
Allil03 7333E7
NISTIR 4776

Training Feed Forward Neural
Networks Using Conjugate
Gradients

Patrick J. Grother
James L Blue

U.S. DEPARTMENl OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Advanced Systems Division

Computer Systems Laboratory

Gaithersburg, MD 20899

—QC—
100

.U56

//4776

1992

U.S. DEPARTMENT OF COMMERCE
Rockwell A. Schnabel, Acting Secretary

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
John W. Lyons, Director

NIST

rraining Feed Forward Neural
Networks Using Conjugate
aradients

Patrick J. Grother
James L Blue

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards
and Technology
Advanced Systems Division

Computer Systems Laboratory

Gaithersburg, MD 20899

February 1992

U.S. DEPARTMENT OF COMMERCE
Rockwell A. Schnabel, Acting Secretary

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
John W. Lyons, Director

Training feed-forward neural networks using conjugate gradients

James L. Blue and Patrick J. Grother

National Institute of Standards and Technology

Gaithersburg, MD 20899

Abstract

Neural networks for optical character recognition are still being trained using

back propagation, even though conjugate gradient methods have been shown

to be much faster. Most multilayer perceptron network training results in the

hterature are obtained for small and unrealistic problems or from data sets that

are proprietary and not available for comparison testing.

We present results on a large realistic pattern set containing 2000 training and

1434 testing exemplars. Each pattern is composed of 32 Gabor coefficients

obtained from a 32 by 32 pixel binary image of a hand-written digit segmented

from the NIST Handwriting Image Data Base. These sets are believed to have

approximately 1% segmentation errors. Comparative results for MpUer’s scaled

conjugate gradient method and for standard back propagation axe presented for

runs on a serial scientific workstation and a highly parallel computer.

Typical training on a network with 32 inputs, 32 hidden nodes, and 10 output

nodes gives a 98% to 99% recognition for the training set and 95% for the test

set. Training with conjugate gradients requires fewer than 200 iterations; times

are about 20 to 40 minutes on a scientific workstation and 6 minutes on the

highly parallel computer. Testing (classification) is done at the rate of 600 and

1600 patterns per second on the scientific workstation and on the highly parallel

computer respectively.

These results suggest that commercial hand-written character recognition sys-

tems with great economic potential are feasible.

1. Introduction

Backpropagation (BP) has been used for some years^ to train feed-forward net-

works. Mathematically, “training” means minimizing an error function, the sum
of the squares of the errors in the outputs. While useful for training networks,

BP has the disadvantages that convergence is slow^ and that there are, in the

usual implementation^ two adjustable parcimeters, 7/ and q, that have to be de-

termined. A third disadvantage, that convergence is often to a local minimum

1

of the error function rather than a global minimum, is inherent in the problem

and not restricted to BP.

Since BP corresponds (approximately) to using a steepest-descent method for

minimizing the error fimction, and steepest-descent methods are known to

converge slowly when near a minimum, slow convergence is not surprising.

Conjugate gradient (CG) methods have been used for many years for minimiz-

ing fimctions, and have recently^ been discovered by the neural network commu-
nity. The usual CG methods require a Hne search or its equivalent. MpUer® has

introduced a scaled conjugate gradient (SCG) method; instead of a hne search,

he uses an estimate of the second derivative along the search direction to find

the approximate minimum.

Many BP implementations for feed-forward networks are available, but CG and

SCG implementations have not been available. We have produced simple and

easy-to use SCG and BP programs that shaxe a common driver program. These

programs are available from the authors by electronic mail. ^

We also present a large and realistic test set of data for use with the SCG and

BP programs. The data axe coefficients from a collection of handwritten digits.

The data set is also available from the authors.

1.1. The problem

We assume a standard multilayer perceptron network, fully-connected, with N
inputs, hidden neurons, and output neurons. Define to be the

activation of the element of the layer of the network, due to the

pattern of inputs, with <l)[p^ the input value for neuron i. Define the weight

matrix interconnecting the elements of neuron layer m — 1 to layer m to be

and let / be some nonhnear squashing function, such as the standard

sigmoid function, f{x) = 1/[1 -|- exp(— a*)]. The input pattern vectors propagate

forward through successive layers of neurons according to

^hp = iz 4p = / ;

i=0

= f ; (
1
)

h=0

where (f)^^
= 1 and (f)^^ = 1, so that w^Qf^ and are biases for the squashing

functions.

^Send electronic ma.i1 to jlbCaizure. cam. nist.gov; include your name, institution, address,

and electronic mail ciddress.

2

Pattern p has a desired output activation, or target value, of rpjp at output

neuron j. For character classification, each pattern has exactly one V’ jp equal to

one and the rest equal to zero. Assume a set of patterns, a set to be used

for “training” the network. One measure of the goodness of a set of weights is

NW nW
S =

2Ni^)Nip) E E [^jp
-

p=i j=i
(
2

)

the root-mean-square (RMS) error, is a measure of the output activation

error averaged over all patterns and all output neurons. Minimizing £ provides

one way of determining the weight matrices and it is a substitute for

what is really desired, to determine and so as to do the best possible

character identification over some large and unknown set of “testing” input

patterns.

The negative gradients of £ with respect to the weights are

9^ = d£
and 9hi

= - d£
(3)

Define auxiliary variables and 8^^:

nw
= {^jp

- /'(^p) and 4p = E ^ip n’ih /'(a^ip), (4)
3=0

where f'{x) is the derivative of /; for the usual sigmoid function, /'(r
) = /(a;)[l —

f{x)]. Then the negative gradients are

(2) _ ^

^ih
jv(2)iV(p)

Ar(i>)

E^ipVLp and = 1

p=i m2)N{p) EW- (5)
p=l

To simphfy the notation in later sections, let w be a vector of length =
[Ar(°) -f -I- -|- l]iV(^), formed by concatenating all the and in

some order. Similarly, g is the vector of negative gradients of £ with respect to

w, formed by concatenating all the and g^^ in the same order.

The standard “network training” problem then reduces to finding a set of weights,

w, to minimize the mean-square activation error, £. An alternative minimization

problem is a regularized version,® sometimes known as the Levenberg-Marquardt

method and sometimes known as ridge regression: minimize a hnear combination

of the mean-square activation error and the mean-square weight:

5(w;/z) = £ }
9- EE

t=0 h=l
+ EE

h=o j=i
(
6

)

3

There is an additional parameter, /i, which must be chosen somehow. Since

S = S{yr\ 0), the remainder of this paper will use 5^(w; p). The negative gradients

become

7V(2)A7'(p)
^ ^'‘P

jV("')p=l

^ Nwmv)
p̂=i

Minimization of a function of many variables is a mature field; there are nu-

merous algorithms and more numerous variations of them. All are iterative,

generating a sequence of sets of weights. For neural network appHcations in

character recognition, where typical values of might range from a few hun-

dred to many thousand, computationally feasible algorithms can use the gradi-

ent vector but not the Hessian matrix (the matrix of second derivatives of the

function). The typical algorithm hcis the structure

1. Choose an initial vector Wq and set A: = 0. In the absence of a better idea,

random starting values axe used.

2. Calculate the fimction, ^(wjt;//), and its negative gradient, g*.

3. Calculate a step. Aw*. Let wjfe+i = Wk + Awfc.

4. Calculate the function, £^(wjfc+i; /i), and its negative gradient, gt+i-

5. If the Wjfc+i is unsatisfactory, make some adjustments, discard "Wk+i and

go to 3. Otherwise, increase A; by 1.

6. If the iteration has converged, or if too many iterations have been done,

or if progress seems hopeless, quit.

7. Go to 3.

This generalized procedure, with suitable elaborations of steps 3, 5, and 6, always

succeeds in finding a local minimum of the function. There is no practical way
to find the absolute minimum, and 5(w; //) has many local minima. Essentially

all the computer time is spent in step 4.

1.2. Backpropagation minimization of 5(w;/r)

For a given w, g is the direction of steepest descent for 5(w; p), the direction

in which £^(w; fi) decreases most rapidly. Many variations axe possible. One
possibihty is

Awjfc = Tjkgk (8)

with Tjk determined by a fine search, approximately minimizing the fimction with

respect to T]k. The standard backpropagation method^ uses

Awfc = Tjgk + otAwk-i (9)

4

with fixed parameters rj and a, not determined by the algorithm. For large

problems, (9) works well for a few iterations, then slows down drastically. An
example is given in Section 4.

1.3. Conjugate gradient minimization of

For many years, conjugate gradient algorithms have been used to minimize

functions®’® and good Fortran programs have been available. More recently,

the neural network community has discovered conjugate gradients.^’® The step

used is

Awfc = ak{gk + /?fcAwfc_i) (10)

where /3k is calculated by the algorithm to make Aw^ and Awjt_i conjugate,

or orthogonal in a generahzed meaning of the word. The factor o* is often

determined by some kind of fine search, using about three function calls.

MpUer® uses a (temporary) small value for ojk, does a fimction evaluation in

order to approximate the second derivative in the search direction, then uses

the approximate second derivative to select a final Q/t; this uses two function

calls. (If the new weights result in an increased error, they are rejected and

some parameters are adjusted until the new weights reduce the error. In this

case, a successfiil iteration takes more than two function calls.) MpUer calls

his method Scaled Conjugate Gradients (SCG). Our experiments on character

recognition problems showed SCG to be preferable to the program of Shanno

and Phua.^^

2. Programs

Fortran programs to train neural networks using BP and SCG have been writ-

ten; the BP and SCG programs differ only in the subprogram called to minimize

5(w; /i). The implementations for serial computers are reasonably straightfor-

ward; the implementation for parallel computers will be discussed in Section

2 . 1 .

Deciding when to stop an iterative procedure is not straightforward. In prin-

ciple, stopping is simple: stop when a local minimum has been reached. At a

local minimum, g = 0. (The same is true at at a saddle point or a local max-

imum, but checking for these requires computing the Hessian matrix, which is

impractical.) However, in finite-precision arithmetic g = 0 is attained only in

unusual circumstances. The programs have five stopping criteria built in:

1. k >= Cl

2 . S{wk;fi) <= C2

5

(Too many iterations)

(Achieved error goal)

3. Igfcl <= Calwfcl (Achieved gradient goal)

4. S{wk-,fi) >— (1 — C^)Ek-K (Error decreasing too slowly)

5. Rk >= Rk-K — C5 (Right classifications decreasing too slowly)

where Ci, C2, C3, C4, C5, and K are constants supplied by the user. (Criteria 4

and 5 are checked only every K iterations.) The results obtained depend signif-

icantly on which criterion apphes in the particular run, which in turn depends

on the constants. Some examples axe given in Section 4 .

2.1. Parallel implementation

The efficient parallel implementation of neural networks in hardware and soft-

ware is an active area of current research. The motivation is pragmatic; faster

training algorithms and their implementation allow more compHcated larger net-

works to be evaluated. The parallelism inherent in artifical neural nets is well

known. In particular the multilayer perceptrons trained by BP and SCG are

both readily made parallel. Their implementation is particularly suited to mas-

sively parallel fine grained SIMD architectures. Machines of this type, such as

the AMT DAP or the Loral Industries MPP^, are typified by tightly coupled

processors connected by high bandwidth bus.

2.1.1. Forward propagation

The multilayer perceptron networks require that pattern vectors to be propa-

gated forward through successive layers of neurons. Define activation matrices

and whose columns are the activation vectors for each pattern. The

parallel equations corresponding to 1 are

^(1) = f and ^(2) ^ ') (11)

The activations of neurons within a layer are independent and their parallel

calculation is thus suggested. The problem is then one of matrix multiplication.

In the serial computer the choice of the matrix multiphcation algorithm used

is largely irrelevant, since all operations are scalar. Although the hterature on

^Certain commercial equipment is identified in order to adequately specify or describe the

subject matter of this work. In no case does such identification imply recommendation or

endorsement by the National Institute of Standards and Technology, nor does it imply that the

equipment identified is necessarily the best available for the purpose.

6

parallel matrix multiplication is vast the outer product^^ method on the array

processor^ is found to be superior if the matrices are much larger than the

number of processors. The following pseudocode multiphes two matrices, ml

and m2, obtaining the product m3. The outer product method is well suited to

machines such as the AMT DAP which have hardware broadcasting instructions.

real ml(L, M)

real m2(M, N)

real m3(L, N)

real acol(L) , arow(N)

real row_replicas(L, N)

real col_replicas(L, N)

^ L rows X M columns matrix

M rows X N columns matrix

^ L rows X N columns product

^ rows and columns of ml and m2

^ arow is broadcast down this matrix

^ acol is broadcast across this matrix

m3 = 0.0

do i = 1, M

acol = ml(,i) ^ col i of ml
eirow = m2(i,) ^ row i of m2
row_replicas = row_broadcast (arow, L) ^ aU rows the same

col_replicas = col.broadcast (acol, N) ail cols the same

m3 = m3 + row replicas *

}

col_replicas

The expensive operations here are

parallel accumulation. The more

products thus:

the parallel multiplication and the subsequent

naive inner product algorithm computes dot

real ml(L, M) ^ L rows X M columns matrix

real m2(M, N) ^ M rows X N columns matrix

real m3(L, N) ^ L rows X N columns result

real arow(N) ^ rows of ml and m2
real col_replicas(L, N) acol is broadcast across this matrix

do i = 1, N

{

^An array processor is considered here to be a finite two dimensional rectangular array of

SIMD processing elements. Operations on matrices larger them this array are looped transpar-

ently by the machine.

7

arow = ml(i,)

col_replicas = col_broadcast(arow, N) ^ all cols the same

m3(,i) = siiin_over rows (m2 * col replicas) sum all columns

}

The parallel product is inexpensive; the inefficiency of the method is determined

by the speed of interprocessor communication necessary for the term collection

in the “sum over rows.” The outer product algorithm is not dependent on this

bandwidth and is therefore faster.

2.1.2. Weight Modification

Forward propagation is necessary in training and in classification. During train-

ing the weight update is dependent on the error gradient. The error, E, is given

as the difference between the target output and the actual output thus:

E = ^ - (12)

The output layer error is weighted by the first deriviative of the squashed output

activation

A(2) = E 0 /'
j

(13)

where 0 denotes parallel component-by-component multiphcation. The hidden

layer error is obtained by passing the output deltas back through the final weight

layer.

= (w(2) 0 f (14)

The negative gradients of the error with respect to the individual weights are

= ^{0)^(1)^ g(2) ^ ^(1)^(2)^ (15)

The weights are independent and therefore the update operations are homoge-

nous and purely parallel. The weight update time is negfigible compared to

doing the forward propagation and gradient calculation.

3. The handwritten characters database

The data set used for the examples in this paper is known as FL3; it contains

features extracted from handprinted digits. There are 2000 patterns in the

training set and 1434 in the testing set.

8

The inital chajacter images were obtained by isolating and segmenting full page

images from the NIST Handprinted Characters Database; segmentation is de-

scribed in Wilkinson. The resulting character images were centered in a 32

X 32 array of pixels. Each character image then had a shear transformation, a

Gabor feature extraction, reducing each 1024-pixel binary image to a 32-feature

pattern.

3.1. Shear Transformation

The purpose of the shear transform is to remove the slant from the character

images. Pixel histograms are calculated for the top and bottom few rows of the

image. The centers of these two distributions determine a virtual hne between

them, which is used to construct the edges of a parallelogram around the char-

acter. Each row of the image is shifted horizontally to bring the edges of the

parallelogram into vertical alignment.

3.2. Gabor Feature Extraction

In classifying images, each 32 pixels by 32 pixels in size, to decide which character

is represented in each image, a neural network would need 1024 input values,

one for each pixel, if the image pixel values were fed directly to the network.

This network is larger than necessary. To get a smaller network, the essence

of each image must somehow be distilled into a smaller group of numbers, each

describing some feature, with the value of each feature used cis one of the input

values.

Various features are possible. Recently the Gabor functions^® have been pro-

posed as a model of mammalian visual receptive fields^® and as such are a bi-

ologically based method of extracting sahent features from characters. Such

features have been used with considerable success in machine print OCR^^ and

handprint OCR.^®

3.2.1. Gabor Filtering

Gabor functions come in even and odd variants:

<Acven(a:,y) = e cos(u;r')

<f>odd{x,y) = e~’‘^/‘^%in(u7r') (16)

where = x'^ -|- and <t and uj are parameters. The exponential term is a

Gaussian envelope that localises the feature extractor. Coordinates x' and y'

are transforms of x and y, shifted and rotated by angle 6:

(17)

9

Note that]/ is absent from Equation 16 so that the function represents a two-

dimensional sinusoid, offset by (a;o,yo)i locahsed in space by the Gaussian, and

oriented at angle {6).

Thirty-two such fimctions were used; the set of the five parameter Vcdues was

chosen empirically on the groimds of efficacy and is as follows. Assume the N
X N image has its origin at its center (0,0). Use identical Gabor functions in

each of the four quadrants centered at positions (±7V/4, ±7V/4). Within each

quadrant, use four orientations at angles 0, 7r/4, 7r/2, and 37r/4 radians. Use

one spatial frequency, u = 27t\/2/N, and one Gaussian envelope radius, a =
N\/2/8. Use both even (cosine) and odd (sine) functions.

Approximate the image by a hnear combination of the 32 Gabor functions; ob-

tain the coefficients by a least-squares fit. These 32 coefficients are the extracted

features in the FL3 data set; they are the inputs to the multilayer perceptron

networks in the next section.

4. Results

The initial weights were chosen from a uniform random distribution in the range

(—0.5, 4-0.5). Since different minima are found with different starting weights,

a statistical samphng of runs is necessary, each run with a different seed to

start the random number generator. Each run finds some local minimum, but

the particular one found is a sensitive fimction of the initial choice of weights.

In fact, two different brands of computers will ordinarily not find the same
local minimum, even given the same initial choice of weights; extremely minor

differences in doing arithmetic are sufficient, over many iterations, to cause

different local minima to be found.

All the rims use the same classification rules to divide the results into three

categories: Right, Unknown, and Wrong. For each pattern, the highest of the 10

output values is found. If the activation level is below a set activation threshhold,

the result is defined to be Unknown. If the activation level at least as large as

the threshhold, the result is accepted, and the answer is either Right or Wrong.

Except for Figure 3, all results reported here use a zero activation threshhold,

ehminating Unknowns.

For both BP and SCG, by far the most time-consuming part of the calculation is

done by the forward subroutine, which feeds the inputs forward to the outputs

according to Equation 1, then feeds outputs backwards according to Equation 7

to produce the gradient of the error function (step 4 of the algorithm in Section

1.1). BP does this once per iteration; SCG usually does this twice per iteration,

but occasionally more than twice. For comparing BP and SCG, we therefore

10

compare the number of calls to forward rather than the number of iterations.

Comparisons of algorithms depend strongly on the stoppping criteria described

in Section 2. The runs presented here use one of two sets of stopping criteria.

The early set uses criterion 5, stopping when the number of correctly classified

training patterns increases too slowly. Criteria 2, 3, and 4 are disabled by setting

C2, Ca, and C4 to zero. (Criterion 4 is not quite disabled by C4 = 0; if a local

minimum is found, the error cannot be decreased further.) Good values for SCG
are C5 = 1 and K = 10; C\ = 1000 is safe, since at most a few hundred iterations

are necessary. For BP it is necessary to use a larger iv
,
such as ii = 100, and to

allow a larger number of iterations. The early set strikes a reasonable balance

between the level of convergence obtained and the computer time used.

The late set emphasizes the level of convergence at the expense of computer

time; it uses criterion 1, stopping when the maximum number of iterations has

been used. Criteria 2, 3, and 4 are disabled as in the early set, with zero values

for C2, C3 ,
and C4. Criterion 5 is disabled by C5 = —100. Reasonable values for

SCG are K = 10 and Ci = 1000. BP needs K = 100 and Ci = 10000 or more.

In both sets, instead of C3 = 0, a value hke C3 = 10“^^ may be used for quicker

stopping in case of accidentally finding a local minimum quickly.

4.1. Training on the training set

Training on the 2000-pattem “training set,” followed by testing on the 1434-

pattern “testing set,” gives a reahstic picture of what can be expected. Note

that, for a practical application, only the best set of weights found is important,

since any inferior sets will be discarded.

Table 1 illustrates the effect of changing the number of hidden nodes in the

network. Eight hidden nodes are clearly insufficient, but after 24 hidden nodes

the improvement is small. In general, as the number of hidden neurons increases,

training and testing improve somewhat, training is more fikely to find one of the

poorer local minima, and training takes more calls to forward.

Choosing the Levenberg-Marquardt parameter, fi, must be done experimentally;

= 10“^ is reasonable; this value does not minimize the S error, but it gives

better classification results on both the training and the testing sets.

Figures 1 (early stopping criteria) and 2 (late stopping criteria, Ci = 1000)

illustrate the variability of results. Each figme shows results from computer

runs starting from 50 different random seeds for fi = 0 and for // = 10 The
activation threshhold is zero, so that there are no Unknowns. Note that fi = 10

is slightly better than fj
= 0 and that late stopping gives shghtly better results

11

than early stopping, although at a significant penalty in computer time; the

median number of calls to forward is 303 for early stopping and 2002 for late

stopping. Also note that there is httle correlation between the performances on

the training set and on the testing set.

Typical results for percent correct on the testing set as a function of the number

of Unknowns is shown in Figure 3. For each run, the activation threshhold

was successively changed to generate the desired percent of Unknowns; then the

remainder of the test pattern results were classified as Right or Wrong. For each

value of ten random starts were done and the nm with the best number

correct at zero activation threshhold was chosen. Note that httle improvement

is seen for > 16.

4.2. Training on the full set

To demonstrate that it is possible to have a set of weights that does equally well

on both sets, some runs trained on all 3434 patterns. As an example, with 24

hidden nodes, training produced a set of weights which gave 98.9% right on the

full set and 99.1% on the testing set.

4.3. Compzirison with backpropagation

In order to compare CG and BP, reasonable values of rj and a must be foimd.

Because of the in the definition of £(w; /z), our rj is larger by a factor of

than the usual one, and is to first order independent of Table 2 gives

the training error after 500 iterations of BP using the first 500 patterns of the

training set, all with the same random number seed. Note that 500 iterations

(501 calls to forward) are insufficient to train the 32-16-10 network.

From this survey and similar ones, reasonable values are rj = 10 and a = 0.25.

(No claim is made that these are ideal values.)

Figures 4 and 5 compare single rims of BP and SCG for a 32-24-10 network,

with late stopping and /z = 10“^, with iv = 10 for SCG and K = 100 for BP.

Note that any stopping criterion based on slowness of decrease of the error or of

the number wrongly classified is hkely to stop weU before the lowest values are

obtained.

5. Conclusions

SCG is faster than BP. An exact comparison is hard to obtain, but SCG appears

to be about 10 times faster than BP.

FL3 is a reasonable data set to use, but is not a large enough set for training a

practical network for classifying handprinted digits. If it were large enough, the

12

recognition rate on the testing set would not be appreciably lower than the rate

on the training set.

References

[1] D. E. Rumelhart, G. E. Hinton, and R. J. WiUiams. Learning internal

representations by error propagation. In D. E. Rumelhart and J. L. Mc-

Clelland, et al., editors. Parallel Distributed Processing: Explorations in

the Microstructure of Cognition. Volume 1: Foundations, chapter 8, pages

318-362. MIT Press, Cambridge, 1986.

[2] J. E. Dennis and R. B. Schnabel. Numerical Methods for Unconstrained

Optimization and Nonlinear Equations. Prentice-Hall, Englewood Chffs,

NJ, 1983.

[3] E. Stiefel. Uber einige methoden der relaxationsrechnung. Z. Angew. Math.

Physik, 3:1, 1952.

[4] H. Akaike. On a successive transformation of probabihty distribution and

its application to the analysis of the optimum gradient method. Annals of

the Institute of Statistics and Mathematics, Tokyo, 11:1-16, 1959.

[5] E. Polak and G. Ribiere. Note sur la convergence de methodes de directions

conjugees. Rev. Frangaise Information Recherche Operationnelle, 16:35-43,

1960.

[6] R. Fletcher and C. M. Reeves. Function minimization by conjugate gradi-

ents. Computer Journal, 7:149-154, 1964.

[7] E. M. Johansson, F. U. Dowla, and D. M. Goodman. Backpropagation

learning for multi-layer feed-forward neural networks using the conjugate

gradient method. IEEE Trans, on Neural Networks. To be pubhshed.

[8] M. F. MpUer. A scaled conjugate gradient algorithm for fast supervised

learning. Neural Networks. To be pubhshed.

[9] C. L. Lawson and R. J. Hanson. Solving Least Squares Problems. Prentice-

Hall, Englewood Chffs, NJ, 1974.

[10]

P. E. Gill, W. Murray, and M. H. Wright. Practical Optimization. Academic

Press, New York, 1981.

13

[11] D. F. Shanno and K. H. Phua. Remark on algorithm 500: Minimization of

unconstrained multivariate functions. ACM Trans, on Mathematical Soft-

ware, 6:618-622, 1980.

[12] P. M. Flanders, R. L. Hellier, H. D. Jenkins, C. J. Pavehn, and S. Van Den
Berghe. Efficient high-level programming on the amt dap. IEEE Proceed-

ings: Special Issue on Massively Parallel Computers, 79(4):524-536, April

1991.

[13] C. L. Wilson and M. D. Garris. Handprinted character database. National

Institute of Standards and Technology, Special Database 1, HWDB, April

18, 1990.

[14] R. A. Wilkinson. Segmenting of text images with massively parallel ma-

chines. In Visual Communication and Image Processing, Boston, MA, Oc-

tober 1991. SPIE.

[15] D. Gabor. Theory of communication. Journal of the Institute Electrical

Engineers, 3(93):429-457, 1946.

[16] J. G. Daugman. Representational issues and local filter models of 2d spatial

visual encoding. In D. Rose and V. G. Dobson, editors. Models of the Visual

Cortex, pages 96-107. J. Wiley and Sons, 1985.

[17] M. D. Garris, R. A. Wilkinson, and C. L. Wilson. Analysis of a biolgi-

cally motivated neural network for character recognition. In Proceedings:

Analysis of Neural Network Applications, pages 160-175. ACM Press, May
1991.

[18] M. D. Garris, R. A. Wilkinson, and C .L. Wilson. Methods for enhancing

neural network handwritten character recognition. In International Joint

Conference on Neural Networks, volume 1, pages 695-700. IEEE and Inter-

national Neural Network Society, July 1991.

14

Figure captions

Figure 1. Scatter plot of testing re-

sults vs. training results for 32-24-10

networks, early stopping. Open circles:

/i = 0; filled circles: p = 10“^.

Figure 2. Scatter plot of testing re-

sults vs. training results for 32-24-10

networks, late stopping. Open circles:

// = 0; filled circles: p = 10“^.

Figure 3. Percent correct as a func-

tion of the percent Unknown. 32-N^^^-

10 networks, early stopping, p = 10“^.

filled circles: = 8; filled triangles:

= 16; open circles: = 24;

open triangles: = 32.

Figure 4. Error vs. number of function

calls for a 32-24-10 network, late stop-

ping, p = 10“^. filled circles: SCG;
open circles: BP.

Figure 5. Percent wrong vs. number of

function calls for a 32-24-10 network,

late stopping, p = 10“^. filled circles:

SCG; open circles: BP.

Table 1: Results of training 32-A^(^Uio

feed-forward networks with SCG, p =
10“^, and early stopping. Tabular val-

ues are the number of calls to forward,

the percent correct on the training set,

and the percent correct on the testing

set, for the best run, selected from 10

runs with random starts.

Ar(i) Calls Training Testing

8 321 94.9% 93.0%

16 321 98.1% 95.1%

24 322 98.8% 95.2%

32 422 99.3% 95.7%

40 401 99.4% 95.3%

48 507 99.2% 95.2%

Table 2: Results of training a 32-16-

10 feed-forward network with 500 iter-

ations of backpropagation on the first

500 patterns of the training set with

seed 12345 and various values for rj and

a. The tabular value is the error.

V a
0.10 0.25 0.50 0.75 0.90

1 0.269 0.263 0.247 0.203 0.260

2 0.240 0.229 0.196 0.162 0.273

5 0.166 0.153 0.131 0.238 0.285

10 0.124 0.116 0.196 0.285 0.316

20 0.197 0.222 0.285 0.316 0.316

15

-J

V.v .

'V

-

«*
.It, *

' ii s
">•

.. J:V

\^''''\3r:i

iiJK ‘JSmn
'>';

,

'/
’''''

'l

m
>.i"'a«

’' r if. '’'=‘v/..

V -u./ i.-.
-a. ,•

;• ••
. .•/< v, / >'\

hidf''

r. j»” •'
-.r.-rrp^-’

•

yi'..D-
,

i,XA\

T©

.
.. .

“I

'
'

X»(

a:it.o €
:'ii /I"

i.^y y’.Ji.*]r?.

jS£,i) M£i> #|.4' i9i;0.

'um ,
:
4te.o '}&« a®, ^;(}'

ftK.C iat'S. .SS#;;,;«|.iJ

'

,' '."
:if

:' V ;S(fA^pS

. J'

i..’= -

:Vi;

FIG. 1

O

a>
CO
a>

CO
(T>

in
CD

in
CD CD CD

ro
O)

m
CD

^OSJJOQ |U90J8cl :5uj^S3i

17

97.0

97.6

98.2

98.8

99.4

100.

Training:

Percent

Correct

FIG. 2

O

ai050^0^CJ)Cn0>0>05
^OSJJOQ ;U90J8cl :bu\\SBl

18

97.0

97.6

98.2

98.8

99.4

100

.

Training:

Percent

Correct

100

FIG. 3

19

Percent

Unknown

FIG. A

(9A|^D|9J) J0JJ3

20

5000

10000

Function

Calls

FIG. 5

6uojm luaojScl :6ujU|DJX

o

21

5000

10000

Function

Calls

i!IST-114A

iEV. 3*90)

U.S. DEPARTMENT OF COMMERCE
national institute of standards and technology

BIBLIOGRAPHIC DATA SHEET

1. PUUJCATION OR REPORT NUMBER
NISTIR A776

Z PERFORMING ORGANIZATION REPORT NUMBER

3. PUBUCATION DATE
FEBRUARY 1992

TITLE AND SUBTITLE

Training Feed Forward Neural Networks Using Conjugate Gradients

AUTHOR(S)

Patrick J. Grother and James L. Blue

PERFORMING QBOAMIZATION (IF JOINT OR OTHER THAN NIST. SEE INSTRUCTIONS)

U.S. DEPARTMENT OF COMMERCE ___
NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY
GAITHERSBURG. MD 20899

7. CONTRACT/GRANT NUMBER

8. TYPE OF REPORT AND PERIOD COVERED

" SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (STREET, CITY, STATE, ZIP)

10. SUPPLEMENTARY NOTES

MSTMCT (A 200.WO.D O. L£SS FACTUM.SUMMMY OF yOST SIOWICAHT IWFOKyATIO.. IF DOCUMBrT INCU.OES A B^JOQI^PHY

LITERATURE SURVEY, MENTION IT HERE.)

Neural networks for optical character recognition are still being trained using back

propagation, even though conjugate gradient methods have been shown to be much faster.

Most multilayer perceptron network training results in the literature are obtained for

small and unrealistic problems or from data sets that are proprietary and not available

for comparison testing. We present results on a large realistic pattern set containing

2000 training and 1434 testing exemplars. Each pattern is composed of 32 Gabor

coefficients obtained from a 32 by 32 pixel binary image of a hand-written digit

segmented from the NIST Handwriting Image Data Base. These sets are believed to ^ave

ap^oximately 1% segmentation errors. Comparative results for Holler s scaled conjugate

gradient method and for standard back propagation are presented for runs on a seria

Lientific workstation and a highly parallel computer. Typical training on a network

with 32 inputs, 32 hiden nodes, and 10 output nodes gives a 98% to 99% recognition or

the training set and 95% for the test set. Training with conjugate gradients requires

fewer than 200 iterations; times are about 20 to 40 minutes on a scientific workstation

and 6 minutes on the highly parallel computer. Testing (classification) is <1°“® ^
rate of 600 and 1600 patterns per second on the scientific workstation

parallel computer respectively. These results suggest that commercial hand-written characteij

recognition systems with great economic potential are feasible.

a KEYWoaos mTO'2SHTa.ts^.lP«MgT.Cimo.DEK;CwaTMiZSOa
LY>.o.Ea.am.ES:«a.sePM«T.ae,wo.uS.YSEmicoLoas,

multilayer perceptrons; scaled conjugate gradients; OCR; parallel neural networks

oBTamunoa. oo «.t amsass to H.T,o«LTSCH.,cm. ,N«.«aT.OH seavca pms).
15. PRICE

ELECTRONIC FORM

r "

1

l^_.

•*'«M -li' -;

3Xd«XS:r«?:ft!-fe

^r^£aXtkt.^fX> Jim
^

Sc It? .fw.;*

I
,a;i4«)l,fc4s5g'

' sd3 ,3;!!'
'Jf/io/fe

y I d »d.t iM#®M.

u,

'-"'
'

-'i '-It
^

rf w %-4’l.i'^) '

m

