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Time-Perturbation Tuning ofMIMD Programs

Gordon Lyon, Div. 875

Robert Snelick, Div. 875

Raghu Kacker, Div. 882

Time-perturbation tuning—TPT—is a novel technique for assaying and

improving the performance of programs on MIMD systems. Small,

synthetic program delays are combined with statistically designed

experiments (DEX). Claims for TPT are two: (i) Conceptually, it brings

the powerful, mathematical perspective of experiment design to

interdependent, sometimes refractory aspects of MIMD program tuning;

(ii) Practically, it provides a needed speedup mechanism, synthetic time

delays, for what otherwise would be ad-hoc, hand tailored program setups

for DEX. Overall, the technique identifies bottlenecks in programs

directly, as quantitative effects upon response time. TPT works on

programs for both shared and distributed-memory, and it scales well with

increasing system size.

Key words: code perturbation; designed experiments; factorial designs;

MIMD; paraUel programming; performance improvement; synthetic

delays.
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1. A Problem with MIMD

MIMD programs are dififkult to code well and to improve—the asynchronous,

interdependent nature of events makes this so. For unlike serially-executed computer

programs, MIMD parallel code has performance interactions that are not readily

predictable. Much depends upon communication, including synchronization, among the

parallel components. True improvements are not always intuitive in any serial sense of

the code. For example, communication-induced idle time exerts a big influence

(illustrations follow). It quickly becomes clear upon reflection that scalable parallel

systems can present an avalanche of internal detail. Most of this information should be

kept hidden from users. Yet, MIMD programmers need to identify program bottlenecks.

This raises the question of how users are to improve their programs. Conversely,

programmers should know which sections of code can be expanded with only minor

performance penalties. Although isolated changes in MIMD code certainly can be

monitored for overall performance results, a typical parallel program will have a large

number of potential improvement points. The efibrt in any naive attempt at a

comprehensive evaluation is simply too great.

2. Time-Perturbation Tuning

There is an alternative, more in the spirit of transparent system service, that suggests

perturbing programs with systematic pattern sets of artificial delays. This is time-

perturbation tuning, TFT. The sets of delays are easily generated and inserted into code,

since they are synthetic quantities divorced from normal computational states. Response

times are measured for runs performed with each pattern of delays. From this is built a

macro-level model that predicts program sensitivity to delay settings. Internal details of

a program are largely ignored, a philosophy that contrasts sharply with conventional

tuning approaches. TFT rests heavily upon the design of experiments (DEX), a modem
branch of statistical theory well-suited for studying complex systems [BHH78]. DEX
provides quantitative estimates of the effects of TFT’s synthetic bottlenecks. The

objective is to establish quickly and accurately which locations matter most for

improvement. Although a location can be on a control path or a data path, control paths

are emphasized in this discussion.
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2.1 Description of Technique

Time-perturbation tuning involves (i) a specimen program, P, (ii) a response to be

improved, e.g., runtime of P, (iii) mathematical methods from the statistical design of

experiments, and (iv) standard, synthetic methods of delay perturbation that are inserted

into program P. TPT follows the following steps:

1. Select code locations in program P to be tested, via synthetic delays, for their

effect upon performance.

2. Insert standard perturbations in statistical test patterns. This will generate

numerous treated versions of the program. Order these randomly.

3. Run each treated version of the program and record its response. Replications

should use a fresh randomization order.

4. Analyze the measured responses. ANOVA, the analysis of variance, is typically

employed. In some circumstances, the system response surface is not well

behaved. Here, more informal methods may prove appropriate (an example

follows in the text).

5. Assess the analysis and select those effects that are significant. These effects

correspond to factors and their interactions. Insignificant factors are dropped

and new factors added.

6. Repeat steps 1-5 as needed. Analysis proceeds in cycles of refinement.

Selecting initial factors in a program requires judgment on the nature of the software

pieces. This first estimate can be refined as sensitivities become known. Since TPT
assays quantitatively, influential factors can be retained and investigated further

alongside promising new ones.

2.1.1 Treatment Opportunities. There are numerous ways to treat the code. In perhaps

the easiest and most useful case, delays are inserted into source-level control paths prior

to compilation. All examples discussed here use this form of perturbation. It should be

noted in passing that the chosen treatment does not have to be a time delay, although the

latter is often first to come to mind. Other treatments include perturbations that (i) lock

and unlock some important variable while doing nothing substantive to it, (ii) send

dummy messages, or (iii) acquire temporary buffer space. Another delay possibility for

source code is to insert them along data paths. An illustration for such a delay treatment

may be useful. Let integer variable A be a location of interest. References to A are

replaced by invocations of an integer function ifu, so that ifu{A,x) returns the value ofA

-3-



after a delay of x units. All invocations of ifu{A,x) constitute treatment for one factor,

the reference of A. Aliasing must be examined carefully in this context, since pointers to

A may elude a static source-level treatment.

Below source-level treatment lie system-level approaches. Here, the available

resources will determine what can be done. Processors that can trap on specific location

references (c.g., with watchpoint registers) can always delay anonymous pointer

references. On other systems, trap-on-address may be difficult. The case for control

delays is easier. Perturbations can be patched into loadable code (after compilation and

linkage) by the familiar technique of jumping out of the original code to a perturbation

table and then jumping back.

While other possibilities exist, the principle remains: The extra perturbation code

neither omits nor reorders any code of an original thread. Nor does the perturbation

depend upon the computational nature of the original code. This would be the case if

treatment me<uit code had to be tediously rewritten to be slower or faster while giving the

same results. DEX treatments of programs, typically system pieces, have had this nature

in the past. Fortunately, such rewriting is unnecessary, for synthetic delays are

deliberately chosen to be outside the logical (or computational) state of the program

under test For example, the delay function does not use global names or values from the

original code, logical, or computational, soundness of a program remains as it was

originally (exclude real-time codes). For this reason, perturbation points can be swiftly

inserted, tested and removed. The perturbation used at all points is standard—it is not

tailored ad hoc for each context. This fact is pivotal to practical applications of TFT,

including the automatic setup of trials.

2.1.2 In Practice. Each inserted delay simulates added instructions. Code for the

standardized delay need be neither large nor complicated—six to fifteen machine

instructions often suffice. In the distributed-memory experiment that follows (Example

2-DM), delays are generated by a recursive function, delay {X), embedded in a

compilation directive that is conditional upon integer parameter X. X=0 generates no

code. For X>0, delay(X) performs X invocations, X floating-point multiplies, and X
returns. The value of X is determined by the nature of the program P, the system, and the

fineness of detail being investigated.
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Patterns of delays are determined once p program test factors (locations) have been

chosen. As will be seen shortly, the TPT approach starts by treating each factor at two

delay settings. Given the p factors, an exhaustive experiment will thus involve 2^

patterns. This is sl full factorial design. Partial factorial experiments, designated

generate far fewer patterns, but have less experimental resolution. Partial factorials are

generally quite adequate. Treated versions of the test program P are run with their

pattern of delays. These runs are trials. An overall response is measured for each trial.

While all examples here use runtime as a response, maximum consumed space is another

possibility and transactions per minute, a third. More than one response can be measured

for each trial. Each type of response corresponds to a distinct experiment. Thus each

experiment takes multiple trials, but the same trials can serve multiple experiments.

Once a set of trials is complete, the statistical method analysis of variance, ANOVA, is

commonly employed.

1.13 The Screening Model. TPT incorporates a screening method. More so than other

statistical approaches—regression, optimization, comparison—a screening focuses upon

identifying which among tested categories matter most. TPT’s analysis rests upon a

simple response surface model that assumes linearity in all variables. Factor treatment

levels therefore need assume only two values, here represented after rescaling as

(-1, + 1). Abbreviations minus (-) and plus (+) are used in sequel for-1 and +1 settings

of treatment. Interaction settings are determined from factor treatment settings, so that

Xyi = — and Xfi = + imply interaction X/^ = (-) x (+) = -. These binary settings are

generally adequate, although exceptions are explored later. Still, circumstances suggest

first investing only a minimum in each model, since program tuning will change the very

code under study. Model utility is quite short-lived.

Suppose there are program factors A, B, and C, with corresponding treatment

variables ofXy^^ Xg andXc- The response surface model is:

R + ‘A [Pyi Xfi + pytB Xj>^ + Pc Xc + Pac ^ac + Pbc ^bc + Pabc ^abc\ (0

Multiplier V2 arises because the domains of treatment variables {X^ } span [—1, +1], a

distance of two. The unknowns to be solved are the mean (|i) and coefficients

{Pi,P/y,
* ’

* }• As mentioned, p factors generate 2^ unknowns, a formidable number for

larger p. It is important to note that DEX emphasizes ascertaining which among a

model’s terms are significant, and which can be safely ignored, without exhaustively

exploring all 2^ combinatoric trials. Partial factorial experiments 2^"* deliberately

confound effects that are thought unimportant Such tradeoffs among DEX designs are

well known (see Table 12.15, [BHH78], p. 410). Weak terms of little influence will have
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coefiicients closer to zero than do the significant factors. In practice, many terms are

insignificant, but not all. Interactions are less common, and higher-order interactions,

rarest. This is especiaUy true if there are many factors. Thus is usually less

influential than X^b or X^c- DEX practice will often assume few interactions, but set

safeguards that signal should the assumption fail.

Coefficients of the model ((3^, are its effects. Effects are commonly

expressed as column entries in a table, a more convenient format for screening

comparisons than is equation (/). (In screening, a predicted response R is not the first

concern.) The row corresponding to an effect identifies its source(s). Effects are

evaluated relative to model noise, the latter often expressed as standard error, S.

Handling of the trials, such as whether to perform replicates (duplicate runs), is dictated

by the degree of confidence required in the tuning process. Examples herein use

replicated trials for estimates of 5. Noise in the model, (/), has a normal distribution

centered about zero with an estimated standard deviation of S. Consequently, 68.3% of

aU noise effects will fall within ±1S, 95.4% within ±25 and 99.7% within ±35. A
significant effect will probably exceed 3 or 4 5. Comparisons among significant effects

establish which factors most influence response R. Response R varies about an overall

mean |i shown in (/). |i is an estimate of R with all treatment settings at halfway,

i.e., Xa =Xb = ...= 0. (Remember thatX = — 1 or +1 for the settings.)

3. TPT on Shared and Distributed-Memory Systems

Discussion proceeds via two small but quite representative programs, the first

running on a shared-memory architecture, and the second on distributed-memory. These

300-400 line examples illustrate the essential TPT with a minimum of detail and

complication. In practice, TPT has been applied to programs of up to 12,000 lines of

code.

-6-



3.1 Example 1-SM; Tuning a Parallel Quicksort

If TPT is to be useful, it must be effective in everyday practice. Shared-memory

architectures are generally more common and much better balanced than message-

passing systems. In this first example, TPT is applied to a parallel quicksort algorithm on

a conventional, very well-balanced shared-memory multiprocessor (16 processor

Sequent Balance system). The investigation begins with application of the UNIX
profiling tool, gprof [GKM82]. TPT follows. After a determination of base performance

has been made, TPT tunes the application, in one experimental step of 16 trials (runs), for

a significant performance improvement—23% faster. The comparison reveals differences

in profiling and TPT techniques and contrasts results from each. A second TPT iteration

exemplifies possible stopping circumstances. The application under study is an

implementation of C.A.R. Hoare’s quicksort It has been converted for a 16-

processor Sequent Balance shared-memory system. Parallelism is obtained simply by

allocating newly created sublists to available processors. Allocation of these sublists is

controlled by a shared stack. Whether this is the best algorithmic recoding is immaterial

for purposes here. Tuning emphasizes improving what is available.

3.1.1 Conventional Micro-Level Measurement Investigation begins by seeking

information with the tool "gprof." Most UNIX and UNIX-based systems provide gprof to

generate profiles of programs. Profiling tools help in debugging and in improving

efBciency. A profile reveals which functions consume the most execution time and

which are called most frequently. Once important functions are identified, their code can

be improved. This paradigm has been successful for tuning sequential programs running

on uniprocessors. However, on parallel architectures, emphasis changes. Considerations

(usually non-existent in sequential programs) such as process interaction and processor

idle time play a vital role in the performance of parallel programs. A simple extension of

a sequential profiler on a multiprocessor can measure the sum of time a segment of code

spent on each processor. This is one possible metric. However, a code segment’s total

processor time is not related in a simple way to parallel runtime (Anderson and

Lazowska [AL90] discuss this). If the results from a profile are interpreted incorrectly or

if a profile is not available, a programmer can waste time and effort improving code that

has Little impact on overall performance. As will be clear shortly, TPT avoids many
problems of having and interpreting metrics; it provides a better, more direct

understanding of a code segment’s impact on overall parallel performance.
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Table I (below) gives abbreviated results from a standard gprof file for the quicksort

routine. Two important metrics from the profile are the percentage of execution time

consumed by a routine and the number of instances that routine was called. From the

data it is clear that a majority of time for this parallel quicksort is spent in the s_lock()

routine. In addition, this residency metric mildly suggests four other routines of concern,

bubble_sort(), swap(), main(), and partition_list(). In terms of the number of times a

routine was executed, only swap(), s_lock(), and s_unlock() stand out. From this

information the programmer has to decide where to tune. Were the profile data for a

sequential program on a uniprocessor, the task would be more obvious. Any time saved

would be reflected, generally, in a shorter response.

Unfortunately, gprof data is murky in a parallel domain; interactions in the program

structure and concealed wait states have to be accounted for(e.g., [S91] show this).

Perhaps the programmer will direct efforts to improve s_lock(), since it consumes the

majority of overall runtime. Furthermore, sort(), swapO, partition_list(), and main() may

be overlooked because improving these routines seems to offer littie opportunity for

performance improvement. Analyzing the data from the call graph perspective focuses

attention upon swapO, s_lock(), and s_unlock(). Unfortunately (as with total execution

time), it is again not easy to relate call count information to runtime effect in a parallel

domain. In any case, a simple profile of a parallel program may not offer a clear plan of

attack; alternatively, it could encourage a wrong interpretation of results.

Table I. Abbreviated quicksort results from, gprof.

code segment % of execution time # of calls

s_lock (

)

64.3 359031
popO 0.1 13183
push (

)

0.2 13183
swap (

)

5.1 811141
bubble_sort (

)

3.8 6592
codel na (not avail .

)

na
select (

)

0.4 6591
main (

)

7.9 1

partition_list () 11.3 6736
s unlock 0 1.3 359031
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3.1.2 TPT’s Macro-Level Measurements. TFT provides knowledge about chosen code

segments (factors) indirectly by examining their combined effects over numerous

performances. DEX analysis works backwards from response times and the pattern of

treatment associated with each time. An additive treatment (e.g., a constant delay) is

applied at locations (factors) in various code segments of interest. Those factors most

sensitive to treatment (delay) signify segments that deserve first attention in tuning. The

premise is that if a segment of code is highly sensitive to source code perturbations (i.e.,

delay has a clearly detrimental effect on performance), then source code improvements to

that segment will have an opposite (positive) effect.

TPT testing of the parallel quicksort begins within the familiar framework of a 2^^

fractional factorial experiment design [BHH78]. There are 2"^ = 16 trials. Results from

the analysis appear in Table n (following). The first column is the observation (trial)

identification (trials run in random order). The next six columns designate treatment

settings for six factors chosen in the experiment. The six factors (fl to f6) are (from left

to right): s_lock(), push(), pop(), swapO, bubble_sort(), and codel. The first five factors

are function calls, codel is a segment of code {i.e., a loop) within the main quicksort

function: TPT can investigate code at resolutions higher than a function call. A plus sign

in a given row denotes that treatment is set (i.e., delay present). Minus denotes treatment

absent (no time delay). Thus row 5(— + — + +) shows pop(), bubble_sort(), and codel

with delays set. The response column, Rspn is the average of three separate trials for

each row’s treatment combination. Error estimates, S, also arise from these trial

replications. An effects column gives the mean, p, and factor coefficients {{3}. The

sources column lists the most likely factors for an effect. Some confounding is

deliberately introduced to shorten testing (see [BHH78]).
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Table II. Calculated effects for 2** (6-2) factorial design,
parallel quicksort example,

trial fl f2 f3 f4 f5 f6 Rspn Effect* Sources

1 19.11 48.03 Mean, |l

2 + - - - + - 19.99 1.98 s lockO
3 - + - - + + 21.73 1.12 push (

)

4 + + - - - + 26.51 0.66 s_lock ( ) Spush (

)

5 - - + - + + 21.91 1.30 pop 0
6 + - + - - + 26.42 0.66 s_lock ( ) &pop (

)

7 - + + - - - 21.51 -1.24 push 0 &pop 0
8 + + + + • 26.60 -0.10 s_lock ( ) &push (

)

&pop (

)

9 - - - + - + 72.75 50.10 swap 0
10 + - - + + + 72 . 97 -1.84 s_lock ( ) & swap (

)

11 - + - + + - 73.32 -1.12 push ( ) &swap {

)

12 + + + * 72.66 -0.46 s_lock 0 &push 0
&swap (

)

13 + + + 73.49 -0.98 pop 0 & swap 0 ,

OR bubble_sort (

)

14 + + + 73.13 -0.32 s_lock ( ) &pop (

)

&swap (

)

15 + + + + 72.52 1.10 push ( ) &pop ( ) Sswap ( )

,

OR codel
16 + + + + + + 73.81 0.74 s_lock ( ) &push ( ) &pop (

)

&swap (

)

* Standard Error for effects: S = ± 0.10
SE for the mean: S/2 = ± 0.05

It is clear from line 9 of Table 11 that swapQ is least tolerant of source code

perturbation. The significance of ^swapQ is hard to doubt, since =501. A

survey of remaining effects indicates no other outstanding combinations. In contrast to

earlier s_lock() indications with gprofs metrics, the effect locko i^ ii^^ ^ of the

analysis is subtle and weak. The reasoning behind this is that s_lock() is highly

associated with non-productive wait states. TFT points first and foremost to swap(). An
examination of the swapO routine reveals that it is very short. Coding swap() in-line

frees it from procedure-call overhead, perhaps its major execution cost. The result is a

one-step, 23% boost in quicksort performance.
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A second iteration of TPT demonstrates improvements in balance for the modified

quicksort. The new version with in-line swapQ is run in a design. swapO is not

tested. In examining Table II-B, below, the reader should know that the dataset,

synthetic delay function and experiment design differ from those used for Table H. This

precludes direct comparison across the two tables without rescaling, which is provided in

the scrap illustration following the discussion of Table II-B.

Table II-B. Effects for 2** (5-1) factorial design,
improved version, parallel cjuicksort

mean and effects follow:

Mean
27.52

Source (s) Effect
s_lock (

)

6.50 <—

1

push 0 4.26 <—

*

s_lock ( ) &push (

)

1.36

popO 4.46 <—

*

s_lock ( ) &pop (

)

1.36
push 0 &pop 0 .48

s_lock ( ) &push ( ) &pop (

)

-.46
bubblesort (

)

-.08 <—

2

s_lock ( ) &bubblesort (

)

-.36
push ( ) fibubblesort (

)

-.72
s_lock ( ) &push ( )

&

bubblesort () .80

pop ( ) &bubblesort (

)

-.58
s_lock ( ) &pop ( )

&

bubblesort () .54

push 0 &pop 0 &

bubblesort () 1.28
codel OR
s_lock()& push()&
pop ( ) fibubblesort (

)

4.46 <—

*

Standard Error of an effect: S = ± 0.08
S.E. of the mean: S/2 = ±0.04

The largest effect in Table II-B is indicated by <--1. Unfortunately, it belongs to

s_lock(), a system function that the programmer easily cannot change. The recourse is an

algorithmic redesign that uses less of s_lock0. Although this would lie beyond what TPT
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can recommend, TPT can certainly assist in the selection. The factor bubblesort(), shown

as <—2, once again has little effect overall, and can safely be ignored. The three

remaining, user-accessible factors—push(), pop(), and code1—have an almost perfect

balance among their effects. If the sort’s speed is adequate at this point, the programmer

may want to stop. Among factors, one can recommend no single recoding improvement.

To contrast the improved quicksort, denoted qs+, with the original, denoted oqs, main

effects of Tables II and II-B have been normalized as percentages of unperturbed runsfor

each sort version (below).

P,oqs p,qs+ Sources

10.36 14.86 s_lock 0
5.86 9.74 push ()

6.80 10.20 pop 0
262.17 — swap (

)

-5.13 -0.18 bubblesort ()

5.76 10.20 codel

3.1.3 Shared-Memory Results. TPT unequivocally distinguishes a major performance

bottleneck in the parallel quicksort. In contrast, a micro-level profile tool such as gprof

can confuse true performance contributions with unproductive busy waiting; this distorts

gprof s sense of what code is important The newer tool. Quartz [AL90], tries to improve

upon gprof by dividing all profile times by the average level of parallelism for each

profile category. This diminishes emphasis upon categories that are highly parallel and

have little room for improvement via concurrency. A Quartz-like evaluation might

reduce sJockQ’s accounted time in Table I. The most optimistic circumstance of full

16-level parallelism would give
64.3

16
= 4. But s_lockO would stiU have a standing

roughly the same or higher than swapO, for swapO also has attendant concurrency.

In comparison to the largely constractive, micro-model approach of metric methods

(gprof. Quartz), TPT is more straightforward. It simply avoids structural metrics and

their interpretations. Comparing columns of results of gprof-like tools with TPT’s results

yields important distinctions. Numbers fix>m gprof are raw measurements of interior

(factor) detail, with which the user is to constitute models that predict a program’s

responses. TPT is exactly reversed. Program responses are first measured and then

- 12-



correlated against precisely controlled changes in factors. Consequently, the TPT list of

effects for factors is anything but raw data. Effects in the TPT model beckon to exactly

those code locations with greatest impact upon performance. This is achieved with

minor human effort, but multiple computer runs. The example shows TPT to be very

accurate in identifying real bottlenecks in a program on a well-balanced parallel system.

3.2 Example 2-DM: Ring-Connected Nodes

Distributed-memory systems present definite challenges to designers of Quartz-like

tools. Compared to shared-memory, the measure level -of -parallelism is significantly

more difficult to capture as a distributed-memory statistic. In contrast, TPT works as

usual. This is largely because TPT, using macro-level analysis, does not rely upon

precise internal system details.

The distributed-memory "Ring" example has been chosen because it exhibits a

broader than usual set of TPT gains. It is an exaggerated object lesson for the host

architecture. A more ordinary example (e.g., a benchmark "Mesh" for fluid-like

computations) requires the same approach as this example, but it will not yield

improvements quite so drastic.

The program slice in Figure 3 (below) is for an iPSC-1 distributed-memory

hypercube system. Temporarily ignore the six invocations of delay. Each of the system’s

16 processor nodes contains a copy of the code sketched in Figure 3. The outermost

"Biloop" waits for a message (via a RECVW) from another node. This it passes to an

<if-statement>. Each branch of the <if-statement> also awaits a secondary message for

flow control. The TRUE branch is much more likely. All 16 hypercube nodes have been

programmed as a single ring; each Node Program B sends messages to one unique node

and receives from another.
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B: loop . .

.

delay(Fl); RECVWO ; delay(F2)

if (. . .)

loop
{code A} .

.

endloop

delay(F3); RECVWO; delay(F4)

else . .

.

delay(F5); RECVWO; delay(F6)

SENDO ;

endloop : B

Figure 3. Node Program B—Slice w/Perturbations F1-F6.

TPT’s investigation again proceeds in stages of DEX refinement and elimination.

Initial screening of Node Program B is via a first set of delays at code locations labeled a

through h. These are not shown in Figure 3, but appear in Table HI as source labels for

effects. Delay levels of treatment are 0 (rescaled as -1) and 10 (rescaled as +1). Delay

location c that tests {code A) is thought important Other segments are simply chosen

uniformly throughout B. The experiment uses a 2^“^, resolution IV design (see

BHH78]), which confounds main effects with three-way interactions, the latter assumed

to be negligible. Second-order effects are confounded with each other (see the Source

column in Table HI, below). There are = 16 trials. Trials are run with the test code

configured for normal service of light communication and heavy computation, (code A)

is, as expected, the most sensitive by far (arrows, below).
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Table III. Node Program w/Delays a-f

mean and effects follow:

Mean
26.750000

Source (s) Effect (Full)

a -2.250000 .

b -2.500000 .

ab+cg+dh+ef 2.750000

c 18.500000 <-

ac+bg+df+eh 2.250000
ag+bc+de+fh 2.500000

g -2.750000 .

d 3.000000
ad+bh+cf+eg -2.750000
ah+bd+ce+fg -2.500000
h 2.750000
af+be+cd+gh -2.500000
f 3.250000
e 3.000000
ae+bf+ch+dg -2.250000

Standard Error of an effect: S = ± 0.50
S.E. of the mean: S/2 = ±0.25

A further check of the importance of {code A} by varying available program parameters

does reveal that a 10% increase in (code A}’s execution time causes a 7% increase in

overall program response time. This is true even though (code A} is very short (one

multiply-and-assign within a for-loop). Consequently, a warning comment should be

added in the program code that all changes to (code A} should be done with care. This

experience is similar to the earlier quicksort example. However, Table III hints there is

more to be learned.

3.2.1 Optimization Rather Than Screening. The most sensitive factor in Table in, c,

has an effect Pc that is 18.5/0.5 = 37 standard errors (deviations) removed from 0. It is

thus extremely unlikely that (i) c’s true effect is zero, and (ii) c’s observed effect results

from randomness inherent in the trials. In contrast, other delays at a, b and g show

weaker but negatively signed effects. These delays appear to promote shortened overall

runtimes, an unusual circumstance (see in the table). At four or five standard errors

in magnitude, these special delay effects are worth investigating.
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Delays a, b and c are near synchronous receives, RECVWs, in B. To investigate

further, a second experiment is devised with a fresh copy of the program that has delays

before and after all RECVWs. This is Figure 3 as shown, with delays FI through F6.

The program is now configured with parameters for heavier communication and lighter

computational load, since prior experience has shown communication congestion can be

a problem. With delay(O) everywhere (no perturbations), the program takes 66 seconds.

A two-level (treatments of 0 and 10), 2^^ resolution IV factorial experiment of 16 trials

uncovers an improvement of 37% with F1=F2=F2=10. However, different magnitudes

for the higher delay setting uncover strong signs of nonlinearity in program response.

More than two levels of delay seem appropriate.

A sequel experiment is performed in which F1-F6 have five possible levels: X=0, 7,

14, 21 and 28. Although this might entail 5^ possible combinations, the experimental

design (called an (9^25 [5^] layout—see [KLF91]) uses only 25 trials in its search.

Sample results follow.

Table IV. Coitplex Search of Delay Settings

trial# FI F2 F3 F4 F5 F6 Result notes

1 0 0 0 0 0 0 66 Normal Case.

7 7 7 14 21 28 0 47

16 21 0 21 7 28 14 33 Twice as Fast.

25 28 28 21 14 7 0 50

Linear effects are not calculated. Instead, the <9^2515^] layout is used simply to

search the parameter space of delay settings in a geometrically balanced way. The

chosen trial has the best response (see [J91], pp. 386-389, on "Informal Methods"). This

straightforward approach can be quite effective, as one can see with the third line, above;

trial 16 is unusual—for heavily communicating setups, certain permanently installed

delays enhance B’s speed—to twice as fast. The explanation is that heavily used

message-passing provokes communication failures, which then generate retransmissions.

Delays help synchronize nodes and cut wasteful communication congestion. However,

given the nonlinearities involved, discovering a very good setting (such as 21-0-21-7-

28-14) is non-trivial. Conventional linear models, even contour plots, seem to be of little
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value [F91]. If only naive methods are employed, the challenge will probably elude all

but the most determined practitioners. DEX’s rational and efficient search methods help

greatly. In practice. Node Program B of Figure 3 would be adaptive, making delays

when heavily communication bound, and omitting them otherwise.

3.2.2 Distributed-Memory Results. The experiment for distributed-memory shows that

under ordinary circumstances, TPT indicates (i) which code is most sensitive to delays,

and equally important, (ii) other sections that can be changed with impunity, {code A) is

to Node Program B as swapO is to quicksort. However, when an iPSC-1 program is

communication bound, delays can sometimes enhance performance. In case (iii), the

synthetic perturbations transcend their role in the investigation—they become part of the

solution. Such cases are likely to be increasingly rare, because over time architects will

strive to remove obvious system bottlenecks.

4. Conclusions

Statistical screening is different from building a detailed performance model, e.g.,

the FORTRAN virtual system in [SSM89]. TPT applies DEX screening to avoid the

inefiBciency of one-factor-at-time examinations as it searches for important factors. This

use of screening is not unique. In computer system tuning, several gross hardware or

operating system factors may be systematically treated and screened by substitution at

the module level [J91]. Examples are memory at 1 Mbyte/processor versus 4

Mbytes/processor, or file transfer via FTAM or FTP. But TPT examines applications in

code-level detail. Rather than several factors, there may be several hundred.

Consequently, component substitution for each application factor becomes thoroughly

impractical. System tuners may have little practical choice but ad hoc substitution

treatments whenever they labor under tightly constrained circumstances. Fortunately,

TPT has more latitude, for real-time applications aside, source code is generally quite

malleable. By deliberately avoiding component substitution, TPT treatments are

uniform, which encourages automatic testing. Computer controlled scripts can generate

and schedule experiment trials.
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A large distributed-memory system may have difficulty capturing global information

for metrics at fine enough resolution. TPT avoids this problem by not depending upon

detailed performance metrics. Similarly, interpretation of detailed metrics can be an

uncertain process. Perturbation in some states may induce a change in response time that

exceeds explanation via level-of-parallelism, the highest multiplier one might first

expect [S91]. Interprocess communication makes some program states highly

interdependent, with a combinatoric nature that strains analysis. TPT successfully

addresses this problem by approaching the application and system as a complex, poorly

understood entity. Stmctural interpretations within program or system then matter far

less. Consequently, the technique is indifferent to the architecture of host system or test

application.

Since it needs little internal detail, TPT makes no demands for special measurement

resources such as fast clocks, counting registers or on-line data collection. Coarse global

timing can provide good results: a one-second clock tick is serviceable. The distributed-

memory example, 2-DM, uses a one-second tick for its results. (Alternately, better

instrumentation combined with TPT opens many exciting new opportunities.) Analogous

to its modest need of instrumentation, TPT in its basic form has a low visual demand.

Simple character-display screens sufBce. Tables n through IV are typical TPT displays.

Below are depicted some differences between conventional and TPT tuning

paradigms:

Aspect Micromodel Macromodel/TPT

Factors measured (metrics) fixed (in patterns)

Overall Response derived measured

Model fixed (construct) derived (effects)

Basis theoretical empirical
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4.1 Further Directions

While the two examples in the text illustrate essential aspects of TPT, the technique

opens a rich field of possibilities and challenges. Consider the attribute of program size.

The text examples are small, around 400 lines. But many applications are significantly

larger, having written code of IK to lOK source lines. The largest TPT test has involved

12K lines on a shared-memory architecture. At this magnitude, source code presents

very real and practical questions on the choice and handling of delay sizes, and

especially, the identification and handling of factors. For example, the statistical

approach for large programs may shift away from focus upon factor interactions, which

may be less probable. Instead, emphasis is given to screening large numbers of factors

(64-128) in each iteration step.

Eventually, TPT will have a programming environment to support its features. An
intermediate step will be a library of tool set routines. These will generate experiment

layouts, support simple analysis and, generally, relieve some of the tedium of

handcrafted setups.

4.2 Summary

TPT combines synthetic delays with DEX to yield an attractive new technique for

MIMD program improvement. DEX lends to TPT some formidable powers of search and

analysis, while in turn TPT’s synthetic treatments render DEX setups and trial variations

much faster and more convenient. Both shared-memory and distributed-memory MIMD
architectures are suitable hosts.
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