-

ing angle 5 with the X-Y plane. The plane of elevation is determined by the

world point F(X, F, Z) and the F-axis. Note that the elevation angle 5 is the

same for both camera-retinas.
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Xl optical

axis

p

X-axis Xr optical

axis

Figure C6: The binocular disparity y is constant for all points X > 0 of the cir-

cle, while the binocular azimuth X is the same for both camera-retinas, e. g., in

the figure, y = yQ, and Xi = Xj, = X.
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„ tan 0;.// cos
tan 0 = sm tan 0^// and tan Xf^n - 3. 1.2.3

Vsin^ tan^ 0^// + 1

For example, to see that the bi-retinal coordinates are a spherical projection,

use equations 3. 1.2.2 to find cos 0, cos ({) etc., and substitute into 3. 1.1.2 to obtain

X - R^n cos 6 cos \|/^//,

Y =Rrn sin Y;.//. 3. 1.2.4

Z = R^/i sin 5 cos

a “standard” spherical projection with its “optical axis” rotated 90°.

Let the camera-retinas converge at infinity, i. e., assume both optical axes are

parallel to the X -axis. The problem of translating binocular disparity into 3-D infor-

mation may then be stated as the following:

Assume by some means that we have identified a point p which appears in the

projections of both camera-retinas with coordinates p[v,., 5] and p[y/, 5]. Then we

may apply the left hand side of equation set 3. 1.2.1 to compute X, T, Z, thus locat-

ing the point P in 3-D space firom its two projections.

The significance of the bi-retinal coordinates, as compared to bi-spherical coor-

dinates, is that in order that two projected points, and Pi be candidates for being

the projection of the same point /*, they must have the same elevation angle 5.

Hence, given a projection point p [y, 5] in one retina, the search to find its

corresponding conjugate projection p '[tj/, 5] in the other retina may be restricted to

the line of constant elevation 5, thus restricting searches to one coordinate.

For the half-plane X > 0, equation 3. 1.2.1 defines a constructive one-to-one

mapping between a point P(X, T, Z) and its two projections p [y;. y/ 5]. We may

refer to a points coordinates either in terms of Z-T-Z, or in terms of its y^-y/-5

coordinates.

By rotating both camera-retinas through the angle 5, R through the angle y^.,

and L through the angle y/, the point P will be projected to p[0,0];. and p[0,0]/.

and we will say that the two retinas are verged (contraction of converged and

diverged) on the point P .

For vergence, the camera retinas rotate around their respective vertical axes

independently, but are required to rotate in unison about the Y axis. Hence their opt-

ical axes will will always lie in the plane of elevation for the point verged to.

A A

Remark: Note that the rotation by 5 about the Y axis results in new X and Z

coordinates given by
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X = X cos 5 + Z sin 5 and Z = -X cos 5 + Z sin 5 = 0. 3.1.2.5

Hence one might think that the azimuths have changed. That this is not

the case can be verified by computing

tan

Vx^ + z^

Yrn

Vx^Tz^'
3. 1.2.6

The idea of vergence may be used to define the pan and tilt state vectors of the

camera-retinas: When the right and left camera-retinas have been tilted by 5 and

panned by an amount \}/;. and \j//, respectively, then their optical axes will intersect

at a unique point F, whose projection will be at p[0, 0];. and p[0, 0]/, i. e., the

respective origins of the camera-retinas. This establishes a one-to-one mapping

between all camera-retina states pa/i/, tilt], and points P(X, T, Z), X >0.

In table T are listed a number of additional identities relating Cartesian, bi-

spherical and bi-retinal coordinates.

In summary, bi-retinal coordinates provide, as compared to “standard” spheri-

cal coordinates, a two fold advantage in dealing with binocular disparity:

(1) Within the analytic model, they provide a geometrically simpler relationship

between a projected point’s retinal coordinates and its 3-D coordinates, and

hence,

(2) Within the computational model, provide a simpler computation for interpreting

binocular disparity.

In addition, projected feature points on the retina may be easily brought to the

fovea and verged in terms of the bi-retinal coordinates. This is due to the ortho-

gonality of pan and tilt.

3.1.3. BINOCULAR COORDINATES

We have defined \|/^// for a pair conjugate projections p,. and pi in such a way

that the quantity -l- xjf/ is the horizontal component of the retinal disparity. When

the optical axes of the two camera-retinas are parallel, i. e., verged at infinity, this

quantity is called the absolute binocular disparity for point P .

Assume that two points, P and P are in the visual field of the camera-retinas,

and assume further that the camera-retinas are verged on point P . Then the disparity

for the projections of P \ x/;. + Xjf'/ is called P '’s relative disparity with respect to

P.

Relative disparity is sensed as differential range in humans. World 3-D feature

points P are actively sought out and verged on, thereby making adjacent
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positive/negative disparities interpretable as being either nearer or farther than the

point P . Vergence takes place with respect to feature points within the fovea, so that

as an adjunct of this process, the feature point of interest must be brought into this

region. In this way disparities are calculated relative to the most highly resolved

feature points within the image.

When relative disparity is positive, P' is closer to the origin than P and the

disparity is said to be uncrossed; otherwise it is said to be crossed. This is reflective

of whether the optical axes “cross” in front of or behind the point P' in verging on

P.

The panning and tilting of the camera-retinas to achieve vergence is best done

in coordinates reflective of the role of binocular disparity. In addition, we are

interested in a coordinate system which is independent of either camera-retina, and

becomes “monocular”. To this end we define binocular coordinates. These coor-

dinates are motivated by Luneberg’s mathematical description of binocular geometry

as described in [LUNEBURG, HOFFMAN].

Figure C6 depicts the geometry of these coordinates: the camera-retinas are

converged at infinity, the point P has azimuths \|/^ and Y/ and a circle is drawn

through the three points R , L and P in the plane of elevation 5.

Geometrically, the binocular disparity \|/;. + \|// is the amount by which the lines

from the camera retinas differ from being parallel and hence it will be called the

binocular disparity f.

Y = ¥r+V/- 3.1.3.1

By a well known theorem of elementary geometry, this disparity angle is the same

for all points lying on the circle, and more particularly, for the point of intersection

of the circle and the X axis, i. e., in figure C6, J-Jq.

We define the binocular azimuth X, to be the angle made by the X axis and the

line connecting the point P to the intersection of the circle and the negative X axis.

This line is a bisector of the angle - y/ and hence is given by

Again by application of the same theorem, this angle is the same for both cameras

as measured from their respective optical axes to the line connecting their centers to

the intersection of the circle and the X axis. In figure C6, = X, and hence

we are justified in making this defiinition.
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sin (j)^ tan 6^ = tan 5 = sin
(f)/

tan 0/

X

-r

Z

sin (})

Vsin^cf) + tan^5

tan 5

Vsin^cj) + tan^5

tan 5

Vsin^(j) + tan^S

cos (j)

sin (j)

tan a +

tan \jf/ d - Y tan (j)^

sin (j);. tan 0^ = tan 5 = sin (j)/ t

X = 2d cot 5
tan ({);. tan

tan (j)^ + t£

Y =d

Z = 2d

tan tan (})/

tan
<t)^

+ tan (j)/

tan tan (j)/

tan (|)^ + tan (j)/

tan \|/^ + tan Y; = —=
yx

tan \j/^
- tan \|//

= —j=
yx

tan Y;.
- tan Y/

tan Yr + tan V/

tan (j);. + tan (()/
= —

^

tan (j)^
- tan (|);

= —
d^

tan
(t>^

- tan (j)/

tan (|)^ + tan ({)/

II

12

13

14

15

16

17

18

19

no

111

112

TABLE T: Identities relating Cartesian coordinates, bi-spherical coordinates and

bi-retinal coordinates.
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V, =
-^

+ X and \|f; = ^
- X 3. 1.3.3

The third coordinate for the binocular coordinates will remain the bi-retinal

angle of elevation 5.

By substituting 3. 1.3.3 into 3. 1.2.1, and simplifying we obtain

V . cos 2 X + cos 7 ^X = a : '-cos 6,
sm y

Y =d sin 2 X,

tan Y =

tan 2 X =

2d +

X^ + Y^ + Z^-d^

2 Y

sm y

^ , cos 2 X + cos y . ~
Z - d : '-sm o,

sm y

In the horizontal plane, 5 = 0, we have

„ . cos 2 X + cos 7
X = d : •-,

sm y

sin 2 X

Y^ + Z^ + d‘

“> 5=1

2d X
tan 7= — ; r

Y ^d
sm y

tan 2 X = 2X Y

X^-Y^ + d^

3. 1.3.4

3.1.3.6

3. 1.3.5

The locus of points having constant disparity is obtained by setting y = con-

stant, and yield the Veith-Muller circles [OGLE] through the camera retinas:

(X -d cot y)2 + 3.1.3.6

sin^ Y

a circle located at [X - d cot y,Y =0], with radius d/sin y. This circle is the one

depicted in figure C6. The locus of points which are perceived by a particular per-

son as having the same range, (and hence nominally zero disparity on the retina),

while fixating at some point on the X-axis results in the horopter [OGLE] of

Helmholtz, and in fact deviates from the theoretical Veith-Muller circles. This has

been attributed to everything from slight image scale differences between the left

and right eyes, to an as yet unknown need for perceptual space to be non-Euclidean,

and has been the subject of much research in perceptual physiology. This

discrepancy should not occur with artificial camera retinas.

If 5 is allowed to vary, a particular Veith-Muller circle becomes the surface of

a torus.

Similarly, setting X = constant yields the locus of points at a constant off axis

angle, and is given by

Y^-X^ + 2X Y cot 2X = d^' 3.1.3.7
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an hyperbola whose asymptotes are given by

Y=±dXvanX. 3.1.3.8

For large distances, these asymptotic lines are a reasonable approximation to the

points of convergence for the two camera retinas as a function of binocular azimuth.

A differential line element i. e., a short edge, (Ax, Ay, Az) will project to a

line element A5) on camera retina R

,

and to (-A\|// A5) on camera retina L

.

The vertical component of disparity, A5 is not extractable for reasons which are

exactly analogous to the aperture problem for optical flow. The projection of the

differential line element will make an angle 0 = tan'^AT/AZ with respect to the hor-

izontal, and hence its horizontal disparity will be shortened by the factor cos 6. In

order to determine the vertical disparity A5, a third camera-retina would be needed,

positioned in such a way that a vertical component could be extracted, i. e., laterally

to the first two. The temporal disparity produced by optical flow may provide this.

The next section elaborates on the geometry of optical flow disparity.

3.2. SPHERICAL PROJECTION, OPTICAL FLOW AND ICONIC IMAGE
REPRESENTATION

The objective of this section is to present a representation of iconic imagery

which will facilitate the algorithmic extraction and interpretation of optical flow

(temporal) disparities for a forward translating camera. More specifically, we are

interested in optical flow as mapped by spherical projection and subsequently

mapped to the plane, say for example, as would be the case in which such a lens

was used with a digitizing “video chip’’ camera-retina.

In the case of a laterally translating camera, addressed in section 2, it was seen

that the interpretation of optical flow was facilitated by the fact that the flow field

was uniform or linear. That is, the geometric interpretation of a temporal disparity

vector was independent of its location in the image.

For a forward moving camera, this is not the case. Instead, for a particular

range, the resultant optical flow is dependent on where in the image the object falls.

This true for both planar and spherical projection.

The log polar transform has been used for linearizing the planar projection of a

forward translating camera [WEIMAN, MESSNER, FISHER]. Here, the analogous

mapping for spherical projection is developed, along with the natural foveal-

peripheral resolution which comes with it
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Here, we are interested in a 180° field of view hemispherical lens in which the

resolution decreases in an analogous manner to that of the log polar mapping, and

hence makes disparities both easy to extract and interpret, i. e., in a manner that is

linear in camera velocity and range (or “invariant”, so that disparity is not a func-

tion of image location, but only range), across the entire image.

In the top half of figure C7 we show the geometry of spherical projection:

Each point P(R, 0, <I>) of space takes on spherical projection coordinates eccentri-

city 0 and azimuth (|> determined by the point on the sphere intersected by the

straight line connecting the point P and the center of the sphere. The camera-retinas

are hemispheres, so that the spherical projection defined here is restricted to X >0.

Spherical projection lenses are readily available commercially, though mostly

sized for a standard 35 mm camera. They are known generically as “fish-eye

lenses”. This name came about as a result of photographs published in 1906 by

Robert W. Wood, [WOOD] , of Johns Hopkins University. His photographs were

made using a box, emulating a “pin-hole” camera, filled with water, and due to the

differences in indices of refraction for air and water, resulted in 180° field of view

images, and are what he imagined a fish viewing the world of air might see.

More technically, these fisheye lenses are known as equidistant spherical pro-

jections and are designed to be used with a planar focal plane, e. g., a flat piece of

35 mm film. (See bottom half of figure Cl.) Hence, there are really two projections

being performed and combined into one.

In a standard 180° field of view fisheye lens a 3D point F(/?, 0, located at

range R , eccentricity 0 and azimuth C), 0 < 0 ^ 90°, 0 < O < 360°, is first

“mapped” under spherical projection to a point (0, (J))
= ^^(0, ^>) on the sphere,

which in turn is mapped by py to the point (0, $) in the image space circle given by

Pyi 0=/0 and $ = <!>• 3.2.1

This results in an image whose “magnification” or “power”, or reciprocally,

its “resolution”, is constant along a radial line, as determined by the constant f, and

hence the name “equidistant”. However, the image is geometrically “distorted”

when compared to the original spherical image or to a planar projection image.

As a result, these are not “true” spherical projections, these latter being avail-

able only on a portion of a sphere. In this report we will refer to these equidistant

projections as polar spherical projections since they treat 0 and <}> as polar coordi-

nates.

Another way of viewing this projection to the plane is to note that dQtdQ - /,

a constant In the next subsection this constant relationship is changed so as to
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provide for a radially decreasing resolution.

3.2.1. SPHERICAL PROJECTION AND FOVEAL-PERIPHERAL RESOLU-
TION

In a previous section we defined the bi-spherical projection coordinates for

each camera-retina. Since these are identical, in this section we will treat both in the

same terms, and will refer to a single camera-retina etc.

A

The radial mapping of 0 to 0 which we will define will provide for a central

region of high constant resolution, i. e., a “fovea”, with the resolution outside this

region falling off monotonicaUy as a function of eccentricity 0. For the moment we

will arbitrarily introduce this mapping and justify it in the next section by showing

how it solves the problem of “linearizing” optical flow for a forward translating

camera-retina.

The function will be denoted by 0(0), and its value by 0: (In denotes the

natural logarithm)

0

e(0)=1
sin F

, 0 ,
F F

In tan-— - In tan— -l—:—

—

2 2 sm F

0<F

0>F
3.2.1.

1

Figure R1 is the graph of this retinal mapping. Points within a circle of radius

F about the optical axis constitute the “fovea”, a region having both a constant and

the highest resolution. Note that an angle 0 becomes a distance 0 in the image plane

0
under the mapping. To algebraically simplify the expression In tan— F has arbi-

trarily been assigned the value

F = tan-^e-^ - 3.77° 3.2.1.2

in computing this graph.

In the figure there are two curves. The solid curve is the graph of 0(0) and is the
A

radial displacement of 0 as a function of eccentricity. It has been arbitrarily normal-

ized by dividing it by its maximum, 0(90°), whose value is

-In-^ + = 57.2962. 3.2.1.3
2 sm F

The dotted curve is the graph of the derivative of 0 with respect to 0. This

function is

1

sinF

de
I

1

. sin 0/2

0 <F

0 ^F
3.2.1.4
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EQUIDISTANT/POLAR SPHERICAL
PROJECTION

P(R,©,<I>) X Optical axis

Film/CCD Sensor

Figure C7: The projection geometry of a “fisheye” lens is shown. At top the

spherical projection is shown which in turn is then mapp>ed to the flat plane of

film. It is not a true spherical projection.



F = ATAN E; S = l.O/SIN F;

fl'=IF e<F THEN S*e ELSE l6g[TAN 6/2 / TAN F/2]+S*F

O

ECCENTRICITY THETA 6 IN DEGREES

Figure Rl: Graph of the foveal-peripheral retinal mapping. The solid line is the

radial displacement of 0 as a function of eccentricity 0. The broken line is the

derivative (normahzed from 0 to 1), which has the interpretation as being the

number of resolution elements per unit of viewing angle eccentricity, (Note that

0 is denoted 0 ' above.)
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Note that both curves are continuous at the boundary of the fovea, 0 = F

.

The value of this derivative has the interpretation of being the number of resolution

elements per degree of eccentricity, i. e., the “power” of the lens. For most lenses,

this is a constant and is the reciprocal of the focal length f. This assumes that the

resolution elements are uniformly located on the film, or in the case of a digitizing

video camera chip, that the pixel elements are of a constant size and uniformly

located.

Again, the value of the plot is normalized to a resolution of 1.0 within the

fovea, and as shown in the graph, the magnification power drops off radially.

3.2.2. THE REPRESENTATION OF OPTICAL FLOW FOR A FORWARD
TRANSLATING CAMERA-RETINA

Under spherical projection, translation along the optical axis with velocity v

results in an optical flow field on the hemispherical camera-retina which can be

identified with the change in eccentricity 0 and azimuth (j) with time, i. e.,

0 = (i 0 / rfr and ^ = d ^Idt , and is related to the camera velocity v , range R and

eccentricity 0

V =UandV = W = A

by (See

s F s C = 0)

equation 3.1. 1.4, in which

A V sin 0

R
and ^ = 0. 3.2.2.

1

Hence, range R is related to numerically extracted optical flow by

„ V sin 0
3.2.2.2

and conversion of extracted optical flow to range is dependent on location 0 in the

image. It is the goal of what follows to demonstrate that it is possible to “warp”

the image in a manner which removes this image location dependence.

Figure F2-(a) shows a polar spherical projection of the optical flow in which

the camera-retina is translating toward a field of 324 points uniformly positioned on

a hemisphere and hence all at the same range. The arrows connect locations in the

projection at time 1 to locations at time 2, i. e., the optical flow. The flow is radi-

ally outward, along lines of constant azimuth (j), and their magnitude is seen to

increase radially, as would be indicated by the sin 0 factor in 3.2.2. 1.

It is this sin 0 factor which we propose to get rid of by choosing an appropriate

0 foveal peripheral mapping. That is, we want to find 0 = 0(0) so that

/?=g(v,§) 3.2.2.3
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for as some yet undetermined relationship g

.

This can be accomplished by rewriting 3.2.2.2 as

dQldt _ _v^

sin 0 /?
’ 3.2.2.4

where each side is constant for a fixed R, and hence by integrating each side,

^ sin 0 ^ R

, 6 ,
00 v(r-ro)

In tan — - In tan — = , 3.2.2,5
2 2 R

we have the displacement on the retina which will keep v/R constant

This mapping cancels out the sin 0 term and the resultant relation between

range and extracted optical flow is then given by

R = ^ 3.2.2.6

e

This is easily verified. Noting that

e = and
dQ dQ

we have by substituting this into 3.2.2.2

V sin 0

sin 0
’

R =
0

V sin 0

§4dQ
V

6

3.2.2.7

3.2.2.8

Within the region of the fovea, the mapping can be linear, as is the case for the

primate and human fovea. The constant of proportionality is determined by requiring
A

that the resolution, i. e., the derivative of 0 with respect to 0, be equal on both sides

of the boundary of the fovea. This, by straightforward calculation, is 1/sin F . The

remaining value, the amount by which the mapping must be translated, is deter-

mined by requiring that the displacement also be equal across the fovea boundary.

Again, by straightforward calculation, this turns out to be ~ln F/2 + F/sin F. Put-

ting this all together, the result is
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Figure F2: The radial optical flow for a forward translating spherical field of

points is shown in (a), and below it in (c), the corresponding range normalized

mapping. Opposite them, (b) and (d), are the corresponding isometric representa-

tions. Note that in the normalized mappings, all optical flow vectors have the

saiffe magnitude.
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e

m =
sin F

0 F
In tan In tan — +

2 2

F
sin F

e<F

e>F
3.22.9

the same as was given in section 3.2.1.

Note that for small 0, In tan 0/2 - 0, so that in the region of the retina, radial

flow is also linearized.

Figure F2-(c), labeled as a logarithmic spherical projection, shows a remapping

of figure F2-(a) in which 0 has been remapped according to equation 3.2. 1.9.

We call this remapping range normalization, since the magnitude of optical

flow disparities will be equal if and only if they are generated by points having the

same range. This can also be said about optical flow extracted from contours which

have been compensated by dividing by the cosine of the angle between its normal

and the angle 0, in a manner analogous to that for the laterally translating camera.

The question naturally arises as to whether their might be other remappings

which normalize optical flow for some other significant subset of 3-D points. The

answer is yes. For example, as will be developed in the next subsection, there exists

retina remappings which renormalize depth, i. e., the component of range along the

optical axis of the camera retina. However, before doing this, we address the matter

of image representation.

The logarithmic spherical projection is an abstract mathematical mapping and is

not a representation. By representation is meant a discrete sampling, or tessellation,

whose geometry (shape of the pixels) is implicitly representable in some manner, e.

g., as regularly spaced samples in 0 and (j), and hence easily mapped to conventional

computer memory.

In figure F2-(c) we have depicted the image using the same polar plot of as for

figure F2-(a). This representation has a non-rectangular non-regular tessellation in 0

and (() coordinates and hence is not easily mapped to the rectangular regular tessella-

tion geometry of the computer. This latter pixel geometry is well suited to numerical

computing of gradients, convolution operators etc., while the former is not

Another aspect of the spherical manifold, if left unmapped to orthogonal planar

coordinates, is that the spherical gradient must be used in calculating the gradient

In particular, the visual flow constraint equation for orthogonal coordinates, given in

equation 2.2. 1.1, must be recast in the form

8/ d0
^

1 dl d(t> _ dl
3 22 10

80 dt sin 0 8(j) dt dt
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This results in a two dimensional gradient calculation, i. e., the analog of equation

2.2. 1.3, of the form

k-'’4J = 3.2.2.11

The remapping of the eccentricity 6 explicitly indicates the radially decreasing

resolution when mapped to a linearly addressed manifold, e. g., the graphical output

shown in figure F2-(d). This is not the case for the spherical azimuth ^ since the arc

length decreases toward the fovea for a constant differential angle A(j).

For these reasons, the isometric plane [KRAKIWSKY] representation of the

sphere is appropriate. In this representation the spherical azimuth (j) is plotted at right

angles to the eccentricity 0. Figure F2-(b) is the isometric plane representation of

figure F2-(a). Note that for the unnormalized case, eccentricity 0 varies from 0° at

the top (fovea) to 180° at the bottom, which is to the rear of the camera-retina. In

this report, eccentricity angles greater than 0 = 90° will not be used.

Figure F2-(d) is the normalized optical flow corresponding to figure F2-(c), but

in the isometric plane representation, or as we shall refer to it, the logarithmic

isometric plane, when it is a normalized image. For the normalized case, the eccen-

tricity domain 0° < 0 < 90° is arbitrarily mapped to the normalized range 0 < 0 < 1

for purposes of plotting.

In the logarithmic isometric plane representation, optical flow (both magnitude

and orientation) for two points is equal if and only if it is the projection of 3-D

points having the same range. In section 5.1.1 an experiment using the wire frame

scene simulator is described demonstrating range normalization.

The isometric and logarithmic isometric representations expand the arc lengths

for differential Acj) so that when plotted on a linearly addressed manifold, differential

area is proportional to differential 0 times differential 0. This is what is needed in

order to treat all pixels as geometric equivalents.

This solution appears (very roughly) to be (one of many) used in the map from

the primate retina to the visual cortex and for the same reason: resolution elements,

represented by neurons all of the same size, require area proportional to their

number, and hence if forced to an approximate rectangular region, will take on the

form of the logarithmic isometric plane in order to minimize total inter cell linkage

length [SCHWARTZ]. It is logarithmic because the cones/rods are denser in the

fovea. A retina whose density of rods/cones were constant would map to the

isometric plane. It is not yet known whether this is of any consequence for

48



Disparity Representation for a Forward Translating Camera

biological vision.

Another important property of the logarithmic isometric plane is its “rotation

and scale invariance’’: rotation about the optical axis results in a circular translation

along the (j) axis of the isometric representation, while a scale change, in which the
A

camera-retina acts as the origin, results in a translation along the 6 axis.

Similar ideas have been documented in a number of places, e. g., [WEIMAN,

FISHER], for the so called “log-polar’’ transform. The log-polar transform is the

planar projection image “normalized for depth’’, as opposed to range as discussed

above for spherical projection. The log-polar transform is the stereographic projec-

tion of the range normalized spherical projection of the same scene. In the next sec-

tion, where several other normalizations will be discussed, the exact analog for the

log-polar transform, “depth normalization’’, will be given for a forward translating

spherical camera-retina.

3.2.3. OPTICAL FLOW NORMALIZATION

The numerical extraction and geometric interpretation of optical flow is facili-

tated by having an iconic image representation in which the underlying manifold of

the representation does not enter into the computation.

This was exemplified in the previous section, where the range normalization

mapping and subsequent representation as the logarithmic isometric plane, created a

manifold in which two optical flow vectors are equal if and only if they come from

points having the same range.

By replacing range with some other set of 3-D points we can ask the same

question as was asked at the beginning of the last section: Is there some mapping of

the spherical projection which will cause these points to be normalized so as to

have a simple geometric interpretation, i. e., inverse mapping back to these points,

based on optical flow?

In this section three additional such subsets will be described and the analogous

mappings defined. These sets and their properties are based on work done by [LEE,

RAVIV] where the relevant geometric properties are called “invariants’’.

These 1-D parameterizations of 3-D space are (the constant range points of the

previous section are included for completeness):

(1) Constant Range: These points are characterized by being at a constant range

firom the camera-retina, i. e., points lying on a sphere centered at the camera-

retina.
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(2) Constant Depth: These points are characterized by lying in the plane perpen-

dicular to the optical axis of the camera-retina, and are also referred to as con-

stant time to contact points in the literature [LEE, RAVIV],

(3) Constant Looming: Looming is defined [RAVIV] as -R IR and is a measure of

an obstacle’s collision threat Points of constant looming lie on a sphere pass-

ing through the center of the camera-retina and whose diameter is coincident

with the translational vector of the camera-retina.

(4)

Constant Clearance: These are points lying on a cylinder whose axis is coin-

cident with the translational vector and represent points which have a constant

lateral depth or clearance [RAVTV, ALDUS].

These subsets of points are easily understood in terms of the equation relating

optical flow, range and camera-retina translational velocity, i. e., equation 3.2.2.4:

V ^ e

R sin 0
3.2.3.

1

The instantaneous velocity v and range R are constant, while 0, or some func-

tion of 0, becomes a 1-D parameter for the subset of 3-D space. Constraining this

through the use of 3.2.3. 1 results in a differential relationship which upon integra-

tion yields the normalizing map in which two optical flow vectors are equal if and

only if the are generated by points in this 3-D subset.

Each of these will be briefly treated, starting with (2), since (1) was covered in

the previous section.

3.2.3.I. DEPTH NORMALIZATION

Instead of keeping R constant, as in the proceeding section, it may be desirable

to keep depth constant Points at a common depth X from the camera-retina are

parameterized by 0 and in terms of range R are given by :

X=/?cos0 O<0^O°. 3.2.3.1.1

Hence by 3.2.3. 1 we have, dividing equation 3.2.3. 1 by cos 0,

V ^ 1 0

R cos 0 cos 0 sin 0

dt = —-—rf0
R cos 0 sin 20

f' V 2
t —7:dt = f -

•0 R cos 0 sm 20

— - fn) = 0 - In tan 00 3.2.3.1.2
R cos 0

50



Disparity Representation for a Forward Translating Camera

This last equation is the radial displacement which will keep vIR cos 0 con-

stant. Introducing a fovea of radius F, and requiring that both displacement and the

resolution across the boundary of the fovea be equal results in the depth normaliza-

tion retinal mapping:

6(0) =_ <

20

sin IF

In tan 0 - In tan F +
2F

sin 2F

0 <F

F < 0 < 90°

3.2.3.1.3

Again, it is easily verified that the set of points at a constant depth, R cos 0, is

given by

n V sin 0 cos 0 V
R cos 0 = : = -r-.

0 0
3.2.3. 1.4

Figure R4-(b) shows the graph of the depth normalization mapping along with

its derivative. Both have been “normalized” to lie within the range 0 to 1.

In section 5.1.2 an experiment using the wire frame scene simulator is

described demonstrating depth normalization.

This depth normalization is the spherical projection analog of the log-polar

transform [WEEMAN, FISHER], In section 3.3.1 this relationship is elaborated on.

3.2.3.2. LOOMING NORMALIZATION

Spheres of constant looming have been discussed in [RAVIV] and refer to

points at range R lying on a circle whose diameter is given by /? / cos 0. Looming

normalization refers to the mapping of the spherical projection in such a way that

two optical flow vectors are equal if and only if they lie on the same sphere of con-

stant looming.

These points of the sphere can be parameterized by the reciprocal of the radius

of the sphere in terms of 0 and range R as:

—1— ^co^
O<0<9O°. 3.2.3.2.1

radius R

Hence by 3.2.3. 1 we have, multiplying equation 3.2.3. 1 by cos 0,

V cos 0

R

V cos 0

R

r‘ V COS 0

= COS 0
0

dt =

sin 0

dQ

tan 0

® de

tan 0
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V cos 6

R
(r - ^o)

= sin 0 - In sin Bq 3.2.3.12

This last equation is the radial displacement which will keep radius curvature

cos Q/R constant. Introducing a fovea of radius F, and again requiring that both dis-

placement and the resolution across the boundary of the fovea be equal results in the

looming normalization retinal mapping:

0 (0) =1

0

tan F

In sin 0 - In sin F +
tan F

0 <F

F < 0 < 90°

3.2.3.13

Again, it is easily verified that the set of points on one of these circles whose

radius is R /cos 0, is given by

R _ V tan 0 _ _v

cos 0 0 §
* 3.2.3.2.4

Figure R4-(c) shows the graph of the depth normalization mapping along with

its derivative. Both have been “normalized” to lie within the range 0 to 1.

In section 5.1.3 an experiment using the wire frame scene simulator is

described demonstrating looming normalization.

3.2.33. CLEARANCE NORMALIZATION

In the situation in which the camera-retina is translating along a straight line,

the prediction of obstacles adjacent to this line which it will not “clear” is desir-

able. The locus of this points for a constant radius of lateral clearance is a cylinder

whose axis is collinear with the axis of translation. [ALBUS, RAVTV]

A point at range R will lie on the cylinder whose radius is given by R sin 0.

Hence v/F sin 0 is constant, and so by 3.2.3. 1 we have

V 1 0

F sin 0

V

F sin 0
dt =

sin 0 sin 0

1
d0

sin^0

0 d0f'—
^ F sm 0 ^ cisin^0

p - ^o)
= -cot 0 - cot 00

F sm 0
3.2.3.3.1
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This last equation is the radial displacement which will keep v/R sin 0 con-

stant Introducing a fovea of radius F, and requiring that both displacement and the

resolution across the boundary of the fovea be equal results in the clearance normal-

ization retinal mapping:

e(0) =

e

sin^ F

-cot 0 + cor F -h

sin^ F

0<F

F < 0 < 90°

3.23.3.2

Again, it is easily verified that the set of points at a constant clearance,

R sin 0, is given by

R sin 0 = _v
3.2.3.3.3

Figure R4-(d) shows the graph of the depth normalization mapping along with

its derivative. Both have been “normalized” to lie within the range 0 to 1.

In section 5.1.4 an experiment using the wire frame scene simulator is

described demonstrating clearance normalization.

3.2.4. GENERALIZATION OF RANGE NORMALIZATION

(This subsection may be skipped on first reading as it does not add anything of

a substantive nature, and is included here only as a lead for further work.)

In section 3.2.2 range normalization was described for the case of the camera-

retina translating parallel to its X axis. In this section this motion is generalized to

the case where motion is in the X -Y plane and only the horizontal line ^ = cos“^ 1

,

i.e., (j) = 0° and 180°, of optical flow is considered.

Referring back to equation 3. 1.1.4, and letting all motion parameters be zero

except for u = —U and v = -F, the radial optical flow 0 is related to the camera X
and Y axis velocity components u and v, range R and eccentricity 0 by

A w sin 0 - V cos 0 cos 6 „ u sin 0 - v cos 0 cos (b ^ ^ a t
0 = or, R : 3.2.4.

1

F, 0

If cos (j) is 1, as will be assumed, then we have the following:

Denote by x the angle, measured in the X-T plane, between the optical axis of

the camera-retina and the direction of camera-retina translation:

x = tan-^-^. 3.2.4.2
u
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This “phase” angle is the amount by which the origin of the range normalization

must be shifted in order that it coincide with the “focus of expansion”.

The resultant range normalization mapping is then given by

9 (0) =1

e

sin F

In tan
0+x . . F

,
F— In tan — + —

—

2 2 sm F

0 <F

0 >F
3.2.4.3

This simplifies the interpretation of the optical flow in a manner analogous to

the simpler case of motion parallel to the X axis. That this is so can be seen by first

noting that

t/0 ^ 1

cf0 _.0 + x 0 + x
2 sm —-— cos —-

—

2 2

^ 1

sin (0 + X)

^ 1^

,

^ sin 0 '
^

cos 0

X *

and hence by substituting 0 for 0 in equation 3.2.4. 1 we have

_ u sin 0 - V cos 0

0

_ u sin 0 - V cos 0

dQ de

dt ' d0

_
A »

0

3.2.4.4

3.2.4.5

which shows that the range calculation is independent of 0.

It is of interest to consider the case where x = 90°, i.e., when the camera-retina

is translating laterally to the optical axis. In this case the “fovea” has shifted from

0 = 0 to 0 = 90° in order to keep optical flow normalized. The derivative in this
A A

case is 1/cos 0 as opposed to 1/sin 0.

The integral
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J ^ S-
3.2.4.6

•’ w + M Sin 0 + V cos 6

has a closed form solution in terms of In tan 0/2 and we speculate that it may

represent an invariant under some more general motion for which the assumption of

cos (|) = 1 is not needed.

3.2.5. NORMALIZATION AND THE GEOMETRIC INTERPRETATION OF
OPTICAL FLOW

The proposed solution to the computational problem of interpreting optical flow

for the forward translating camera-retina is then a matter of exploiting the loga-

rithmic isometric representation of the normalized optical flow. In particular, the

relevant facts concerning this representation are:

(1) Optical flow is independent of 0 and (j), and hence the interpretation of magni-

tude is the same throughout the image.

(2) More particularly, two optical flow disparity vectors are equal if and only if

they come from the same 1-D parameterization family.

(3) For a static scene, optical flow is a function of 0 and not of (}), and hence

disparity extraction and interpretation is a one dimensional numerical extraction

along lines of constant (j), the same as for a laterally translating camera viewing

a static scene as discussed in section 2.3.1.

(4) The logarithmic isometric representation is rotation and scale invariant This

refers to the fact that relative rotation about the optical axis of the camera

retina results in a translation along the (|) axis and translating an object parallel

to the axis results in a shift along the 0 axis. Thus rotation and scale are just

offsets in the logarithmic isometric plane representation.

(Item (4) is included for completeness only, and wiU not be used in what

immediately follows.)

Items (1) through (3) characterize the situation in a manner which make the

geometric interpretation of optical flow analogous to that for a laterally translating

camera, but with depth replaced by one of the 1-D parameterizations discussed

above. The 0 and (j) axes become the y and z axes described there.

Hence the methods described in section 2.3 are applicable. More precisely, the

optical flow resulting from the introduction of moving objects into the scene can be

treated in an analogous manner as was done there: extracted optical flow normal

components for static objects will be shortened by the cosine of the angle they make

with the “radial” direction, i. e., lines of constant (|). Translating objects of the
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scene will have their normal components shifted as described in section 2.3.3., and

hence their loci of normal components will shift in the magnitude-orientation plot.

In particular, the algorithm described in section 2.3.4 is applicable. This makes

possible the segmentation of the normalized image into regions which are character-

ized by 1-D parameterized regions moving as distinct rigid bodies viewed from a

forward translating camera-retina.

33. COMPARISON OF PLANAR PROJECTION AND SPHERICAL PRO-

JECTION

Historically, computer vision research has been carried out using planar projec-

tion for both the analytic model and the computational model. We have suggested

that for purposes of analysis, spherical projection has certain simplifying advantages

for dealing with both binocular disparity and optical flow disparity. In this section

planar projection and spherical projection will be related, primarily in terms of the

log-polar transform as it compares to the normalization described in this report.

3.3.1. MATHEMATICAL MODEL RELATIONSHIPS BETWEEN PLANAR
AND SPHERICAL PROJECTION

The planar projection model and associated notation will be the same as in sec-

tion 2.1: upper case X, T, Z will refer to 3-D coordinates and lower case y, z will

denote image coordinates related by

3.3.1.

1

Note that the optical axis is aligned with the X axis and not the Z axis as is usual.

Spherical projection will be as defined by equations 3. 1.1.2 and 3.1. 1.3: the pri-

mary definitions are

3.3.1.2and tan (j)^
= .

Note that we have used the subscript s to indicate spherical coordinates, and will

subscript planar projection variables with p to avoid confusion.

Figure C8 shows how they are related geometrically: the planar projection

plane will be tangent to the sphere of projection at X = / , where / is the focal

length of the planar projection and the radius of the sphere of projection.

Define polar coordinates and 6^ for the planar projection by

Kp = + z^ and tan 6^
= — 3.3.1.3
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RELATIONSHIP BETWEEN SPHERICAL
AND PLANAR PROJECTION

Figure C8: The relationship between a world point P(^
, Y ,Z) and its

projection Pp(y , z) and spherical projection ((}), 0) is shown. The relai

is tan = rplf and = 0^.
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Figure LI: Log-polar Transform of Test Scene - At top left is original image

and to its left, its log-polar transform. Pairs below are of the test scene rotated

45° and 90°, respectively, showing how transform is shifted circularly to the left.
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Then the basic relationship between spherical and planar projection is

tan 0^ = and
" /

This is easily seen from figure C8 or by

3.3. 1.4

3.3.1.5

and the following:

3.3.1.6

We next show how the log-polar transform and the normalizations described in

this report are related.

A number of vision researchers, in which [WEEMAN] was one of the first, sub-

sequently followed by many others, have advocated the use of the conformal map-

ping of planar projection images by the complex logarithm. This has been motivated

by both anatomical evidence for the map in primate vision and by the mathematical

properties of the transform itself [JAIN, MESSNER]. [FISHER] has reported on pro-

grammable hardware for performing this type of remapping in real time.

Properties of the complex logarithm (“log-polar”) transform include “scale

invariance” and “rotation invariance”. These refer to the property that concentric

circles (points of constant ) and radial lines (points of constant 0p ) map to vertical

and horizontal lines in the transform space. Hence motions along these lines, e. g.,

rotation and scale change are translations in the transform space.

Figure LI demonstrates this invariance. The top left image is a planar projec-

tion of a circular disk, the upper half of which contains concentric alternating black

and white circles, and the bottom half alternating black and white radial lines.

(Note: the circles are not round due to the video camera pixels not being

“square”; this was compensated for in computing the transform.)

The image to its right is the corresponding log-polar transform. In the

transform, the concentric circles map to the horizontal lines on the right, and radial

lines map to vertical lines on the left.

The angle (j) is measured counterclockwise starting with (j) = 0 at the “three

o’clock” position in the original image and goes from left to right in the transform

image. The radial of the original maps logarithmically from the top down in the
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transformed image, i. e., the highest resolution is at the top.

In the images below the top pair, the circular disk has been turned by 45° and

90° with the corresponding circular shifting to the left along the horizontal in the

log-polar transform.

An additional property of the log-polar transform is that it “linearizes” optical

flow for a forward translating camera with respect to depth in a manner analogous to

what has been called depth normalization in this report for a spherical projection

camera-retina: The log-polar transform as applied to a planar projection image and

the depth normalization mapping as represented by the logarithmic isometric plane

result in the same image having the same properties. (Except for differences in sam-

pling resolution between planar and spherical projection).

More precisely, the log-polar transform is defined by

w=\nwy (ln = log^) 3.3. 1.7

where w and w are complex variables over the original and transformed images

respectively, and are of the form (i = V^)

w = y + iz = rp(cos 6
p
+ / sin 0p) and w = u(y) + /v(z). 3.3. 1.8

The functions u and v can be expressed as functions of the modulus and angle

dp as

{u(rpy dp) = In Tp

|v(rp, Gp) = Gp

From section 3.2.3. 1 the depth normalization mapping is

3.3.1.9

e(G) =_
<

2G

sin 2F

lntanG-lntanF +
2F

G <F

F < G < 90=

3.3.1.10

sin IF

The critical term is In tan 0, which by 3.3. 1.4 above allows the substitution of fplf

for tan 0 , making the entire mapping outside the fovea

In -
7— In tan F -t- 3.3.1.11

/ sm IF

Note that (j)^
= Gp so that the horizontal coordinate in the two representations is the

same.

This shows that given the above definition for the log polar transform for

planar projection images, the depth normalized image can be generated from a
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planar projection image, i. e., values of and 0^ can be used to generate the loga-

rithmic isometric plane representation of spherical projection.

The other direction, showing that depth normalization is a particular log-polar

mapping, requires that a fovea be introduced into the definition of log-polar mapping

by replacing w by w+F in equation 3.3. 1.7. This is easily done and in fact there is

some evidence for doing so from the study of cortical topography [SCHWARTZ].

Figure LI described above was generated from a planar projection image using

the depth normalization mapping as it applies to and 0^. This is discussed in

more detail below and in section 5.2.2, where results of a program implementing

this transformation is described.

The range normalized spherical projection and the log-polar transform are

related through stereographic projection of the first to the second.

More precisely, the critical term of the range normalization mapping is

In tan 3.3.1.12
2

From equation 3.3. 1.4 and using the identity tan 0/2 = sin 0/(l-l-cos 0) we obtain

tan -^ = 3.3.1.13
2

For the looming and clearance normalizations one finds by similar substitutions

that

rp -f
In sin 0- = In • and -cot 0, = — 3.3.1.13

The relationships between spherical normalization and its planar projection

equivalent are summarized in table T2.

The significance of these relations is that they provide the basis for computing

the normalizations described in section 3.2.3 for planar projections. The significance

of the spherical projection model is that it made the analysis much easier.

In the next section a method for computing the normalizations from planar pro-

jection images is briefly discussed. In section 5.2.2 examples using this method on

planar projection imagery are shown.
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Spherical and Planar Projection Normalization

Normalization Type Spherical Projection Coordinates Planar Projection Coordinates

Range In tan
2

In

Depth In tan 0^

Looming In sin 6^ -

Clearance -cot 0^
zL
'p

TABLE T2

3J.2. COMPUTATIONAL MODEL RELATIONSHIPS BETWEEN PLANAR
AND SPHERICAL PROJECTION

The computational issue of interest concerns the interchangeability of planar

and spherical projection images. By interchangeability is meant that given an image

in one form, it may be readily converted to the other form. In particular, we first

show here that the ideas developed for normalization can readily be applied to

planar projection images.

We first briefly address the technical problem of image transformation.

Assume that a nonlinear mapping function g is to be applied to an input image

so as to produce an output image. By nonlinear is meant that the function is not just

a translation. The program for performing this must generate values at the regularly

spaced predefined locations of the output image. Hence, it must evaluate the inverse

of g, at those output image locations, yielding a location in the input image at

which that image is to be sampled.

Sampling is performed by fitting a surface to the pixel values in the vicinity of

the desired sampling location, followed by evaluating this surface at the desired

(subpixel) location. In general, some pixels may be sampled many times while oth-

ers not at all.

In the next section the inverse of the depth and range normalization mapping is

derived. While this is not complex it is “tricky” to think about since things are

going in the “reverse” direction. It and the following section, describing the planar

projection to spherical projection transform, may be skipped if desired. Experimental
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results based on these equations are described in section 5.

3J.2.1. INVERSION OF NORMALIZATION FOR PLANAR PROJECTION
IMAGE SAMPLING

Starting with the depth normalization mapping

20

m _ •<

sin 2F

In tan 0 - In tan F +
2F

sin 2F

Q^F

F < 0 < 90°

3.3.2.

1

solve the peripheral term for tan 0 obtaining

tan 0 = tan F e^2F/sin 2;^^ 3.3.2.2

But tan 0 is r_ , so that we have, incorporating the fovea.

0 sin 2F 0 <
2F

sin 2F

/ tan F
2F

sin 2F
< 0 < MAXROW

3.3.2.3

But since is the radial distance, y, z must be calculated from (remembering that
A

0 and (|) are rows and columns of the logarithmic isometric plane representation).

y = r cos ^

z = Fp sin (|)

’ 3.3.2.4

This X and y are the coordinates at which the planar projection image is to be sam-

pled.

For range normalization one proceeds as above starting with the range normali-

zation mapping. One obtains for

''f
=

-2 tan — e
2

^ 0-F/sin F

(tan — ^®-^'"^^-l)(tan ^
2 2

3.3.2.5

In practice additional considerations must be made. For example, the value of

the focal length must be given a value reflecting the value for the camera taking the

planar projection image in order to not change the scale in a nonlinear way.
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In a similar manner to that above, the computational formulas for generating

the looming and clearance (from table T2) normalized logarithmic isometric form

from a planar projective image may be found.

3.3.2.2. TRANSFORMING PLANAR PROJECTION IMAGES TO SPHERI-

CAL PROJECTION IMAGES

The reflection of a spherical mirror is geometrically invariant under rotation of

the sphere, while a reflection from a plane mirror will geometrically change under

the same rotation.

One of the apparent advantages of spherical projection is that under saccadic

(in analogy with the small involuntary eye rotations in observed in primates)

camera-retina rotation, such images are superior due to the nondistorting effect of

such rotations. That is, successive images of a spherical camera-retina are easily

registered in overlapping regions of the two images. For planar projection images

this is not the case. It can be argued that this distortion creates undesirable effects

when integrating iconic imagery over saccades. For this reason we have investigated

the transforming of planar projection images into the corresponding spherical projec-

tion images.

In this section we will indicate the computation needed for this conversion.

More precisely, since a spherical projection cannot be mapped to the plane without

distortion, we will give the equation which will simultaneously generate the spheri-

cal projection and map it to the plane. This later mapping will be the depth normal-

ized spherical projection, but could just as well be the range normalized spherical

projection. The polar spherical projection computation is also indicated in what fol-

lows.

The computation is nearly identical to the logarithmic plane representation of

the depth normalized image. The difference is that f~^ is applied to the polar map-

ping rather than to the isometric mapping.

More precisely let y and f be the image coordinates of the output image and

define 0 and ({> by

3.3.3.

1

Then is calculated as in the logarithmic isometric plane representation case:

0 sin 2F
sin 2F
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This then is followed by the conversion to coordinates of the original image:

y=r cos
(J)

<

z = Tp sin ({)

’ 3.333

The range normalized analog of this computation is similar. In section 5.2.1 an

experimental computation for performing this latter is described.

If in the above equation for equation 3.3.3.2, is set to equal 0, then the

polar spherical projection results.

Computationaly converting a sequence of images taken from a rotating planar

projection camera and converting them to a sequence of corresponding spherical

projection images is computationally expensive. It can be speeded up by precom-

puting tables of manifold mappings and by representing the image by basis polyno-

mials, e. g., Hermite polynomials, so that spatial interpolation at the subpixel level

can be performed efficiently. If for other reasons the image is being sampled in

nonlinear ways, such computations as the above can easily be incorporated.
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4. BINOCULAR CAMERA-RETINA WIRE-FRAME DYNAMIC SCENE
SIMULATOR

As a model of the theoretical work a computer program has been written which

provides for the modeling of two camera-retinas viewing a scene in which the user

provides parameters for the motion of wire-frame models. Output consists of a

variety of graphical depictions of the scene from both a meta perspective and as

viewed by the camera-retinas. Included in the camera-retina images are ones in

which binocular disparities and optical flow disparities are rendered.

A major purpose of the simulator is that it be suggestive of new relationships

and ideas.

4.1. OVERVIEW OF THE SIMULATOR AND ITS GRAPHICAL OUTPUT

The simulator program is designed so that the user may provide one or more

rigid objects consisting of point fields and/or wire frame models, together with a

description of how the object translates and rotates as a function of time within the

viewing area of the simulated camera-retinas, e. g., the translational and angular

velocities for each axis.

At each “time-step”, the user may specify the type of graphical depiction (as

itemized below) desired. Graphical output can be in the form of paper hardcopy,

color 35 mm slides, or as 8 by 10 transparencies. In addition the program has been

designed so that it is feasible to create a movie showing the continuous motion of

the optical flow and binocular disparities as a function of time for some user

predefined motion.

Graphical renditions available are of three types; meta depictions are those in

which the entire scene including the camera-retinas and viewing box are shown,

including stereographic projections of the sphere associated with a spherical projec-

tion.

The second type consists of what the binocular camera-retinas “see”, and are

plotted as polar spherical projection pairs, azimuthal projection pairs (orthogonally

plotted bi-retinal coordinates y and 5), and as isometric and logarithmic isometric

plane pairs. The logarithmic isometric types indicate in the plot itself the particular

normalization function used to map 6 to 0. In addition, the polar spherical type plot

may also plot 0 making it a logarithmic polar spherical projection.

The third type consists of any of type two plot, but depicting (1), right and left

camera-retina optical flow disparity (temporal disparity), and (2), binocular disparity

plots between the right and left retina (spatial disparity). The first are in right and
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left pairs, while the latter are singles since they consolidate information from both

camera-retinas. These third types will be referred to as disparity plots.

Disparity plots may also be cumulative in time: rather than depicting just the

optical flow vectors from time 1 to time 2, what is typically plotted are the vectors

from time 1 to time 2 to ... time n. These will, for the same 3-D point, lie end to

end. Analogously, binocular disparity vectors are plotted for a succession of times,

but these move in time at right angles to the spatial disparity vector field.

An enumeration of the three types of graphical output follows, followed by an

example simulation in which examples of the most relevant graphical output are

shown.

• “Meta” Plots

(1) Meta-view of scene in. x-y-z Cartesian coordinates.

(2) Stereo pair of planar projection images.

(3) Meta-view of scene in spherical coordinates.

(4) Meta-view of scene depicted on unit sphere retina.

(5) Stereo pair of stereographic projection of spherical projection.

• Retina Projections

(6) Stereo pair of retina in bi-retinal (azimuth \j/ versus elevation 5) coordi-

nates.

(7) Stereo pairs of both linear and logarithmic polar-spherical projections of

retina (precursor of isometric and logarithmic isometric plane images).

(8) Stereo pairs of both linear and logarithmic isometric plane representations

of retina.

• Disparity Projection Plots

(9) Binocular (spatial) disparities in binocular coordinates X and 8 plotted as

an azimuthal projection.

(10) Linear and logarithmic polar-spherical projections of binocular (spatial)

disparities.

(11) Lmear and logarithmic isometric plane of binocular (spatial) disparities.

(12) Stereo pair of optical flow (temporal) disparities in bi-retinal coordinates.

(13) Stereo pairs of both linear and logarithmic polar-spherical projections of

optical flow (temporal) disparities.

(14) Stereo pairs of both linear and logarithmic isometric plane of optical flow

(temporal) disparities.

67



Disparity Representation for a Forward Translating Camera

All the plots which produce both a right and left version are stereo pairs. With

a little effort, and without any viewing device, most people can, with a little prac-

tice, fuse the two images into a single 3-D perception. Initially, this is most easily

done with plots on two separate pages which can be brought nearly together, fused,

and then slowly separated, yielding a larger and larger region of stereo perception.

When trying this it is very important that the two images remain aligned horizon-

tally.

In the next section we describe and show an example simulation using a box in

which the purpose is to familiarize the reader with the graphical output.

4.2. EXAMPLE SIMULATION

In the example shown here unimportant quantitative detail will be avoided.

Rather, the goal is to achieve some familiarity with the graphics through the use of

a simple figure in a simple motion.

The example consists of stationary camera-retinas with parallel optical axes

viewing a rectangular box as the box is translating towards the camera-retinas. The

plots shown win consist primarily of right and left pairs at the beginning and end of

this motion.

4.2.1. SIMULATOR META GRAPHICS

Figure SI -(a) and (b) show the initial and final location of the translating box

within the viewing cube. This latter is not part of the scene, but rather is used to

indicate the X axis (labeled X ), the T axis along the horizontal at the left etc. The

units are camera-retina radii, and in terms of those units the front of the box will

translate from X =19 down to X =5. Figures si -(c) and (d) show two planar pro-

jection stereo meta views of the final position taken from the rear of the viewing

cube and slightly behind each of the hemispherical camera-retinas. These are

located at ±3 along the horizontal Y axis. Figure Sl-(e) and (f) are the correspond-

ing views of the box projected onto the surface of the of the hemispherical camera-

retinas.

4.2.2. SIMULATOR RETINA PROJECTIONS

Figure S2-(a) through (d) are the azimuthal projections of the left and right

camera-retinas at the beginning and end of the translation. Note that the left azimuth

and right azimuth axes are measured in opposite directions. The azimuthal projec-

tion is not a radially symmetric projection: it distorts the image in the comers due to

the expansion of the poles at 5 = ±90°.
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META-VIEW OF UNIT SPHERE RETINA
MLTA-VIEW OF UNIT SPHERE RETINA

(^) (f)

Figure SI: Example simulation for translating box. Meta view plots for the ini-

tial and ending position within the viewing cube are shown at the top, a planar

projection stereo pair in the middle, and mappings of the box onto the retina at

the bottom.
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AZIMUTHAL IMAGE OF LEFT RETINA AZIMUTHAL IMAGE OF RIGHT RETINA

{a)

AZIMITHAL IMAGE OF LEFT RETINA

(b)

AZIMUTHAL IMAGE OF RIGHT RETINA

POLAR SPHERICAL IMAGE OF RIGHT RETINA
POI .AR SPHERICAL IMAGE OF LEFT RETINA

Figure S2: Example simulation for translating box. The right and left retina plot-
ted as azimuthal projections for the box’s initial and final position, and below,
the right and left polar projections for the initial position.
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{a)

LOGARITHMIC SPHERICAL IMAGE OF LEFT RETINA

(c)

POLAR Sl’HERICAL IMAGE OF RIGHT RETINA

(d)

ie) (f)

Figure S3: Example simulation for translating box. The right and left retina plot-

ted as the right and left polar projections for the final position are at the top.

Below are the right and left range normalized, or logarithmic spherical projec-

tions, for the beginning and ending box position. -
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Figure S4: Example simulation for translating box. The right and left retinas
represented as the isometric plane for the initial and final box position is shownm the top half. Below is the analogous logarithmic representation normalized for
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Figure S2-(e) and (f) and S3-(a) and (b) are the left and right polar spherical

projections (0 and (]) plotted as polar coordinates) at the beginning and end of the

motion respectively. This projection is radially symmetric, but because the box is

not symmetrically placed about the X axis, the image is not symmetric. Here, the

straight lines of the box map to portions of great circles on the sphere which in turn

are distorted in the polar spherical projection of the sphere.

Figure S3-(c) through (f) are the logarithmic spherical projection analogs of the

four previous polar spherical projections, i. e., they are logarithmic polar plots of 0

and (j) in which normali2ation has been done with respect to range, i. e., the range

normalization of section 3.2.2.

The eight plots shown in figure S4-(a) through (h) are the left and right

camera-retina projections for the beginning and ending situation as represented by

the isometric plane and logarithmic isometric plane.

In these representations the spherical azimuth (}> is plotted at right angles to the

eccentricity 0. For the unnormalized case, eccentricity 0 varies firom 0° at the top

(fovea) to 180° at the bottom, which is to the rear of the camera-retina. In this

report, eccentricity angles greater than 0 = 90° will not be used.

For the normalized case, as represented in the logarithmic isometric plane, the

eccentricity domain 0° < 0 < 90° is arbitrarily mapped to the normalized range

0 < 0 < 1 for purposes of plotting.

The normalization in the case of the logarithmic plane representation is with

respect to range. (The equation of the 0 mapping is indicated on the vertical axis.)

4.2.3. SIMULATOR DISPARITY PROJECTIONS

Both optical flow and binocular disparity is computed by the simulator for each

time step. However, they are typically not plotted for each time step, but are accu-

mulated, and plotted as an overlay for some consecutive sequence of time steps.

In the example described here the number of time steps is nine. Figure S5-(a)

and (b) are the azimuthal projections of the camera-retina binocular disparities at

time 1, and the accumulative binocular disparities at time 9. In these plots, an arrow

is from some “feature point” in the right camera-retina projection to the

corresponding feature point of the left camera-retina projection. Note that the length

of the arrow shaft encodes the vector magnitude. In this example the feature points

are just the eight vertices of the box in order to limit the number of arrows gen-

erated to a meaningful number. However, they can be made as dense as desired

along a line of the figure.
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Figure S5-(c) through (f) are the corresponding polar spherical, logarithmic

spherical, isometric and logarithmic isometric projections and representations of the

binocular disparity accumulated over all nine time steps. The normalii^ation for the

logarithmic is again with respect to range.

In figure S6-(a) and (b) the optical flow disparity vectors connecting a feature

point at time n with the location of the point at time n+1 for n = 1,
* *

• ,n-l are

plotted as azimuthal projections for both camera-retinas. Again, note that the length

of the shaft is proportional to the magnitude of the optical flow. In the example,

since the translation is parallel to the optical axes, the back four vertices trace out

the same spherical meridians as the front four vertices, and hence the arrow traces

are superimposed.

Figure S6-(c) through (f) show the corresponding polar spherical and loga-

rithmic spherical projections normalized for range, and figure S7-(a) through (d) are

the plots for the corresponding isometric and logarithmic isometric representation.

For plots which are much denser and when viewed as a stereo pair utilizing the

binocular disparity, these plots of optical flow provide a very nice 3-D surface of the

3-D motion.

43. EXPERIMENTAL VERIFICATION OF THE SIMULATOR

In this section we describe four experiments using the simulator. These experi-

ments consist of using the simulator to translate or rotate a point field for which

some aspect of the resulting optical flow disparities and/or binocular disparities is

intuitively predictable, e. g., zero or constant or trace out a straight line etc.

These experiments serve the dual purpose of providing in some detail what the

simulator generates and also provides some verification that it is working correctly

for these simple cases. This hopefully will increase its credibility in cases which are

not so intuitively capable of being modeled.

An overview of each of these four verification experiments is given next This

will be followed by a subsection for each experiment in which a detailed description

of the experiment, its output and the conclusions which may be drawn from it are

given.

VI: Collapsing Sphere In this verification experiment a spherical field of points,

concentric with a single retina, is located so that the optical axis of the retina

passes through the field. The radius of the sphere on which the points lie is

then incrementally decreased causing the points to move radially toward the

spherical retina center. This should result in a zero magnitude optical flow on
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Figure S5: Example simulation for translating box. Binocular disparity, plotted
as an azimuthal projection, for the initial position is at top left, and the accumula-
tive over nine positions is at the top right. Below them are the accumulative
unnormalized and range normalized polar spherical projections and their
representations in the isometric plane.
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Figure S6: Example simulation for translating box. Accumulative optical flow
disparity plotted as right and left azimuthal projections, polar spherical projec-
tions, and as range normalized spherical projections.
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Figure S7: Example simulation for translating box. Accumulative optical flow

disparity plotted in right and left isometric and range normalized isometric

representations.
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the retina and it is the purpose of this veriScation experiment to demonstrate

this.

V2: Forward Translating Sphere In this verification experiment a field of points is

again located on a portion of a sphere, which in turn is concentric with a single

retina. The field is located so that the optical axis of the retina is made to pass

through the center of the field. The points then are made to translate as a single

rigid body parallel to the optical axis. The resulting optical flow for a point

should have the instantaneous value

Optical flow = e
.

range

where 0 is the angle of eccentricity for the point Since both the instantaneous

velocity and range are constant dividing this value by sin 0 should result in the

velocity

range
constant for all points. This purpose of this experiment is to verify

this graphically and by tabulating the constant values as a function of eccentri-

city.

V3: Constant Binocular Disparity Circles The purpose of this verification experi-

ment is to verify that points on a Veith-Muller circle have a constant disparity.

A Veith-Muller circle is a circle passing through the centers of the two spheri-

cal retinas and lying in the plane containing the optical axes. It can be shown

that points lying on this circle are imaged to points on the retinas having a con-

stant difference of horizontal angle. Hence all points on this circle may be

verged simultaneously, i. e., the optical axes are rotated so as to cause them to

intersect at a point on the circle for a zero disparity. Then all other points on

the circle will also have a zero disparity.

The experiment consists of graphing and tabulating the disparities for several

such circles in which the optical axes are held parallel.

V4: Rotation of Plane of Elevation When the camera-retina tilts in order to bring a

point into vergence, the bi-retinal azimuths must not change. The purpose of

this last verification experiment is to confirm that the simulator is correctly

computing these rotations. In particular, it confirms that the bi-retinal azimuth

angles are independent of 5, as was indicated in section 3.1.2 in equation

3.I.2.5.

The experiment consists of graphically depicting the results of rotating a hor-

izontal line about the Y axis and noting that the bi-retinal azimuths do not

change.

78



Disparity Representation for a Forward Translating Camera

43.1. VERIFICATION EXPERIMENT VI: COLLAPSING SPHERE

A point moving directly toward the point of projection is translating along a

ray of projection and its optical flow should be zero. This experiment demonstrates

this for 180 points uniformly located on the surface of a sphere. Only a single retina

is used and the center of that retina, i. e., its point of projection, acts as the center of

the sphere(s) on which the points lie.

Figure VI shows the graphics produced by the simulator. Figures VI -(a) and

VI -(b) show the initial location and final location of the 180 points within the view-

ing box. The radius of the initial spherical field of points is 90, and this is decre-

mented by 10 down to 10 in nine time steps.

The field of points is uniformly spaced in O-tj) spherical coordinates,

5° < 6 < 45°, 5° < (|) < 355°, A0 = A(}) = 10°, five rings each containing thirty-six

points. The projection of these points should be uniformly located on the isometric

plane within these ranges. This in fact is the case as is depicted in figure VI -(f).

In the projected images shown in figure VI -(c) through (g), each depicting the

resultant optical flow normally indicated by vectors, we would not expect to see any

vectors for this particular motion. However, the simulation program compares the

magnitude of the optical flow against the angle 0.00001°, and if the magnitude is

less than that value, it plots a small cross at the projection location rather than the

normal optical flow disparity vector.

(The angle co subtended by two points whose coordinates are given in spherical

coordinates 0 and (j) is calculated by

cos 0) = sin 01 sin 02 + cos 0i cos 02 cos (<{)2 - ({>
1 ),

and for a unit sphere is equal to the disparity magnitude.)

As evidenced by these figures of the projected optical flow, the motion of the

points from their initial location to their final location resulted in crosses indicating a

value of less than 0.00001°, (in fact, the largest value was 0.0000068°, a not unrea-

sonable error given the several forward and inverse trigonometric functions

involved), and hence we may infer the correctness under these conditions of the

simulator’s computation of optical flow.

4.4. VERIFICATION EXPERIMENT V2: TRANSLATING SPHERICAL
FIELD

The optical flow [0 ,({)], generated by a point at range r in the field of view of

a spherical projection camera-retina, in which the forward relative translational velo-

city is i , is predicted by

79



META-VIEW IN X-Y-Z COORDINATES
FOR POINTS ON COLLAPSING SPHERE

META-VIEW IN X-Y-Z COORDINATES
FOR POINTS ON COLLAPSING SPHERE
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(C)

POLAR SPHERICAL IMAGE OF OPTICAL FLOW
FOR POINTS ON COLLAPSING SPHERE

LOGARITHMIC SPHERICAL IMAGE OF OPTICAL FLOW
FOR POINTS ON COLLAPSING SPHERE

(d) (e)

ISOMETRIC IMAGE OF OPTICAL FLOW FOR
POINTS ON COLLAPSING SPHERE

LOGARITHMIC ISOMETRIC IMAGE OF OPTICAL FLOW
FOR POINTS ON COLLAPSING SPHERE

(f) (^)

Figure VI: Collapsing Sphere Verification Experiment - Output of Simulator for

180 points collapsing toward retina center indicating zero optical flow.
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Figure V2; Forward Translating Sphere Verification Experiment - Output of
simulator for 324 points all at the same range translating toward retina. Note that
(e) and (f) show optical flow Ism. 9, a constant.
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A i sin 0 j ; ^0 =
, and 6 = 0.

r

This experiment demonstrates this for a field of 324 points uniformly located on a

hemisphere of radius 50, oriented so that the optical axis of the single camera-retina

pierces it at its center.

Figure V2 shows the graphics produced by the simulator. Figure V2-(a) shows

the initial location of the field of of 324 points within the viewing box. (The second

position is not shown as it is nearly identical.) The first location is such that the

hemisphere intersects the X -axis at x = 52, and the second analogous position is at

X = 48, having translated an amount Ar = -4 in one time-step.

The field of points is again uniformly spaced in Sh}) spherical coordinates,

5° < 0 < 85°, 5° < (j) < 355°, A0 = A(f) = 10°, nine rings each containing thirty-six

points. The projection of these points should be uniformly located on the isometric

plane within these ranges. This in fact is the case as is depicted in figure V2-(d).

Figures V2-(b), (c), (d), (g) and (h) show the normal simulator graphical output

of the type indicated at the top of each subfigure. The first two clearly show the

radially increasing optical flow magnitude, while the last two show the linearizing

effect of the log-tan transformation.

Figures (e) and (f) are similar to (c) and (d), respectively, except that they plot

the magnitude of the optical flow divided by sin 0. The result, — , is constant for all

points and this is indicated qualitatively in these plots. That this is also quantita-

tively true is tabulated in table TV2.

The table shows for the nine values of 0 the optical flow A0° in degrees, radi-

ans A0;., the invariant xir - Ad^ / sin (Q), and the deviation of the invariant from

being constant This small numerical error is due to the fact that while its average

distance is 50, the field of points varies in distance between 52 and 48 from the

camera-retina, the explained

As evidenced by these figures for the optical flow, the translational motion of

the spherical field of points has been as predicted. Hence we may infer the correct-

ness under these conditions of the simulator’s computation of optical flow.

4.4.1. VERIFICATION EXPERIMENT V3: CONSTANT BINOCULAR
DISPARITY CIRCLES

If the optical axes of the two camera-retinas are held parallel, then a 3-D point

feature will project to the camera-retinas at non-corresponding locations. This

difference is called the binocular, or spatial, disparity. In turn, this disparity
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Optical Flow For Forward Translating Spherical Field of Points

e ><x>
o AG^ A0^ / sin (0) A

5 0.400 0.006984 4.5836 0.0001

15 1.188 0.02074 4.5835 0.0003

25 1.940 0.03385 4.5832 0.0003

35 2.631 0.04593 4.5829 0.0003

45 3.243 0.05660 4.5824 0.0005

55 3.755 0.06554 4.5820 0.0004

65 4.154 0.07249 4.5817 0.0003

75 4.426 0.07724 4.5814 0.0003

85 4.564 0.07965 4.5812 0.0002

TABLE TV2

determines the amounts by which the two camera-retinas must rotate in order that

the disparity be brought to zero, i. e., vergence.

In the plane of zero elevation, the locus of points having constant disparity, or

equivalently, constant vergence due to the parallax theorem, is obtained by setting

binocular disparity, Y= constant, (from equation 3. 1.3.6) and yields a Veith-MuUer

circle through the camera retina centers given by

(X -d cot y)
2 + = -ii—

.

sin^ Y

This is a circle located at [X =d cot y,Y =0], with radius d/sin y. Note that if the

radius R of the circle is given, then its center is located on the X-axis at

d cot y- - d^.

The purpose of this verification experiment is to confirm this for thirty-two

points located on two Veith-MuUer circles of radius 30 and 60. The value of d, the

amount the retinas are displaced along the T -axis is ±3 retina radii.

The graphics produced by the simulator for the case in which the Veith-MuUer

circle is of radius 60 are shown in figure V3. Figures V3-(a) show the thirty-two

points lying in a horizontal plane and passing through the Y axis at ±3 retina radii.

Their spherical coordinates, 0^. and (j)^ with respect to the center of the sphere on

which they lie, are given by 0 <
(j)^

<180°, 15° < 6^ < 155°, Acj)^. = 180° and

AGc = 20°.
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The points will be referred to in the order of left (positive T-axis) at

({)c
= 0, 0^ = 155° to right at (|) = 180°, 0^ = 155°. That is, their projection will

pass from the left periphery, through the center of the retina, and back out to the

right periphery.

Figures V3-(b) and (f) show the resulting binocular disparities. A vector is

drawn from the projection of the feature on the right retina to the corresponding pro-

jection point of the left retina, which in this case all lie along the horizontal going

from left ((j) = 0) to right ((j) = 180°).

In the case of the isometric plane, figures V3-(e) and (f), the disparities ascend

the vertical line (j) = 0, pass through the fovea, and then descend on the vertical line

= 180°.

It appears from the graphics, i. e., figure V3-(b), that the magnitude of the

disparities are all equal. That this is in fact the case is shown in table TV3, where

alternate points, i. e., sixteen of the thirty-two, are tabulated. (All angles are in

degrees.)

Tabulated are the bi-retinal azimuths \|/;. and \|// and the resulting binocular

vergence (constant) and azimuth for the points on each circle. Because the points are

symmetrically arranged to either side of the X-axis, the top and bottom halves are

also symmetric in the bi-retinal azimuths directions, as would be expected. Note

also that the disparity for the smaller circle is approximately twice that of the larger,

again as is expected.

As evidenced by these numerical results for the binocular disparity, the model-

ing of the constant binocular disparity circles has been as predicted. Again, we may

infer the correctness of the simulator for computing binocular disparity under these

conditions.

4.4.2. VERIFICATION EXPERIMENT V4: ROTATION OF PLANE OF
ELEVATION

The bi-retinal azimuths are defined by

Vr//
=

Yrll

^X^ + Z^'

When it is desired that the camera-retina tilt and pan in order to bring a feature

point into the “fovea” of the image, it is important that these control coordinates be

orthogonal, so that changing the tilt in order to make 5 = 0 does not change either

\^r/h which would result in the feature point being lost This verification experi-

ment demonstrates this for ten coUinear horizontal points which are rotated as a
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Constant Binocular Disparity Circles

Radius = 30 Radius = 60

ec ¥r ¥/ TF=\|(,+V, ¥r ¥/ Y=¥r+¥z M¥r-¥/V2

155 80.4 -74.6 77.5 78.9 -76.1 77.5

135 70.4 -64.6 67.5 68.9 -66.1 67.5

115 60.4 -54.6 57.5 58.9 -56.1 57.5

0
95 50.4 -44.6 47.5 48.9 -46.1 47.5

75 40.4 -34.6 37.5 38.9 -36.1 37.5

55 30.4 -24.6 27.5 28.9 -26.1 27.5

35 20.4 -14.6 17.5 18.9 -16.1 17.5

15 10.4 -4.6

5.7392
7.5 8.9 -6.1

2.8636
7.5

15 -4.6 10.4 -7.5 -6.1 8.9 -7.5

35 -14.6 20.4 -17.5 -16.1 18.9 -17.5

55 -24.6 30.4 -27.5 -26.1 28.9 -27.5

180
75 -34.6 40.4 -37.5 -36.1 38.9 -37.5

95 -44.6 50.4 -47.5 -46.1 48.9 -47.5

115 -54.6 60.4 -57.5 -56.1 58.9 -57.5

135 -64.6 70.4 -67.5 -66.1 68.9 -67.5

155 -74.6 80.4 -77.5 -76.1 78.9 -77.5

TABLE TV3

rigid body about the Y axis.

Figure V4 shows the graphics produced by the simulator. Figure V4-(a), (b)

and (c) show the starting, mid and ending location of the line, parallel to the Y axis,

near the top, center and bottom of the Y-Z plane. Its motion during nine time steps

is that of rotation about the Y axis, i. e., points of constant elevation are rotated to a

lower plane of elevation.

The ten points are located at constant intervals along the line according to

-45 <Y < 45, AT = 10. The nine values of for the plane of elevation 5 are given

by 85° > 5 > -85°, A5 = 21.5°.

The resulting optical flow plots for and \|// as a function of 5 are shown in

figure V4-(d) and (e). They indicate that the values for both bi-retinal azimuths do
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{b)

POLAR SPHERICAL IMAGE OF R TO L BINOCULAR DISPARITIES LOGARITHMIC SPHERICAL IMAGE OF R TO L BINOCULAR DISPARITIE
FOR POINTS ON CIRCLE OF CONSTANT BINOCULAR DISPARITY l’C)R POIN'I’S ON CIRCI.E OF CONSTANT BINOCULAR DISPARITY '

(C)

ISOMETRIC IMAGE OF R TO L BINOCULAR DISPARITIES
FOR POINTS ON CIRCLE OF CONSTANT BINOCULAR DISPARITY

LOGARITHMIC ISOMETRIC IMAGE 01' R TO L BINOCULAR DISPARITIE
FOR POINTS ON CIRCLE 01' CONS'LANT BINOCULAR DISPARITY

(e) if)

Figure V3: Constant Binocular Disparity Circles Verification Experiment - Out-

put of simulator for thirty-two points on Veith-Muller circle at elevation 5 = 0

indicating constant disparity. (See table TVS for numerical values.)
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{d) (e)

POLAR SPHERICAL IMAGE OF LEI'T OPTICAL FLOW DISPARITIES
I'OR POINTS ON ROTATING PLANE OF ELEVATION

POLAR SPHERICAL IMAGE OF RIGHT OPTICAL FLOW DISPARITIES
I'OR POIN'I'SON ROTWriNG PLANE OF ELEVATION

Figure V4: Rotation of Plane of Elevation Verification Experiment - Output of

simulator for line rotated about Y axis indicating no change in bi-retmal azimuth.

Line starts at top, (a), rotates to zero azimuth, (b), and continues on to bottom,

(c).
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not change over the interval 85 ^ 5 ^ -85. This is in contrast to the bi-spherical

projection coordinates 0 and <() plotted in figure V4-(f) and (g) in which the resulting

optical flow clearly shows the fact that they are coupled, i. e., non-orthogonality.

As evidenced by these plots of the optical flow for points on a rotating plane of

elevation, the bi-retinal azimuth has been shown to remain constant over changes in

the angle of elevation as was predicted. Hence we may infer the correctness of the

simulator under these conditions for computing the rotation of the plane of elevation

and resulting optical flow.
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5. EXPERIMENTAL VERIFICATION OF MATHEMATICAL CONCEPTS

This section will describe several experiments in which concepts developed in

section 3 are exemplified and verified using the binocular camera-retina wire frame

scene simulator and a program for “warping” an image by nonlinear sampling.

5.1. EXPERIMENTAL VERIFICATION OF NORMALIZATION

In section 3.2 the operation of normalization was developed for a forward

translating camera-retina. More specifically, four mappings of the spherical azimuth
A

0 to 0 were defined in which 1-D parameterizations of 3-D space are projected in a

manner making the parameter value for a given optical flow vector inversely related

to the optical flow magnitude.
A

Stated another way, the 0-(j) logarithmic spherical projection and its representa-

tion as the logarithmic isometric plane have the property that two optical flow

disparity vectors are equal if and only if they are both projections of points having

the same 1-D parameter.

The next four subsections exemplify this for four 1-D parameterizations: (1),

3-D space parameterized by range, (2), 3-D space parameterized by depth, (3), 3-D

space parameterized by looming, and (4), 3-D space parameterized by lateral clear-

ance.

5.1.1. EXPERIMENTAL VERIFICATION OF RANGE NORMALIZATION

The purpose of this experiment is to demonstrate that the range normalization

of section 3.2.2 results in a representation of optical flow which is inversely related

to the 1-D parameterization of 3-D space by the parameter range R as given by

R=4- 5.1. 1.1

0

This will be accomplished by placing points all at an arbitrary constant range

from a camera-retina and then translating them forward toward the camera-retina.

The range normalized logarithmic isometric plane representation of the optical flow

which results is constant in both direction and magnitude.

The inference is that, given an optical flow disparity vector in this representa-

tion, the a: , y location of the image may be immediately associated with a unique

range by the calculation R = v/0. This is for point features only, and must be

modified, via the methods of section 2, for edge optical flow normal components.

Three-hundred twenty-four points all located on the surface of a hemisphere of

radius R =50 and centered at X = 2 are translated toward the camera-retinas to
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X = -2 in one time step. The initial configuration is shown in figure El -(a) and (b).

Figure El -(c) and (e) shows the optical flow disparity vectors as they normally

occur: their magnitude increasing radially as sin 0, where 0 is the eccentricity. Note

that they are regularly spaced in
0-(J)

coordinates in the isometric plane representa-

tion.

In figures El -(d) and (f) the logarithmic mapping for range normalization and

its logarithmic isometric plane representation are plotted: here the magnitudes of the

disparity vectors are all visibly equal indicating that they have all come firom the

same range.

In table TEl are tabulated the minimum and maximum optical flow disparity

vectors under several conditions. In the first two rows, the value of rf, the distance

between the two retinas, in units of retina radii, is zero and the minimum and max-

imum values of radial optical flow A0 along lines of constant ^ are for the case just

described. The columns headed 0/0 and (j) are the coordinates of the

minimum/maximum, and the error is the relative error for the normalized values

which should be constant, i.e., the minimum and maximum should be equal.

Range Normalization for Spheres of Constant Range

Normalized? d min A0 0/0 max A0 0/0 error

no 0.0 0.400 5.0 175. 4.56 85. 175.

yes 0.0 0.01379 0.9849 175. 0.01380 0.4602 165. 0.0007

no 1.5

yes 1.5 0.01339 0.014214 0.06

no 3.0

yes 3.0 0.01301 0.01466 0.10

TABLE TEl

In the case of binocular camera-retinas separated by the distance d, the range

R is not identical for both retinas and as a result some error is introduced into this

demonstration. (However, see remark below.)

Figure E2-(a) and (b) are the logarithmic spherical projection and logarithmic

isometric representation of the binocular (spatial) disparity vectors for the case

d -3>. Below them, figures E2-(c) through (f) are the corresponding right and left

retina range normalizations. Qearly, the introduction of binocular disparity has a

greater impact on optical flow vector location than on the range normalized
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magnitudes themselves.

However, more importantly, in a real use of the normalization technique, nor-

malization would be done separately for each camera-retina followed by its

“fusion”, using the techniques of section 2.

5.1.2. EXPERIMENTAL VERIFICATION OF DEPTH NORMALIZATION

The purpose of this experiment is to demonstrate that the depth normalization

described in section 3.2.3. 1 is valid. More particularly, the experiment will demon-

strate that this normalization of optical flow results in an inverse relationship

between it and the 1-D depth parameterization of 3-D space. This will be accom-

plished by placing a number of points at an arbitrary but constant depth in front of

the camera-retinas, translating them toward the camera-retinas, and observing the

normalized results.

Remark: The logarithmic isometric plane representation of a depth normalized

image has the same properties as the “log-polar” representation, and in fact is the

same image modulo the size of the fovea F

.

Again, the inference is that a depth normalized optical flow disparity vector in

the logarithmic isometric plane representation can be numerically converted to depth

D via the calculation

D=4. 5.1.2.1

e

This can be done since two optical flow vectors are equal if and only if they project

from two 3-D points whose depth is equal.

One-hundred points arranged as a planar 10 by 10 grid are positioned in front

of the camera-retinas at a distance X = 54 and translated toward the camera-retina to

X = 46. Figure E3-(a) shows the initial configuration. Since depth is independent of

location along the Y axis, there is no difference in depth to the points from the two

camera-retinas. However, to emphasize that in the general case normalization must

be performed separately for each camera-retina we have included the binocular

disparities as figures E3-(b) through (d) to show this. This is because in a real scene,

containing edges and contours, the normal components of the optical flow will be

different in the two images.

Figures E3-(e) and (f) and E4-(a) through (f) are the left and right camera-

retina projections and representations before and after depth normalization. Again,

visually it can be seen that the magnitudes of the vectors have been equalized.

Numerical results are tabulated in table TE2.
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(a)

ML’l’A-VlEW IN <{>-0-R COORDINATES
FOR POINTS ON FORWARD TRANSLATING SPHERE

ib)

POLAR SPHERICAL IMAGE OF OPTICAL FLOW
I'OR POIN'IS ON FORWARD TRANSLATING SPHERE

RANGE NORMAUZATION OF OPTICAL FLOW
FOR POINTS ON FORWARD TRANSLATING SPHERE

(C) id)

ISOMETRIC IMAGE OF OPTICAL FLOW
FOR POINTS ON FORWARD TRANSLATING SPHERE

v>

RANGE NORMALIZATION OF OPTICAL FLOW
FOR POINTS ON FORWARD TRANSLATING SPHERE

ie) (f)

Figure El: Range Normalization - A spherical field of points, shown at the top,

are translated forward resulting in the unnormalized optical flow in center. Range

normalized optical flow is at the right, where the optical flow disparity vectors,

plotted as a polar spherical projection and as its logarithmic isometric representa-

tion, are constant for all points of the sphere.
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FOR points on forward TRANSLATING SPHERE

LOGARITHMIC ISOMETRIC IMAGE OF R TO L SPATIAL DISPARITAES
FOR POINTS ON FORWARD TRANSLATING SPHERE

(a) ib)

RANGE NORMALIZATION OF LEFT RETINA OPTICAL FLOW
FOR POINTS ON FORWARD TRANSLATING SPHERE

RANGE NORMALIZATION OF RIGHT RETINA OPTICAL FLOW
FOR POINTS ON FORWARD TRANSLATING SPHERE

{d)

RANGE NORMALIZATION OF RIGHT RETINA OPTICAL FLOW
FOR POINTS ON FORWARD TRANSLATING SPHERE

9

{e) if)

Figure E2; Range Normalization - Introducing two retinas at a distance J = 3

retina radii apart results in the binocular disparity at top. The right and left range

normalized logarithmic spherical projections and logarithmic isometric representa-

tions, shown below, have a maximum error of 10 per cent.
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Figure E3: Depth Normalization - A planar field of points at a constant depth

are viewed by two retinas at a distance d = 3 retina radii apart. The binocular

disparities are shown above the unnormalized optical flow.
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Figure E4: Depth Normalization - The depth normalized logarithmic spherical

projections and below, both unnormalized and normalized isometric representa-

tions. In this case the binocular disparity results in zero error in normalizing the

image. This normalization duplicates the “log-polar” transform.
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Depth Normalization for Planes of Constant Depth

Normalized? d min A6 0/0 <1) max A0 0/0 <|) error

no 0.0 0.279 8.1 315. 4.59 44.8 315.

yes 0.0 0.020489 0.47 348. 0.020489 0.59 45. 0.0000

no 3.0 0.982(7) 6.18 291.8 4.59 45.14 296.

yes 3.0 0.020489 0.5757 320. 0.020489 0.55 231. 0.0000

TABLE TE2

Here, normalization error in the case of binocular camera-retinas is zero as

would be expected.

5.1.3. EXPERIMENTAL VERIFICATION OF LOOMING NORMALIZA-
TION

The purpose of this experiment is to demonstrate that normalization for loom-

ing as described in section 3.2.3.2 is valid. More particularly, the experiment will

demonstrate that this normalization of optical flow results in a linear relationship

between it and the 1-D looming parameterization of 3-D space.

Looming L has been defined [RAVTV] as L == -RIR and is identifiable with

“obstacle threat’’. Based on this definition, it can be shown that spheres of constant

looming have diameters coincident with the translation vector and passing through

the center of a camera-retina.

The demonstration will be accomplished by placing a number of points on an

arbitrary but fixed radius sphere of constant looming, translating them toward the

camera-retina(s), and observing the normalized representation results.

Again, the inference is that looming normalized optical flow disparity vectors

in the logarithmic isometric plane representation can be numerically converted to

looming L via the calculation

L = -^. 5.1.3.1

6

This can be done since two optical flow vectors are equal if and only if they project

from two 3-D points whose looming value is equal, and hence if and only if from

the same looming sphere.

One-hundred forty-four points, located on the surface of a sphere of radius

R = 50 and initially centered at X = 56, is translated in in one time step to X =44.
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Figure E5-(a) shows the initial configuration and E5-(b) the resulting optical flow as

an azimuthal projection. (This latter serves only to provide a contrast with the polar

spherical projections.) Since each camera-retina has its own distinct sphere of con-

stant looming, the case of a single retina will be discussed first

Figures E5-(c) through (f) are the resultant unnormalized polar spherical and

isometric projection and representation followed by the corresponding normalized

versions. Note that the optical flow vectors nearest the center of the fovea are those

produced by points at the far end of the sphere, while those at the periphery are

those produced by the near end.

Again, visually it can be seen that the magnitudes of the vectors have been

equalized. Numerical results are tabulated in table TE3.

Looming Normalization for Spheres of Constant Looming

Normalized? d min A6 0/0
<t)

max A0 0/0 error

no 0.0 0.604 5.0 170. 25.3 75.7 170.

yes 0.0 0.025919 0.98 170. 0.02723 0.44 150. 0.08

no 3.0 0.604 5.0 170. 25.3 75.7 170.

yes 3.0 0.021179 0.989 171. 0.032337 0.9837. 11.3 0.53

TABLE TE3

Normalization error in the case of a single camera-retina is larger than

expected, though this is the worse case. (Remark: this should be rechecked by run-

ning simulation again.)

Figures E6-(a) and (b) show the binocular disparity for the case d = 3. The

resultant normalization is shown in figures E6-(c) through (f).

Again, the error indicated by the difference between the minimum and max-

imum normalized vector magnitudes is 53%, a number which needs to be rechecked,

as again, the average error is much less as a look at the graphics indicate.

5.1.4. EXPERIMENTAL VERIFICATION OF CLEARANCE NORMALIZA-
TION

The purpose of this experiment is to demonstrate that normalization for clear-

ance as described in section 3.2.3.3 is valid. More particularly, the experiment will

demonstrate that this normalization of optical flow results in a linear relationship

between it and the 1-D clearance parameterization of 3-D space.
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META-VIEW IN 4>-0-R COORDINATES
FOR SPHERICAL POINT FIELD OF CONSTANT LOOMING

azimuthal image of OPTICAL FLOW
FOR SPHERICAL POINT FIELD OF CONSTANT LOOMING

POLAR SPHERICAL IMAGE OF OPTICAL FLOW
FOR SPHERICAL POINT FIELD OF CONSTANT LOOMING ISOMETRIC IMAGE OF OPTICAL FLOW /

FOR SPHERICAL POINT FIELD OF CONSTANT LOOMING

LOGARITHMIC SPHERICAL IMAGE OF OPTICAL FLOW
FOR SPHERICAL POINT FIELD OF CONSTANT LOOMING

LOGARITHMIC ISOMETRIC IMAGE OF OPTICAL ^W
rno <!PHPRIPAI. POINT FIELD OF CONSTANT LOOMING

Figure E5: Looming Normalization - A field of points located on a sphere of
constant looming, top left, is translated forward. The resulting optical flow is
shown as an azimuthal projection, top right, and as unnormalized and normalized
polar spherical and isometric representations below.
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Figure E6: Looming Normalization - Binocular disparity from two retinas at

d = 3 apart results in disparity shown at top, and resultant normalized optical

shown below. Maximum error is 53 per cent, due to some points being very

close.
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Disparity Representation for a Forward Translating Camera

Clearance here refers to the lateral distance in any direction from the line

which represents the extension of the current instantaneous velocity vector v of the

camera-retinas. Points of constant clearance C all lie on a cylinder of radius C
whose axis is coincident with that extension, and are parameterized by

c =

The demonstration will consist of six circles, all of the same radius, placed

symmetrically about the X axis and at six distinct distances. These circles represent

the “tunnel” of equal clearance. The circles are then translated along the X axis

toward the camera-retina for one time step thus creating optical flow at six distinct

depths.

Again, the inference is that clearance normalized optical flow disparity vectors

in the logarithmic isometric plane representation can be numerically converted to

clearance via the calculation

C = 5.1.4.I

e

This can be done since two optical flow vectors are equal if and only if they project

from two 3-D points whose clearance value is equal, and hence if and only if from

the same clearance cylinder.

Each circle is of radius C = 6 and is made up of 31 connected points. The cir-

cles are initially centered about the X axis at X = 96, 76, 56, 36 and 16, and are

translated toward the camera-retina(s) by AX = -12. The initial configuration meta

view is shown in figure E7-(a).

Figure E7-(c) is the normalized polar spherical projection, and E7-(d) and (f)

the corresponding unnormalized and normalized logarithmic isometric plane

representations. Again, the magnitudes of the optical flow vectors can be seen to be

equal for all circles, whatever their location along the X axis. The numerical results

are tabulated in table TE4.

It is of interest to note that in the unnormalized polar spherical projection the

circles are projected at nonconstant difference in 0 even though they are at a con-

stant difference in range. However, their normalized image locations, shown in

figure E7-(b), are at a constant A0 apart This is a mathematical consequence of the

requirement that the normalization equalize optical flow. As a result radial distance

encodes range in a linear manner.

Normalization error in the case of a single camera-retina is zero as is expected.

The proximity of the closest circle to the camera-retinas and the subsequent large

disparity, as indicated in figure E7-(e), has resulted in a large error for the binocular
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Disparity Representation for a Forward Translating Camera

Clearance Normalization for Cylinders of Constant Clearance

Normalized? d min A6 e/e max AO e/e error

no 0.0 0.509 3.8 113. 35.4 38.4 43.5

yes 0.0 0.032946 0.92 299. 0.032964 0.92 43. 0.00000

no 3.0 0.256 1.9 354. 36.9 45.3 142.

yes 3.0 0.0220 0.87 181. 0.0657 0.726. 354. 2.1

TABLE TE4

case. Figures E8-(a) and (b) show the polar spherical projection of the optical flow

for the right and left retinas. This is followed by the right and left unnormalized

and normalized isometric plane representations, where the differences in magnitude

for the closest circle are clearly shown.

5.2. EXPERIMENTAL VERIFICATION OF INTERCHANGEABILITY OF
PLANAR AND SPHERICAL PROJECTION

In this section several programs for “warping” a planar projection image into

spherical projection images and normalized images will be briefly described. The

purpose of these experiments is to investigate the feasibility of obtaining planar pro-

jection images from standard video cameras and transforming them by nonlinear

sampling in order to obtain images with desirable properties described in this report.

All neighborhood surface modeling required to interpolate the image at sub-

pixel spatial resolutions was done using bilinear interpolation over two by two pixel

neighborhoods. Bilinear inteipolation was used for reasons of computational speed,

but still provides enough detail to confirm that the mapping is being performed.

A more systematic investigation would use at least bi-cubic interpolation and

would look at several orders of derivatives in both the original and transformed

images. However, there are reasons to represent the image using other sets of

orthogonal polynomials, e. g., Hermite polynomials, and in an implementation these

would be used to perform the interpolation.

5.2.1. COMPUTING THE SPHERICAL PROJECTION FROM THE
PLANAR PROJECTION IMAGE

In section 33.2.2 equations were described for computing several projections to

the plane for a spherical projection. A computer program was written for transform-

ing a planar projection image to a logarithmic spherical projection normalized for
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MEM’A-VIEW IN X-Y-Z COORDINATES
FOR POINTS ON CONSTANT FLOW CYUNDER

LOGARITHMIC SPHERICAL IMAGE OF RIGEfT RETINA
FOR POINTS ON CONSTANT FLOW CYUNDER

(b)

LOGARITHMIC SPHERICAL IMAGE OF OPTICAL FLOW
FOR POINTS ON CONSTANT FLOW CYUNDER ISOMETRIC IMAGE OF OPTICAL FLOW /

FOR POINTS ON CONSTANT FLOW CYUNDER

(c) (d)

nr A hitHMIC SPHERICAL IMAGE OF R TO L BINOCULAR DISPARITIE
X)GARITHMIC FLOW CYUNDER

LOGARITHMIC ISOMETRIC IMAGE OF OPTICAL FLOW
FOR POINTS ON CONSTANT FLOW CYLINDER

(f)

Figure E7: Clearance Normalization - Six circles are placed on the X axes and

translated forward are shown at top left. The resultant retinal image of the clear-

ance normalized polar spherical and resultant unnormalized and normalized opti-

cal flow is shown below. The introduction of disparity, bottom left results in nor-

malization plots shown in next figure.
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(a) (b)

ISOMETRIC IMAGE OF LEFT RETINA OPTICAL FLOW
FOR POINTS ON CONSTANT FLOW CYUNDER

ISOMETRIC IMAGE OF RIGHT RETINA OPTICAL FLOW
FOR POINTS ON CONSTANT FLOW CYLINDER

(C) (d)

IGARITHMIC ISOMETRIC IMAGE OF LEFT RETINA OPTICAL FLOW
FOR POINTS ON CONSTANT FLOW CYUNDER

LOGARITHMIC ISOMETRIC IMAGE OF RIGHT RETINA OPTICAL FLOW
FOR POINTS ON CONSTANT FLOW CYLINDER
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Figure E8; Clearance Normalization - Binocular disparity from two retinas at

d = 3 apart results in disparity shown in previous figure and at top. Resultant

unnormalized and normalized optical flow is shown below. Maximum error in

case with disparity is 210 per cent, again due to closest point where disparity is

large.
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Figure L3: Man With Beard Scene - At top is image made by taking video

image of flat picture with planar projection image. Below is the computed spheri-

cal projection image, but with longer focal length, i. e., smaller field of view,

than was used in planar projection lens.



Figure L2: Snow Scene - At top is image made by taking video image of flat

picture with planar projection image. Below is the computed spherical projection

image.
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range.

At the top of figure L2 is an image formed by taking a planar projection image

of a flat scene containing a picture of a snow scene. The focal length of the lens

was 16mm for a field of view of 30°. (The focal length was converted to image

units for the program.)

At the bottom of figure L2 snow scene is the result of transforming it to a

range normalized logarithmic spherical projection.

Figure L3 contains a similar pair, the bearded man scene, but with the program

working with a longer focal length, i. e., smaller field of view, than was the actual

case, and hence the image is much less distorted.

This program and experiment has demonstrated the possibility of using a planar

projection camera for the production of spherical projection images.

5.2.2. COMPUTING THE LOGARITHMIC ISOMETRIC PLANE
REPRESENTATION FROM THE PLANAR PROJECTION

In section 3.3.2. 1 equations were given relating the normalization of spherical

projection images from planar projection images. In this section we verify that it is

feasible to compute two of these, depth and range normalization, and represent them

in the logarithmic isometric plane. This has been done by writing a program which

samples the planar projection input image according to those equations.

The log-polar transform was described in section 3.3.1 as being equivalent to

depth normalized spherical projection. In that section figure LI was used as an

example of the log-polar transform. The original test pattern images described there

were used to debug and calibrate the program for computing the depth normalized

logarithmic isometric plane representation firom a planar projection image.

Figure LA shows a larger version of the original test pattern image at top and

its transform at the bottom. In this image some experimentation was needed in order

to find the center of the scene in order to make it the origin of the transform. Also,

as indicated earlier, the nonsquare pixel dimensions had to be taken into account in

order to get lines of constant 0 to map to horizontal lines in the transform.

AD of the original images used here are video images taken of flat pictures, and

hence are at a fixed distance from the video camera.

At the top left of figure L5 is the logarithmic isometric plane representation of

the bearded man planar projection image shown at the top of figure L3. This clearly

shows that pixels in the region of the fovea, at top of transform, result from many

samples taken from the same pixel, while at the bottom the reverse is true.
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The lower three images are range normalized logarithmic isometric plane

representations of the snow scene image shown at the top of figure L2. They are

computed with increasing focal lengths, i. e., decreasing fields of view, from top to

bottom. The results clearly indicate that the transform is sensitive to this so that in

actual use, it must be utilized in a known manner so as not to introduce unknown

distortion into the transformed image. This requires more experimentation.

In this section simple experiments were described involving the generation of

logarithmic isometric plane representations of iconic imagery from planar projection

images. While this does not indicate all the possible ramifications in doing this, it

does indicate that it is possible. Again, further work is indicated in which, for exam-

ple, numerical extraction of optical flow from the logarithmic isometric plane

representation is geometrically interpreted as range/depth etc.
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Figure L4: Test Scene Image - At the top is the test image with center nomi-

nally coincident with optical axis. Below is the computed depth normalized

image, or equivalently, the log-polar transform. The non-square pixel size was

taken into account in computing transform, but not in rendering image at top.
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{a) (b)

(c) (d)

Figure L5: Logarithmic Isometric Plane Representation - At top left is the loga-

rithmic isometric plane representation of the bearded man scene of figure L3. The
remaining three logarithmic isometric plane representations are of figure L2 range

normalized and have been computed with decreasing fields of view.
109



Disparity Representation for a Forward Translating Camera

6. APPLICATIONS AND CONCLUSIONS

The ideas developed and described in this report have had as their motivation

two main objectives:

(1) The development of iconic image representations which facilitate the extraction

and geometric interpretation of optical flow and binocular disparity, within the

context of image sequences as generated by cameras mounted on a forward

translating platform, e. g., as would be the case for a self guiding vehicle.

(2) The exploration of spherical projection geometry for two purposes: (a), as a

simpler analytic/geometric model of image formation, optical flow and binocu-

lar disparity, and (b), as a potentially better computational representation for

acquiring imagery and subsequently extracting and interpreting optical flow and

binocular disparity.

In the next subsection the first objective is discussed, followed by a second sec-

tion on the conclusions regarding the utility of using spherical projection over con-

ventional techniques.

6.1. THE PROBLEM OF SEGMENTING IMAGERY FOR A FORWARD
TRANSLATING CAMERA

The image analysis problem for a forward moving camera-retina, whether it be

biological or artificial, is highly dependent on the task. At one extreme, as elo-

quently described in [ALDUS], is the problem of obstacle avoidance: an insect mov-

ing at a hundred body lengths per second through a random maze of twigs,

branches, and leaves making up a bush, all under the highly variable lighting condi-

tions of deep shade broken by sunlight filtering through a moving canopy of tree

leaves. In this case little actual object recognition must take place.

At the other extreme, as in the case of a predator looking for prey, object

recognition is of extreme importance: a hawk identifying a mouse as distinct from a

moving leaf.

In this report we have given key roles to optical flow and binocular disparity in

the belief that they play important roles in both extremes. However, this is clearly

only part of the story: my view of the world looks about the same from my car

whether moving at 60 mph or stopped, with one eye or two. In attacking the prob-

lem we must build on what is understood toward what is not

Most of the self-guiding vehicle research to date is exemplified by [THORPE]:

camera imagery is used to build an elaborate internal model of the 3 dimensional

world. This may be a valid task, but in large part fails to provide the real-time needs
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of navigation involved in getting from point A to point B. This later task is pri-

marily obstacle avoidance while simultaneously selecting the immediate trajectory.

Once the point is passed, no more effort need be expended in understanding the

scene.

It is from this latter point of view of the navigation task that the work reported

on here has application: we wish to know, not what-thing is an obstacle, but rather

if any-thing is an obstacle or has the potential of becoming one. Hence the problem

is one of identifying, for the optical flow generated by the visible points of 3-D

space, the appropriate category: (a), expected, and hence not an obstacle, e. g., the

roadway, (b), not expected, and hence an obstacle, and (c), has the potential of

becoming an obstacle. Expected objects are identified with particular events of a

“plan”, while unexpected objects provide the source of new information for incor-

poration into an updated plan.

It is in this regard that the four parameterizations of space for which normaliza-

tion has been defined (potentially along with others) seem particularly applicable:

range, depth, looming and clearance. Regions in which optical flow of a given mag-

nitude is allowable can be defined by “carving out” certain regions of 3-D space, in

terms of these 1 -dimensional parameteri2:ations.

In this report we have identified a representation for these normalizations of

optical flow, namely the logarithmic isometric plane, for which the techniques of

optical flow interpretation, as given in section 2.3, are applicable.

In section 2.3 of this report the scenario of a laterally translating camera

(translating sideways to the optical axis) viewing a dynamic scene was developed.

The linear nature of the geometry of the resulting optical flow facilitated its

geometric interpretation. More precisely, in terms of the ideas developed in section

3.2.3, depth is a natural 1 -dimensional parameterization of the viewed scene.

The nature of the aperture problem was also analyzed with the intent of

demonstrating that edges and contours, at unknown angles, still provide sufficient

information to uniquely determine relative motion amongst translating objects. In

particular, we outlined an algorithm in that section which provided a method of seg-

menting an image based on differentiating relative motions in a robust manner, i. e.,

the Hough transform based algorithm described in section 2.3.4.

In section 3.2.2 the optical flow for a forward translating camera-retina,

modeled by spherical projection, was transformed in a manner giving it the same

properties as that for a laterally translating camera, but with respect to range, rather

than depth. (Range is the Euclidean distance, while depth is used for the distance to

the perpendicular plane containing the point) This range normalized representation
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is then amenable to being segmented by the Hough transform algorithm.

In addition, section 3.2.3 developed three additional transformations, called

depth, looming and clearance normalization, for which their respective logarithmic

isometric plane representations have the linear optical flow properties corresponding

to that for range. In particular, the Hough segmentation algorithm is applicable for

each of these.

More particularly, optical flow normalized to each of these parameterizations

will generate clusters differently in the Hough transform space. A perpendicular flat

surface will cluster in the depth normalized transform but not in the others. A point

source will maintain a constant range (if the translation velocity is small compared

to the range) and hence a saccading sequence of range normalized images will clus-

ter to the same point

WhDe these ideas may be mathematically correct, more work needs to be done

to demonstrate their practicality and usefulness for real imagery.

62. CONCLUSIONS REGARDING SPHERICAL PROJECTION

An important aspect of the work described in this report is concerned with

whether sphericd projection per se is in some way superior to conventional methods

of image formation, i. e., planar projection. By spherical projection here is meant

either actual projection to a sphere, or as suggested in section 3.2, a simultaneous

spherical projection combined with a projection to the plane, e. g., the polar spheri-

cal projection. In particular, this question is addressed with respect to the the extrac-

tion and interpretation of optical flow and binocular disparity.

Until such time as the principles of vision are well understood, the answer to

these questions can only be guessed at However, within the context of performing

vision research, certain conclusions are worth noting. These conclusions have several

aspects which are addressed in the following three subsections.

6.2.1. SPHERICAL PROJECTION AND THE ANALYTIC/GEOMETRIC
MODEL

The purpose of the analytic/geometric model is to facilitate our reasoning about

optical flow and binocular disparity.

For the spherical projection model developed in section 3 of this report, we

know a priori that numerical extraction (as opposed to the interpretation, addressed

next) of either optical flow or binocular disparity from iconic imagery will not be

improved by being on a spherical manifold. The spherical manifold only
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complicates the underlying differential geometry, e. g., as mentioned in section 3.2.2

with respect to the visual flow constraint equation. Since numerical extraction is pri-

marily a computational issue it is addressed again below.

With respect to the question of whether the spherical projection model can

facilitate the analysis of optical flow and binocular disparity for the purpose of

understanding its geometric interpretation, the answer is yes. Section 3 of this report

elaborated such a model. In fact it is generally recognized within the vision research

community that the analysis of optical flow is facilitated by the spherical projection

model [ALBUS, NELSON, RAVTV]. However, for the most part this has been res-

tricted to aspects of analysis only. In particular we make the following additional

points:

(1) In sections 3.1.2 and 3.1.3 bi-retinal and binocular coordinates were defined

and shown to be related to spherical projection in a simple way. In particular,

binocular disparity was shown to be a natural coordinate for parameterizing 3

dimensional space and also for controlling camera pan and tilt for purposes of

vergence and bringing a feature point of the scene to the fovea.

These coordinates were defined within the context of the analytic/geometric

spherical projection camera-retina imaging model and are an example of its

usefulness.

(2) In section 3.2.1 attempts to maintain the Euclidean metric (i. e., the distance

between two points is independent of where they are in the image) for spheri-

cal projection were abandoned altogether by the introduction of the logarithmic

spherical projection as a means of providing variable foveal-peripheral resolu-

tion. This was shown, using the analytic/geometric model, to linearize optical

flow so as to simplify its geometric interpretation (section 3.2.2).

This report has used the spherical projection analytic/geometric model to relate

the geometry of the sphere to a planar manifold. In particular, the simplicity of

the spherical model has been combined with a planar surface representation

which lends itself to conventional image processing algorithms.

(3) In section 3.2.3 additional mappings were mathematically defined for the

analytic/geometric model and shown to provide additional 1 -dimensional

parameterizations of 3-dimensional space for which optical flow is easily inter-

preted. In particular, the application of these mappings to iconic imagery,

called normalization, led to the logarithmic isometric plane representation.

Again, this analysis was performed within the spherical projection

analytic/geometric model and facilitated the understanding of how to interpret
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optical flow.

(4) The binocular wire frame scene simulator models the analytic/geometric model.

In section 5 experiments verifying the correctness of the analytic/geometric

model with respect to the normalization procedures developed in section 3 are

described.

We suggest that more development of the spherical projection

analytic/geometric model will provide additional benefits. For example, the modeling

of saccadic action by camera-retinas in terms of the generators for the Lie group

SO(3) of 3-dimensional spherical rotations has been noted by [CHEN], and might

take advantage of this latter’s high degree of development [KARGER].

Based on these arguments we conclude that for purposes of understanding the

geometry of optical flow and binocular disparity, an analytic/geometric model based

on spherical projection is simpler and hence more useful than the conventional

planar projection models.

6.2.2. SPHERICAL PROJECTION AND THE COMPUTATIONAL MODEL
The computational model consists of iconic image representations, algorithms

for acting on those representations, assumptions about the imaging process and the

task to be performed etc. It is the environment available to the computation which is

to perform the given vision task.

With respect to our conclusions regarding the question of the relative efficiency

of spherical projection, the forward translating camera vision task appears not to be

of major significance one way or the other.

Rather, it is the incomplete vision research task itself, as performed by any

means available, which dictates what representations and strategies seem most

appropriate.

Based on our work described in this report it is our conclusion that from a

purely computational point of view there are no overriding advantages to using pure

spherical projection. This conclusion is in large part the result of the methods con-

veniently available for storing, i. e., representing, and processing iconic imagery.

There are two aspects to this.

At the lowest level, iconic imagery should be stored in a manner which models

the underlying manifold geometry of the image itself. This is exemplified by the

image formed on the flat chip of a standard video camera: the manifold geometry of

the chip tessellation and that of conventional computer memory match.
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Given that it were possible to build a spherical analog of a flat chip, and hence

obtain a regular sampling of the spherical image, it is still problematic to maintain

the spherical geometry.

This is a direct result of the fact that the sphere cannot be mapped to the plane

without distorting it, either as a continuous mapping, or as a regular tessellation, e.

g., as would be needed to map it to conventional computer memory in a manner

allowing systematic access to a pixel and its immediate neighbors in a reasonable

way, though this is possible with considerable complications [KAC].

As mentioned above, the solution chosen here is to abandon the Euclidean

metric and map the sphere in a way that explicitly facilitates the extraction of opti-

cal flow and binocular disparity. In particular, the following point is made for

imagery obtained from a forward translating camera:

(1) In the mapping of the sphere to the logarithmic isometric representation, the

problem of extraction for optical flow and binocular disparity becomes identical

to that for the laterally translating camera, and hence the same techniques for

their extraction and interpretation become applicable.

The second aspect concerning the representation of iconic imagery which has

caused us to make the above conclusion regarding spherical projection, concerns the

use of orthonormal polynomial bases, e. g., Chebyshev, Hermite polynomials, for

representing iconic imagery, e. g., the “facet model’’ [HARALICK2] and their use

in computing image gradients, [HASHIMOTO, MEER]. These methods seem attrac-

tive to us with a corresponding impact on our conclusions.

The above ideas will not be developed here, but rather the point will be made

that once such a representation is engaged upon, the choice of what type of projec-

tion to use is of little consequence: whatever projection is desired may be formed

out of the original projection through the appropriate (non-linear) spatial sampling of

the polynomial representation.

More particularly, in section 3.3, mathematical relationships were developed

between the normalization mappings of the sphere to the plane, were put into a

computational form, and in section 5.2, computational examples of these nonlinear

samplings was given. This provides the basis for what might be called the “compu-

tational interchangeability of planar and spherical projection.’’

In more detail we have demonstrated the following in developing this computa-

tional interchangeability:

(2) Based on the mathematical relationship between spherical projection and planar

projection, the computation for sampling a planar projection was derived in
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section 33 .2.2 which generates the logarithmic spherical projection normalized

for range. In section 5 .2 . 1 an example conversion for doing this is described.

(3) In section 3.3.1 the fundamental relationship between spherical and planar pro-

jection was used to derive the normalization sampling needed for each of the

1-D parameterizations, i. e., range, depth, looming and clearance.

(4) In section 3.3.2. 1 the computation needed for sampling a planar projection

image in a manner which generates the depth and range normalizations as

represented by the logarithmic isometric plane are given.

(5) In section 5.2.2 several examples of both depth normalized and range normal-

ized spherical projections, as represented by the logarithmic isometric plane,

are generated from planar projections.

Based on these example computations the feasibility of non-linear sampling of

images for the purpose of binocular and optical flow disparity interpretation, as well

as other purposes, has been demonstrated. These samplings were performed on

planar projection images, hence demonstrating that spherical projection images are

not required.

Until such time as general artificial vision systems are tailored to perform

specific tasks, the question of the relative computational utility of spherical projec-

tion should not be a significant one.

6.2.3. SPHERICAL PROJECTION AND PRACTICAL ENGINEERING CON-
SIDERATIONS

We briefly address some issues related to the question of the practicality of our

conclusions regarding the relative utility of spherical projection.

In a research environment, our conclusions seem perfectly appropriate: the giv-

ing up of computational efficiency in return for computational versatility. This is

particularly true if the research is concerned with the development of a general

vision paradigm, and less so for the development of a vision system for a specific

task.

One of the characterizing features of spherical projection is its potential very

wide field of view. In contrast, planar projection is limited to 180° by its mathemati-

cal definition and in practice to much less due to the difficulty of keeping the result-

ing image distortion firee. The economics are such that a planar projection lens

approaching 180° will cost something approaching 10,000 dollars.

Equidistant projection (termed polar spherical projection in this report) lenses

are available from about 180° (1,200 dollars) up to 220° (14,000 dollars). These
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prices are probably more a reflection of the low quantity sold than of the intrinsic

difficulty of their manufacture.

The computing of optical flow over large angles of panning does not seem to

take place in biological vision. For smaller angles, i. e., eye saccades, the internal

maintenance of the image as a spherical projection using polynomials defined on a

spherical manifold might provide image stabilization under rotation.

Again, until such time as a general purpose artificial vision methodology is

arrived at and subsequently used to design a vision system for a specific task, the

relative significance of spherical projection to that engineering design are premature.
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APPENDIX Al: DERIVATION OF OPTICAL FLOW EQUATIONS FOR A
PLANAR PROJECTION CAMERA
None of what follows is original, but is available in less detail in for example,

[BRUSS, HORN].

1. THE CAMERA MODEL
We imagine the camera to be mounted on a vehicle for which the primary motion is

one of translation in the direction of the optical axis of the camera, and further, that

the environment through which the vehicle moves moves is static.

The camera may be used to define a coordinate frame X, T, Z which stays fixed

with respect to the camera, in which the positive X -axis is coincident with the for-

ward pointing optical axis of the camera lens. The imaging plane is then parallel to

the plane containing the Y and Z axes. We define the origin 0^. of this camera

coordinate frame to be at the nodal point (“pinhole”) for the camera lens. Hence

the imaging plane will be at a distance / along the positive X -axis, where / is the

focal length of the lens. See figure Cl.

We define the origin of the imaging plane coordinate frame y , z to be at

[X — f = 0, Z =0] oriented so that the y and z axes are parallel with the Y and

Z axes respectively. A point P, whose three dimensional camera coordinates are

[Xp,yp,Zp], maps to a point p on the imaging plane whose coordinates are

[yp, Zp]. The mathematical relationship is obtained by noting the two similar trian-

gles Of., p. Of. and O^. , P and the point on the X -axis containing the perpendicular

to it through the point P , i. e..

Hence the conversions between the coordinate frames are, (dropping the subscripts

for a particular point)

y and ^ =/y 1-2

and inversely, where X becomes in effect a parameter,

Y = Z = ^. 1.3

Note that equations 1.3 are the parametric equations for the line determined by the

points Of. and p . The point P is then constrained to lie on this line.
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2. CAMERA MOTION

The camera may be treated as a rigid body for the purpose of describing its motion.

It can be shown that any general rigid body motion may be decomposed into a pure

translational component T and a rotational component O), each of which is

parameterized by three scalars. For our purpose here, we will define the optical axis

X to be the axis along and about which this translation and rotation occurs, and

hence may characterize T by a vector [U , V, W] and co by an “angular velocity”

vector [A,B,C]. Letting r be the vector [X,T,Z] representing point P, this

decomposition into translational and rotational components relative to P is of the

form

-T - (0 X r. 2.1

More precisely, what we have described is an instantaneous motion so that the

corresponding infinitesimal motion is in fact velocity

• dX • dY ‘ dZ^ . . .

V = [X s —— , Y =—
, Z s ——]. Hence we may rewnte 2.1 interpreting it as a

dt dt dt

velocity:

V = -T - (D X r. 2.2

or in component form.

X u A X
Y - - V - B X Y

Z IV C Z

-u-bz-k:y

-V-CX+AZ
-W-AY+BX_

2.3

In words, this equation allows us to calculate the velocity vector [X, K, Z] of a

point X ,Y ,Z knowing the parameters of the motion.

3. OPTICAL FLOW
The optical flow at the point p(;c, y) in the image plane is a two dimensional vector

whose components are [y, i]. Hence differentiating 1.2 with respect to time we

obtain

Z X
X^

J

3.1
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Substituting the expressions for Y and Z obtained in 2.3, we obtain

-V - C X + A Z Y
y =/

i =/ -W - A Y + B X

X^

Z

(-U - B Z + C Y)

irU - B Z ¥ C Y)

3.2

3.3

which is in terms of the camera motion parameters and three dimensional coordi-

nates of P. This latter may be replaced by depth (i. e., X, as opposed to range

+ Z^), and the corresponding point p expressed in image coordinates y , z

by substituting them for Y and Z from 1.2 and simplifying:

y =/

2 =/

+ y

' «

[x / f]
* >

W V-A ^+B + z + B i--C i
X fL J / / f]

3.4

3.5

Each of these expressions may be broken into two components, one of which is a

function of the translation parameters and the other of the rotational parameters:

yt f
, and

»

Sr

f " X
K. J f

V.

2/

• ^

-W +z^-
f

, and
/ X f

B y z - C (y^ + /) + ^
^ 3.6

3.7

APPENDIX A2: DERIVATION OF OPTICAL FLOW NUMERICAL
EXTRACTION AS RATIO OF TEMPORAL AND SPATIAL GRADIENTS

Starting with the visualflow constraint equation [SCHUNK],

a/ 3/ ^ 5/

Bt dx ay
’

note that the right hand side can be written as a dot product,

_ = (M.
dt djc , dy ^dt'dt

1
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where is the unit vector parallel to V/. Optical flow is identified with the vector

dx dy(— , but in fact only the component of this flow normal to a moving contour
dt dt

is observable in an image sequence, i. e., the amount observable is u„ • (—

,

dt dt

The angle
(f)

between u„ and (— ,
— ), i.e., the angle between V/ and the tme

dt dt

direction of contour motion is not uniquely determined and is in general unknown,

i.e., the “aperture problem’’. The magnitude of the dot product of the optical flow

and the unit gradient, i.e., the observed normal component is, dividing through by

m
dt_ ,dx dy

.

[a/'
2

b/
2‘

Bx
.V J

[a}']

In what follows we will denote by the observed, or apparent, optical flow,

i.e., a vector having magnitude u„ • but having the direction of |V/[

rif rif
Denote by Ar, Ar and Ay the calculated values of and — at point /,

at aX By

X , and y respectively. Then may be calculated from

Pn\ =
-At

V(Ax)^ + (Ay

e = tan-» 4^,
Ax

where 9 is the angle U„ makes with the positive x-axis.

The X and y components of , (u , v ), may be calculated from

u = pn \ cos 6

Ax
= Vn\

V(Ax)2 + (Ay)2

-At Ax

V(Ax)^ + (Ay V(Ax)^ + (Ay)^

_ -AtAx

(Ax)^ + (Ay)^

and similarly for v = |[/„| sin 0 for which we obtain
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^
_ -AtAy

^
(Ax)^ + (Ay)^

APPENDIX A3: AN ALGORITHM FOR IMAGE SEGMENTATION BASED
ON DIFFERENTIAL OPTICAL FLOW

One application for differential optical flow is to use it to spatially segment

imagery into regions which, while indistinguishable from intensity characteristics,

are differentiated by reason of their differential optical flow resulting from

differences in depth. In this appendix we describe an algorithm which accomplishes

the first step of this by classifying edge points in the original image by their depth

class. These edge points are in fact the points for which optical flow may be com-

puted.

The central idea in the algorithm is to use the locus of points given by the opti-

cal flow normal component theorem to parameterize the family of curves determined

by each numerically extracted optical flow vector. This parameterization is an appli-

cation of a Hough [DUDA] transform in which each data point is used to “vote”

for all curves on which it may fall. The result of performing this on many data

points is a clustering of votes around particular curves whose parameters then

explain the data.

The normal component theorem states that an extracted optical flow vector

v| must lie somewhere on the curve

\i, vl = |[/, VlcosCcj) - 6),

depending on the (unknown) angle 0 the edge makes with the direction of motion

and the magnitude of the flow field V\a.t the point. ( |[/, F| is nominally [c, but

we make a distinction between calculated values and the mathematical model.)

However, this equation may also be thought of as characterizing the family of loci

all of which contain the data point ( 0). That is, we view p, F| as the depen-

dent variable and ^ as the independent variable while u , v and 0 are constant The

equation

|[7,
- 0-90° < (j)< 0+90°

cos((j) - 0)

then generates one point on each possible loci of normal components. A second

data point results in a second family of possible loci, and in general will intersect

the first family at a point common to both families, i. e., a single locus of normal

components on which both data points then fall.

Given many noisy optical flow vector data points the strategy is to find clusters

of intersections in the resulting families of loci. This is accomplished by plotting
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each family indicated in an accumulative array. A local maxima at location M , C> in

this array then corresponds to a locus of normal components on which falls a

number of data points. All these data points support the hypothesis that the

corresponding edge points are moving with optical flow magnitude p , V\ = M and

direction <I>.

These local maxima in /n-(j) space are rank ordered by some measure of their

respective “certainty”, e. g., relative height, and the “best” n of them kept. A
second pass is then made through the optical flow data points computing for each

Each point is then classed with that hypothesis which yields this minimum, unless

the difference is greater than some threshold value, in which case it is placed in

residue class n+l.

The above described algorithm, while mathematically correct, will work no

better than the quality of data supplied to it However, noise is more likely to result

in spurious classification of noise data points than to cause the misassignment of

good data points.

A more detailed step by step description of this algorithm follows.

(1) Initialization: Set array MPHI[0:MAXMAG; -90°;90°] = 0.

(2) Generate m-^ Parameter Space: For each optical flow normal component

0 = tan~^—
,
perform the following:

u

For 0 - 90° < <[) < 0 + 90° calculate

m
u cos (|) + V sin ({)

MPHI[m, ({)] =AfP///[/n, +1

(3)

Locate Clusters: Locate, rank order and threshold local maxima of MPHI and

denote the resulting sequence by

[A/i,<Di],[M2,<I>2],
•••

II —1 V

(4)

Classify: For each optical flow normal component 0 = tan
'— ,

with spa-

tial coordinate i
, j compute

^ = 1,
• •

• n
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and set

n

AMr = min AMi

.

k=i

Then point I(iJ) is in class c with compensated optical flow magnitude

moving in direction if AM^ < THRESHHOLD, and in residue class n+\

otherwise.

In step (2) the entire curve of possible relative motions is generated. An alternative

is to plot just the intersections of the curves obtained by solving every pair of opti-

cal flow data points for their intersection.

(20 Generate m-(j) point solution Space: For each distinct pair of optical flow vec-

tor data points /nj = J/j, Vi|, 0i = tan
^— and m2 = \i2> 62 = tan *— , cal-

Ui U2

culate

+v|)[(mi -Vi)^-I-(M2- V2)^-2miVi -2M2V2]
m -

M2V1 - W1V2

«2(“? + - “i(“2 + V2)

Vi(m| -I- v|) - V2(w? + vf)

and set

MPHI[m, (|)]
= +1

(j) = tan
^
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