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Abstract

The optimality of the Karhunen Loeve (KL) transform is well known. Since its basis is the eigen-

vector set of the covariance matrix, a statistical, not functional, representation of the variance

in pattern ensembles is generated. By using the KL transform coefficients as a natural feature

representation of a character image, the eigenvector set can be regarded as an unsupervised

biological feature extractor for a (neural) classifier. The covariance matrix and its eigenvectors

are obtained from 76753 handwritten digits. This operation is a unique expense; once the basis

set is calculated it forms a linear first layer of a three weight layer feed forward network. The
subsequent nonlinear perceptron layers are trained using a scaled conjugate gradient algorithm

that typicaUy affords an order of magnitude reduction in computation over the ubiquitous back-

propagation algorithm. In conjunction with a massively parallel computer, training is expedited

such that tens of initially different random weight sets are trained and evaluated. Increase in

training set size (upto 76755 patterns) gives less accurate learning but improved generalization

on the fixed disjoint test set. A neural classifier is realized that recognizes 96.1% of 15000 hand-

written digits from 944 different writers. This recognition is attributed to the energy compaction

optimality of the KL transform.

1 Introduction

1.1 Character Recognition

Optical Character Recognition is normally a multistage process; typically some preprocessing of

the image is applied, features are extracted, the result is classified and a rejection decision made.

The preprocessing may normalize such attributes as size, field position, rotational orientation and

stroke width thus obviating the need for a classifier to be invariant to those transformations. It

may also attempt to remove random irrelevant variation from the characters while simultaneously

preserving the differences between objects of different classes. Accordingly the machine printed

character recognition problem is largely solved because there is little variation in the data^.

The possible preprocessing operations are numerous. Spacial domain techniques, often used to worth-

while effect, range from rotation or shear, through histogram modification, morpholgical operations,

Hadamard Walsh downsampling and neighbourhood averaging, to convolution. Similarly frequency

domain methods, such as low pass filtering, can aid noise supression and line connectivity. The

transform domain is of particular interest here since the representation typically involves relatively

few non zero coefficients. These adequately reconstruct the filtered images since the information

content is sufficient to represent the image. Pattern spectra have been widely used in signal and

image recognition.

^ Nevertheless it is jJways possible to corrupt chciracters to be worse than any recognizer can cope with; random
correlated noise, as introduced by possibly multiple pcisses through a photocopier, can give sufficient vciriation in input

images to make the machine print problem significcint once again.

1



1.2 Neural Network Approaches

The utility of neural networks in pattern recognition has prompted an effort to model the visual

processes that underlie manunaUan vision, the intent being to obtain superior artificial recognition

networks. Particularly, the receptive fields present in mammalian vision have been proprosed as

effective feature extractors for OCR. Foremost among these are the Gabor functions associated by

Daugman [2] with the retinal fields of domestic cats. Gabor reconstruction of character images

both extracts spatially localized and oriented information and spectrally filters the input data.

Alternatively Garris et al [6] used the Gabor transform itself as input to a bcickpropagation network

with notable results.

However all of the above operators are functionally independent of the data; no inherent knowledge

of the characters themselves is made use of. A more potent technique, the discrete Karhunen Loeve

transform (KLT) [7], assumes no model of the human perception mechanism, but more directly

references statistically salient information on how handwritten characters are formed. The eigen-

vectors of the covariance matrix of the character ensemble are taken as a minimal orthogonal basis

set, of which any character is a linear superposition. The eigenvectors are the principal statistical

components of the variance in the original image space. Their respective eigenvalues indicate the

significance of the eigenvector in describing the characters’ construction, those with small eigenvalue

represent irrelevancies. The motivation for doing this lies not only in the well documented optimal-

ity of the KLT [7], but in recent studies [11] showing that evolution of synaptic structures in linear

Hebbian neural networks [10] is dynamically governed by the same statistical basis as that of the

KLT. Further Vogl et al [18] have described a neural network in which the eigenvectors of Kanji^

characters evolve during training, and can subsequently be used for classification.

Although eigenvectors appear in some unsupervised network training [15], they are most readily

obtained using one of the traditional numerical iterative methods [19]. The eigenvectors can therefore

be regarded as a trained weight layer. Martin and Pittman [12] choose to use a two hidden weight

layer network with image data as input such that training produces a generally incomplete and non

orthogonal basis as the first weight layer. The use of eigenvectors is rather a prescription of this

feature extraction layer derived as a least mean square fit to the data. This is potentially detrimental

to the perceptron as a classifier but it yields pragmatic gains. Perceptron networks are known to

exhibit better generalization if the training sets are large. Rather than use raw images as input it is

preferable to use greater numbers of precomputed low dimensional KL transforms for training.

In many applications of multilayer perceptrons the classic backpropagation [16] algorithm has been

applied with much success. Convergence to error minima during training is notoriously slow and

since there is strong evidence that large training sets are important for optimal generalization, it

is computationally desirable to use compact representations of images as input to small networks.

The starting position in the weight space of the network has a significant effect on the generalization

properties of the trained network and, indeed, on the progress of training itself. Expeditious train-

ing allows the distribution of generalization perfomance to be estimated over many initial weight

sets. NIST has produced serial and parallel Fortran implementations of a new conjugate gradi-

ent algorithm [13] [1] that typically affords an order of magnitude reduction in training time over

backpropagation^.

1.3 Experiment 2J Coverage

The experiments reported in this paper investigate the effectiveness of Karhunen Loeve transforms

as classifiable features for handwritten digit recognition. The issues of interest include:

1. What is the optimal feature length? Generalization on an unseen test database is obtained

as a function of the dimensionality of the basis space in which characters are represented;

^Actually a subset of the complex Japanese cha^^lcte^ script.

^Send email to James Blue at jlb@azure.ccim.nist.gov for NIST Internal Report 4776 and source code.
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i.e. the number of classifiable features. Whilst more features more ciccurately represent a

character, too many will describe variation in the characters that is extraneous and redundant.

The eigenvalue spectrum of the covariance matrix describes what fraction of the variance is

ascribed to a restricted basis subspace. It is known that alphabetic characters yield a wider

eigenvalue spectrum due to the increeised number of possible strokes. Accordingly Vogl [18] has

shown that Kanjii requires still more principal components for its adequate respresentation.

The tradeoff between number of features, network size, training ability and generalization is

investigated.

2. How big should the training set be? There is some interest in what number of digit exemplars

(per class) are required to obtain a statistically robust prototype set, i.e. one which achieves

optimal generalization. Network training nonlinearly yields weight sets that are a fixed-size

description of the properties of the training data. The nearest neighbour methods (linearly)

partition the pattern space by class using, ideally, very large numbers of prototypes. The
greater the statistical relevance of a set of prototypes, the less noisy is the error surfcice defined

by those patterns, leading to a better generalization. The drawback of nearest neighbour

methods is that they are not adaptive; they are not trained and do not condense representative

information from the prototypes and are therefore slow as classifiers. Indeed trained nearest

neighbour classifiers are termed neural networks (LVQ and PNN). The nearest neighbour

method can be viewed as an untrained form of an adaptive neural multimap pattern recognizer

[22] [14] in which the exemplars are not at all aggregated to give some compcict representative

prototypes. It retains the ability to differentiate between an open top and closed top four

whereas a constrained perceptron system is typically, but not necessarily, required to learn to

join both subclasses despite their KL transforms being potentially quite different.

2 Karhunen Loeve Transformation

2.1 Statistical Representation

Consider that a sample of handwritten characters is available in isolated binary form. These P
images are each of size N by N pixels. The character is regarded as a real matrix such

that its elements are given thus

(p) _ f -fl true dark ink pixels
~ — 1 false white space pixels

^ '

Consider the 2D image as a vector of length formed by concatenating the columns of the image'*.

u = (uil, U21, UN\i Ul2, — , UN2-, — , ^ATz) (2)

From this subtract the mean of all images u and insert the result into the columns of the com-

pound image matrix U. The covariance matrix, R, gives the mean, over all images in the ensemble,

of all the N^xN^ interpixel correlations, and as such, statistically describes how handwritten char-

acter images vary. The matrix R is symmetric and is formed as the outer product of P image

vectors.

R = UU^ (3)

The covariance matrix R has N'^ eigenvectors as the columns of ^ defined in the equation

R^ = (4)

where the only non zero elements of A are the eigenvalues A, on its diagonal. The eigenvectors are

the directions of maximum variance in the space and form a complete orthonormal set termed

^ Any consistent ordering is sufficient.
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INDEX OF RRINOIRAI- COMRONENT

Figure 1: The first ninety six eigenvalues of the covariance matrix shown in figure 3. Note that the

cumulative eigenspectrum quickly rises above 70 % of its total.

the principal axes^ of a hyperellipse in that space. The eigenvalues diag(A) define the statistical

length of these axes as defined by the image data set; thus the first column of ^ corresponding to

the largest eigenvalue is the major axis. Any set of vectors as the columns of a matrix U can be

expressed as a linear combination of the basis vectors:

U =W (5)

where the inversion of this formula, V, defines the Karhunen Loeve Transform, the elements of which

are the projection of the image vector onto the principal axes:

V = (6)

The first sixteen eigenvectors of a covariance matrix are shown in figure 4.

2.2 Data Decorrelation

The KL transform vectors in the columns of V are to be used as input to some classifier. The
variance of the KL coefficients themselves is of interest.

Rv = VV^ = = A (7)

That is, the covariance matrix of the KL transforms is diagonal indicating that, by design, the

Karhunen Loeve Transform perfectly decorrelates the input image data. Specifically the variances

of the KL coefficients, erf, are the respective eigenvalues of the original covariance matrix.

= v/a" (8)

2.3 Image Reconstruction

The eigenvalue spectrum of figure 1 falls off quickly. The percentage of the variance attributable to

L principal components is given on the right hand axis. Geometrically the hyperellipse defined by

the eigensolutions of R has extent in only a few directions; along these axes the eigenvalues are large

*The Karhunen Lofeve transform is also known cis the method of principal components or the Hotelling transform.
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IMAGE KLT HIDDEN CLASS

Figure 2: Recognition Architecture. All weight layers are fully connected. The eigenvectors are

obtained a priori to the training of the subsequent layers.

indicating that the characters have a large range in their values. A small eigenvalue indicates low

variance and is therefore of little utility in describing the differences among the different characters.

Any image is exactly a linear combination of a complete set of conformant orthonormal basis vec-

tors. The KL transform acheives, among the unitary transforms, the maximum energy compaction

in a subset of its coeffiecients on average over those images that define the basis. For any given

image the Singular Value Decomposition will achieve maximum energy compaction. If an incom-

plete basis is used then a reduction in dimensionality, analogous in the Fourier domain to low pass

filtering, corresponds to removing spurious variance in the original characters. The KL transform

is optimal at image reconstruction in the context of minimal mean square error between original

and filtered images. That is, the reconstruction error for the whole image ensemble is merely the

sum of the eigenvalues corresponding to the eigenvectors that were not used in the superposition.

The cumulative eigenvalue spectrum shows the sum of the eigenvalues as a percentage of the trace

of the covariance matrix. Thus is if the dimension of the transform space is 3% of the image space

then there is a mean 20% error in the reconstruction of the ensemble. Thus we may inexpensively

dispense with the low variance low information coefficients.

2.4 The Layered Perceptron Network

The two weight layer® perceptron nonlinearly classifies KL feature vectors. With the evolved KL
feature extraction, the network may be regarded as the three layer character classifier of figure 2.

®The author has elected to resolve the ambiguity in counting either layers of weights or layers of neurons, pervcisive

throughout the perceptron literature, by adopting the more minimalist stcindard of counting weight layers.
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The first set of weights is the pre-irained incomplete eigenvector basis set of equation 5. The
latter perceptron weight layers, also fully interconnected, are trained using the conjugate gradient

algorithm outlined in section 3.6.

All the Karhunen Loeve transform vectors are propagated through the network together and the

weights are updated. This is batch mode training. The use of diflferent subsets of the training patterns

to calculate each weight update is known as on line training. It is not used in this investigation.

Formally the forward propagation is represented as:

Vl = => V2 = f (sfVi) => Vs = f (sjvz) (9)

where the network nonlinearity is introduced by squashing all eictivations with the usual sigmoid

function f{x) = (1 +

2.5 Classification of Unknown Characters

The linear superposition of a complete set of orthogonal basis functions will describe an arbitrary

image. However the whole motivation for using the KLT is to reduce the dimensionaUty of the

feature space by adopting an incomplete basis, i.e. the leading principal components. Only images

that resemble the original training characters are adequately representable by the incomplete basis.

It is important therefore that the eigenvectors are obtained from a statistically large sample.

3 Experimental Implementation

3.1 Text Page Image Database

The National Institute for Standards and Technology has produced three reference databases on

compact disc. The first CD [21] was released in June 1990 and contains the compressed images

of 2100 Handwriting Sample Forms, each from one writer. Ecich form includes twenty fields of

handprinted digits or alphabetics. The intended characters are printed above each field such that

the completed forms contain unconstrained digits of known class. Of the 270000 characters available

on this CD, the first 102340, obtained from 944 different writers, were used for experimentation.

3.2 Page Segmentation

Isolated characters from these forms were obtained after field isolation from a segmentation code

that uses an adaptive rule enhanced spatial histogram technique due to Wilkinson [20]. With some

inevitable error, isolated 32 pixel square binary images of field centered, size normalized, characters

are produced. These characters have been individually verified by a human operator.

3.3 Shear Transformation

To aid recognition, a shear transform is applied to the images. The result is consistently upright, less

slanted character images. This approximately obviates the need for the classifier to be rotationally

invariant. The shear amount is determined simply by pixel location at the top and bottom of the

image yielding a virtual slanted line between them. The rows of the image are shifted horizontally

to make the line vertical. This transformation is formally represented as

(;'')=(i r)(^)
where the angle 6 is the acute interior angle of the line with the horizontal. Figure 6 shows the mean
digit images, by class. At left is the raw isolated image; to its right is the mean of all the sheared

characters. At bottom center is the mean of all characters and its sheared counterpart.
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3.4 Covariance Matrices of Binary Images

The efficient calculation of the correlation of binary images is merely the mean of the logical NXOR
of the two matrices formed by replicating, as rows and columns, the binary vector. This matrix is

the correlation matrix and is converted to the covariance by subtraction of the outer product of the

mean vector image. Given 32 pixel square characters, this matrix is held as a 32 bit floating point

1024 by 1024 element array.

3.5 Eigenvectors of the Covariance Matrix

Only the leading eigenvectors are needed. These are obtained by Givens Householder tridiagonaliza/-

tion, application of Power method iteration [19] to find the eigenvalues and eigenvectors, and final

rotation of these eigenvectors back to those of the original matrix. This operation is an infrequent

expense since the basis, once made, can be used ad infinitum for KL expansion. The eigenvector

calculation used 75753 characters drawn almost equally from all ten classes.

3.6 Conjugate Training Algorithm for Feed Forward Neural Networks

Backpropagation [16] is the common method for training multilayer perceptron networks. Essentially

it implements a first order minimization of some error objective. The algorithm has the disadvantages

that convergence is slow [3] and that there are, in the usual implementation [16], two adjustable

parameters, t] and a, that have to be manually optimized for the particular problem.

Conjugate gradient methods have been used for many years [5] for minimizing functions, and have

recently [8] been discovered by the neural network community. The usual methods require an

expensive line search or its equivalent. Mpller [13] has introduced a scaled conjugate gradient method;

instead of a line search, an estimate of the second derivative along the search direction is used to find

the approximate minimum. In both backpropgation and scaled conjugate gradient, by far the most

time-consuming part of the calculation is done by the forward error and gradient calculation. In

backpropagation this is done once per iteration. Although the scaled conjugate gradient method does

this twice per iteration (but occasionally only once), the factor of two overhead is algorithmically

negligible since convergence is an order of magnitude faster [13] [1].

3.7 Training and Testing

Except for the third experiment in which the number of training exemplars is varied, the number

of training patterns was fixed at 7400. This set was comprised approximately of equal numbers of

each class ’0’ through ’9’. Different starting weights yield alternative minima corresponding to a

distribution of network performance. Training was performed using tens of uniformly distributed

(on the range [-0.5, -1-0.5]) initial random weights sets. This is insufficient to provide robust statistics

but an idea of the variability is obtained. The target activations were 0.0 for all nodes except for

a 1.0 on the node representing the given class. The objective function included a regularization [9]

term, the square weight vector length.

Testing used the KL transformation of 25585 characters obtained from different writers. This set

was disjoint from the training set. The characters from which they were obtained were not used in

the calculation of the covariance matrix or its eigenvector basis set. Classification involves a single

forward pass through a set of weights. The true classes are known a priori so that the generalization

properties of the classifier are obtained.

3.8 Hardware support

The efficient parallel implementation of neural networks in hardware and software is an active area

of current research. The motivation is pragmatic; faster training allows larger networks and training
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sets to be evaluated. Efficient matrix multiplication, inherent in layered perceptrons, on parallel

machines is very architecture specific giving rise to a vast literature on the subject. On an array

processor the outer product [1] [4] is superior. The AMT DAP’^ possesses a two dimensional array

of tightly coupled SIMD processors connected by a high bandwidth bus.

4 Experimental Results

4.1 Dependence on Basis Space Dimension

The graphs of figure 7 show the dependence of training and testing performance for two layer

perceptrons on the number of KL coefficients used as feature inputs. The networks that were used

in these tables use 32 and 48 hidden nodes respectively. The larger network is clearly superior in

learning and classification.

That the recognition does not decline significantly from its maximum at 48 input features as the

number of inputs is increased, indicates that the network is capable of ignoring redundant features.

This is consistent with Martin and Pittman’s work [12]; low variance pixels contain little information

and are weighted accordingly. The graphs of figure 7 are averages over 20 different runs using different

starting random weight sets. The use of more hidden nodes aids generalization for any sufficient

number of KLT inputs and gives better training although, if the number of inputs is large, the

number of hidden nodes is increasingly irrelevent. The class is inferred using a winner takes all

strategy as the index of the highest activation neuron. The eictivation can be taken as a confidence

with which the network asserts its hypothesis and this allows rejection of classifications on the basis

of the output activations vector. For example, table 9 and its graph rejects a pattern as unknown if

the highest activation is below some threshold. The final result is that the use of more hidden nodes

allows the network to train and generalize more successfully.

4.2 Dependence on Number of Training Prototypes

Thirty two KL coefficients of a fixed 15000 patterns were classified by networks trained on up to

40000 patterns. Runs were repeated over at least nine different initial weight sets. Each network

had 32 hidden and 10 output units. The results are summarized in the graph of figure 10.

As the number of training exemplars rises the network is less able to learn them. Simultaneously the

number that are classified correctly increases. This convergence is also exhibited by the mapping

error at the end of training and in testing. With only 32 input features and 32 outputs the network

attains 96.1% recognition. From the experiments detailed above it is apparent that more inputs and

hidden nodes should be used. Computational limits restricted the number of training exemplars to

40000. The curves of figure 10 indicate that more should be used.

5 Conclusions

The principal components of a training character ensemble form an self-organized basis for feature

extraction. The Karhunen Loeve transform is an optimally compact salient linear representation

of an image ensemble. It allows character recognition to be performed efficiently and effectively

to levels comparable to those of similar studies such as Martin and Pittman[12], and LeCun et al.

More importantly the twenty fold reduction in dimensionality is obtained for handwritten digits

recognition. Large low dimensional training sets are then available and generalization is shown to be

most dependent on this set size. The method is extensible to arbitrary pattern recognition problems

including letter OCR.

^ Certain commercial equipment is identified in order to adequately specify or describe the subject matter of this

work. In no case does such identification imply recommendation or endorsement by the National Institute of Standards

amd Technology, nor does it imply that the equipment identified is necessarily the best aveiilable for the purpose.
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Figure 3: The covariance of 75753

handwritten digits from the sheared 32

by 32 pixel binary images of 940 writ-

ers.

Figure 4: The first sixteen eigencharac-

ters of the covariance matrix of figure 3.

They are shown in column major order

those with highest eigenvalue first.

Figure 5: The mean of 75753 handwrit-

ten digits from sheared 32 by 32 pixel

binary images. The image is zoomed by

a zero order hold pixel replication.

Figure 6: The original and sheared by-

class means of 75753 handwritten digits

of 32 by 32 pixel binary images from

940 writers. At the bottom is classless

mean.
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NUMBER OF INPUTS b DIMENSION OF EIOB4SPACE NUMBER OF INPUTS > DIMENSION OF E10B4SPACE

Figure 7: Dependence of recognition accuracy on the number of inputs used. At left the mean
percent correct after training on 7400 patterns. At right the results of testing those networks on

25585 new patterns. The higher curves refer to networks with 48 hidden nodes, the lower ones used

32.

Figure 8: Classification Rejection for

15000 Handwritten Digits

Thresh %ok %rej

0.000 96.05 0.00

0.123 96.67 1.00

0.280 97.18 2.00

0.425 97.58 3.00

0.567 97.93 4.00

0.672 98.18 5.00

0.813 98.62 7.00

0.912 99.03 10.00

0.968 99.33 15.00

0.985 99.55 20.00

0.992 99.64 25.00

0.995 99.69 30.00

0.997 99.70 35.00

0.998 99.73 40.00

0.998 99.73 45.00

0.999 99.75 50.00

Figure 9: Activation Threshold Rejec-

tion. 48 inputs 48 hiddens 40000 train-

ing and 15000 testing exemplars. At

centre is percent classed correctly when

the percentage at right of the lowest ac-

tivation patterns are rejected.
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GENERAUZATION

%

CORRECT

LOO10 NUMBER TRAINMO EXEMPLARS

Figure 10: Dependence of training

and testing recognition ax:cureu:y on

the number of training exemplars used.

The leading 32 KL coefficients were

used.

Training Testing

Ntt Pok Ett Pok Ere

500 98.97 0.041 86.60 0.149

1000 98.66 0.048 89.69 0.135

2000 98.52 0.052 91.23 0.126

3000 97.97 0.060 92.03 0.122

4000 97.93 0.063 92.43 0.120

6000 97.87 0.066 92.90 0.117

8000 97.54 0.071 93.31 0.114

10000 97.44 0.074 93.77 0.111

12000 97.29 0.076 93.96 0.108

15000 97.05 0.079 94.33 0.105

20000 96.92 0.081 94.69 0.102

24000 96.84 0.081 94.92 0.099

30000 96.79 0.082 95.13 0.097

40000 96.58 0.083 95.56 0.094

76755 96.64 0.083 96.13 0.083

Figure 11: Error and % Correct vs

Training Set Size. 32 inputs 32 hid-

den. Means over 19 initial training

weight sets on up to 40000 characters

and over one run thereafter. Tested on

new 15000.

Classification of 15000 handwritten digits from 312 writers is achieved with 96.5% ax:curacy using a

two layer 48 input, 48 hidden and 10 output unit perceptron architecture trained on 76755 patterns.

For a 32 input, 32 hidden and 10 output network trained on 7400 patterns the figure is 93.7%. If

the number of input and hidden units is increased to 48 the recognition rate rises to 94.5%.

As the training set size increases a fixed architecture perceptron is increasingly unable to memorize

that set but enhances its ability to generalise on unknown patterns. At least 50000 training KL
feature vectors are needed for the classifier to classify as well in testing as in training. This applies

to both percent classified correctly and to the output objective error.
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