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FAUST: A Vision-Based Neural Network

Multi-Map Pattern Recognition Architecture

C. L. Wilson

National Institute of Standards and Technology, Gaithersburg, MD 20899

Abstract

A new architecture is presented for multi-map, self-organizing pattern recognition which

allows concurrent massively parallel learning of features using different maps for each feature

type. The method used is similar to the multi-map structures known to exist in the ver-

tebrate sensory cortex. The learning used to update memory locations uses a feed-forward

mechanism and is self-organizing. The architecture is described by the acronym FAUST
(Feed-forward Association Using Symmetrical Triggering). As a demonstration of the effec-

tiveness of FAUST, a character recognition, fingerprint classification, and forms recognition

programs have been constructed on a massively parallel compute. The character recognition

program can perform 99% accurate character recognition on medium-quality machine printed

digits at a speed of 2.4ms/digit, and 88% recognition on multiple-writer hand print with a

2.3% substitutioncJ error rate. The form recognition program can achieve 94% accuracy

on complex forms. The fingerprint classification program classifies 93% of fingerprints cor-

rectly with 10% rejection rate. All of the calculations were performed on an Active Memory
Technology DAP 510

1 Introduction

Previous work has demonstrated that it is possible to use adaptive resonance methods [1, 2]

such as ART-1 [3] for feature detection in image recognition problems if the images involved

have been appropriately preprocessed. In the CORT-X method [4] these filters are formed

to approximate known neural sensitivity patterns; in the neocognitron [5] like method [4]

the image is segmented into regional features; and in [6, 7] Gabor filters [8] are used to

approximate neural receptor profiles. All of these methods require multiple layers of neural

processors and include a priori assumptions about the nature of the filtering or segmentation

required for the pattern recognition problem. The addition of layers of processors decreases

recognition speed by lowering the degree of parallelism in the system. A priori assumptions

can cause the system to be specialized to a narrower range of applications and decreases

system flexibility.

^Certain commercial equipment may be identified in order to adequately specify or describe the subject matter

of this work. In no case does such identification imply recommendation or endorsement by the National Institute

of Standards and Technology, nor does it imply that the equipment identified is necessarily the best available for

the purpose.
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1.1 FAUST Architecture

The FAUST architecture provides a self-organizing method of feature extraction and classi-

fication [9]. The FAUST architecture is one of several neural networks which provide self-

organizing multi-map capabilities. The structure used is a multi-map procedure similar to

those known to exist in the mid-level visual cortex [10]. As in previous work [11, 12, 1] the

method must provide a parcdlel, multi-map, self-orgamzing, pattern classification procedure.

This is achieved using a feed-forward architecture which allows multi-map features stored in

weights acting as associative memories to be accessed in parallel and to trigger a symmetri-

cally controlled parallel learning process. A diagram of the FAUST system is shown in figure

1. This method allows features of different data type, such as binary image patterns and

multi-bit statistical correlations, to be updated in parallel. This capability is provided by

the parallel pattern association and relevance paths shown in figure 1 and by the existence

of separate input modules for each path.

A pattern comparison method is used to form a centralized learning control which is

contained in the symmetric triggering learning control block. The triggering block gates

data into the learning block on the right of figure 1. This combined architecture is described

by the acronym FAUST (Feed-forward Association Using Symmetrical Triggering). The

three essential features of FAUST shown in this figure are: 1) Different feature classes use

individual association rules in the pattern comparison blocks. 2) Different feature classes

use individual learning rules as illustrated by the pattern modification blocks. 3) All feature

classes contribute symmetrically to learning as illustrated by the functional symmetry of the

pattern and relevance paths. The number of feature classes is shown as two in figure 1 for

graphic clarity but the architecture is not restricted to any number or type of feature classes.
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Pattern Association

Figure 1: FAUST architecture disgram.
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1.2 Outline of Paper

The organization of the paper follows the parallel data flow shown in figure 1.2. Incoming

data is filtered and presented, in parallel, to each of the associative memory maps. The
filtering methods used are discussed in [9]. The methods of associative recall used to locate

the best match are discussed in section 2. After the association strength has been determined

for each memory map, learning is triggered by a set of parallel comparisons that gate input

image data to the learning modules. This symmetric triggering of learning is discussed in

section 3. When learning has been triggered, the learning module for each memory map
updates the selected memory locations. The learning methods used are discussed in section

4. As an example of the ability of FAUST to perform self-organizing pattern recognition,

two character recognition examples and two pattern classification examples are presented in

section 5.

2 Associative Recall

The data stored in the associative memories, M, is compared to the image, q. The association

between a memory and an image is 0.0 for no similarity and 1.0 for a perfect match. The

associative memories are initialized for the pattern with the memory value M = 1 and are

initialized for the relevance with the value M = 0. Everything is true but nothing is relevant.

The maximum range on the 8-bit memories is ±5.

The associative functions tested in the present implementation of FAUST are shown in

Table 1. Five functions are used: correlation, 1/(1 + tan^ 9, 1/(1 -1- d^), Tanimoto similarity,

and an offset cosine. Three of these functions, cosine. Euclidian distance, d, and Tanimoto,

are discussed in [13]. The correlation based method is the one used in [4]. The tangent

based function has a mathematical form similar to Tanimoto with the same properties near

a perfect match as the distance based form. All of the indicated sums are carried out over

all pixels in the image.

The class of usable similarity functions is very large. Any monotonic, single valued

relationship between the image, q, and the memory contents, M, which can be conveniently

mapped on to the interval 0 to 1, could be used.

The efficiency of any particular function wfil depend on the ability to separate correct

classifications from weak associations on marginal images. In a character recognition appli-

cation, the efficiency is partially counter balanced by computational cost.

3 Symmetric Triggering of Learning

During the learning process, images are presented, filtered, and compared with stored pat-

terns using the association strength equations of section 3. If the match is adequate, the

image is used to update the memory in the learning phase. If the image is not sufficiently

similar to the existing patterns then it is treated as a unique pattern and placed in a new

memory location. Symmetric triggering is the concurrent logical operation which uses com-

parable logical structures to update all of the associative memory blocks in parallel. This

parallel operation occurs in an association space which has a dimension equal to the number

of feature classes and associative memory blocks.

The most general form of the FAUST triggering logic for N associative memories for
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each feature classe and M feature classes, for a total of iV x M memories which each have

association strengths, Aij, and logical thresholds for triggering, pj, where j = 1, . .
. ,
M and

i = 1, . .
. ,

iV is:

M
> pi) • • > Pj) • . > Pn) (1).

* i=i

The learning is triggered symmetrically in the ith set on N memories, and N features are

being learned across M feature classes. This is shown in two dimensions, M = 2, in figure 2.

A2 = P2

Figure 2: The association space diagram which is used for symmetric triggering. The D’s are for

non-matching points. The + is for the correct classification. The limits Aj-y > pj for = 1,2 are

also marked.
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Function 8-bit form binary form

Correlation 111

1/(1 + tan^ 9
)

1 1

^
M2q2 +(5^(_l)qM)2 M2q2+(y^(q=M))"

1/(1 + <f)
1 1

i+E(M+(-i)q5)'^
^ 4NS‘^

l-f^~(q=M)/iV

Tanimoto STi-D^M E(q=M)
M2+q2+5^(-l)qM 2iV-y:(q=M)

Offset Cosine
y:(-i)qM-t-iv

(E(q = M) + N)|{2^/2N)

Table 1: Function used for associative comparison of binary input image, q, and memory, M, for

8-bit and binary memory data. Each image has N elements and 8-bit elements have a maximum
value S. Binary input are treated arithmetically as being zero or one. Therefore

(
— 1)^* is 1 when

q = 0 and -1 when q = 1.
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A less general type of triggering, similar to the ART methods, is obtained if X takes on

values R and P and N = 2. Pattern existence data is represented by n binary map feature

classes indexed on j and with i occurrences of each pattern with association strength, Pi j.

Triggering is initiated by n vigilance parameters, pj. These vigilance parameters are not

counted in the left hand distance term and pattern strength. Relevance data is represented

by m multi-bit map feature classes indexed on k with i occurrences of each strength class with

association strength, Ri^k, which have pk = 0. The generalized FAUST logic for triggering

learning takes the form: Find an i and P = ni=i(^»j) ^ rising:

m
max(^(i2?^))&(-P.M > Pi) • • > Pj) • • -^{Pun > pn) (2).

A:=l

For the case discussed in the example presented here, j = 1 and fc = 1 so that the FAUST
triggering logic reduces to: find an i using:

max(i2?)&(P,- > p) (3).

A typical association space diagram for a set of R, and P, points are shown in figure 3 for

i = 1, 2, . .
. ,

10. The area P for the maximum case is marked by the dashed Hues. The hmit

Pi > p is marked by a vertical hne. The case which triggers learning is marked by a bullet,

• . Weaker associations which do not result in learning are shown as boxes, .

Figure 3: The association space diagram which is used for symmetric triggering. The D’s are for

non-matching points. The • is for the correct classification. The area P and the limit P, > p are

also marked.

4 Learning Methods

After learning is triggered, information from the image, q, is stored in one of the 8-bit

memories used by the relevance feature class, relevance memory, and into one of the binary

memories used by the pattern feature class. The location used is determined by the logic

discussed in section 2. Any absolutely stable and convergent learning rule may be used. Six

different learning rules of varying complexity have been used for the relevance memories; two

different rules have been used for the pattern memories. During learning the class of the

sample images is not used. The process is self-organizing and requires no knowledge of class

to construct the learned images.
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4.1 Learning in Multi-Bit Memories

All of the learning methods used for 8-bit relevance memory take the form:

+ 1
) = ^

where if ±5 is the scale, maximum range, of M, the limit function g is given by:

' S if X > 5
< X li S > X > —S

,

—5 if X < —S
V

(
4

)

(5)

a is the learning rate, and the memories are updated from epoch t to epoch t + 1. The
time dependence generates a dynamically stable learning sequence. AH of the rules used here

involve mechanisms which generate positive feedback between the memory locations and the

image. The function g is used to provide a bound on this feedback.

The first rule is the DYSTAL[10] rule given by:

-f 1) > 0

^
— S otherwise

This rule was developed in [13] to more closely approximate the behavior of neurons than

previous rules. This has important consequences for the stability of the learning process.

Unlike the other rules used here, this rule is self limiting at the scale values ±5. This rule is

only applied vertically; data from each pixel only affect one memory element during learning.

When a more extended field is used, image data affects memory elements over some local

region referred to as a receptor field. A rule of the DYSTAL type has a distinct stability

advantage in the receptor field case over non-linear limit functions.

The second rule used is a simple Hebbian rule [14] of the form:

S if qij{t -f 1) > 0

— S otherwise ( 7 )

This rule is used because it is simpler and faster than the rules used in [15, 16] but can

be compared with these rules. The stability on the rule is guaranteed since only vertical

interconnections are used.

The third rule used is a vertically distributed Hebbian rule [15] of the form:

fc=«-l-l l=j+l f q
AM;j(t)= E E 15

k=t—l l=j—l V

if QkA^ + 1) > 0

otherwise
(8)

The vertical part of the learning is identical to rule two. The field used is a 3 by 3 square.

The fourth rule used is a vertically distributed Hebbian rule and a laterally connected

anti-Hebbian rule [16] of the form:

Ek=i+1
fc=t— 1 2^l=j—l

\pl=j+l
2^k=i—\ ^l=j—\

S if QkA't + 1) > 0

— 5 otherwise

f 5 if sgn(Mfc,z(t)) = sgn(Mij(t))

I
—S otherwise

(9 )
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where

sgn(x)

1 if X > 0

< 0 if X = 0

— 1 if X < 0

( 10 )

The vertical part of the learning is identical to rule three. The lateral component is anti-

Hebbian.

The fifth rule used is a vertically distributed Hebbian rule with Gaussian weights [15] on

a field nj square which must be summed over q = (uf — l)/2 elements and takes the form:

AM-
^

if + 1) > 0

^
q i^q\ ~ otherwise

where a is the envelope vaxiance of the field.

The sixth rule used is a vertically distributed Hebbian rule and a laterally connected

anti-Hebbian rule with Gaussian weights [16] on field Uf square which must be summed over

q = {rif — l)/2 elements and takes the form:

^k=i+q ^l=j+g
j

exp(-(i^ + if qk,i{t + 1) > 0
l^k=t-q /=j-g

I
_ gxp(— otherwise

_ k=i+q y-z=j+9 f exp(-(z2 + p)/(r^)S if sgn(Mfc,/(t)) = sgn(M,-j(t))
2^k=t-q 2^l=j-q

^ _ exp{_(z2 + j2)/cr^)5 Otherwise

(
12

)

where a is again the envelope variance of the field.

4.2 Learning in binary memories

The two rules used for binary pattern learning are a logical “OR” of the positively relevant

elements:

+ 1
)
- V qij{t + 1) if relevance > 0

Mij{t) otherwise
(13)

and a logical product of the image and relevant elements.

+ 1
)

1 if qij{t + 1) > 0 and relevance > 0

< 0 if qij(t + 1) = 0 and relevance < 0

otherwise

(14)

5 Results

The basic structures of the character recognition, fingerprint classification systems and forms

recognition systems are similar. AH systems have a loading phase which includes image

decompression on the host serial computer, a feature extraction phase, and a recognition

phase. For character recognition the isolated character images are loaded directly into the

FAUST recognition module which does the feature extraction. The fingerprint classification

system uses a ridge-valley based feature isolation and alignment method. A binary ridge-

vaUey map is loaded into the FAUST module and global features are learned. The forms
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recognition system does a massive downsample to map the page image into a single 32 by 32

binary image.

The function of all systems is similar. A raster scanned image is input to the system and

ASCII classifications are returned. For the character recognition system, the input image is

a binary image of a page containing 8,000,000 pixels. For the finger print system, the input

image is a 512 by 512 8-bit gray level image. The character recognition system returns a page

of character classifications. The fingerprint classification system returns an ASCII character

representing one of five fingerprint classifications. For the forms recognition system, the input

image is a binary image of a page containing 8,000,000 pixels. An ASCII code repersenting

one of 20 form types is returned.

5.1 Regular Shapes

5.1.1 Machine Print

For machine-print data with the correct choice of p, it is possible to achieve 99.7% recognition

on test samples of 10000 characters. The association rules discussed in section 2 affect the

sensitivity of learning and the confidence levels in the triggering process discussed in sectin

3. This is caused by the variation in sensitivity of the learnibg functions discussed in section

4 to image similarity differences. The minimum recognition rate is achieved using inverse

square distance association and resonance classification and is 2.4ms/character.

5.1.2 Forms

The FAUST method of document recognition is independent of the local variations in forms

caused either by printing or by the distributions of user written responses on individual

forms. This method involves downsampling the entire form and converting the image into

a 32 by 32 binary image. The original form shown in figure 4 is taken from NIST Special

Database 2 [17]. A downsampled binary image is shown in figure 5. The binary image is

then used, in a way similar to character images, to develop features of each form type using

the FAUST recognition module. Testing on 1000 pages of forms achieved 94% recognition

with 2% incorrect identifications and 4% unknown forms.

5.2 Irregular Shapes

5.2.1 Handprint Digits

Table 2 shows the classification error for three different samples of 512 hand printed digits.

The digits are taken from hand printed digits contained in the NIST hand print database

[18]. Data from 18 different individuals were used in each test file. Nine individuals were

used in the learning phase, and a different nine individuals were used to test classification.

Several different filter types were used on the hand printed characters. Undetected error

rates are a minimum of 4.9% and detected error rates axe 12.1%. The most effective filter

combination [9] is shown to be a shear transform followed by a Gabor filter. These combined

filters reduce the substitutional error by a factor of three and the number of unknowns by a

factor of two.

Only the shear and Gabor filter types were used since they were the most effective Un-

detected error rates are a minimum of 2.3% and detected error rates are about 9.4%. The
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substitutional error has been cut in half with optimal recognition parameters and the recog-

nition rate has improved from 83% to 88%. Since the number of filter types, association

types, learning rules, and classification rules form a large set which has not been completely

explored, better values for recognition rate may be possible.

5.2.2 Fingerprints

The fingerprint classification system differs from the character recognition system in an im-

portant way. Fingerprints are natural objects which have classes designated by humans.

These classes merge smoothly into each other. The five classes used are right loop, left loop,

whorl, arch and tented arch [19]. The classification is made using a 512 by 512 gray level

image.

After the fingerprint image is decompressed and loaded into the array processor, alignment

features axe extracted. A rule based alignment method is then used to center the print in the

image field [20]. After the print has been centered in the image field, classification features

are extracted. Both alignment features and classification features are extracted using local

ridge slope data.

A binary ridge-valley map is created by assigning a “1” to all ridge-valley values less than

90° and a “0” to all other values. This binary map is related to the original fingerprint as

shown in figure 6. These binary maps are used to train and test the FAUST fingerprint

classification. The results of this process are shown in table 3. The receptor field size is the

parameter q in (11).

6 Conclusions

A new self-organizing architecture, FAUST, has been developed. Examples from image recog-

nition show that the method works for both small scale direct recognition, such as character

recognition, and large scale image classification problems, such as form recognition and fin-

gerprint classification. Recognition of both regular objects, machineprint and forms, and

irregular objects, handprint and fingerprints, is possible. Higher accuracy is usually possible

on regular objects.

Acknowledgement

The author would like to acknowledge the members of the image recognition group

research term who contributed to the work described here: J. L. Blue, G. T. Candela, D. L.

Dimmick, M. D. Garris, P. J. Grother, and R. A. Wilkinson.

References

[1] C. L. Wilson, R. A. Wilkinson, and M. D. Garris. Self-organizing neural network char-

acter recognition on a massively parallel computer. In Proc. of the IJCNN, volume II,

pages 325-329, June 1990.

[2] C. L. Wilson, R. A. Wilkinson, and M. D. Garris. Self-organizing neural network char-

acter recognition using adaptive filtering and feature extraction. Progress in Neural

Networks, 3, 1991. to be pubhshed.

11



[3] G. A. Carpenter and S. Grossberg. A massively parallel arckitecture for a self-organizing

neural pattern recognition machine. Computer Vision, Graphics, and Image Processing,

37:54-115, 1987.

[4] G. A. Carpenter, S. Grossberg, and C. Mehanian. Invariant recognition of cluttered

scenes by a self-organizing art architecture: CORT-X boundary segmentation. Neural

Networks, 2:169-181, 1989.

[5] K. Fukushima. Neocognitron: A self-organizing neural network model for a mechanism

of pattern recognition unaffected by shifts in position. Biological Cybernetics, 36:193-

202, 1980.

[6] M. D. Garris, R. A. Wilkinson, and C .L. Wilson. Analysis of a biolgically motivated

neural network for character recognition. In Proceedings: Analysis of Neural Network

Applications. ACM Press, George Mason University, 1991.

[7] M. D. Garris, R. A. Wilkinson, and C .L. Wilson. Methods for enhancing neural net-

work handwritten character recognition. In International Joint Conference on Neural

Networks, volume 1, pages 695-700. IEEE and International Neural Network Society, 7

1991.

[8] J. G. Daugman. Complete discrete 2-d Gabor transform by neural networks for image

analysis and compression. IEEE Trans, on Acoustics, Speech, and Signal Processing,

36:1169-1179, 1988.

[9] C. L. Wilson. A new self-organizing neural network architecture for parallel multi-map

pattern recignition - FAUST. Progress in Neural Networks, 4, 1992. to be published.

[10] A. Rojer and E. Schwatz. Multi-map model for pattern classification. Neural Computa-

tion, 1:104-115, 1989.

[11] L. D. Jackel, H. P. Graf, W. Hubbard, J. S. Denker, D. Henderson, and IsabeUe Guyon.

An application of neural net chips: Handwritten digit recognition. In IEEE International

Conference on Neural Networks, volume II, pages 107-115, San Diego, 1988.

[12] A. Rajavelu, M. T. Musavi, and M. V. Shirvaikar. A neural network approach to

character recognition. Neural Networks, 2:387-393, 1989.

[13] D. L. Alkon, K. T. Blackwell, G. S. Barbour, A. K. Rigler, and T. P. Vogl. Pattern-

recognition by an artificial network derived fron biological neuronal systems. Biological

Cybernetics, 62:363-376, 1990.

[14] D. 0. Hebb. The Organization of Behavior. Wiley, New York, 1949.

[15] R. Linsker. Self-organization in a perceptual network. Computer, 21:105-117, 1988.

[16] J. Rubner and K. Schulten. Development of feature detectors by self-organization.

Biological Cybernetics, 62:193-199, 1990.

[17] D. L. Dimmick, M. D. Garris, and C. L. Wilson. Structured forms database. National

Institute of Standards and Technology, Special Database 2, SFRS, December 1, 1991.

[18] C. L. Wilson and M. D. Garris. Handprinted character database. National Institute of

Standards and Technology, Special Database 1, HWDB, April 18, 1990.

[19] The Science of Fingerprints. U. S. Department of Justice, Washington, DC, 1984.

[20] J. H. Wegstein. An automated fingerprint identification system. National Institute of

Standards and Technology, NBS Special Pubhcation 500-89, Febuary 1982.

12



Sample Memory Filter P Wrong Unknown
flSaa 64 None .8 83 106

flSaa 64 S .8 66 83

fl3aa 64 G .8 56 80

fiSaa 64 S+G .8 25 62

flSaa 64 S+G .85 25 57

fl3aa 64 S+G .90 44 66

fl3aa 64 S+G .75 54 105

fl3ab 64 S+G .85 30 91

fl3ac 64 S+G .85 31 72

fi3aa 32 S+G .85 39 88

fl3ab 32 S+G .85 44 103

fi3ac 32 S+G .85 63 104

Table 2: Classification errors in a sample of 512 hand printed characters when several different

filters are used in FAUST. Resonance classification and nearest neighbor Hebbian learning are

used throughout. S is a shear transform and G is a Gabor filter

Receptor

Field

Test

Accuracy

Training

Accuacy

3 73.32 81.20

5 78.73 79.93

7 77.61 79.37

9 78.03 79.37

Table 3: Classification errors in a sample of 1420 fingerprints when several different receptor fields

sizes are used in FAUST learning using equation (11). Resonance classification and correlation

based association used throughout.
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Figure 4: Simulated IRS 1040 page 1; this is the first image from NIST Special Database 2.
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Figure 5: Image of a 1040 page 1 down-sampled to fit a 32 by 32 binary image.
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Figure 6: Fingerprint with ridge-valley map and reduced binary map.
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