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A Boussinesq Algorithm for Buoyant

Convection in Polygonal Domains

K.B. McGrattan, R.G. Rehm, H.C. Tang and H.R. Baum
National Institute of Standards and Technology

Gaithersburg, MD 20899

A 2-D Boussinesq model describing heat-driven buoyant convection in a polygonal en-

closure is presented. The hydrodynamics is based on the time-dependent Navier-Stokes

equations with constant viscosity and thermal conductivity; no turbulence model or

other empirical parameters are introduced. The polygonal domain is mapped via a

Schwarz- Christoffel transformation onto a rectangle. A finite difference scheme second-

order in space and first-order in time is used to integrate the evolution equations, and

an elliptic solver is used to solve the pressure equation. Computational results for high

Reynolds numbers are presented through the use of Lagrangian particles which allow

one to visualize the flow patterns.

1 Introduction

In computational aerodynamics, calculations of the steady-state flow over aircraft have rou-

tinely required the use of sophisticated grid-generating techniques [1]. In other areas, such as

ship hydrodynamics, flow in machinery, and shore effects in oceanography, non-rectangular

grids are routinely used. In fire research, however, the study of fluid flow in more compli-

cated domains is a more recent activity. Many of the techniques developed by the CFD
community for solving the flow equations on non-rectangular grids have one or more of the

following limitations: 1) They are designed to compute only the steady-state solution. 2)

They rely on various types of turbulence models. 3) They are inefficient due to the use of

unstructured grids.

We have previously developed an algorithm for the computation of the time-dependent

buoyant convection induced by a room fire [2] - [7]. Although this model has proven to be a

useful tool in fire research, it is limited to flows in rectangular enclosures. In this document

we generalize our algorithm to allow for polygonally-shaped domains, making it possible to

study the geometrical effects of building elements such as windows, soffits and stairways. A
conformal map from the polygon to a rectangle is used to transform the spacial coordinates

of the Boussinesq equations. The advantage of this approach is that we retain the efficiency

and resolution of the original algorithm. (Since no turbulence model is included, we must

sufficiently resolve the boundary layer for a flow whose Reynolds number approaches 10
5

,
a

reasonable value for enclosure fires.) The disadvantage of the conformal transformation is

that it can lead to severe variations in grid cell size, and thus significantly limit the time-step
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of our explicit scheme. For this reason, we consider domains which do not yield too large

a variation in the Jacobian. We have chosen for the moment to retain the machinery built

up from our previous work and implement the conformal transformation without changing

the basic algorithm. However, for domains which exhibit a larger variation in the Jacobian

(more than 2 or 3 orders of magnitude), a better approach would be to use an implicit,

unconditionally stable time-stepping scheme [8].

The model of buoyant convection is presented in Sections 2 and 3 and a brief description

of the numerical method in Section 4. Section 5 contains a detailed description of the

algorithm. Section 6 presents the results of a few computations, including a verification of

the “trench effect” [2] in a more realistic stairway geometry. An Appendix is also included

which contains the algorithm used to introduce and track the Lagrangian particles, and also

a linear stability analysis of the lagged-dissipation scheme.

2 Hydrodynamic Model

We consider a Boussinesq fluid with constant viscosity and thermal conductivity in a polyg-

onal enclosure driven by a prescribed heat source. We start with the equations of motion

for a thermally expandable ideal gas [3] in which we include viscous dissipation and thermal

conductivity.

/ du; dui

t +h (pu ' ]

)
+Z ~ pki

9
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Here, all symbols have their usual fluid dynamical meaning: p is density, u t are the velocity

components, p is pressure, g is the acceleration of gravity, are the components of the vector

describing the direction of the gravity vector, v is kinematic viscosity, Cv is the constant-

pressure specific heat, T is temperature and K is the thermal conductivity, t is time and Q
is the spatially and temporally prescribed heat source.

If we combine these equations as described in [4], nondimensionalize them as described

in the appendix of this reference and make the Boussinesq approximation, we obtain the

following set of equations,

du
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Here, all symbols have the meanings given above but in dimensionless form, po(z) is the

initially stratified density profile assumed to depend only upon the vertical coordinate 2
,

and k is the dimensionless thermal conductivity. The dimensionless quantities are defined

as follows: lengths are relative to the height of the enclosure, pressure is relative to ambient

pressure, time is relative to the height of the enclosure and the velocity scale, and velocity

is relative to a scale U, and the density perturbation is relative to ambient density with a

small parameter /?. If we denote temporarily the dimensional quantities by an asterisk, then

these relationships can be written as follows:

x* = Hxi
,

p* = po(0)U
2
p

t* = Ht/U
,

p* = PO{0){1+ f3p)

u* = Uui, p*(z*) = po (0)(l + (3p0 {z))

U and (3 are defined in terms of the magnitude of the heat source as follows:

/? = U2/(gH)

U = (Qog/ipoC.ToH^/^iqogKpoC^)) 1 /3

Here Q0 is the strength of the three-dimensional heat source in units of energy per unit

time, qo is the strength of the two-dimensional heat source in energy per unit length per unit

time, H is the height of the enclosure and all other quantities have their usual meanings.

See [4] and [7] for more details of the scaling. Henceforth, all variables will be regarded as

dimensionless.

In the two-dimensional case, these equations can be rewritten as follows:

where

dp

dt
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dx dz
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du dw
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2
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q
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(
3

)

Note that gravity need not be restricted to the 2-direction (downward), but may point in

any direction according to its components gx and gz . The norm of the gravity vector is unity.

A no-flux condition is imposed at the boundary. In addition, one may choose a no-slip or

a free-slip condition, as well as an adiabatic or constant temperature condition at the wall.

The fluid is initially quiescent.
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3 The Transformation

The physical domain may be taken as any simply connected polygon whose vertices may
or may not extend to infinity. This polygon is mapped conformally into a rectangle whose

aspect ratio is dependent on the shape of the polygon. Details of the Schwarz-Christoffel

transformation may be found in [9] and a sample mesh is presented in Fig. 1. The equations

above are written in terms of the physical coordinates x and z. We shall take the coordinates

of the computational rectangle to be £ and p. Eqs. (3) may then be transformed as follows:

dp ~d(pQ + p) A d(p0 + p)
J ——b u —

b w-
dt

dii

dp

dp-- Wu+-- P9i

dw „ dp

~m
+uu +

d^~ f’9-

1 / du chb\

J V d£
+

dp )

where
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1
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( d
2
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V de dp 2
J

(4)

0
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2

l2
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<r
+ sr

dx dz—u + —w
dp dp

1 ( dw

J\dt dp)

dx dz

di
9t +

ai
9z

dx dz
+

Tr,
9z

dx dz dx dz

d£ dp dp d£

In transforming the viscous terms of the momentum equations, we have made use of the

vector identity

V 2u = V(V • u) — V x (V x u)

and the fact that V • u = 0. Because the coordinate transformation is conformal, the

boundary conditions for Eqs. (3) can be implemented in the computational domain in exactly

the same way in which they would be for a rectangular enclosure.
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4 Numerical Methods

Eqs. (4) are a mixed parabolic/elliptic system of partial differential equations; be., the

equations for the density and for the velocity components are parabolic, whereas that for the

pressure is elliptic. The incompressible equations of hydrodynamics are well known to have

this mixed character. Analytical studies of the ability of several candidate finite difference

schemes to calculate internal gravity waves without dissipation [5] led to the conclusion that

methods of second order accuracy in space and time are highly desirable for systems of this

type.

We have chosen a lagged-dissipation scheme— all time derivatives are replaced by central

differences over twice the time-step size (a leap-frog scheme) while all viscous and conduction

terms are differenced at the lagged time level. Other terms in the evolution equations (the

first three of Eqs. (4)) are evaluated at the mid level of the three level scheme. This scheme is

not formally second-order accurate in time. However, for the Reynolds and Prandtl numbers

capable of capturing large scale features in typical enclosure fire simulations (Re > 104
), the

dissipation terms are very small, and the formal first-order accuracy due to dissipation does

not pose a practical limitation. The grid is taken to be uniform in the £ and rj directions,

although the spacings 6£ and Srj may be different. Within each rectangular cell, vector

components are evaluated at the sides, scalar quantities at the center.

The density evolution equation in continuous form is the mass conservation equation

minus the expression for the velocity divergence. Each of these two equations is approximated

by central differences and then subtracted. The density at all faces is approximated by the

mean of the density at the centers of adjacent cells. This procedure ensures global mass

conservation as well as second order accuracy.

The momentum equations are differenced in the vector invariant form shown in Eqs.

(4). This ensures nonlinear stability and complete compatibility between the “primitive

variable” formulation presented here and a vorticity, stream-function formulation (in the

dissipation-free case when the Jacobian is unity), see [6] for details.

The pressure equation is derived by differencing in time the centrally-differenced in-

compressibility equation, and then making use of the discretized momentum equations to

eliminate the time differences. The result is an elliptic partial differential equation for the

pressure. For the Boussinesq model, the linear algebraic system arising from its discretization

has constant coefficients and can be solved by a fast direct method, see [7] for details. The
solution to the pressure equation constitutes the bulk of the numerical computation since

the density and the velocity are updated explicitly once the pressure gradients are known.

Stability of the computational scheme imposes a limit on the time-step size relative to

the spatial mesh size, see [4], [5] and Appendix B. This may be extremely limiting due to

the grid distortion brought about by the conformal mapping, whose Jacobian may vary up

to two orders of magnitude. For geometries which are even more distorting than those we
present here, another method of grid generation would probably have to be implemented,

which would unfortunately reduce the efficiency of the present algorithm.
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5 The Algorithm

5.1 The Density Equation

We now write out the details of the algorithm. For the density equation, return to the full

continuity equation (in dimensional form):

jdp
,

dpuj

dt d£j

Use the nondimensionalization presented earlier

= 0

r
dp

,

A d{p0 + p)
, ri , of ,

^duj nJ
st

+ [ 0{po p)]^ ~

where p = 1 + f3(p0 + /?), where all variables are dimensionless, and where we have divided

through by (3U/H. If we now formally allow /? —> 0, then we recover the Boussinesq equation

for the density:

dp
,

A d(p0 + p)
,

duj _ 0Jyrr + Uj
dt d£j

+

The same procedure used above for the partial differential equations (PDE) can now be

applied to the finite difference equations (FDE). We desire to keep conservation form for the

FDE as well as for the PDE. Hence,

j
dpik

’J p,ik ^ .

dt

+

Pi+l,k + Pik . Pik + Pi-1,k .

^
^ik

^
^i—l,k

Pi,k+

1

+ Pik * Pik + Pi,k- 1 *

V T-Vik ~ Wik—1

1

1

J Srj °

or, rewriting,

7
dPlk Pi+l,k^ik Pi—l,k'U'i—l,k

,

Pik f ^ \J
“’ik~ar

+ ~26{ Wi
Pi,k+l^ik Pi,k—l^i,k—l Pik , * * \ n+ “2^ + = o

Note that the Jacobian subscript p indicates that J is to be evaluated where p is, namely at

the center of a grid cell. This convention will be followed from here on.

Now we subtract from the density equation the expression for the velocity divergence

and obtain

Jp,ik 3 + F^ik + Fprj^ik + (1/2 ) Pik Aik = 0
dt

where

A^ =

V 2
p -

du o

dt3 / ik ipo \ Rp
ik

Pi+l,k 2pik d* Pi—\ tk Pi,k+ 1 2Pik T pi^k—1
+

Srj
:
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1 .

T pi,ik — \Pi+l,k^ik Pi—l,k'^'i—l,k)

Fpr),ik —
08

Tj

Pi,k—l^i,k—l)

Finally, use the same nondimensionalization as cited above, using pik = 1 + (3{po,ik + pik)-

Note that only p^ depends upon time. Also, note that we can divide by (3 and then allow

it formally to vanish as done above for the PDE to obtain the finite difference equation for

the Boussinesq model.

Jp,ik
Qj.

+ Fpt,,ik + Fpr) 'ik + Dik = 0

where

1

Fp£,ik ~ c / [(/^0,i+l,fc F Pi+l,k)^ik {PO,i— l,k Pi—l,k)^i—l,k\
ZbZ

Forj,ik —
1

26r)
[(P0,i,k+1 F f>i,k+\)F>ik — {P0,i,k-1 F fii,k—\ l]

and where Dik is the dimensionless form of A^ divided by /3,

7-1
Dik =

7
-Q — kV

( po F p)
ik

Here k — K/(pCp ). Q will be described below.

At boundaries, the density fluxes are determined by the no-inflow, no-outflow condi-

tions. Also, we must specify adiabatic or cold-wall boundary conditions, which determine

the temperature and hence the density (since the perturbation density is the negative of the

perturbation temperature) in ficticious cells adjacent to the boundaries.

At i = 1:

~ 1 A

Fp£,lk — [Po,2,k + p2,k) Ul,k

Po,k — F[>l,k

At i = /:

F,
1

Pt,Ik —
26Z

Pi+i,k = Fpi,k

(Po,I-\,k + Pl-l,k) W/- l,k

At k = 1:

Fpn,i\ — {po,i,2 F Pi,2) Wi, 1

Pi,0 Fpi, 1

At k = K:

FpV ,iK = iPo,i,K- 1 F Pi,K- 1) Wi,K-l

Pi,K-1-1 = Fpi,K
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Here, the plus sign corresponds to adiabatic boundary conditions (BC) and the minus sign to

cold wall BC. Adiabatic BC imply zero derivative in the temperature (density) perturbation

across the boundary whereas cold wall BC imply the temperature (density) perturbation is

zero at the boundary.

The discretization of the time derivative has been chosen as a leap frog. For the second-

order time steps

pT = Pa
1 + 2 «

and for the first-order time steps

pT = Pl + StRnp,ikIX,ik

where

Ki*
= - K,# - + K

((
vVoU + (VV)3T

J

)

Rlik = ~
~ ^Ql + * ((vV»U + (V2

p)l)

The Laplacian operator V 2 has been defined above. Notice that we use a lagged-diffusion

temporal discretization for the dissipation on the second-order time steps only.

It is more convenient to define the heat source in terms of the computational coordinates

£ and 77, even though it would be preferable to use the actual physical coordinates x and z.

The trouble with the latter approach is that it is difficult to interpolate a particle’s position

in the physical plane, because the mesh is obviously not uniform there. Therefore in these

calculations, the following forms for the heat source have been used:

Qik — f
n

Jp,ik Qt,iQv,k

where f
n

is either

f
n = tanh(atn )

or

rn _ f sin(atn )
0 <tn < 7r/

a

J

(
0 otherwise

The latter function represents a buoyant thermal. The spatial factors are

' 2

]

\2l

Qi,i = rexp[-/%(& - £c )

2

Qv,k = ^/^exp[-f3r,{rik ~ VcY

or

QV ,k = firi exp[— ^7/fc]
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5.2 The Momentum Equations

For the velocity equations, we use the following difference scheme:

dllik Ww ik ^ik d" ^ui,i,k—l^i,k—l . Pi+l,k Pik Pi+l,k d" Pik
+ —

9i,ik z
dt

dt

where

dWik ^u/,ik ^ik d- Wuj,i—l,k^i—l,k Pi,k+ 1 Pik Pi,k+ 1 d- pik
d «

1

7 9v,ik~

Uik =

Vw,ik —

T-Vu>,ik —

Jcw,ik

6r)
*v'"

2

^i+l,fc ^ik ^h’,fc+l V ik

— V-

Uik ~ Wj,k-

1

Srj

^ik ^i— l,k

8t)

U{k d- Ui,k+1

IVik d“ ^i+1 ,k

\ gz f dz dz

2 \d(, k
' dn„ k-J

+
2" \T(, k

+
Wu-i,

gx ( dx dx
9(,ik — ~T I TTT d-

9r),ik — gx ( dx <9:r gz ( dz dz

2 \d9ik ' dv t -i :
k)

+ 2 \driik
+ drli- i,k

The derivatives dxi/d^m are evaluated at the corners, thus g^ik is evaluated wherever Uik is,

and gvjk is evaluated wherever Wik is. To improve the computational efficiency, we set

.ri &u>,ib + 1Vu/,i,k—l ^i,k—l Pi+l,k d
-
Pik ^ik ^i,k—

1

G( ,,k = j 9iA 1 + i/

Tr,

x-, Vui
f
ik VJik d” i,k LVi— l,k Pi,k+ 1 d- Pik ^ik l,fc

^Vpk =
2

9r\,ik
^ ^

££

This notation will be of use in the pressure equation.

In order to compute these terms at the boundary we must either apply free-slip or no-slip

boundary conditions. For 0 < k < K,

and for 0 < i < I

where the plus sign corresponds to free-slip and the minus sign to no-slip BC.

The temporal derivatives are handled by a leap-frog discretization. For the second-order

time steps using the lagged-dissipation scheme,

=
II<3 ±*1- 1*

= ±*h
U?,K — ±"Ik- 1

u
n+ 1 '>71— 1

ik
— U

ik
- 2St Glh +

nn _ n '

Pi+l,k Pik

*71+1 *71— 1
W:ik ** ~ 2** Gl k +

Plk+ 1 -P?k

8g
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and for the first-order time steps,

U;
n+

1

ik

* n+1Wik

U-,

™ik

- St (g^ +

- st (oiik +

Pi+I,k-Pik \

St )

Pi,k+ 1 -Pik \

Sr] )

Here again, G and G are the same except that the former has a lagged dissipation term,

while the latter does not.

5.3 The Pressure Equation

The incompressibility condition is

J.p,ik St Sr]

= 0

and this condition can be used to derive the linear algebraic equation system for the pressure.

Away from boundaries, that is for 2 < i < I — 1,2 < k < K —
1, we have

Pi+ l,k 2pik Pi— l,k Pi,k+1 2pik T Pi,k— 1 G^^ik l,fe G^^ik G-q^^k— 1

S? Srp Sp
(
5

)

The lack of a superscript implies that all quantities are to be evaluated at time level n.

For cells adjacent to the left boundary, we have iiQ k = 0 for all n, thus

Plk P0k

~~sf~
”

Subtracting this equation from the general equation for pressure with i — 1 yields the

equation

p2,k ~ Pl,k Pl,k+1 ~ + p\,k-l _ Q,lfc GVt ik — GVti,k-l

St
2 Sp2

SS, Sr]

In a similar fashion, the above equation can be derived for the three other edges and the

four corners. To improve the computational efficiency of the code, we set G^,ofc = G^jk = 0

for 1 < k < K, and we set GVjlo = Gv ,iK
— 0 for 1 < i < I. Then the index range of Eq.

5 may be extended to the boundary cells, and we solve the equivalent Poisson equation in

which the normal derivative of the pressure is specified to be zero at the boundary.
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6 Results

In this section samples of results generated using a code implementing the algorithm de-

scribed above are presented and discussed. The results represent some problems of interest

to scientists concerned with enclosure fires. The computations were performed on the IBM
RISC System/6000 Model 550 in the Computational Combustion Facility, which is a joint

facility of the Computing and Applied Mathematics Laboratory and Building and Fire Re-

search Laboratory at NIST. The graphics were generated on a Silicon Graphics Personal Iris

4D20, which is also part of this facility.

The scale of these computations is substantial. Runs have now been performed using

more than a quarter of a million grid points; they require at least 50 megabytes of memory
and take up to 24 hours of CPU time. They are performed in 64 bit arithmetic. Typically,

the CPU time per node per time-step is on the order of 2.0 x 10
-5

seconds. If we were

to save any major fraction of the data generated, we would be overwhelmed. Therefore, a

significant effort has been expended in trying to select only those data required to understand

the phenomena being studied. We have concluded that Lagrangian particle tracking for

transient phenomena is the most convenient method for saving and examining data from our

computations, and this procedure is described in [2],

The resolution of the computation determines the maximum Reynolds number of the

flow. Since the size of the Reynolds number for the 2-D flow scales as K 2
,
flows with

Reynolds numbers of nearly one million can in principle be computed. We have not yet com-

puted flows with this large a Reynolds number, primarily because we have been examining

non-rectangular, polygonal geometries. For transformations such as the stairway, we have

computed results for flows with Reynolds numbers of up to 10
5

,
which is reasonably close

to full scale for many fire scenarios. A big constraint in these computations is the time-step

size, which is constrained by the CFL condition of the cells whose areas are extremely small.

Fig. 1 displays a crude version of the mesh used for a simulation of smoke through a window.

The Jacobian, which is a measure of the area of an individual cell, varies from about 10
-2

to 10 1
for this geometry. Because the time-step size is proportional to the square root of the

Jacobian (see Appendix B), the calculation is slowed considerably by the small cells. For

this reason, the present methodology is limited to enclosures whose cell areas vary no more

than those shown in Fig. 1. An alternative approach for difficult geometries would be to use

an implicit time-stepping scheme.

6.1 The “Trench Effect”

Fires in buildings involve the transport of heat and mass by gravity-induced or buoyant

convection. Generally, this convection occurs in rectangular enclosures where the direction

of gravity is parallel to the surfaces of the enclosure, the walls. However, under certain

circumstances, such as a fire in a stairwell or an escalator, the enclosure may be sloped relative

to gravity. A very important example of a fire in a sloped enclosure was the devastating

fire in the King’s Cross underground station in England in 1987, where there was significant

loss of life as well as property damage. Numerical simulation of this fire uncovered an

unexpected phenomenon which caused a very rapid spread of the fire and led to much of the

devastation [10], [11]. This phenomenon was termed the “trench effect”, and caused some
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controversy during investigations of the King’s Cross fire in England. The phenomenon was

ultimately confirmed by experiments and additional simulation, but transient aspects of the

fire simulation are still of interest.

We repeat here an experiment performed with a rectangular domain tilted 35 degrees

from the horizontal which was intended to model a stairwell [12]. The major difference in

the present calculation is the addition of more realistic “landings” to the geometry. Fig. 2

presents a time sequence for the flow generated in an enclosure by a heat source (fire) located

near the base of the stairwell. The mesh size is 1024 x 256 (262,144 grid cells), the Reynolds

number based on the height of the landings is 4.0 x 10
4

,
and adiabatic, free-slip boundary

conditions are imposed. The average time-step size is 8.6 x 10
-4

dimensionless time units.

The CPU time per node per time-step is 2.2 x 10
-5

seconds. In this figure, the plume rises,

but is bent back toward the lower landing. After the hot gases hit the ceiling, they progress

both toward the back wall and up the ceiling toward the high end. However, the hot gases

leaving the heat source are pinned along the floor and form a hot gas jet which progresses

up along the floor, shedding hot gases near its front. This phenomenon we interpret as the

“trench effect”.

6.2 Smoke through a window

In Fig. 3, we present the flow induced by a fire in a small enclosure with a window. The mesh

size is 256 x 128 (32,768 grid cells), the Reynolds number based on the height of the small

room is 10
4

,
and adiabatic, no-slip boundary conditions are imposed. This geometry pushes

the present capabilities to the limit. The average time-step size for this run is 7.7 x 10
-4

.

This is due to the extremely small cells around the window soffits. The CPU time per node

per time-step is 1.6 x 10
-5

seconds.

As before we notice that the vorticity of the escaping plume tends to pin the hot gas to

the wall of the enclosure, a phenomenon which has been seen in actual fires where the flames

and hot gases pour out of an enclosure opening and then spread rapidly up the side of the

enclosure. In Fig. 4, we freeze in time four calculations with different boundary conditions.

There is a dramatic difference between the free-slip and the no-slip cases. Ultimately, all

demonstrate the above described phenomena, however, the free-slip cases allow for a faster

escape of gas from the small room. This type of behavior has been seen in the case of a

stairwell [12], where the “trench effect” of Fig. 2 is not as dramatic when no-slip boundary

conditions are employed.

6.3 Corridor with soffits

Finally, in Fig. 5 we present the movement of smoke down a corridor with uniformly spaced

soffits. The mesh size is 512 x 128, the Reynolds number is 1.0 x 104
,
and adiabatic, no-slip

boundary conditions are imposed. This example points out two difficulties we have expe-

rienced with the method described above. First, the computation was slowed considerably

by the small grid cells clustered around the soffits. This particular run required about 18

hours of CPU time; a similar run without the soffits required about a tenth of the time.

Second, we observed that the calculation became unstable near the end of the run. Fig. 6

displays the perturbation density of the boundary cells, with the enclosure boundary serving

12



as the spacial axis. Where the curve falls inside the enclosure, the perturbation density is

negative and thus the temperature is greater than its original value. Where the curve falls

outside the enclosure, the temperature is less than its original value. Obviously, the density

profile at time t = 18 reflects the instability. We suspect that the time-stepping scheme

is responsible, although the linear stability analysis fails to identify the problem. Initially,

it appeared as if the boundary layer was not being fully resolved, but we have noticed the

instability for Reynolds numbers well below the theoretical limits. Also, the instability did

not develop until tens of thousands of time steps had been completed, leading us to suspect

some non-linear effect of the time-stepping scheme. We applied a second order Runge-Kutta

scheme to replace the lagged-dissipation scheme, and the instability did not reoccur. The
Runge-Kutta scheme, however, requires two calls to the pressure solver per time step instead

of one, which nearly doubles the computing time. This is the price required to remove the

long-time instability.

A Appendix: Particle Tracking Algorithm

A.l Particle Injection

The initial location of each particle is selected at random from a distribution function which

is normal in the ^-direction with mean value equal to the location of the center of the heat

source and variance equal to the mean width of the heat source. In the ^-direction the

distribution function is either normal with characteristics similar to that in the ^-direction

or exponential. In all cases, the distribution functions mimic the spatial distribution of the

heat source. Also, particles are injected at a rate that follows the rate of heat addition.

A.2 Interpolation of the Fields at Particles Locations

Take the 2-D case and let and 77
” be the coodinates of particle j, 1 < j < Nv at time t

n
.

Let

and let

Z; = + 1/2]

£; = W/Sr, + 1/2]

r
j
= cFt—

H

1g1
s
j
= Vi/Sri

~
(Ki

~ 1/2)

- w/m
= \nV^\

r', = G/st-ij

<5 = rfjltri-Kj

where [...] is the integer part of the quantity in square brackets.

Define the function F as follows:

F(Ai,i 5 Ai 5
2 ? ^2,i ?

^ 2,2 > r, s) = Ai^l — r)(l — 6 )-j- A2,ir(l — s) + — r)s + A.2,2 r<s
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and let Uj,Wj,pj be the velocity components and the density respectively at the location of

the jth particle. Then by bilinear interpolation:

3?
Ju

wr;+i,Kj+i ^r;+2,/Cj+i ^k+1,^+2 ^r+2,^+2
^ 1

—
j
— ’

—

1
— ’

—

1
— •—j—

’

r
’
s

u U ° U ° U ° u

wl
j71)

—n
Pi

(

WIj+l,>C'+l “% +2,/C'+l wlj+ l,/C'.+2
'u%-+2,/C'.+2

J ’ J ’ J ’ JO yj w ’J'UJ «/w

W ‘

:

Wn
r, s

= f(/»r'+i,£'+i5 Pr'+2,^'+i^ij.+i,^'+25 dr'+2 ,x:'+2
/ /\
,s

)

A. 3 Time Advancement Scheme for Particles

Now, each particle is advanced through the differential equation:

A ( 5 Vj)

dt J
drjj WjitjiVj)

dt J

This corresponds to the differential equation describing the movement of the particles in the

physical domain:

dxj

dt

dzj

dt

uj{Xj
,
Zj)

wj(Xj,Zj)

The integration is carried out in the computational domain and the position of the particle

is then mapped into the physical domain for graphical purposes.

The particles are advanced in time according to a second order Runge-Kutta time inte-

gration scheme as follows.

Then, with

and let

1, = [«" + h"
(J )/6( + 1 /2 ]

K3 = [(V] + hlJ/Sr, + 1/2]

r
i = (£" + h

ij)/
s(
-

(2j - 1/2)

s, = (r/J + h"j)/6ri — (Kj — 1/2)

Zj = m + h^ysi
]

K'j - W + KJ/Sr,}

r', ^ ($ + htj)/K-Xj

= (nJ + hiy/Sn-ic,
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The new extrapolated velocity components at location -f htJ' 7
!? + are

S = F
J

u

cir + i
t
)Cj+i ^t'+2,/c

7
+i ^i'+i,/c

7
+2 ^i;+2,/c 7 +2 ,^ * * -—— —

y
r',s

j

u

j

u

J7 / JU

wn
3

t = F
U)

™Ij+1,/C'+1 ™lj+2 ,/C'+l ^J,+l,/C'+2 ^T
7
+2,/C'.+2

,

N

1 ’ 7
‘ j ’ j
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5

«y -»/; 7 /; O xn ° XL)

Finally, the location of the particle at time level n + 1 is

u.

$+1 = £ + .51 fjt + hh

W :

v?
+1 = £ + -5

(
-fit + K,
J xn

The accuracy of this particle-tracking routine was tested using a steady-state flow with

vorticity in a rectangular enclosure. This flow field was originally derived to test the al-

gorithms that integrate the fluid equations and is described in [13]. In the flow, particles

follow streamlines which close upon themselves, a sensitive test of the quality of the particle-

tracking integration scheme.

B Appendix: Stability

The linear stability of the lagged-dissipation method has been checked for a single convection-

diffusion equation. Derivation of the dispersion relation is straightforward. We start with a

single convection- diffusion equation

d0_ l^d0_ W dO _ e
2

dt
+

y/j d£
+

y/J dr) J

where 0 is the single dependent variable, U and V are the local linearized vector velocity

components, e is the dissipation coefficient, V 2
is the Laplacian and J is the Jacobian of the

spatial transformation. We define

where £, r)k = k8r)
:
t
n = n8t.

Consider the difference form of the convection-diffusion equation:

2St y/j 28( sfj 28r)

r\0]~lk + 0£lk ) + (0^1, + - 2(1 + r^lin—

1

in—

1

n—

1

J8r)
2

where r -- 8r)/8£. Now let

in—

1

= o

Oj,k = An eXP iSr
> +

XV / J
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The equation for the amplitude An becomes

or.

where

An+ 1
— An- 1 + iAr

2QSt

VlSri

Ur Sr] W . Sr]

[Q
sm{

7x]
)+

Q
sin[Tn \

—An-

1

2eSt

JV 2r
2
cos(—~) + 2cos(-^) — 2(1 -f r

2

)
r X

v

= 0

An+i + AniT — An_i[l — 2d(l — P)] — 0

Q

d

T

P

Vu2 + w2

2eSt(l + r
2
)

JSr

f

2QSt Ur
sm

Sr] W
A — sin

VJSrjlQ \r\J Q \X

1

Sr]

v

,

1 A U
r
2
cos

Srj \ ( Sn
A cos

rA Av / .

Substitution of An — 0
n and division by 9

n 1
yields the dispersion relation for the lagged-

diffusion scheme

9
2 A6iT- [1 -2d(l -P)] = 0

The roots of this quadratic equation, the amplification factors for the scheme, are

e =
-iT ± J-T 2 + 4[1 - 2d(l - P)]

If the Courant condition, < 1, is satisfied and d = 2cSt

}^
r

^ < 1, then, for both roots,

\e\ = yji-2d{i - p )
< i

since |P| < 1, and the scheme is stable.
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Figure 1 . Window grid geometry demonstrating the conformal transformation of the com-

putational into the physical domain.
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Figure 2. Simulation of fire in a stair well, demonstrating the “trench effect”. Adiabatic,

free-slip boundary conditions have been imposed. The Reynolds number is 4 x 10 4
;
the grid

size is 1024 x 256.
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Figure 3. Simulation of smoke pouring from a window. Adiabatic, no-slip boundary con-

ditions have been imposed. The Reynolds number is 1 x 10
4

;
the grid size is 256 x 128.
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Figure 4. Comparison of four different boundary conditions for the room-window fire

scenario. The no-slip condition represents the more realistic model, but is limited by low

Reynolds number.
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TIME = 10 0

Figure 5. Flow of smoke down a corridor with soffits. Adiabatic, no-slip boundary condi-

tions have been imposed. The Reynolds number is 1 x 1

0

4
;
the grid size is 512 x 128. This

geometry points out the difficulties faced by the current methodology in handling the flow

around sharp corners.
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Figure 6. Density perturbation in the boundary cells at times t = 16 and t
—

18. This

instability of the method is not predicted by the linear stability analysis of Appendix B.
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