
U.S. DEPARTMENT OF COMMERCE
National Institute of Standards and Technology

Fed-X: The NIST
Express Translator

NISTIR 4822

NATIONAL Stephen Nowland Clark

• ^ Don Libes

testbed™

I 1992

NISTIR 4822

National PDES Testbed

Report Series

Sponsored by:

U.S. Department of Defense

CALS Evaluation and NATION^ ^ t n-ii Tk^TTz-im

Integration Office ^ 1 rea-A: ine iMoi

^ Express Translator
tbed™

Revised April, 1992

Stephen Nowland Clark

Don Libes

The Pentagon

Washington, DC 20301-8000

U.S. Department of Commerce

Barbara Hackman Franklin,

Secretary

Technology Administration

Robert M. White,

Undersecretary for Technology

National Institute of

Standards and Technology

John W. Lyons, Director

April 3, 1992

Table Of Contents

1 Introduction 1

1.1 Context 2

2 Implementation Environment 2

3 Running Fed-X.... 2

4 Design Overview 3

4.1 Fed-X Control Flow 4

4.1.1 First Pass; Parsing 4

4.1.2 Second Pass: Reference Resolution 4

4.1.3 Third Pass: Output Generation 6

4.2 Working Form Data Structures 6

4.2.1 Constant 6

4.2.2 Type 7

4.2.3 Entity 8

4.2.4 Variable 9

4.2.5 Expression 10

4.2.6 Statement 12

4.2.7 Algorithm 13

4.2.8 Scope 14

4.2.9 Schema, Schemas 15

4.3 Class Hierarchy 15

4.4 Object Processing 17

4.4.1 Use, Reference 17

4.5 Missing Features 17

5 Conclusion 18

Appendix A: Cross-Reference to N14 Rules 19

Appendix B: References 23

ill

Disclaimer

No approval or endorsement of any commercial product by the National Institute of

Standards and Technology is intended or implied

Oracle is a registered trademark of Oracle Corporation

Smalltalk-80 is a trademark of ParcPlace Systems, Inc.

Sun-3 and Sun-4 are trademarks of Sun Microsystems, Inc.

Unix is a trademark of AT&T Technologies, Inc.

Fed-X: The NIST Express Translator

Stephen Nowland Clark

Don Libes'

1 Introduction

The NIST (Federal) Express Translator (Fed-X), and the associated Express Working

Form, are Public Domain software tools for manipulating information models^ written

in the Express language IPartl 1]. The Express Working Form is part of the NTST PDFS
Toolkit [Clark90a]. It is intended to be used to provide the input to various conceptual-

schema-driven applications in a STEP implementation. For example, tools such as

Data Probe, a prototype STEP and Express schema browser and editor developed at

NIST [Morris91], and the STEP Working Form with its associated STEP physical file

parser, STEPparse [Clark90b], have been written independently of any particular infor-

mation model. Fed-X-based translators are used to provide the information model def-

initions to drive these applications. This approach results in smaller applications

(which need not have entire information models embedded within them), as well as in-

sulating these applications against changes in the conceptual schema and, to a certain

extent, in Express itself. Indeed, an application such as STEPparse can be used with

different conceptual schemas, or different versions of the same schema, without modi-

fication. The Data Probe has been used to edit STEP product models in the context of

several different Express information models.

A primary goal in the development of Fed-X was to provide a clean back-end interface,

in order to allow various output modules to be easily plugged into a basic front-end

parser. To accomplish this, the Fed-X parser populates a set of data structures (the Ex-

press Working Form, or WF) containing all of the information in an Express specifica-

tion. A user-supplied back-end^ can then walk through the data structure, extracting

relevant portions of the available data and producing an appropriately formatted output

file.

1. Don Libes is responsible for the minor changes made to this document to track the actual implementation

of the software described. However, credit for the bulk of the document, its style, and the implementation of

the NIST Express Working Form remains with Stephen Nowland Clark. Recent changes are denoted by a

change bar to the left of the text

2. The terms information model, data model, and conceptual schema are used interchangeably throughout this

docum.ent.

3. Two Fed-X output modules have been provided with the NIST PDES Toolkit in the past; they are not cur-

rently distributed with the toolkit. One of these produces SmalltaIk-80^'^ class definitions [Clark90e] for use

with QDES. The other forms the back end of Fed-X-SQL, a translator which produces relational database

table definitions in SQL from an Express information model [Morris90] [Metz89].

Page 1

1.1 Context

The PDES (Product Data Exchange using STEP) activity is the United States’ effort in

support of the Standard for the Exchange of Product Model Data (STEP), an emerging

international standard for the interchange of product data between various vendors’

CAD/CAM systems and other manufacturing-related software [Mason91]. A National

PDES Testbed has been established at the National Institute of Standards and Technol-

ogy to provide testing and validation facilities for the emerging standard. The Testbed

is funded by the Computer-aided Acquisition and Logistic Support (CALS) program of

the Office of the Secretary of Defense. As part of the testing effort, NIST is charged

with providing a software toolkit for manipulating STEP data. This NIST PDES Tool-

kit is an evolving, research-oriented set of software tools. This document is one of a set

of reports which describe various aspects of the Toolkit. An overview of the Toolkit is

provided in [Clark90a], along with references to the other documents in the set.

The reader is presumed to have a working knowledge of Express N14 and the C pro-

gramming language.

2 Implementation Environment

Fed-X was developed on Sun Microsystems Sun-S^”^ and Sun-4^'^ series workstations

running the Unix^'^ operating system. The Working Form is implemented in ANSI
Standard C [ANSI89]. The Fed-X parser itself is implemented in Yacc and Lex, the

Unix languages for specifying parsers and lexical analyzers. In the NIST development

environment, the grammar can also be processed by Bison, the Free Software Founda-

tion’s^ implementation of Yacc. Similarly, the lexical analyzer can be produced by

Flex^, a fast. Public Domain implementation of Lex. The C compiler used is GCC, also

a product of the Free Software Foundation. The implementation currently depends on

certain features of Standard C but presumably, any conformant compiler could be used.

3 Running Fed-X

A default main procedure is available for applications which choose not to supply then-

own top-level control. The following section describes invocation of applications built

this way.

Fed-X takes several optional command-line arguments:

fedex [-d <nuinber>]

[-e <express>]

1 . The Free Software Foundation (FSF) of Cambridge, Massachusetts is responsible for the GNU Project,

whose ultimate goal is to provide a free implementation of the Unix operating system and environment.

These tools are not in the Public Domain: FSF retains ownership and copyright privileges, but grants free dis-

tribution rights under certain terms. At this writing, further information is available by electronic mail on the

Internet from gnu(a)prep.ai.mit.edu.

2. Vem Paxson’s Fast Lex is usually distributed with GNU software. It is, however, in the Public Domain,

and is not an FSF product. Thus, it does not come under the FSF licensing restrictions.

Page 2

4

{-wl-i all
I
none

I <warning>}
The -d option controls the debugging level; the argument can range from 0 (the de-

fault) to 10. The Express source file is specified with -e; if no -e option is given,

Fed-X reads from standard input. The last two options control which warning messages

Fed-X will produce, -w is used to turn on warning classes and - i (ignore) to turn them
off. A parameter of all behaves in a predictable fashion, instructing Fed-X to

enable/disable all of the warning classes initially; similarly, none instructs Fed-X to

begin with no warning classes enabled/disabled. Allowable values for <warning>,
with their interpretation and default values, are:

subtypes

code

comment
shadows

- Warnings about subtypes: Fed-X only traverses the class

hierarchy by way of superclass information, so problems in

subclass lists can "safely" be ignored. Default: on.

- Warnings about problems in algorithms and where clauses.

Fed-X does not yet handle all of Express’ scoping rules

properly, nor does it attempt to compute the return types of

expressions, so some of these warnings may be extraneous.

Default: off.

- Nested comment warning. Default: off.

- Warnings about overloaded names. The scoping rules of

Express can disambiguate these shadowed definitions, but

cannot be invoked outside of Express, e.g. in STEP files.

Default: on.

Fed-X can be built in two different ways, resulting in different interaction patterns. For

many applications, a single output module is bound into Fed-X at build time. In this

statically linked case, after the first two passes are completed, the user is normally

prompted for a single file name. This is the name of the file to which Fed-X’ s output

will be written. In the other (dynamically linked) version, no specific output module is

loaded at build time. In this case, when the first two passes are complete, the program

asks for an output module. If the file named is an appropriate object file, it is loaded

and an output file name requested. This is the name of the file to which the output will

be written. Another output module is then requested, and this sequence continues until

an empty line is entered as the name of the output module, which signals Fed-X to exit.

This dynamic loading facility is available only under BSD4.2 Unix and its derivates.

Design Overview

Fed-X is a three-pass translator. The first two passes are the standard parsing and sym-

bol-table resolution passes of a traditional compiler. The third is a flexible output gen-

eration pass. The Working Form which is produced by the first two passes consists of

data structures which directly reflect the structure and contents of the Express source.

The third pass, which can be tailored to various specific applications, traverses these

data structures and produces output in a specified format.

Page 3

4.1

4.1.1

4.1.2

Fed-X Control Flow

First Pass: Parsing

The first pass of Fed-X builds a set of data structures which completely represent the

information in the Express input. This pass makes no attempt at resolving most name
references; thus, the resulting data structures are linked only indirectly by names: in or-

der to resolve a function call, the name of the function must be looked up in the symbol
table for the appropriate scope. The entire structure of the file is represented at this

point, however. If any syntax errors are encountered, the parser attempts to print mean-

ingful error messages and to continue parsing.

The N14 specification [Spiby 91] provides a suggested grammar, however it suffers

from various defects, such as unreferenced rules. This is probably because it was edited

from previous drafts rather than being constructed anew. The grammar also sacrifices

pedagogy for efficiency in many places.

The grammar used by Fed-X resembles the N 14 grammar in spirit and language accep-

tance, but differs widely in some places. Since the N14 specification provides no map-

ping of rules to pages, an index was built for our own requirements. It is given in

appendix A.

Second Pass: Reference Resolution

In the second pass, an attempt is made to resolve all names. An error message is gen-

erated for any reference to an undefined name and for any use of a name in an inappro-

priate context (e.g., an algorithm name as the type of a variable). Some checks are made

on the consistency of the model during this pass. For example, one check ensures that

every supertype of a given entity also lists the entity as a subtype, and vice versa. Also

during this pass, warnings may be issued about names which are multiply defined in

different scopes. Express has a hierarchical scoping mechanism to disambiguate these

names, so that such overloading is allowed. In practice, however. Express models are

mapped onto STEP physical files, which have no notion of a hierarchically scoped in-

formation model. When this "flattening out" of the model takes place, overloaded

names may conflict; hence the need for these warnings about shadowed definitions.

Here is a cursory overview of the sequence of code that builds the Working Form. Oc-

casional annotations are provided for clarity. The following steps all occur in the func-

tion:

EXPRESSpass_2

SCHEMAresolvG (model ->schema)

;

SCOPEresolve_passl (schema)

;

for each imported schema name (SCOPEget_imports)

replace name with actual schema

SCHEMAresolve_passl

SCOPEresolve__passl

for each non- imported schema (SCOPEget_schemata)

SCHEMAresolve_passl

for each entity (SCOPEget_entities

)

express .

c

pass2 .

c

pass2 .

c

scope .

c

pass2 .

c

scope .

c

Page 4

ENTITYresolve_passl (e) pass2.c

convert supertype list from list of idents to entities

EXPresolve_qualif icat ion

convert subtype list from expression to list of entities

(EXPresolve_subtype_expression (expr
, entity, list);)

resolve explicit, derived attributes (via VARresolve)

VARresolve variable.

c

attempt to resolve type by calling

TYPEresolve (type_reference) type .

c

if type is an entity, generate an entity ref

and attach to var by...

OBJbecome (type, OBJcreate (Class_Entity_Type . .

.

attach entity to entity type by...

ENT_TYPEput_entity (type, def

)

resolve unique

SC0PEresolve_pass2 (schema) ;
pass2.c

for every symbol in scope

report on shadowed decl’s

for every schema in scope

SCHEMAresolve_pass2 pass2.c

SC0PEresolve_pass2 (see above)

for every type in scope

resolve all references (TYPEresolve) pass2.c

for every entity in scope

ENTITYresolve_pass2 pass2.c

for every supertype of this entity

recursively call ENTITYresolve_pass2 (see above)

tag each entity with count of attributes inc. inherited

verify one of its subtypes is the entity

add copy of supertype to entity's list of scopes

for each subtype of this entity

verify one of its supertypes is entity

for each attribute

for each supertype, if we can find a variable with

same name, report "overloaded"

resolve inverses (VARresolve)

for every algorithm in scope

resolve references (ALGresolve)

skip rules

if function

TYPEresolve

if

for each parameter

VARresolve

TYPEresolve

Page 5

if initializer, EXPresolve it

SCOPEdef ine_syinbol

for statement in body

STMTresolve

big case here on various statement types

EXPRESSpass_2 and SCHEMAresolve are very simple, just calling the routines indi-

cated above.

4.1.3 Third Pass: Output Generation

After the first two passes have built and linked the in-memory Working Form, a third

pass may be invoked to write the output. This pass can load several output modules in

succession, so that several file representations of the Express input can be produced

from a single parse. Alternatively, a specific module can be built into the translator,

and this dynamic loading phase bypassed.

4.2 Working Form Data Structures

The Express Working Form is designed in object-oriented fashion, with one data ab-

straction corresponding to each concept in Express. Thus, there are abstractions which

represent types, entities, variables (which include entity attributes and formal parame-

ters, as well as local variables), expressions, statements, algorithms, and schemas. An
additional concept which recurs in Express, and which is represented by a correspond-

ing data abstraction, is that of a scope, which is, in effect, a symbol table. Algorithms,

schemas, and entities all introduce their own local scopes.

In the following sections, we examine each abstraction in turn. Although each abstrac-

tion parallels the corresponding construct in Express quite closely, so that the descrip-

tions below often seem to be echos [Spiby91], bear in mind that the objects described

are actually the abstract data types of the Express Working Form.

4.2.1 Constant

The Constant abstraction represents symbolic constants. In the current implementation

of the Working Form, constants appear only as elements of an enumerated type. A con-

stant is named, and is marked with a type. The type of an enumeration constant simply

points back at the enumeration of which it is an element. Each constant has a value,

which can be of any C type (although it should be compatible with the type of the con-

stant); in the case of enumeration constants, this value is always an integer.

Data private to constant objects is:

struct Constant {

Type type;

Generic value;

} ;

Page 6

I
4.2.2 Type

The Type abstraction is used to represent Express types. Every type has a name, which

is empty in many cases. When it is not, the type represents a type declaration, as in the

TYPE <id> = <type> END_TYPE construct of Express. When the name is empty,

the type represented appears within some other context - perhaps as the type of a func-

tion parameter or the base type of an aggregate. A type may have a list of constraints

(WHERE rule) associated with it; these constraints restrict the legal values of the type.

Several classes of types are represented, including simple types (numeric, logical,

string), enumerations, various aggregates, entity types, and select types. Several type

classes are implicitly or explicitly subclasses of other type classes. Thus, boolean is a

subtype of logical, and the various classes of aggregation types are subclasses of the

general aggregate type. The attributes of a type depend on its class. Thus, integer,

floating point, and string types may have a precision specification: an expression which

constrains the number of significant digits or characters allowed in a value of the type.

An enumeration type includes a list of the enumeration constants which are the allow-

able values for the type.

Every aggregate type (which may be an array, bag, list, set, or general aggregate) in-

cludes a base type, which indicates the type of objects which can be inserted into an in-

stance of the aggregate type. In addition, an aggregate type may have lower and upper

bounds. In the case of an array, these expressions indicate the first and last allowable

index into the array. For other aggregate types, these expressions constrain the total

number of objects which can (must) appear in an instantiation. If the bounds are not

specified, they are assumed to be 0 and infinity, respectively. Two flags are also asso-

ciated with each aggregate type, corresponding to the UNIQUE and OPTIONAL key-

words in an Express aggregate definition. The ’unique’ flag, if set, indicates that all

elements of an aggregate must be unique among themselves. As this requirement al-

ready applies to a set, the flag is not valid for a set type. The ’optional’ flag, which ap-

plies only to an array type, indicates that all positions in the array need not be filled in

a valid instantiation of the type - the array may contain null entries.

An entity type is simply one or more entities packaged as a type. No further informa-

tion is added beyond the entity definitions themselves. Entity types exist to allow entity

instantiations to be represented (c.f STEP Working Form [Clark90b]), and to provide

a clean mechanism for recognizing entity names in type contexts.

A select type consists of a list of selectable types. An instantiation of any of these se-

lections is a valid instantiation of the select type. In this sense, the select is similar to

the C language union construct and the Pascal variant record. In Express, the list

of selections may only include references to named types.

There are two type classes, generic and number, which are distinguished by the fact that

the corresponding Express types (GENERIC and NUMBER, respectively) cannot be

instantiated. These can only be used as types of formal parameters to algorithms, where

an actual parameter will provide an instantiation of a more specific type at run time.

Page 7

A special type class is used to represent type references. These are (possibly qualified)

references which appear in type contexts, but which are not yet resolved to a particular

type. In normal operation under the control of Fed-X, they are replaced during the sec-

ond pass by appropriate type constructs. A type reference uses an expression (see sec-

tion 4.2.5) to record the qualified type name it represents. The components of this

expression are identifiers, and they are combined into binary expressions with the dot
operator.

There are several type constants available. These constants can be used to avoid creat-

ing multiple copies of some common types, including generic, integer, unbounded ge-

neric set, logical, etc.

Data private to type objects is:

struct Type {

Linked_List where;
Type original_type

;

} ;

struct Aggregate_Type {

Type base_type;
Expression lower;

Expression upper;
short flags;

} ;

struct Composed_Type {

Linked_List list;

};

struct Sized_Type {

Expression size;

Boolean fixed;

};

struct Type_Reference {

Expression name;

};

4.2.3 Entity

The Entity abstraction represents Express entity declarations. Every entity consists of

a name, and (possibly empty) lists of attributes, subtypes, and supertypes. In addition,

an entity includes a boolean expression which describes the relationships among its var-

ious subtypes. The attributes are represented as variables which are defined in the local

scope of the entity. The sub- and supertypes are themselves entities.

Page 8

4.2.4

In order to give a hierarchical structure to an Express model, entities are arranged in a

class hierarchy, as in the Object-Oriented world. This hierarchy is defined by the sub-

class and superclass lists of its component entities. As specified by Express, the class

hierarchy provides for conjunctive as well as disjunctive subclassing: foo SUPER-
TYPE OF (bar AND blat) means that any instance of foo is also an instance

both of bar and of blat, while foo SUPERTYPE OF ONEOF(bar, blat,
blit) represents standard inheritance, in which an instance of foo is also either an

instance of bar or an instance of blat or an instance of blit.

An entity may also include a list of uniqueness sets (from the Express UNIQUE rule)

and a list of constraints (from the Express WHERE clause). Each uniqueness set is a

list of attributes whose values, when taken together, must uniquely identify a particular

instance of the entity. The constraints, if any, are expressions which compute logical

results. Each must evaluate to true in a valid product model. These constraints can

apply to individual instantiations of the entity as well as to the collection of all instances

of the entity.

Since one possible way of looking at an entity class is as the collection of its instances,

provision is made in this abstraction for maintaining this collection. Thus, it is possible

to add instances to an entity, or to retrieve a list of all of the instances of an entity. This

mechanism is used by the STEP Working Form.

Data private to entity objects is:

struct Entity {

Linked_List supertypes;

Linked_List subtypes;

/* list of supertypes */

/* simple list of */

/* subtypes, useful for simple lookup

Expression subtype_expression ;
/* DAG of */

/* subtypes, with complete information
/* including, OR, AND, and ONEOF */

Linked_List attributes; /* explicit attributes
int inheritance;

int attribute_count

;

Linked_List unique;

Linked_List constraints;
Linked_List instances;
int mark;

Boolean abstract; /* is this an abstract
/* supertype? */

};

Variable

The Variable abstraction is used to represent entity attributes and formal parameters to

algorithms as well as local variables in a scope. A variable consists of a name, a type,

a reference, an offset, and some flags. A variable may optionally have an initializer,

which is an expression used to specify an initial value for the variable.

Page 9

The reference of a variable is the original name of an entity object in the schema from

which it has been used or referenced.

4.2.5

A variable’s offset indicates its position in a storage block. Thus, the offset of a local

variable is its offset into the data space of the scope in which it is defined, while the

offset of an entity attribute is its position relative to the first attribute of the entity. It is

important to realize that, in the latter case, this offset is not sufficient to locate the at-

tribute in an instantiation of the entity, since this total offset cannot be determined from

the entity definition alone. To see this, consider entities A and B, each with a single at-

tribute (call these aa and bb, respectively) The offset to bb in an instantiation of B is

0. But now suppose there is a third entity class, C, which inherits from both A and B,

in that order. Then the offset to bb in an instance of C must be 1 , even though bb is

inherited from B, where its offset was 0. Thus, a variable’s offset may not be a useful

piece of information by itself.

The ’optional’ flag is used with entity attributes, and indicates that the attribute need

not have a value in a valid instantiation of the entity. A variable representing an entity

attribute can also be marked ’derived,’ indicating that the attribute value is always de-

rived from the values of other attributes, and can never be specified by a user. The

’variable’ flag, meaningful for formal parameters, indicates that the parameter is to be

passed by reference, i.e., it can be modified by the receiver.

Data private to variable objects is:

struct Variable {

Type
Expression
Expression

/* in use'

int

short

Symbol

type;

initializer

;

reference; /* true name */

or reference 'd object */

offset

;

flags

;

inverse; /* remote entity ref */

/* entity related by this inverse */

/* relationship */

};

Expression

Expression is one of the more complex abstractions, simply because of the wide variety

of expressions found in Express. There are five basic classes of Expressions, some of

which are further divided into conceptual subclasses: literals (including integer, logical,

real, set, and string literals), identifiers, operations (including unary operations and bi-

nary operations), function calls, and queries. Every expression includes a type, which

is the type of the value it computes. Although this type is intended to be computed au-

tomatically, it currently is neither computed nor used by the Working Form code, ex-

cept in the case of a literal. In this case, the type is an implied part of the definition of

the literal’s class.

Page 10

Literal classes exist for most of the concrete simple types (as opposed to the abstract

simple types, NUMBER and GENERIC). Boolean literals do not exist in Express; they

are interpreted as logical literals instead. There may also be set literals (notably, the

empty set). There are several literal expression constants representing, for example,

zero, infinity, and the empty set.

An identifier expression represents a reference to a variable. It consists simply of the

variable referenced. (Simple) identifier expressions can be composed using (binary)

field reference expressions to form the complex qualified identifiers which Express

provides.

An operation expression includes one (unary operation) or two (binary operation) op-

erands, which are themselves expressions, and an operator, such as addition, negation,

array indexing, or attribute extraction. All of the operations of Express are supported.

A function call is composed of an algorithm (which may not be a procedure) and a list

of actual parameters to the algorithm. The actual parameters to the function call are

themselves expressions. Entity subtype expressions (see section 4.2.3) make use of a

closely related expression class, the oneof expression, which consists of a list of entity

references.

A query expression represents the set-theoretic "set of aU jc in X such that ..." construct.

It consists of a domain set (X), a temporary identifier which represents each element of

the domain successively (at), and a list of conditions to apply to each x. The result com-

puted is a set containing ail of the values of x which satisfy the constraints.

Data private to expression objects is:

struct Ary_Expression {

Op_Code op_code;

Expression opl;

} ;

struct Ternary.

Expression
Expression

};

struct Query {

Variable
Expression
Expression
Scope

} ;

Expression {

op2 ;

op3 ;

identifier;

f romSet

;

discriminant

;

local_scope

;

Page 11

4.2.6 Statement

The Statement abstraction is used to represent the wide variety of statements which oc-

cur in Express. There are many classes of statements, including assignments, case

statements, conditionals, loops, procedure calls, returns, and with statements. A series

of statements may be combined into a single compound statement.

An assignment statement consists of a left-hand-side expression, which must be assign-

able (this limits the expression to a possibly qualified identifier, although the restriction

currently is not enforced by the Working Form), and a right-hand-side expression, com-
puting the value to be assigned.

A CASE statement is, as in Pascal, a multi-branch conditional. It contains an expres-

sion (the case selector) and a list of branches. Each branch is a case item, represented

by the Case Item abstraction. A case item consists of a list of one or more values against

which the selector will be compared and a statement to be executed if the selector

matches one of these values.

The looping construct in Express is quite general, combining the functionality of the

repeat .. until, while .. do, and for loops of modem programming lan-

guages. An Express loop consists of a controlled statement (the body of the loop) and

a list of loop controls. There are three classes of loop control: increment (correspond-

ing to a FOR loop), until, and while. The first consists of a controlling identifier expres-

sion, initial and terminal expressions, and an optional increment expression, which

defaults to 1 if not present. The controlling identifier takes on successive values from

the initial to the terminal expressions, and is incremented by the increment expression

on each iteration. An until control consists of a single expression (which must compute

a boolean result); it causes the loop to terminate when this expression evaluates to

true. Similarly, a while control causes the loop to terminate as soon as its single ex-

pression evaluates to false.

A procedure call is very much like a function call, with the exception that the algorithm

is expected to be a procedure, rather than a function or rule. The procedure call state-

ment includes a list of expressions, representing the actual parameters to the call.

A RETURN statement is the mechanism by which a function reports a value to its call-

er. It contains a single expression, which computes the value to be returned.

A simple statement is one which consists of a single keyword. There are two such state-

ments in Express: ESCAPE and SKIP. No statement class is provided for simple state-

ments; rather, they are represented by statement constants, unique instances of the

Statement abstraction itself

Finally, Express includes the WITH statement, which resembles Pascal’s construct of

the same name. It includes a controlled statement and a controlling expression which

provides (optional) partial qualification to any expression in this statement. If a name

in the controlled statement cannot be resolved, an attempt is made to resolve the name

as if it were prepended with the controlling expression. The Working Form currently

does not attempt to acknowledge WITH statements when resolving identifiers.

Data private to statement objects is:

Page 12

struct Assignment {

Expression Ihs

;

Expression rhs

;

} ;

struct Case_Statement {

Expression selector;
Linked_List cases;

} ;

struct Compound_Statement {

Linked_List statements;

} ;

struct Conditional {

Expression test;

Statement code;

Statement otherwise;

} ;

struct Loop {

Linked_List
Statement

} ;

controls

;

statement

;

struct Procedure_Call {

Procedure procedure;
Linked_List parameters;

};

struct Return_Statement {

Expression value;

};

4.2.7 Algorithm

Express functions, procedures, and rules are each represented by a subclass of the Al-

gorithm abstraction. A procedure is simply a sequence of statements. A function is a

sequence of statements which computes a result and returns it to the caller. A rule is a

special kind of function whose result is always a boolean (logical). A rule also has

slightly different scoping rules than other algorithms, to allow it to manipulate entity

classes as well as instances.

Page 13

4.2.8

Any algorithm consists of a name, a list of formal parameters (which are represented by

variables), and a list of statements forming the body of the algorithm. In addition, a

function has a return type. A rule implicitly returns a logical value. This value is com-
puted by a list of constraints (WHERE clause), which is evaluated after the statements

which form the rule body.

Data private to algorithm objects is:

struct Algorithm {

Linked_List parameters;
Linked_List body;

} ;

struct Function (

Type

} ;

return_type

;

struct Rule {

Linked_List where;

} ;

Scope

All scoping and symbol table functionality are managed by the Scope abstraction. A
local scope is established by each algorithm, schema, and entity. For this reason, each

of these abstractions is considered to be a subclass of scope, thereby inheriting all of its

functionality. Pascal-like hierarchical scoping and inheritance are implemented by

having each scope point to its immediate containing scope(s), if any. For example, an

algorithm’s local scope points to the scope in which the algorithm is defined; an entity’s

scope may have several parents: the scope in which the entity is defined, and all of the

supertype entity scopes. In its role as a symbol table, a scope includes definitions of

various names as entities, types, variables, algorithms, constants, and schemas.

A scope can be queried for its definition of a particular symbol. If the scope does not

itself define the symbol, its superscopes are in turn queried, and so forth. If no defini-

tion can be found, the query fails.

Data private to scope objects is:

typedef struct Express {

FILE* file;

Dictionary schemas;

} * Express;

struct Scope {

Linked_List
Dictionary
Dictionary

parents

;

symbol_table

;

references

;

Page 14

Linked_List use;

int

Boolean
last_search;
resolved;

} ;

4.2.9 Schema, Schemas

The Schema abstraction represents the Express construct of the same name, which is,

in effect, a named scope. Most operations of interest are performed on the scope. There

is no data private to schema objects.

The Schemas abstraction represents a set of Schemas. The object produced by the first

two passes of Fed-X is such a set, which ultimately contains all of the definitions found

in the source file. There is no data private to schemas.

4.3 Class Hierarchy

In order to get a better idea of how the objects and classes fit together, this section pre-

sents a class hierarchy. The left column defines the class names and the hierarchy - the

data local to each class object is defined in the right column. The hierarchy is presented

so that each class is defined to be a superclass of the first class above it that is exdented

to a different position.

Typename sizeof

(all prefixed by "Class_")

Null

Construct

Case_Item

Expression

Ary_Express ion

Unary_Express ion

Binary_Express ion

Ternary_Express ion

struct Construct

struct Case_item

Type

struct Ary_Expression

Function_Call

Identifier

Expression

struct Ternary_Expression

Algorithm .

Variable

Literal

Aggregate_Literal

Binary_Literal

Integer_Literal

Logical_Literal

Real_Literal

String_Literal

Link;ed_List

Binary

Integer

Logical

Real

String

Linked_List

struct Query

struct Loop_Control

struct Increment_Control

One_Of_Express ion

Query

Loop_Control

Increment_Control

Condit ional_Control

Until_Control

Page 15

Whi le_Control

Statement

Assignment struct Assignment

Case_Statement struct Case_Statement

Compound_Statement struct Compound_Statement

Conditional struct Conditional

Loop struct Loop

Procedure_Cal

1

struct Procedure_Call

Return_Statement struct Return_Statement

With_Statement struct With_Statement

Dictionary struct Dictionary

Link.ed_List struct Linked_List

Stack

Symbol struct Symbol

Constant struct Constant

Instance (step only) struct Instance

Scope struct Scope

Algorithm struct Algorithm

Function struct Function

Rule struct Rule

Procedure

Entity

Schema

struct Entity

Type struct Type

Aggregate_Type struct Aggregate_Type

Array_Type

Bag_Type

Set_Type

List_Type

Type_Reference struct Type_Reference

Sized_Type struct Sized_Type

Binary_Type

Integer_Type

Real_Type

Str ing_Type

Number_Type

Logical_Type

Boolean_Type

Generic_Type

Composed_Type struct Composed_Type

Entity_Type

Enumerat i on_Typ

e

Select_Type

Variable struct Variable

Page 16

You will note that there is no multiple inheritance. This is a serious drawback and pre-

vents certain N14 constructs such as a type and enumeration with the same name. In

order to provide this, you would need to be able to have multiple symbols in a single

scope with the same name (or multiple scopes at the same level). The cleanest solution

would be to add a scope to enumeration types, but this is currently impossible since

types and scopes cannot inherit from one another due to the lack of multiple inheritance.

It is our suspicion that adding multiple inheritance to the current object implementation

would greatly decrease the operating speed even for Express files that do not make use

of this capability.

4.4 Object Processing

4.4.1 Use, Reference

The USE and REFERENCE constructs in the N 14 version of Express permits a schema

to access definitions in other schemas. The two constructs differ in the type of access.

USE treats definitions in the other schema as local. REFERENCE permits entities in

the local schema to reference items in the other schema but the definitions are not con-

sidered local.

The processing of the USE construct is as follows. The parser returns a list containing

the schema name as the first element followed by an optional list of expressions. The

expressions contain the name of the foreign entity and an optional local name. If the for-

eign schema is not yet resolved, then SCHEMAresolve is called on it. The foreign

schema must be resolved since it may have a USE statement which brings in additional

entity definitions and so on. Schema resolution will expand any USE constructs into

their equivalent entities. After any USE'd schemas are resolved, the list of foreign enti-

ties is traversed and they are copied into the local schema, renaming as necessary.

The processing of the REFERENCE construct is somewhat different. The structure re-

turned from the parser is the same as with USE. However, instead of being added to the

schema's symbol table, a separate dictionary is used to contain references to foreign

items. The parser adds references to the dictionary. During REFERENCEresolve a

copy of the dictionary is traversed and pointers to the objects being referenced are add-

ed. If an object is renamed with a local name, a copy of the object is made and that

pointer is added to the reference dictionary. This is because the referenced object does

not know it has been referenced and only knows its original name. Thus, referenced ob-

jects are not local to a schema, i.e., they would not appear on the list of entities for a

schema. The reference dictionary is searched by SCOPElookup so that a referenced

item is known to the schema but it is not considered local.

4.5 Missing Features

While Fed-X accepts almost all of the syntactic constructs of Express, the Working

Form does not yet represent as many of them; nor does it observe aU of those which it

represents. In particular, constant is syntactically observed but semantically ig-

nored.

Page 17

I
Although the full type system of Express is represented in the Working Form, type der-

ivations are not performed. It is theoretically possible to assign a type to any expression

on the basis of the operator and operands (or by looking up a function in the symbol

table), but this functionality is not yet implemented. Thus, erroneous messages about

type mismatches are sometimes produced simply because type information about cer-

tain expressions is not available.

Express implicitly suggests an evaluation environment yet it does not define one. Fed-

X makes occasional attempts to mitigate this deficiency, however a rigorous treatment

is impossible without further specificiation.

Due to problems with the Express language definition, qualified identifiers may not al-

ways be interpreted properly. Problems are particularly common when dealing with

enumeration identifiers. Similarly, Express allows a subtype entity to redefine an at-

tribute which it inherits from a supertype. The effect of this redefinition on scoping re-

mains an open issue, and so Fed-X currently does not allow it.

Fed-X responds robustly to semantic errors. Syntax error recovery is somewhat more

haphazard.

Comments are discarded during lexical analysis and so have no chance of being record-

ed by the parser.

5 Conclusion

Although the Express Working Form in its current state is sufficient for current appli-

cations, it is only a matter of time before some of the missing features are required. In

addition. Express is still evolving, and the software must continue to change with the

language.

Fed-X has proven to be an effective tool for the creation of schema-independent appli-

cations based on STEP. Translators using each of the output modules distributed with

the Express Working Form are in common use at NIST. Fed-X is also part of the toolkit

distributed by PDES, Inc.

Page 18

A Cross-Reference to N14 Rules

Rules below 1 17 are omitted, since they are trivial mappings.

Rule # Page #(s) Rule name

117 72 add_like_op

118 24 binary_literal

119 24 bit

120 25 character

121 18 digit

122 24 digits

123 24 integer_Uteral

124 19 letter

125 25 logical_literal

126 20 lparen_not_star

127 72 multiplication_like_op

128 20 not_lparen_star

129 20 not_paren_star

130 19-20 not_paren_star_special

131 20 not_rparen

132 20 not_star

133 24 real_literal

134 72 rel_op

135 24 sign

136 simplejd

137 19 special

138 20 star_not_rparen

139 25 string_literal

140 89,97 actual_parameter_list

141 90 aggregate_initializer

142 86 aggregate_source

143 60 aggregate_type

144 3 1 -34,40,45-46,58-60,62-64 aggregation_types

145 63-64 algorithm_head

146 93 alias_id

148 93 alias_stmt

147 alias_ref

149 31 array_type

150 94 assignment_stmt

151 45-46 attribute_decl

152 45-46,48 attributejd

153 45-46,49,93-94 attribute_qualifier

154 attribute_ref

155 32 bag_types

156 31-34,45-46,58-60,62-64 base_type

157 28 binary_type

158 28 booIean_type

159 31-34,48,62,77,98 bound_l

160 31-34,48,62,77,98 bound_2

161 31-34,48,62 bound_spec

163 89 built_in_function

164 97 built_in_procedure

165 95 case_action

Page 19

166 95 case_label

167 95 case_stmt

168 96 compound_stmt

169 62 conformant_aggregate

170 62 conformat_type

171 58 constant_decl

172 58 constant_body

173 72 constant_factor

174 58 constant_id

175 constant_ref

176 58,63-64 declaration

177 46 derived_attr

179 90 element

180 20 embedded_remark

181 41 entity_block

182 41 entity_body

183 41 entity_head

184 34,41.66-67 entityjd

185 91 entity_init

186 66 entity_or_rename

187 34 entity_ref

188 36,72 enumeration_id

189 72 enumeration_ref

190 36 enumeration_type

191 96 escape_stmt

192 45 explicit_attr

193 72 expression

194 72 factor

195 59,63-64 formal_parameter

196 63 function_block

197 89 function_call

198 63 function_head

199 63,67 function_id

200 function_ref

201 72,93-94 general_ref

202 61 generic_type

203 45-46,49,93-94 group_qualifier

204 97 if_stmt

205 98 increment

206 98 increment_control

207 79,81,83,93-94 index

208 79,81,83,93-94 index_qualifier

209 72 initializer

210 27 integer_type

211 58,66 interface_specification

212 77 interval

213 77 interval_item

214 77 interval_op

215 48 inverse_attr

216 (example on p.48 hints at syntax) inverse_clause

217 49-50 label

218 49 labelled_attrib_list

219 50 labelled_expression

220 33 list_type

Page 20

221 23 literal

222 62 local_decl

223 62 lcx:al_variable

224 86 logical_expression

225 28 logical_type

226 31 -34 .37 ,45 -46 ,58 -60 ,62-64 named_types

227 93 null_stmt

228 26 number_type

229 52 one_of

230 89,97 parameter

231 59 ,63-64 parameterjd

232 parameter_ref

233 59 -60 ,62-64 parameter_type

234 27 precision_spec

235 64 procedure_block

236 97 procedLire_call_stmt

237 64 procedLire_head

238 64,67 procedurejd

239 procedure_ref

240 72 ,
93-94 qualifier

241 72 qualifiable_factor

242 45 -46.49 qualified_attribute

243 86 query_expression

244 27 real_type

245 67 reference_clause

246 45 -46,49 referenced_attribute

247 72 rel_op_extended

248 remark

249 67 rename_id

250 97 repeat_control

251 97 repeat_stmt

252 90 repetition

253 67 resource_or_rename

254 67 resource_ret

255 100 retum_stmt

256 64 rule_block

257 64 rule_head

258 64 rulejd

259 58 schema_block

260 58 schema_body

261 58 schema_id

262 schema_ref

263 37 select_type

264 95 selector

265 34 set_type

266 72 simple_expression

267 72 simple_factor

268 31 -34 ,40 ,45 -46 ,58 -60 ,62-64 simple_types

269 100 skip_stmt

270 93 stmt

271 29 string_type

272 79 ,81 ,93-94 subcomponent_qualifier

273 52 subsuper

274 91 subsuper_init

Page 2

1

275

276

111

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

52 subtype_declaration

52 supertype_declaration

52 supertype_expression

52 supertype_factor

20 tail_remark

72 term

40 type_decl

35,40,67 type_id

60-61 type_label

35 type_ref

72 unary_op

40 underlying_type

49 unique_clause

99 until_control

66 use_clause

62,86,98 variable_id

variable_ref

50 where_clause

99 while_control

28-29 width

Page 22

References

[ANSI89] American National Standards Institute. Proarammine Language C.

Document ANSI X3. 159-1989

[ClarkQOa] Clark, S. N.. An Introduction to The NIST PDES Toolkit. NISTIR
4336, National Institute of Standards and Technology, Gaithersburg,

MD, May 1990

[Clark90b] Clark, S.N.. The NIST Working Form for STEP. NISTIR 4351.

National Institute of Standards and Technology, Gaithersburg, MD,
June 1990

[Clark90c] Clark. S.N., Libes. D.. NIST Express Working Form Programmer's

Reference. NISTIR 4814. National Institute of Standards and

Technology, Gaithersburg, MD, September 1990

[Clark90cl] Clark. S.N.. ODES User’s Guide. NISTIR 4361. National Institute

of Standards and Technology, Gaithersburg, MD, June 1990

[Clark90e] Clark. S.N.. ODES Administrative Guide. NISTIR 4334. National

Institute of Standards and Technology, Gaithersburg, MD, May
1990

[Mason 91] Mason. H.. ed.. Industrial Automation Systems - Product Data

Representation and Exchange - Part 1: Overview and Fundamental

Principles. Version 9. ISO TCI84/SC4AVG PMAG Document N50.

December 1991.

[Metz89] Metz, W.P., and K.C. Morris. Translation of an Express Schema into

SOL. PDES Inc. internal document November 1989

[Morris90] Morris. K.C.. Translating Express to SOL: A User’s Guide. NISTIR

434 1 , National Institute of Standards and Technology, Gaithersburg,

MD, May 1990

[Morris91] Morris. K.C.. McLav M. Carr. P. J.. Validation Testing System

Reauirements, NISTIR 4636. National Institute of Standards and

Technology, Gaithersburg, MD, September 1991.

[Perlotto89] Perlotto. K. L.. The Use ofGMAP Software as a PDES Environment

in the National PDES Testbed Proiect NISTIR 89-41 17, National

Institute of Standards and Technology, Gaithersburg, MD, June

1989

[Parti 1] ISO 10303-11 Description Methods: The EXPRESS Language

Reference M^nu^l. ISO TC184/SC4 Document N14, April 1991.

Page 23

4*'^'

1. !• Jiif2!».T3Jli|jl'iS4aWS^
</ j;ii!-jsi«j'J40

.'TsviOl’itfistf'.* .

''^S

i.K-^S

i .CIM
*’

imous^^ Me: HUZm

rtt'n;-: nr; j' rttf^ b r>s
^

.

'Kvrr.rK.n rv^M^i jmoWM
'

'

'
,' \mi:i

_ - ,^. . - -6 • •

'jai' ^*i!v ’;^
’*^-

'xStim.^-CoM jriSfjGiOtjk

i^! i

'

' ' • '

»--.,t •y
*- ‘?iiW vOM'

,

= ;r :^-r:,?’i) o.a .,*kk3«

;

b.Tr iu'ifvbai.;/ V' 3itu?a?

. } t 'A : -.'?’:;#.4%.£?^^. /TPaI

alia •iLi.igii. is

•.!ul ata 4ss^>tjMm:i ,
tgc4»(!«w1*iK!? 2t;ts*S«fbJ

^?.,,|

I'Mi ibqA ,s-i VS

>
li' V'« rV'-i

' ' *
'^

V.- ,^’ .^^•^.^^• ':‘]:.J

NIST-1 14A U.S. DEPARTMENT OF COMMERCE
(REV. 3-90) NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY

BIBLIOGRAPHIC DATA SHEET

T PUBLICATION OR REPORT NUMBER

NISTIR 4822
T PERFORMINO OROANIZATION REPORT NUMBER

PUBUCATION DATE

APRIL 199'
4. TITLE AND SUBTITLE

Fed-X: The NIST Express Translator

5. AUTHOR(S)

Stephen N. Clark, Don E. Libes

6. PERFORMINO ORGANIZATION (IF JOINT OR OTHER THAN NIST, SEE INSTRUCTIONS)

U.S. DEPARTIIENT OF COMMERCE
NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY
GAITHERSBURG, MO 20899

7. CONTRACT/QRANT NUMBER

8. TYPE OF REPORT AND PERIOD COVERED

9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (STREET, CITY, STATE, ZIP)

Office of the Secretary of Defense
CALS Program Office
Pentagon
Washington, DC 20301-8000

10. SUPPLEMENTARY NOTES

11. ABSTRACT (A 200-WORD OR LESS FACTUAL SUMMARY OF MOST SIGNIFICANT INFORMATION. IF DOCUMENT INCLUDES A SIGNIFICANT BIBUOGRAPHY OR
LITERATURE SURVEY, MENTION IT HERE)

The Product Data Exchange using STEP (PDES) is an emerging standard for the exchange of product

information among various manufacturing applications. PDES includes an information model written in the

Express language; other PDES-related information models are also written in Express. The National PDES
Testbed at NIST has developed software to manipulate and translate Express models. This software consists

of an in-memory working form and an associated Express language parser, Fed-X. The design and capabilities

of Fed-X and the Express Working Form are discussed.

This dixument has been revised to reflect modifications in the implementation of Fed-X software to support

changes in the Express language.

1Z KEY WORDS (6 TO 12 ENTRIES; ALPHABETICAL ORDER; CAPITALIZE ONLY PROPER NAMES; AND SEPARATE KEY WORDS BY SEMICOLONS)

data modeling; Express; product data exchange; Product Data Exchange using STEP; PDES; PDES

implementation tools; schema-independent software; schema translation; Standard for the Exchange of Product

Model Data; STEP
13. AVAILABIUTY

UNUMITED

FOR OFFICIAL DISTRIBUTION. DO NOT RELEASE TO NATIONAL TECHNICAL INFORMATION SERVICE (NTIS).
-X

ORDER FROM SUPERINTENDENT OF DOCUMENTS, U.S. GOVERNMENT PRINTING OFFICE,

WASHINGTON, DC 20402.

ORDER FROM NATIONAL TECHNICAL INFORMATION SERVICE (NTIS). SPRINOnELD, VA 22161.

14. NUMBER OF PRINTED PAGES

28

15. PRICE

AO 3

ELECTRONIC FORM

•'ft *'"
!;

‘•'S'-* ^

i- -

•a?«.iv '.VO q’^/R3H T«o«iSH ^-3 swsr ^

h-

:
, f^,,.

. ;v
-

'.,. >..!,.• .x/VaV--;«;'.,-

•

'

i;. >,v.,
', -

;. _ ’. =ii’
, .

,
/BiW®®®* -i5j.j

' .r^
'y

-<.w

I » W<<llil,#«ll I
1 r 11

' " -« - -

.1

'

' :

' "i^' -.-.

•.-.>vAr?,v

,/<V'

?£ sWw

"lewrjt

r/)A

