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Abstract - We study the effect of additive noise on near-integrable second-order dynamical

systems whose unperturbed flows have homoclinic or heteroclinic orbits. The noise is

represented by a type of Shinozuka stochastic process capable of arbitrarily closely approxi-

mating Gaussian noise with any specified spectrum. We derive a formula for the flux factor

applicable for any asymptotic mean stationary excitation. This derivation shows that, to first

order, the effect of the external excitation on the system is mediated by a linear filter asso-

ciated with the system homoclinic or heteroclinic orbit It also shows that the stationary

mean distribution of the filtered excitation determines the average phase space flux. This is

true for both random and nonrandom excitations and indicates that for the dynamical sys-

tems considered here, these two classes of excitation play substantially equivalent roles in

the promotion of chaos.
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1. Introduction

For some nonlinear multistable dynamical systems operating in the absence of noise, a

change in the system parameters can cause the merging of two attractors into a single attractor

composed of two subregions, the motion on this attractor being characterized by jumps

between the subregions and by a positive largest Lyapounov exponent. Systems exhibiting such

deterministic chaotic motion include the Lorenz equations and the Duffing-Holmes oscillator.

Motions with similar irregular jumps can also occur in these systems owing to the pres-

ence of noise [1]. In this context the terms "basin-hopping," "noise-induced jumps," and "sto-

chastic chaos" appear in the literature.

Physical and numerical experiments have shown the difficulty of distinguishing between

the two types of motion just described [2], [3]. In particular, this difficulty fueled "the contro-

versy on the deterministic or stochastic character of chemical chaos" discussed by Argoul et al.

[4, p.83]. Referring to work on the Belousov-Zhabotinskii reaction by Roux et al. [5] and Hud-

son et al. [6], Argoul et al. argued [4, p.80] that "after measuring the largest Lyapounov

exponent, whose positivity confirmed sensitive dependence upon initial conditions, the demons-

tration of the determinism was complete, despite objections by certain experts in the kinetics of

the B.Z. reaction."

In this paper we show thaL for certain types of multistable systems and for certain

regions of parameter space, such controversies, or conclusions similar to the one just quoted,

may be unwarranted. Some systems that, in the absence of noise, have periodic or quasi-

periodic behavior, may in fact become sensitive to initial conditions (i.e., exhibit a topological

equivalence to the Smale horseshoe map) owing to a change in deterministic forcing, to the

introduction of noise, or to both. We show that for a class of systems, the dichotomy between

deterministic and stochastic chaos is, in at least one sense, artificial and that these two types of

motion may belong to the same class not only phenomenologically but mathematically as well.

Our investigation is restricted to multistable one-degree-of-freedom dissipative systems

whose unperturbed counterparts have homoclinic or heteroclinic orbits. For small periodic or

quasiperiodic perturbations, the stable and unstable manifolds associated with such orbits

separate and may intersect transversely. A necessary condition for tranverse intersections is that

the Melnikov function have simple zeros. The system is susceptible to Smale horseshoe-type

chaos [7], [8] only in this case. When these intersections occur, they are infinite in number and

define tangles with lobes [9], [10]. The turnstile lobes contained therein drive the transport of

phase space across the pseudo-separatrix defined by segments of the separated stable and

unstable manifolds. The phase space flux is a measure of the amount of phase space tran-

sported and, hence, of the system’s propensity for chaos - in the words of Beigie et al. [10], a

measure of "how chaotic the system is". The larger the flux, the greater is the probability that

an orbit originating within a restricted region of phase space (e.g., one corresponding to a

potential well) will escape across the pseudo-separatrix bounding that region [10], [11], [12,

p.532].

The tangle lobes generally have twisted, convoluted shapes with difficult to determine

areas, making analytical calculation of the flux difficult, if not impossible. In the case of small

perturbations, however, the lobes are small and roughly convex in shape. For this case, an

elegant connection exists between phase space flux and the Melnikov function. Beigie et al.
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[10] show that, for small e, the phase space flux has the asymptotic expansion eO + 6)(e^)

where O is a certain time-average of the Melnikov function. This connection between phase

space flux and the Melnikov function can be exploited to calculate the flux of perturbed, two-

dimensional vector fields.

These concepts developed for deterministic perturbations can also be made to apply to

systems excited by noise. An interesting attempt to apply Melnikov theory to noise is reported

by Bulsara, Schieve, and Jacobs [13]. However, an objection has been raised to their method

by the authors [14], [15]. Thus, to specify the Melnikov function for small random perturba-

tions, we turn instead to the method illustrated in [14]. According to this latter approach, the

noise process is represented as a harmonic sum with random parameters. This representation

defines an ensemble of noise paths. Each noise path (or excitation) belonging to the ensemble

is identified by a fixed choice of the random parameters. Since each realization of the noise

process - each path - is a harmonic sum, the theory of the generalized Melnikov function and

phase space flux is, as already indicated, directly applicable for every fixed choice of noise

parameters. A sample theoretic [16. ^Appendix A] Melnikov treatment of the noise is thus pos-

sible. Through such a path-by-path analysis, it is possible to gauge the effect of random excita-

tion on a system and, in particular, on the system’s susceptibility to and propensity for Smale

horseshoe-type chaos. The purpose of this paper is to present such a study.

There are several well-known noise models which take the form of a harmonic sum,

Nyquist noise [17] being perhaps the best-known. Nyquist noise is Gaussian but its paths are

not uniformly bounded. Current Melnikov theory is limited to bounded, uniformly continuous

(UC) perturbations [18]. Thus, for its application to an ensemble of perturbations, the ensemble

must be uniformly bounded. Hence Nyquist noise cannot be used. An alternative noise model

studied by Shinozuka [19] [20] does not suffer this drawback. Shinozuka noise is approxi-

mately Gaussian (the approximation improves with the number of terms in the sum) with uni-

formly bounded paths. Moreover, the paths of the Shinozuka noise model are uniformly con-

tinuous - across both time and the ensemble. We introduce a variant of the Shinozuka noise

model with the additional property that it is ergodic after filtering. With this modification, Shi-

nozuka noise is perfectly suited for Melnikov analysis and is the noise representation we use in

this paper.

The paper is organized as follows. In the second section we present our dynamical model

and briefly review important features of the Shinozuka noise process with our modification. In

the third section we review and discuss the Melnikov function and the phase space flux. The

fourth section defines asymptotic mean stationarity for continuous-time functions and processes

and describes those of its properties needed in the calculation of the average phase space flux.

The fifth section is devoted to the derivation of formulae for the average phase space flux.

These formulae are used in the sixth section to study the effect of noise on the propensity of

our system model for homoclinic and heteroclinic chaotic behavior. In the seventh section, we

comment on the role played by the noise spectrum in these formulae, illustrating these com-

ments with two specific examples, the Duffing-Holmes oscillator and the rf-driven Josephson

junction. The last section summarizes our conclusions.



2. Dynamical model and noise representation

Consider the one degree-of-freedom dynamical system governed by the equation of

motion

x=-V\x). (1)

This system is integrable with Hamiltonian x^/2 + V(x). System (1) is assumed to have a

hyperbolic fixed point connected to itself by a homoclinic orbit or two hyperbolic fixed points

connected by a heteroclinic orbit Introducing small damping and external forcing terms into

(1), we obtain

X = -V'(x) + e[yg(t) + oG, - kx] (2)

as our dynamical model. Here g and G represent deterministic and stochastic forcing func-

tions, respectively, g is assumed to be bounded. Ig(r)l^ 1, and UC. The nonnegative parame-

ters a, Y, k fix the relative amounts of forcing and damping. Note that our model is restricted

to additive external forcing. This is for simplicity of exposition. The model readily generalizes

to multiplicative external forcing by considering y=y{x,x) and c = aix,x) to be functions of

the phase space coordinates (x,i). With appropriate conditions imposed on the functions c and

y, our method of calculation of phase space flux accommodates this generalization without

change. We treat the near-integrable case of (2), e—> 0.

The Shinozuka representation [19], [20] of noise is

cos(v„r -!-(]>„) (3)

where [v^,(|)^;n=l,2,...,yV} are independent random variables defined on a probability space

(Q,/B,P), (v,;/i = l,2 N) are nonnegative with common distribution 'Pq,

[([),; n = 1,2, ...,N} are identically uniformly distributed over the interval [0,27t], and N is a

fixed parameter of the model. This noise process has (one-sided) spectral distribution 2jr4'o

[19]. Thus the noise model in (3) can be made to have any given spectrum. The origin and an

early use of this noise representation are described in [19].

Consider a randomly weighted version G of the noise sum in (3),

G, = Vf L cosCv, ,+$,). (4)

Let 2ii^ be the desired spectrum of G, where 'F is a continuous probability distribution.

Assume K in (4) is positive and bounded away from zero, K(v)>K„>0 a.e. d^. Also

assume k<<» where

Ks |A:2(v)'F(dv).

Real functions K meeting these conditions are said to be '^-admissible. Let the distribution 'Fq

of the angular frequencies in (4) have the form

'Fo(A)= -jA:2(v)4^(^v).
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Then we have the following results.

Fact 1: The random sum G in (4) is a stochastic process, G, =G,((o), (oe Q; i.e. a

measurable process [21, p.45].

Fact 2: G is a zero-mean, stationary process.

Fact 3: G is uniformly bounded, IG,(a))l <^(2N IK^ for all r e ^ and toe

Fact 4: G is asymptotically Gaussian in the limit as yv —>c». in particular, the random

variable G, is, for each t, asymptotically standard Gaussian.

Fact 5: The spectrum of G is G has unit variance.

The first three facts are self-evident. Fact 4 follows from the multivariate Central Limit

Theorem [22, p.l95] while the first part of Fact 5 follows from a calculation similar to one

given in [19, p.358]. The variance of G is obtained by integrating the spectrum [23, p.338]:

The sum (3) is recovered from (4) by the choice A' (v) = 1 . Therefore G is a generaliza-

tion of (3) and is henceforth called Shinozuka noise for easy reference. Notice that the five

listed properties of G are independent of the choice of K provided K is T'-admissible. K is

therefore available for use as a free parameter. Later, after filtering G , we will choose K to fix

the ergodicity of the filter output. Five realizations of bandlimited Shinozuka white noise are

shown in Fig. 1 together with five realizations of bandlimited Gaussian white noise for com-

parison. K (v) = sechv is used in this example.

Our application of Melnikov theory to random perturbations requires that the noise be

continuous uniformly across both time and ensemble. We define a stochastic process X to be

ensemble uniformly continuous (EUC) if, given any 5i>0, there exists 82 >0 such that if

t\,t 2 & IR and Ui-r2 l<S2 IX,j(co)-X,^(co)l <5i for all coe O. A stochastic process can

have UC paths and fail to be EUC. The derivative G '(to) of the Shinozuka noise path G (co) is

bounded.

for all r e ZR. Thus G is EUC if the sum of its angular frequencies {Vi,...,V;v} bounded.

This sum is bounded if and only if G is bandlimited. Our use of Shinozuka noise requires it to

be EUC so we henceforth assume this condition to hold.



BANDLIMITED

SHINOZUKA NOISE

(N=40)

BANDLIMITED

GAUSSIAN NOISE

Fig. 1, Realizations of Shinozuka and Gaussian noise processes

with identical bandlimited spectra and K (v) = sechv.



3. Melnikov function and phase space flux

The Melnikov function M (s for bounded, UC excitations gi,...,gk is, accord-

ing to Meyer and Sell [18], expressed by the Melnikov transform

A/

(

5 , 01 0;fc)
= M[g,, ..., g*] where 5 is a reference time and 0i,...,0t are the cross-section

times of the Poincar6 maps relative to s

.

The Melnikov function is time-shift invariant and thus

can be written A/(,s,0i 0t) = A/(O,0i-5 0t-^)=A/(r,, ...,r*). Consider first a fixed

noise path G (to) given by some particular choice of (O e For our dynamical model with

phase space separatrix ^ =(Xsit),Xs(t)) and bounded, UC excitations g, G(co),

A/

(

5 , 01, 02; CO) = (0)

= M[g,G((0)]

oe ae oo

= -k\ x^{t)dt +
yJ x,{t)g{t+tOdt -I- o

j
x,(t)G,^,^((o)dt

.

The Melnikov function is related to the distance between the stable and unstable manifolds

associated with a hyperbolic fixed point. For such a distance to have meaning the perturbation

must be sufficently small that this fixed point persists and remains hyperbolic. This is indeed

the case for UC bounded excitations g and G((0) and sufficiently small e [24, Prop. 3.2.2].

Consider now the ensemble of Melnikov functions Con-

sidered sample analytically [16, Appendix A], there exists an ensemble of hyperbolic fixed

points corresponding to the ensemble For 10 be meaningful, these fixed

points must persist and remain hyperbolic as an ensemble. They do for e sufficiently small,

provided that the ensemble of noise excitations are uniformly bounded and EUC. Bandlimited

Shinozuka noise meets these conditions. Thus meaningfully measures the now ran-

dom distance between the separated manifolds and has the desirable measurability properties of

a random process (random field) in the two time variables ti-

Let h{t)=Xs{-t). Then

oo OP 00

= -^ j
x^it)dt -I- yj h{t)g{ti-t)dt -1- a

J
h(t)G,^_, dt

^^P OP

OP

= -k\ x,\t)dt -I-

Y

2 (ri) +

where Z=G * h and z = g *h are the convolutions of G and g , respectively, with h

.

Denot-

ing the integral of by / , we obtain

A/(/i,f 2) = -^^

+

72 (^ 1 )

+

(5)

h can be interpreted as the impulse response of a linear time-invariant filter IF

,

here

called the orbit filter. Then Z=G *h is the output of IF with input process G and we write

Z =F [G ]. Likewise, z=F[g] is the output of the orbit filter with input g

.

A sufficient condi-

tion for F to be stable - the property that small changes in the input produce only small

changes in the output - is that the impulse response be absolutely integrable [25],
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J
\h(t)\dt < °°

. (6)
-^o

Inasmuch as h{t) = x^{-t), this integral is, in the case of a heteroclinic orbit, the distance

separating the hyperbolic fixed points of the orbit For a homoclinic orbit, the integral is twice

the distance from the orbit’s hyperbolic fixed point to the point on the x-axis of maximum
extent of the orbit. We only consider orbits in which these distances are finite hence IF is

stable.

Shinozuka noise is stationary and IF is time-invariant hence the process Z is also station-

ary. In particular, Z is marginally stationary with nontime-varying mean and variance. Shino-

zuka noise has zero mean so Z has zero mean and

+V(h)-

The variance o| of Z is calculated using the transfer function // of the orbit filter. We
have —

oo

//(V) = j dr (7)
oo

and write 5(v)= \H(v)\ to denote the modulus of H

.

S is the imaginary (real) part of H if h

is odd (even). The function S plays the same role as that of the relative scaling factors in [9],

[10]. Then [23]

oo oo

a| = ^|l//(v)p27cT'(dv) = |s2(v)T(dv). (8)

It follows from (5), then, that the variance of the Melnikov function is

oo

Var[Miti,t2)] = = 0^|5V)

.

Having determined the mean and variance of Z, we describe its marginal distribution Pz.

Consider passing the deterministic signal cos(yt+^) through the orbit filter IF

.

The resulting

output is 5(v)cos(vr-t-([)-i-0(v)) where 0(v) is the phase shift caused by filtering. By superposi-

tion, the output Z of the orbit filter F is

5(v.)
A = ^ )) •

Consider choosing K =5. The condition (6) is satisfied so S is bounded and ic<~. T has

already been assumed to be bandlimited to make G EUC. Now further restrict the spectrum of

G so that S is bounded away from zero on the support of 4^. In many cases including the two

considered in Section 7 this restriction is minor; in the case of the second example it is no res-

triction at all. With this restriction, the choice K = S is ^-admissible and we have

l~T
^

= A/— I cos(v„ r +(t>n + 0(v„ ))

.

' ^ n=\

(9 )
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(})„ is uniformly distributed over the interval [0, 27t]. and 6(v„) are independent so their sum

modulo 271 is also uniformly distributed over [0,27c]. Thus the phase shifts 0(v„), n

can be dropped from (9) without change to the distribution of Z . Hence we write

IT ^

The random variable Z, is the sum of bounded, independent, identically distributed terms so,

by the Central Limit Theorem, its distribution pz has a Gaussian limit {N ->oo) with mean

zero and variance o|. The spectrum of Z is 27c4^o where

OzA

is assumed to be continuous so Tq is continuous.

The average phase space flux is closely related to the Melnikov function in the case of

near-integrability [9], [10]. For small e, the average phase space flux is e<I>+(9(e^) with the

flux factor O given by

<D = ( 10)

where the notation /^=max(/,0) denotes the positive part of the real function /. Substituting

(5) into (10) we obtain

T

<t>= lim^f[oZ« ,+YJ(e,-j)-«r*. (11)
T-yoo2T'j ^

Existence of the limit in (11) depends on the nature of the excitations g and G and of their

corresponding convolutions z and Z . This limit exists provided the excitations are asymptotic

mean stationary.



4. Asymptotic mean stationarity

A stochastic process X =Xi, t e Oi is defined to be asymptotic mean stationary (AMS) if

the limit

(12)

exists for each real Borel set A cZR. Here 1^ is the indicator function, 1 ^(j:)= 1 for x e A

and l^(x) = 0 otherwise. If the limits in (12) exist then, by the Vitali-Hahn-Saks Theorem [26,

p.277], [Lx is a probability measure. [Lx is called the stationary mean (SM) distribution of the

process X. The existence of the limits in (12) also implies [27], [28] that for any Borel-

measurable function b bounded on the support of [Lx ,

T »

lim-Lf£[ft(X,))*=
\ b(x)tLx<dx)

.

T —>00 2y _j

Asymptotic mean stationarity is a weaker property than ergodicity. If a process X is ergodic

[27] then, with probability one.

T 00

]im^ { b(Xt)dt = \
b{x)[Lx{dx).

T ij -io

(13)

Any stationary process X is AMS. In this case the SM distribution of X is the marginal

distribution of the process, ^ ^ }
for ^ny fixed time t. Shinozuka

noise G is stationary hence

Hc(A) = PlGos/t|

<

C0S(1>1 COS^N

* N K{v,)
'

•

<k

e A

The random variables cos^„/K(y„), n = I,...,N are independent and identically distributed with

variance 1/2. It follows from the Central Limit Theorem that [Xq is standard Gaussian in the

limit as N -^00,

The definition given above for AMS processes specializes to real functions and, in partic-

ular, periodic, quasiperiodic, and almost periodic [29] real functions are AMS. The SM distri-

bution of an AMS function g has the simpler expression

T

p (A)= lim^f
* t^ 2T ij

Hence all AMS functions are ergodic. The SM distribution [Lg describes, in a limiting sense,

the proportion of time that the function g has values in a given set A . This is illustrated in Fig.

2. The intervals Tq,T±\,T^, ... are the times in which g{t) & A. The overall proportion of time

spent by g in A is



- 10 -

where is the length of the truncated interval T„ n[-T,T]. The AMS property ensures

that all such limiting proportions exist This is exactly what is required to guarantee the

existence of the limit in (11) and we henceforth assume that g is AMS.

The most commonly considered form of deterministic forcing is periodic forcing. Let us

consider some details of this case. Suppose g is periodic with period T. Then g is AMS and

its SM distribution (14) simplifies to

T

Introducing the random variable U uniformly distributed over the interval [0, T], we have

p,(A) = £[U(g((/))] = />{g(t/)e A}. (16)

Thus \Lg can be interpreted as the distribution of the random variable g(U). is, according to

(15), the fraction of lime g takes values in a given set. The distribution has a density /
readily calculated from (16) in many cases: Suppose g is sinusoidal with period T and initial

phase ({>, i.e., g(t) = sm(2Kt/T +<|)). The density / of its SM distribution is then that of the ran-

dom variable sin(7 and we have

f{x)=-—L=, -\<x<\. (17)
rc Vl-z^

Or suppose g is sawtooth, i.e..

8(0= Z ^(t-nT -!-(())

/IS—oo

where A(r)= 1 -MIT for 0<r <7/2, A(r) = 4r/7 -3 for 7/2<r <7, and A(r) = 0, otherwise. In

this case, the SM distribution of g has a constant density over the interval [-1, 1]. In each

case, sinusoidal and sawtooth, the SM distribution is independent of the initial phase ^ and the

period 7 of g . This is true for all periodic functions.

The assumptions imposed on g and G to this point fix their ergodic properties separately.

The joint ergodicity of g and G is addressed by the following lemma (proved in the Appen-

dix.) First we state some definitions. Two stochastic processes X and Y are Jointly AMS if the

vector process (X,Y) is AMS. Let X be the SM distribution of the jointly AMS processes X
and Y . \i X and Y are jointly AMS then X and Y are each separately AMS with respective

(marginal) SM distributions p.x( ) = X(- xZR) and p.y( ) = X(/?? x •). Two jointly AMS processes

X , Y with joint and marginal SM distributions X, p.^ , p^y are said to be AMS independent if

the joint distribution X is the product X = iix Finally, X and Y are jointly ergodic if the

vector process (X,Y) is ergodic. Then, analogous to (13),

T «

Y\m—\b(Xt,Y,)dt= \
b(x,y)X(dx xdy) (18)t^ 2T ij

with probability one for any Borel-measurable function b bounded on the support of X.

Lemma 1: I. Let X and Y be independent processes and suppose X is AMS and Y is sta-

tionary. Then X and Y are jointly AMS and AMS independent. II. Suppose X and Y are
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jointly AMS and AMS independent. If X and Y are each ergodic, then (X ,Y) is ergodic.

The existence of the limit in (11) for the flux factor 0 is determined from Lemma 1. z is

AMS (because g is assumed to be AMS.) Z is stationary so, by Lemma 1, z and Z are jointly

AMS. The spectrum of Z is continuous so Z is ergodic. z is also ergodic so z and Z are

jointly ergodic, again by Lemma 1. Then, using (18) and identifying b with the integrand in

(11), the existence of the limit follows.
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Fig. 2. Intervals during which the function g falls in the set A .
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5. Calculation of O

The random variable O appears in (11) to depend on the initial phase parameters 0i, 02.

However, this is not so as the following lemma demonstrates.

Lemma 2: Let Z be a stationary stochastic process and suppose that the limit in (11)

exists. Then

T T

where = denotes equality in distribution.

The proof of Lemma 2 is given in the Appendix. According to Lemma 2, the distribution

of O depends on the damping and forcing parameters k
, y, and o, on the forcing function g ,

and on the spectrum 2rc'P of the forcing process G

,

but is not a function of the relative starting

time 01 - 02 of g and G .

Lemma 2 does not require g to be AMS. If g is AMS then we have the following

theorem.

Theorem 1 : Suppose g is AMS and Z is stationary and ergodic. Then the limit in (11)

exists and the flux factor O is nonrandom. In fact.

<I> = £[(oA + yB -Ikf] (20)

where A is a random variable with distribution equal to the marginal distribution of

process Z =IF[G], B is a random variable with distribution equal to the SM distribution of

the process z = IF [g], and A and B are independent.

Proof, g is AMS so [30] the output z =iF[g] of the orbit filter IF is also AMS. Z is sta-

tionary so, by Lemma 1, z and Z are jointly AMS and AMS independent. Thus the limit on

the r.h.s. of (19) exists. Also by Lemma 1, z and Z are jointly ergodic since they are both

separately ergodic. Thus the limit is a constant and the distributional equality in (19) is an

equality. The limiting time average in (19) may be replaced, as indicated in (18), by an ensem-

ble average

T

(21 )

Equivalently, the ensemble average (21) can be written as an expectation giving, by Lemma 2,

the result of the theorem. A and B in (20) are independent as a direct consequence of the pro-

duct form of the SM distribution p^ x p^ of z and Z

.
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A striking feature of Formula (20) for 0 is the similarity of the roles played by the deter-

ministic forcing g and stochastic forcing G - g represented by the random variable B and G
by the random variable A

.

The dynamical system cannot distinguish between a deterministic

excitation and a stochastic excitation. In the former case it experiences the fixed excitation

represented by g ; in the latter case it also experiences a particular excitation - that represented

by the realization G (to) of the process G

.

Put another way, the dynamical system is unaware

of the ensemble of possible excitations represented by the process G ; it is aware only of the

single excitation in the ensemble to which it is subjected. Since all that matters to the calcula-

tion of the flux factor <I) are the SM distributions of the filtered excitations, the roles played by

g and G in (20) should be expected to parallel one another.

Let us now evaluate (20). Let / and F be, respectively, the standard Gaussian density

function and distribution function

f(z)=^e'^ , F(z)= lf(x)dx.

Let X =cA and denote its distribution function by , with subscript to remind us that the dis-

tribution of X depends on the parameter N of the Shinozuka noise model. Also, let

Y =Ik -yB

.

Then,

^ = E[E[(X-Y)^\B]] =E (22)

For large N , the distribution Fyv can be replaced in (22) by the standard Gaussian distribution

F with only small error. This is the substance of the following lemma, the proof of which is

given in the Appendix.

Lemma 3: As N «>,

oo oo

|(x-F)F/v(d!x) E

1

1 1
1

Assume o>0, so that X is not identically zero. Then, according to Lemma 3,

o =
OOz

oe

1

1 X

GGz
< J

dx

= ^ E
OOz

^
'

X

OOz
J

X

OOz
w J

dx

oo oo

oozE l^u/(u)du - E Y^f{u)du
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where U = Yl(ccz ). Thus, for a > 0,

<i>=GCzE[f(U) + UF(U)-U]. (23)

We have the following result.

Theorem 2: Suppose g is AMS and G is the Shinozuka noise in (4) with parameter N
and a>0. Then the flux factor O is approximately

0=£[(00zA + yfi -Ikf] =GGzE[fW) + UF{U)-U]

where A is a standard Gaussian random variable and U =o~^Oz^(Ik -yB). The error in this

approximation can be made arbitrarily small by a sufficiently large choice of N

.

For the case a=0 where no random excitation is present, (22) simplifies directly to

O = Oq = £ (AC-r)5o(di) = £[-r 1(_,0)(>')] = Eii-Yf] = E[(yB -Ik )^]
.

(24)

Here 5;t denotes a distribution with a single atom located at x : 5;t(A )= 1^ (x).

Consider the case where there is no noise and the deterministic forcing is sinusoidal,

g(r)=cos(vr +(J)). In this case, the output z = g * h of the orbit filter ZF is also sinusoidal with

amplitude scaled by S(v)= \H(y)\. Thus the random variable B'=BIS(v) has the density (17).

Hence, in terms of the dimensionless quantities

^deter. ~

we have from (24)

1

= £ [(Y'B
' -

1 )*1 = - f . (25)

"iV

A plot of <I>deier. versus y' is given in Fig. 3(a).

Now let us turn to the opposite case in which the noise, rather than the deterministic forc-

ing, is the cause of phase space transport This is the case in which y is zero or in which the

mass of the distribution is concentrated at zero by the orbit filter. The latter occurs, for

instance, when the spectrum of g is located outside the passband of /F. In this case the distri-

bution of U in (23) is approximately that of the constant lk/(aaz). It follows from (20) that,

in terms of the dimensionless quantities

we have

^sioch. ~
Ik

'

Ik

(26 )

where

ri(a') ho7(1/o')- 1 +F(l/o').
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The derivative of 11 (0 ') is /(l/o')>0 so, consistent with intuition, any increase in o' causes

an increase in the scaled flux <I>su>ch.- ^stoch. is shown in Fig. 3(b) as a function of o'.

In contrast to Ojeier., the approximation Ti(a') for Os^Jch. is positive for all levels of noise.

This requires careful interpretation. In fact, because Shinozuka noise has uniformly bounded

paths, there is a threshold for Osioch.« just as for Ojeter.. Below this threshold, Ostoch =0. This

threshold is not apparent from the approximation Ti(a') although the plot in Fig. 3(b) suggests

such a threshold.

The presence or absence of a threshold notwithstanding, the plots of and Ojiogh.

similar - both are asymptotically linear for large forcing and both show little or no flux for

small forcing. The difference in the plots is explained by expressions (25) and (26). These

expressions differ only in the random variables B

'

and A representing the SM distributions

and Pz. Thus the difference in the plots of Quieter 2nd <I>,toch. 'S solely due to the difference in

p^ and Pz- In particular, the difference in the plots in Fig. 3 does not depend on whether or

not the excitation is random. If, instead of the sinusoidal forcing used in Odeier,. we had con-

sidered a deterministic sum of A incommensurable sinusoids, then p^, like Pz, would be a

convolution and approximately Gaussian for large A. Thus the SM distribution of the filtered

excitation, not the excitation’s deterministic or stochastic nature, determines the average flux.

The approximating expression 11 (0 ') is derived from the limiting Gaussian distribution F
obtained from F/v with A —> Also, Shinozuka noise with A temis and spectrum 4^ is Gaus-

sian in the limit as A ^«>. Thus r|(o') is arguably the flux factor for a Gaussian excitation

with spectrum 'F. Unfortunately, this cannot be established within the framework of present

Melnikov theory since this theory is restricted to excitation processes with uniformly bounded

paths. Paths of ergodic Gaussian processes are neither uniformly bounded nor even bounded.

Interpreted as the flux factor for a Gaussian excitation, 13 (0 ') predicts that even the smal-

lest amount of noise produces a nonzero flux. This is consistent with the observation that even

the smallest ergodic Gaussian excitation exhibits arbitrarily large swings and can be expected

to eventually drive the system from one basin of aPraction to that of a competing attractor -

such motion being interpretable as chaotic motion on a single strange attractor.



(a) (b)

Fig. 3. Dimensionless flux factors, (a) Deterministic forcing, (b) Stochastic forcing.
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6. Addition of noise

The addition of a small random excitation into a noiseless, deterministically forced sys-

tem generally increases the propensity for chaos (as measured by the flux) above that which

might otherwise exist. The following lemma determines conditions for We give the

proof in the Appendix.

Lemma 4: Suppose X and Y are independent random variables, £[y]=0, and C = C(^) is

convex. Then £[^(X -i- K)] >£[^(X)] with equality if and only if for almost all x, ^{x) is

linear over the support of x: -h y

.

The function t^(x)=x'*' is convex. Thus, comparing (20) and (24), Lemma 4 implies that

one always has d>><I)o for zero-mean, stationary noise. Filtered Shinozuka noise is stationary

and zero-mean, thus its presence never reduces the flux factor below that of Oq. This directly

contradicts a claim of [13] that noise can serve to suppress chaotic behavior which might oth-

erwise be observed in the noise-free system.

The function [^(x)=x:‘^ is piece-wise linear so the possibility of equality exists in the con-

clusion of Lemma 4. Thus, possibly, cases exist in which despite the presence of noise, there is

no increase in flux, i.e., 0 = d)o. We now pursue this possibility.

Assume that the SM distribution of the noise has zero mean and connected support.

These assumptions are minimal and are satisfied by many noise models including Shinozuka

noise. Then, a case-by-case analysis of (20) for all possible distributions of A and B shows

that 0=Oo in just two cases. The first of these is the case in which yB +<5A <Ik a.s. In this

case, the support of yB +<5A -Ik is a subset of (^,0]. l^(x)=x'*’ is linear over this interval

and hence satisfies the conditions needed for equality in the conclusion of Lemma 4. Thus we

have identified the trivial case in which <I>=(I)jj=0 - the case in which g and G together fail to

produce a nonzero flux.

The other case in which <I>=Oo is not trivial and requires that the distribution of B have

a gap in its support. A simple example of this is the diatomic distribution

—5
, -I- —5,

2 2
(27)

composed of two atoms located, as in this case, at 1 and -1 and separated by the gap (-1,1).

Suppose that B has the distribution (27) and that lA I
< 1 consistent with the assumption that

lg(r)l < 1. Take y>Ik -t-o. Then Oo>0 because y>Ik. If = 1, the support of aA +yB -Ik is

a subset of [0, <»). ^(j:)=j:'^ is linear over this interval. If B =-l, the support of aA +yB -Ik

is a subset of (-<», 0]. ^(x)=ac‘^ is linear over this interval, also. Thus, the conclusion of

Lemma 4 holds with equality for the present case and we have a nontrivial example in which

<I>=<I)o>0. Such examples only arise in cases in which a gap exists in the support of B

.

Recall that the distribution of B is the SM distribution of the output z of the orbit filter

IF with input g. UC AMS functions g with a diatomic SM distribution such as (27) are

readily constructed. We give some examples below. But under what conditions does such a

distribution persist after filtering by /F? This depends on the nature of the orbit filter.
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The orbit filter IF is defined by the relation of its impulse response h{t) = Xs{-t) to the

orbit velocity component x^. For one-dimensional systems, x^ differs significantly for heteroc-

linic and homoclinic orbits. In a one-dimensional system, the component x^ of a right-hand

homoclinic orbit (Fig. 4) increases from zero at r =-« and continues positive until, at the max-

imum point of travel of the orbit, it is again zero. This occurs at time / =0. The velocity then

swings negative and remains so until the orbit arrives, at r=<», back at the hyperbolic fixed

point from which the orbit originated. If the orbit is left-hand, x^ is negative for the first half

of the orbit and positive during the return half. In either case - right-hand or left-hand homoc-

linic orbit - the velocity component is an odd function of time with a single sign change. For a

heteroclinic orbit (Fig. 5), x^ exhibits no sign change. If the orbit connects one hyperbolic

fixed point with another located to the right, then > 0 for all r e (-~, «). If the connection is

from right to left, x, <0 for all re (-<»,«»). In either case, there is no sign change. This

difference - presence or absence of a sign change - has an important consequence for the filter

IF . Consider the homoclinic case (Fig.4). In this case h is odd and

oo

5(0) = I
h(t)dt =0.

—oo

For a heteroclinic orbit (Fig. 5), the above integral is nonzero and 5(0)>0. The significance of

this is that a heteroclinic orbit filter passes the d.c. component of an excitation while a homoc-

linic orbit filter does not.

Let us consider examples of bounded UC AMS functions g with a diatomic SM distribu-

tion such as (27). One trivial example is the function g(t) = L(t) where L{t) = t for -1 <r < 1,

L(r)=l for r>l, and L(r)=-1 for r<-l. Another example is g(r) = tanh(r). Less trivial

examples include functions g which transit between the values -1 and 1 in such a way that, as

t —> ±=», more time is spent at these two values with less time spent transitting between them.

Consider the function g(r) = L(V17TsinV7). As g{t) remains at ±1 for longer and

longer periods with fewer and fewer transitions between these two values. This function is UC
and AMS and also has the diatomic SM distribution (27). The ideas suggested here extend to

more than two atoms and to atoms with unequal weights and more generally to the construc-

tion of functions g with SM distributions with gapped support. Finally, note also that the SM
distribution of the UC AMS function g(r) = sin*^''(r) is, for large odd integers n, nearly dia-

tomic (Fig. 6).

The preceding examples illustrate the general principle that the existence of atoms in the

SM distribution of a function g requires the function to exhibit persistence; i.e., that there be a

d.c. component present in the limiting spectrum of g. Remove that d.c. component and the

atoms relocate to zero causing the gaps between them to disappear. Thus far we have only

explicitly addressed atomic, or discrete, SM distributions. In fact, the same result holds gen-

erally for SM distributions with holes. Filter out the d.c. component and all gaps in the SM
distribution are lost.

Juxtapose this with the respective effects of homoclinic and heteroclinic orbit filters on

the d.c. component of the excitation and it follows that, for the one-dimensional dynamical sys-

tems considered here, noise added to deterministic forcing always increases the average flux

associated with homoclinic chaos except for trivial cases in which Oo = 0. In the case of

heteroclinic chaos, added noise does not always increase the average flux, i.e. <I>=(t>o, even in

cases where Oq > 0. In no case does the noise lower the average flux.
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V{x)

SIGN
CHANGE

S(v)

Fig. 4. Filter function S (v) for a homoclinic orbit. S (0) = 0.
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V{x) X

Xs(t) 5(v)

Fig. 5. Filter function 5(v) for a heteroclinic orbit. S (0)>0.
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Diatomic SM
Distribution

>

n =oo

-1 0

(a) (b) (c)

Fig. 6. SM distribution of g (0 = sin^^''(f).

(a) Az = 1. (b) n = 3. (c) n =oo (diatomic).
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7. Role of the noise spectrum

The spectrum 'F of the noise affects the flux factor O only indirectly through the pres-

ence in (20) of the variance

OD

a| = |52(v)Wv) (28)

of the filtered noise. We have already observed that the average flux depends on the SM distri-

butions of the filtered excitations. These distributions record the proportions of time spent by g

and G within given intervals but ignore the order in which the filtered excitations visit

different intervals. Autocorrelation is a measure of the order of visitation and is described by

the spectrum of the noise. Thus the effect of the proportion of time spent in any given interval

by an excitation and the effect of the order in which an excitation visits successive intervals are

clearly delineated in Formula (20). The order of visitation, as reflected in the spectrum of the

filtered noise, determines the variance of the SM distribution of the filtered excitation. All

other features of this distribution are determined by the relative proportion of time spent in any

given interval.

Although the role of the noise spectrum 'F is limited to its effect on the variance, this

effect on the flux factor is important. When 'F is mismatched to the orbit filter IF (i.e., most

of the noise energy is outside the passband of the filter), the integral in (28) is close to zero

and the flux due to the noise excitation is correspondingly small. Also, because of mediation

by the orbit filter, even infinite energy white noise has limited effect on the flux. We illustrate

this with two examples: the Duffing-Holmes oscillator for homoclinic chaos and the rf-driven

Josephson junction for heteroclinic chaos.

The Duffing-Holmes oscillator [7] is one of the simplest one degree-of-freedom dynami-

cal systems capable of homoclinic chaotic motion and has been extensively studied via

mechanical laboratory and numerical computer models as well as analytically. The Duffing-

Holmes oscillator is given by (2) with the potential V(x)=x'*/4-x^/2. Thus we have

ic = X -
-t- e[Yg(r) oG, - kx].

The global geometry of the Duffing-Holmes oscillator without damping or external excitation is

simple; the unperturbed Duffing-Holmes equation x =x - x^ has a hyperbolic fixed point at the

origin (x , x ) = (0, 0) in phase space connected to itself by symmetric homoclinic orbits. These

orbits are given by

L

Xs(.t)
J

— X
VIsech/

We use the righthand (+) orbit in our flux calculations. The same results obtain for the lefthand

orbit

The impulse response h of the Duffing-Holmes orbit filter is /i(r)=Xj(-r) = V2sech/tanhr.

Then I = 3/4. The filter function S for the Duffing-Holmes oscillator is found as in [24] to be

S(v) = V27Cvsech(rcv/2). Let v^=argmax(5) with S„=S(y^). We have v^tanhv^ = l and

5^ = 271^^-8 = 3.514. Thus 5^(v)<3.514 for all v>0 and it follows from (28) that, for any

noise spectrum, we always have Gz ^ 1.875.
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An upper bound exists for Oz even in the infinite energy case of white Shinozuka noise.

Let {G^‘\ I = \,2, ...) be a sequence of independent Shinozuka processes such that the spectrum

of is uniformly distributed over the spectral interval [/,/ + !]. Form the sum process

C(W)=
/=!

The spectrum of the sum G(iv) has density 2rtl[o,w)(v). White Shinozuka noise can be

considered as the limit of G^v^) as W -^oo. For Shinozuka noise with spectrum we
have

oo W

Oz = |s^(v)'F(W)(^v) = |sWv.

Now,

SO Oz <2V^3 with Oz =2V^3 = 2.047 in the white noise limit as W —>oo. Thus, because of

the exponential decay of S(v) for large v, even infinite energy white Shinozuka noise only

finitely effects the flux factor C>.

Our second example, the rf-driven Josephson junction [2], [31] is a one degree-of-

freedom nonlinear system capable of heteroclinic chaotic dynamics. Its equation of motion is

of the form (2) with potential V (x ) = P^coSlX . The global geometry of the unperturbed system

X = P^sinx features an alternating sequence of elliptic and hyperbolic fixed points regularly

spaced k units apart. An expression for the hyperbolic orbit connecting any two neighboring

hyperbolic fixed points in this sequence can be given in closed form. By elementary means

starting from the Hamiltonian equation x^/2 + P^cosx =p^, the velocity coordinate of the orbit is

found to be Xj(r) = 2Psechp/. Thus /i(r) = 2psechpr, /=8p, and S (v) = 7tsech(7cv/(2P)). S„=k
so Gz <K for all possible noise spectra 2k^. Here, as with the Duffing-Holmes oscillator, S (v)

is bounded and decreases exponentially with v. Thus, also for the rf-driven Josephson junction,

infinite energy white Shinozuka noise has only finite effect on Oz and, indirectly, on the flux.
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8. Conclusions

The primary achievement of this work is the expression

= E[{<5A+yB -Ik)^] (29)

given in Theorem 1 for the average flux factor. This expression applies generally to second

order, one degree-of-freedom, near-integrable dynamical systems whose unperturbed flow

includes homoclinic or heteroclinic orbits. Also, the derivation leading to (29) is readily

modified to accommodate third and higher order one degree-of-ffeedom systems, more general

two-dimensional vector field systems, and multiplicative excitation. In aU these latter cases the

form of (29) remains the same; only the orbit filter F used to determine the constant / and the

distributions of A and B changes.

The framework of the derivation of (29) puts random and deterministic excitations on an

equal footing. This is accomplished by requiring that both types of excitation be AMS. This

requirement ensures the existence of the average flux and provides a common means - the SM
distribution - for studying the two classes of excitation. According to (29), the effect of an

excitation on O is mediated by the orbit filter with only the SM distribution of the AMS
filtered excitation explicitly affecting the average flux. This applies equally to deterministic and

random excitations and testifies to a fundamental equivalence of the roles played by the two

types of excitation in the promotion of Smale horseshoe-type chaotic motion in our dynamical

model.

Expression (29) supports the following conclusions, applicable for sufficiently small e.

According to Lemma 4, the form of (29) indicates that external random excitation never

decreases the average phase space transported. In this sense, (29) shows that noise cannot on

the average suppress chaotic behavior. Qose analysis of (29) and Lemma 4 shows, further,

that the presence of noise strictly increases the propensity for homoclinic chaos in all nontrivial

cases. For heteroclinic chaos, the same analysis identifies a nontrivial case in which the pres-

ence of noise does not change the average flux. In all other nontrivial cases, the propensity for

heteroclinic chaos is strictly increased by the presence of noise.

In this work we are constrained by limitations of current Melnikov theory to consider

only ensembles of uniformly bounded, EUC excitations. This rules out a direct treatment of

Gaussian excitations as no Gaussian process has uniformly bounded paths. Use of the Shino-

zuka noise model partially circumvents this prohibition. Using (29), the flux factor <I) was cal-

culated for Shinozuka noise and a limit expression was obtained by letting A ^ oo. This limit

expression was given in Theorem 2 as an approximation for O in the case of Shinozuka noise

with a large number N of terms. Since Shinozuka noise is Gaussian in the limit as A —

>

it

is reasonable to anticipate that when Melnikov theory is appropriately reformulated to directly

address Gaussian excitations, the flux factor for such excitations will be exactly the expression

given in Theorem 2.

The approximation for <J) in Theorem 2 concisely identifies the nature and effect of the

interaction of the noise spectrum with the orbit filter. The overall impact of the noise on the

average flux is determined by how much of the noise energy is located in the filter passband.

In fact, the variance o| of the random variable A in (29) representing the filtered noise SM
distribution is given by formula (28). In two examples, the Duffing-Holmes oscillator and the

rf-driven Josephson junction, (28) was used to show that was bounded above - even in the
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extreme case of infinite energy white noise,
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Appendix

Proof of Part / of Lemma 1: Suppose X is AMS and Y is stationary and denote their

respective SM distributions by Px and py^ . Also suppose X and y are independent. It follows

that (X,y) is AMS with SM distribution Px><Pk provided we show that, for each Borel-

measurable subset A czR^,

T

/rM)=

exists in the limit as 7 — with /«(A) = (px xpy)(A). First consider subsets F czR^ which

are finite unions of measurable rectangles

F
1=1

For such F

,

n
T

1=1 -T

n ^

= f£[ly,(X,)l£llv,(l',«)l<i<
,=1 -T

S
^

T

= f i;:ij£[lt/,(X,)l£[lv,(n„)ldi*
i->oo 2S 'si=i dj

„
T S

= Z^plll/,(X,))lta f£(W,(l',„))* dt

T

= ZUrCV'.Orlr f£[l(;,(X,)]d<. (Al)
1=1 -T

The second equality above is due to the independence of X and Y and the stationarity of Y

.

The fourth equality is obtained by applying Fubini’s Theorem [32] to interchange order of

integration and then by using the Dominated Convergence Theorem [32] to take the limit

inside the integral. Now, letting 7 — in (Al), we have

/«.(F) = ipx(f/,)[iy(V,) = (Px xpy)(F). (A2)
1=1

The Approximation Theorem [32] is now used to show that (A2) holds for all Borel subsets of

Let A be a fixed Borel subset. By the Approximation Theorem, there exist finite unions

Fj, F 2 of measurable rectangles such that, for any e>0, F
1
CACF 2 with

(Px xpy)(F 2)<(Px xpy')(A) + e and (px xpy^)(A)<(px xpy)(Fi) + e. We use this construc-

tion together with (A2) to show that the dilference between I^{A) and (Px xpy)(A) is arbi-

trarily small. Now

l/aA)-(pxXpx)(A)l < l/^(A)-/«(F,)l -h l/^(F,)-(pxxp,,)(A)l. (A3)
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Regarding the first term on the r.h.s. of (A3), we have

l/^(A) - /JFi)l < /«(F 2)
- /.(F,) = (Hx xfirXFz) - i\ix xfiy')(Fi) < 2e.

The second term on the r.h.s. of (A3) is equal to (|ix x)J.y')(A)-(|i.x xtiy)(F,) and

(tlx X |ij, )(A ) - (tlx xtix)(Fi)<e. This proves the first part of the lemma.

Proof of Part II of Lemma 1: Suppose that X and Y are jointly AMS and AMS indepen-

dent with marginal and joint SM distributions Px * M-r > and Px x Py . Suppose, in addition, that

X and Y are each ergodic. Let mx , my, and mxy be the marginal and joint measures of the

processes X and Y and let Bx, By, and Bxy be the o-fields of invariant sets [33] of X, Y,

and (X, y) respectively. A process is ergodic if and only if each of its invariant sets has meas-

ure zero or one [33]. For example, X is ergodic if and only if mx(F)=0, 1 for all £ e /Bx

.

Consider Pxy(G) where G e Bxy is a union of disjoint Bx x/B^ -measurable rectangles

G=uF.xF,. (A4)
i=i

X and Y are jointly AMS and AMS independent so [27, Lemma 6.3.1]

trixY ((j) — (M-x X Py )(G ) = X M-x (^i )M-y (F, )

.

1=1

X is AMS so Px(£i)=/nx(£,) for each / = 1 n. Similarly, px(F,)=my'(F,) for each

i = Therefore

(.G)= 'Zmx (Ei )mY (F, )

.

1=1

X is ergodic so mx(£,)=0, 1 for each / = 1 n. Likewise, mY(Fi) = 0 , 1 for each i = \ n.

Therefore, Pxy(G) = 0, 1. The sets G of the form in (A4) generate /Bxy consequently

Pj^(G )
= 0, 1 for all G e /Bxy. Therefore (X, K) is ergodic.

Proof of Lemma 2: Let L denote the limit on the l.h.s. of (19). We have

r-e,

L = lim:^
J

[aZQ^.Q^.,+yz(-t)-lk]^dt
-r-e,

7'-h0,
1

= bm
27 r-i-e

(A5)

1 -r-Gi

T-Q,
7 — 0 1

+ lim - - J
[csZQ^.Q^.,+Ik-yz{-t)]*dt

.

r —»oo zi 1 — Wj Q

Now

7-1-0,
1 ,

7-0,
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as 7 -4 » so, substituting 7 for 7+9i in the first integral in (A5) and 7 for 7-0i in the

second integral, we obtain

T

L = lim^ f [oZe 0 ,
+yzi-t)-Ikt dt

.

T-*oo2T_fj- ^ '

Then by a change of variable.

T

L = lim^ f [gZq Q it)- Ikt dt .

t-^ 2T ij
^ '

The process Z is stationary so

Proof of Lemma 3: Define Z/^ - Y)'^ and Z =(X - Y)^ where Xi^=cA, Y =lk -yB ,

and X is standard Gaussian. We need to show that

E [Z/v ]
—> E [Z ] (A6 )

as /V —>oo. By the Central Limit Theorem and the independence of Xf^ and 7, we have

(Xrsj,Y)-^(X ,Y). Thus, also, Zf^ -^Z. Uniform integrability of [Z/^) then establishes (A6 ). A
sufficient condition for uniform integrability is [34] that

^;}PE[Z/f]<~. (A7)

In the present case, E[Z/v]<£[(X/v -7)^] = a^o| + E[7^]<«>. Therefore (Zyv} is uniformly

integrable and (A7) is true.

Proof of Lemma 4: We use Jensen’s inequality [32]:

e[C(x+7)] = e[E[C(x + 7)ia:]]

>E[(,(E[X + Y\X])]

= Em+E[Y])]

= Em)]-

The condition for equality follows directly from Jensen’s inequality.
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