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Abstract

A two-dimensional model of a constant-density diffusion-controlled reaction with

finite reaction-rate chemistry occurring between unmixed species initially occupying

adjacent half- spaces is formulated and analyzed. The chemical reaction term is taken

to be appropriate for an isothermal, bimoleculax reaction for simplicity. An axisymmet-

ric viscous vortex field satisfying the Navier- Stokes equations winds up the interface

between the species as they diffuse together and react. The diffusion rates for the two

species axe assumed constant and equal so that a mixture fraction or Shvab-Zeldovich

variable can be used. The resulting equation for the mixture fraction is linear and can

be solved by noting that a Lagrangian coordinate system removes the convection and

that the equation permits a global similarity solution. The single nonlinear equation

for one species is also analyzed in a Lagrangian coordinate system. The dimension-

less equations depend upon three parameters, Reynolds number, Schmidt number and

the initial species concentration ratio, while the dimensionless time plays the role of a

Damkohler number. For large Schmidt numbers, a simple expression for the mixture

fraction can be obtained and the nonlinear equation for the species concentration can

also be substantially simplified. Asymptotic and numerical results show the structure of

the reaction region and the competing influences of reaction, diffusion and convection.

1 Introduction

Investigation of turbulent combustion has become an area of greatly increased activity over

the past several years. This activity has occurred because both theoretical and experimental
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progress has been made in the understanding of the governing processes and because of

the great technological importance of turbulent combustion. In earlier papers [4], [8], we

have mentioned some of the progress and discussed models which we have developed to

examine turbulent combustion processes. In particular, experiments indicate that, when the

Reynolds number is large, the length and time scales associated with turbulent combustion in

fires can be separated and analyzed individually. At the largest length scales, the geometry

defines the flow field, which is essentially inviscid or nondissipative away from boundaries. At

smaller scales, where the combustion occurs, diffusion of the fuel and oxidizer into each other

and reaction takes place, with subsequent reactant consumption and heat release. Finally, at

still smaller scales, the structure of the reaction zone in individual flamelets is important and

chemical species concentrations can be determined. The essence of the model of fire-induced

turbulent combustion outlined in [4] is to analyze each of these three scales separately at

first, and then to couple them through their dynamical interactions subsequently.

Marble [3] proposed a two dimensional model problem of small-scale mixing and reaction,

which he and his students studied extensively through analytical means [5], [6] and [7]. The

model is important because it includes the two-dimensional effects of flame stretching and

convective enhancement of diffusion in a diffusion-controlled reaction in a viscously spreading

vortex. The analytical method utilized by Marble and students to attack this problem is

based on a technique developed earlier by Carrier, Fendell and Marble [1] in which the flame

front is analyzed locally, assuming that the front is sharp, and summing over this flame front

to obtain global dependences of consumption rates upon the governing parameters. While

important scaling results are obtained, the mathematical limitations of the analyses are not

clear from the presentations [3], [5], [6] and [7], a fact pointed out by Rehm et al [8] and

addressed in their analysis.

In the present paper, the authors extend the analysis presented in [8] to consider the

effects of finite-rate chemistry. In Section 2 we formulate the problem and give its mathe-

matical description when there is a time scale associated with the combustion chemistry. In

Section 3 the case of infinite-rate chemistry is reconsidered and an asymptotic solution for

large Schmidt number (small species diffusion) is presented. This solution is new and much
simpler than that previously presented [8]. Transformations of the independent variables

make analysis of the problem more tractable. In Section 4 this analysis is applied to the case

of constant-temperature finite-rate chemistry and the results of the analysis are compared

with the infinite-rate case. The dependence upon governing parameters of the fuel consump-

tion rate (and therefore the heat release rate) is examined. In Section 5, numerical results

are presented.

2 Formulation of the Problem

Consider the model in which initially there is fuel in the left half-plane and oxidizer in the

right half-plane in arbitrary proportions. These half-spaces are brought into contact and

simultaneously a line vortex with axis at the origin is imposed (see Figure 1). The vortex

induces a convective mixing of the interface between the two species, increasing the area of the

separating surface in the neighborhood of the origin and enhancing the diffusion of the species

into each other. It is assumed that the reaction rate does not depend upon temperature, i.e.,
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that the reaction remains isothermal, and that the reaction is bimolecular. The chemical

reaction is assumed to take place at constant density and all diffusion coefficients (kinematic

viscosity, thermal and concentration coefficients) fire assumed to be constant. The tangential

velocity vg imposed is

do r
v0 (r,t) = r— =— [1 - exp(-iy)] (1)

where T is the circulation of the vortex, v is the kinematic viscosity and 77
= r 2 /4vt is a

similarity variable.

With the assumptions described above, the species equations are decoupled from the

momentum and continuity equations; they are equations representing a balance between

convection, diffusion and reaction.

_ /an* 1m 1 d’YA

dt r dO \ dr2 r dr r 2 dO2
)

-kYM
(
2

)

where i = 1,2 and D are the species diffusion coefficients, assumed to be constant and equal.

Here Yi is the mass-fraction of species i and is dimensionless. The initial conditions are that

Yi = y10,y2 = 0 for x/2 < 6 < 37r/2 and Yi = 0,y2 = Y2q for —x/2 < 0 < 7r/2 .

Rather than solve directly Eqs.(2), we will introduce other dependent variables, the

mixture-fraction variable and the difference between one species concentration and the

mixture-fraction variable. Define the mixture fraction variable

yi-y2 + y20
yw + y20

Note that a linear combination of equations (2) eliminates the nonlinear reaction term and

yields a linear equation for the mixture fraction.

(
3

)

dZ v± dZ_ _ _ ( d2Z ldZ_ 1 d2Z\

dt ^ r dO \ dr 2 ^ r dr r 2 dO2
)

with initial conditions Z = 1 for tt/2 < 0 < 3n/2 and Z = 0 for — 7t/2 < 0 < 7t/2. This

equation determines the solution to the infinite-rate or Same-sheet problem and was solved

in [8].

.

Using the mixture fraction variable Z, eliminate one of the species in Eqs. (2)

y2 — Y\ + l 2o — (Tio + Y2o)Z (5)

Then the equation for the Yi has the same left side as before while the right side is — kY\ [Yi -f

y2o — (Yio + y2o)Z]. We then change the dependent variable from Yi to W.

W(p,0o ,t) = Y1 (p,0<h r)/Y1 o - Z(r), 0o ) (6)

This change of variables eliminates any difficulty arising from the discontinuous initial con-

ditions in the species concentrations. The equation for W is

dW ve dW _ _ ( d2W 1 dW 1 d2W\
dt ^ r dO \ dr 2 ^ r dr ^ r2 dO2

J ^
= -k(W + Z)[Yl0W + y20 (l - Z)\
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The initial conditions are that W = 0 at t = 0 and the boundary conditions are that W —> 0

as r cos 9 —> ±oo away from 9 = ± 7t/2 .

The problem is made dimensionless using the kinetics time scale r0 = l/^y^Oi the length

scale defined by this time and the diffusion coefficient / = \JD/JcY2o and the concentrations

with respect to their initial values. With this scaling, the dimensionless time becomes a

Damkohler number. Three dimensionless parameters enter the problem, the ratio of initial

concentrations, a = Y10/Y201 the Schmidt number, Sc = v/D, and the Reynolds number,

Re = T /(47n/). First, the similarity variable becomes

tj = r
2
/( 4 Sc t

)

while equations
(
1

)
and (5) become

ve{r,t
)
= rd9/dt = 2 Re Sc /r[l — exp(— 77 )]

Y2/Y20 = aW + 1 - Z

Finally, the Eqs. (2), (4) and (7) for the dependent variables become

dY 4
V
_±?Xl _ 4 1^2 4 1 = _yy

dt r d9 \ dr2 r dr r2 d9 2
)

1 2

(
8

)

(9)

(
10

)

(ID

dZ_ ve_dZ_ _ ( d2Z \_dZ_ 1 d2Z\

dt + r d9 y dr2 ^ r dr r2 d92
)

(
12

)

dW v0 dW ( d2W 1 dW 1 d2W\
dt + r d9 \ dr2 ^ r dr r2 d9 2

)

= -{W + Z){aW + l-Z)

(13)

where all variables are dimensionless.

As in
[
8

]
we change to Lagrangian coordinates. Integrating the tangential velocity gives

the angle #(r, 0o,f) at time t for any fluid element initially located at r,# 0 • A change of

variables to the Lagrangian coordinates, /9,#o> r
i

9 = o0 + lii
2 TJ

t = T

where Ej(z
) = ff° t~ J exp(— zt)dt, can then be made in the all of the equations. For the

problem posed above for the mixture-fraction variable, which is the flame-sheet model (and

which we call the Marble problem [3]), there are no length or time scales, and we find that

Z is only a function of the similarity variable tj and the angle 90 .

In
[
8

]
the Marble problem was solved by Fourier analyzing the mixture fraction variable in

the Lagrangian angle 90 ,
solving the linear, two-point boundary value problem by asymptotic
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and numerical methods, and Fourier synthesizing the complete solution. The asymptotic

analysis involved a large- Schmidt-number approximation, and the simplification resulting

from that approximation was noted. This simplification allows the results to be interpretated

physically in a much more straight-forward fashion. The applicablity of this approximation

was tested against the direct numerical solution of the equations, and the conclusion was that

the large-Schmidt-number approximation has wider applicability than one might initially

expect. Recent experimental evidence [9] comparing mixing in liquids and gases comfirms the

conclusion that a large-Schmidt-number approximation, which is definitely valid in liquids,

is qualitatively (and approximately quantitatively) valid also in gases. In the next section a

new, much simpler asymptotic solution is derived for the mixture fraction when the Schmidt

number is large. The asymptotic results compare well with those obtained in [8] over ranges

of interest. The method used to obtain the mixture fraction is then utilized in the following

section on the more general problem with finite rate kinetics.

3 Flame-Sheet Problem

In this section, we concentrate on Eq. (12), the Marble problem, and obtain a quite simple

asymptotic solution valid for large Schmidt numbers. This solution is new and simplifies

considerably the solution of the more general problem where one is interested in the effects

of finite-rate chemistry. The use of Lagrangian coordinates eliminates the need to resolve

small-scale internal transition layers which arise when the Reynolds number is large. With
this transformation the problem reduces simply to a time-dependent diffusion problem. The
equation for the mixture fraction in Lagrangian variables becomes:

dZ_

dr

d2Z ldZ_

dp2
p dp

2

+ 1

1 d2z\

P
2 dd 2

)

dZ_ Re 1 - e~ n d2Z \ _
d0o + p rj dpd0o )

(15)

The solution depends upon the similarity variable and angle.

It is more convenient to use the similarity variable, 77 = p
2
/(4 Sc r), and the Lagrangian

coordinate normal to the interface between the fuel and the oxidizer, ( = \/Sa]cos60 . The
resulting equation for the mixture fraction is messy and is not stated here. However, this

equation simplifies considerably and allows additional analysis when the Schmidt number is

large. For large Schmidt numbers and for 77 > 0, Eq. (15) becomes

dZ (dZ 1
,

'W
+
2ac

+
I

d2Z
d(2

0 (16)

where Z —
> 1 as £ —> — 00 and Z —» 0 as ( —> 00 .

We now make a final change in variables from ( to p

P = Cfiv) (17)
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where

f(v) =
sj\ + Re 2

fx (rj)

Mri) = [1/3 -2E4 (rj) + E4 (2V ))/rj
2

/
OO

t
J exp (-xt)dt

(
18

)

Function fi(rj) was introduced in
[
8], where its properties were discussed.

With this new independent variable, and assuming that Z only depends on p, Eq.(16)

becomes
dZ d2Z

2/i

dp
+

d/i
2
= 0 (19)

and this equation has solution

Z{n) =
(
1 /2 )

erfc (p) (
20

)

satisfying boundary conditions that Z — 1 as //
—> — oo and Z — 0 as p —> oo. This

corresponds to boundary conditions in Eq. (16) stated in terms of 77 and (. It should be

noted that the error function profile for Z, which also emerges in the approximate analyses

noted above, is here derived in terms of the asymptotically exact independent variable.

4 Finite-Rate Chemistry Problem

Changing variables from Eulerian to Lagrangian in Eq.(13) yields the corresponding equation

for W
dW (

d

2W 1 dW ( / 1 — e~ n \
2

\ 1 d2w\
dr

y
dp2 +

p dp
+

V )
+

J P
2 ddl

j

2 Re / 1 -e-"\dW 2 Re 1 - e"" d2W 1

"
. P

2 v v J 960
+~p

77 dpdo0 \

(21)

= -\W + Z][aW +\ -Z)

with initial conditions that W = 0 at r = 0 and boundary conditions that W —> 0 as

pcos(6o) —> ±00 for away from ±7t/2.

For large Schmidt number (to lead order in Sc), the equation for the dimensionless

species concentration becomes, for 77 > 0
,

dW dW (dw
2 d(

1

4
Re

1 - e-^ y d2W
\ V )

+
\ 9( 2

-t(W + Z){aW + 1 -Z)

where the boundary conditions are that W —> 0 as ( —» ±00 .

With a change of variables to /z, 77 = rj/t and t = t, Eq.(22) becomes

(
22

)

,dW 1 , dW d2W
i-Qf

- + -g-r)
= -t[W + Z(p)][aW + 1 - Z(p)} (23)
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where

(24)F(V )
=

1 — exp(— 77 )

2

+ 1 f
2
(v)

and where W —> 0 as —»• ± 00 .

We now discuss some of the properties of Eq.(23). Note again that, in the dimensionless

variables used, the time is a Damkohler number, i.e., the ratio of a residence time for diffusion

to the chemical reaction time. First, away from the reaction zone (i.e., for 77 and /i not too

small and for t not too large), the right side must be zero. Setting this term, the chemical

reaction term, to zero implies either that W -f Z(fi) or aW + 1 — Z(/z) is zero. If the first

term is zero, both W and Z axe zero, and therefore, we are in the region where there is all

fuel (and no reaction). Similarly, if the second term is zero, both W and 1 — Z are zero, and

we are in the region where there is all oxidizer (and no reaction). Also, for large r\' or small

f', and any /i, the equation reduces to that of the one- dimensional
(
1 -D) version the problem

(the diffusion-reaction problem with no vortex field).

We have formulated this 1 -D problem as two coupled equations, one for the mixture

fraction and the second for the dimensionless species concentration, and we have utilized the

fact that a similarity solution exists for the case of infinite-rate chemistry. When the 1 -D

problem is formulated in this fashion, Eq.(23) is obtained with F(rj) = 1, n = ( = x/ (2\/ Set)

and x,t the dimensionless distance and time, with Sc = 1 . The important point to note

is that the two-dimensional problem reduces to the one-dimensional case when either the

Reynolds number is zero (i.e., the circulation of the imposed vortex is set to zero) or at

laxge distances from the vortex center where the imposed velocity vanishes. We note that

the equation above for the dimensionless species concentration in the large-Schmidt-number

approximation generally is close to the one-dimensional equation when the function F(T)'/t')

is approximately unity, and this occurs, as seen in Eq.(24), when either the Reynolds number

is small or at large distances relative to the diffusion of vorticity at a specified time (large 77 ).

In the first subsection below, we will also find that the 1-D equation is a good approximation

to the full 2-D problem even for large Re provided that the time is small and radius not too

small.

This one-dimensional problem has been formulated earlier and solved by asymptotic

methods by Kapila [2] in a manner somewhat different than that described above. Specifi-

cally, Kapila formulated the problem as two coupled equations for the dimensionless species

concentrations. He noted specifically, that his formulation does not require that the dif-

fusivities be equal (and therefore has an additional parameter representing the ratio of

diffusivities for the two species). He determined asymptotically the properties of this 1 -

D reaction-diffusion problem both at early and late dimensionless times. Specifically, he

determined the structure of the flame sheet as time becomes large relative to the chemical

kinetics time scale.

The one-dimensional problem solved by Kapila [2] can be used to deduce much of the

structure of the solution to the present problem. The solution for the 1-D reaction-diffusion

problem determines completely the reaction- diffusion structure in the far field (away from the

imposed vortex) since Eq.(23) is the generalized problem with a variable diffusion coefficient

F(tj) which depends only upon the parameter 77 . The asymptotic analyses presented by

Kapila reveal the structure of the reaction-diffusion zone in regions away from the influence
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of the vortex. In paxticulax, for small times (or Damkohler number), the reaction has not

been able to progress far. Each species is initially a step function with all fuel to the left

of the interface and all oxidizer to the right. At early times, each diffuses according to

the 1-D solution to the diffusion equation for an initial step function, namely, according to

the well-known complementary error function solution (see pp 79-81 of [2] and specifically

Figure 3.4). Later, the structure during the “birth of the reaction zone”, as Kapila calls

it, occurs. During this phase, there are outer regions where the fuel and oxidizer remain

undisturbed, and these axe chaxacterized, as described above, by the reaction being zero so

that there is either all fuel or all oxidizer, as we have noted from Eq. (23). Kapila then

determines the inner region, where both the fuel and the oxidizer make the transition from

their outer-region values continuously to zero (see pp 81-82). Finally, there is an inner-inner

region where the flame structure is detemined by a full transient reaction-diffusion balance.

By rescaling variables, Kapila reduces this problem to one reported earlier in the literature

[11]. Finally, by variable rescalings, the solution to the 1-D problem for later times when

all three terms in the 1-D equation must be retained in the analysis is again reduced to

that obtained by Friedlander and Keller [11]. It should be noted that both the inner-inner

structure and the later-time solutions cannot be evaluated by analytical means, but require

numerical evaluation.

For early times, Eqs. (23) and (24) simplify considerably, reducing to the 1-D problem

discussed above over large regions of the solution plane. In the first subsections below,

an approximate solution in terms of special functions is presented for early times and the

consumption rate at early time is calculated. In later subsections, we discuss the long-time

solution or fast reaction case, relating the results to those obtained by Kapila, and calculate

the consumption rate from the long-time solution. Generally, we have chosen to determine

the solution to Eq.(23) directly by numerical methods, and these results are presented in the

last section.

4.1 Slow Reaction

We examine this equation in the limit of small time or small reaction rate. In this case, we

change dependent variables to

W( f
i,t) = t'H0 (v) (25)

For small time f' < 1 and Ket'/rj' <C 1,

f\ -> ( 1/3)(W)
2
,/ l/^/l + (l/3)( Ref'/ 7/')

2 and F -> 1 - (2/3)( Re t'/V ')
2

. Then the

equation for Ho reduces to the same equation one obtains in the one-dimensional problem

discussed above, namely,

^ + 2^-iHoW = 4Z( f,)[l-ZM} (
26 )

and this equation has an analytical solution in terms of special functions. The solution is

H0(C) = a+ (C)H+ (O + a.(OH-(O

where

a+(C) = —2y/ir
[

d( exp(£ 2
)tf_ (£)[1 - erf

2

(£)]
J —OO

(27 )
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a_(C) = -2^^ d(exp{C
2)H+ (^)[l - erf

2
(£)]

H+ (()
= (1/2)(C

2 + l/2)erfc(C) - ^exp(~C
2

)

H-(C) = (1/2)(C
2 + l/2)erfc(-C) + 2^ eXp(~^

(28)

The condition t' <C 1 is simply a statement that time is small relative to the chemical

reaction-rate time. The second condition, Ret'/r)' <C 1, on the other hand, is a condition

relating the Reynolds number and the radius at the time under consideration. It states that,

for a given vorticity or circulation (or Reynolds number), the radius cannot be too small or

the approximation will be invalid. The solution for H0 gives the slope of the solution for W
at early time. It is interesting that, once again, in this limit, the full 2-D problem reduces to

the 1-D one. The numerical results presented in the next section show that the early-time

behavior does indeed look like a 1 -D problem.

4.2 Consumption Rate for Slow Reactions

Here, we will concern ourselves on the calculation of the consumption rate at early times.

The consumption rate is calculated directly by integration over the plane of the local reaction

rate term
t2 jt t-oo

(R) = d9 rdrR(r,6,t
)

Jo Jo
(29)

where

R = kY10Y20(Z + W)( 1 -Z + W) (30)

Performing all of the transformations of variables, this integral can be written

(R) =*Yl0D Sc
l in l J^\R+ + R-) (31)

where R(//, 77
", f') and R± denotes _R(±£', 77", f') where £' = Scr/" /t'fi.

Now for small time, as noted above, W is proportional to time, so that for early time,

\w\ < \Z\, and we can approximate the local reaction rate by kZ( 1 — Z). If we now
integrate by parts, and make one additional simplification (not required, but useful) that

sin
-1

(/i) « ( 7172 ) 7/,
then

(R) «4r10DSc< /

[
7r/4J1 (Re, Sc

) + 2/v^J2 (
Re, Sc)] (32)

where

Ji= f <V[1 - erf
2
(0]

J2 = f
dT]'{7r/^)[ed(V2^)/(V2^)-eTf{()exp(-^)} (33)

J0

where ct]', and from these integrals, the parametric dependences upon the

Reynolds number and the Schmidt number can be assessed. The first observation that can
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be made about the consumption rate is that it is proportional to time; i.e., the rate of

reaction of the species increases linearly with time at early time. This behavior is to be

contrasted with that of a fast reaction, or late time, where the consumption rate is constant

as a function of time.

4.3 Fast Reaction

When the time is long or the reaction fast, then over much of the solution plane there

is still either fuel or oxidizer and no reaction, as noted earlier. Furthermore, the solution

very quickly passes over approximately to the flame-sheet or infinite- rate-chemistry case

everywhere except near the flame front (as will be shown by examples in Section 5). Only

in the reaction region near the z-axis and around the winding reaction front will there be

variations from the flame-sheet solution.

The reaction-zone structure can be related to the results given by Kapila [2]. Here, we

simply state his results in terms of our formulation and notation in the 1-D case. If we

change the independent variable from /i to £ and the independent variable from W to W as

follows

P =

f = -(i/2) +rV

Then erf (£t
A

)
—> t

A and, as Kapila [2] finds, A = 1/3. The equation for W is

(34)

cPW f - 0— =i(W--L)(W + -L) (35)

(Some numerical factors do not agree between the two formulations.) The solution for this

equation was solved earlier by Friedlander and Keller [11].

4.4 Consumption Rate for Fast Reactions

The consumption rate for a stoichiometric mixture was calculated originally by Marble [3]

and by alternate means by Rehm et al
[
8

]
to obtain the parametric dependences of this

rate upon Reynolds and Schmidt numbers. Here, we use the expressions derived above to

calculate the consumption rate in the flame-sheet limit, specializing again to the case of

a stoichiometric mixture for simplicity. However, with the expressions derived above, this

specialization is not necessary.

We begin with the solution for the mixture fraction Eq.(20) and the definition of the

independent variable //, Eq.(17). At the flame sheet, the constant Z(]ij) = Zj contour is

determined as a constant [i = fif curve. Along the the flame sheet, 6 0 is a function of 77 ,
and

through the transformation between Eulerian and Lagrangian coordinates, we determine 0(7])

and the derivative rdO/dr. The consumption rate is proportional to the normal derivative

of the mixture fraction along the flame sheet,

dZ_

dn
= in • VZ

10



dZ „
• V/z

For the special case of a stoichiometric mixture, /z / =0, and the algebra simplifies

considerably. In this case, the integral of the normal derivative of the mixture fraction along

the flame sheet simplifies to the expression

2 -y/ScT /-°° /( y)

y/ir Jo y/rj

\e 2

—j-(l — exp(—

r

/))
2

V
2

dr] (36)

An observation about this integral is in order. When the Reynolds number is set to zero,

so that no mixing occurs, the one-dimensional case is recovered. In this case, /(r/) = 1
,
and

the integrand is simply the reciprocal of the square root of 77 ,
which when integrated over

the infinite interval, is infinite. This unbounded integral arises from the fact that the flame

sheet is infinite, and, therefore, the consumption rate is unbounded. It can be eliminated by

only calculating the enhancement in the consumption rate produced by the vortex mixing,

as noted in previous analyses [3], [
8 ]. When this is done, we can obtain the enhancement in

the consumption rate for all values of the Reynolds number (for large values of the Schmidt

number). However, when the Reynolds number is large, the enhancement is obtained by

eliminating the first term in the square bracket, replacing f(rj) by its asymptotic form for

large Reynolds number, and integrating from the inner core (where burning has ceased)

to infinity. The lower limit of integration is determined by 7
/ c = (/z c Re / \/3 Sc

)

2 /3 where

/zc << 1 specifies the inner core, where Z(/z) ~ 1/2. The enhancement is found to be

proportional to ( Re Sc
)

2 /3
,
as determined in earlier analyses.

5 Numerical Results

In this section, we show results both for the flame-sheet solution and for the finite-rate

chemistry solution in the large-Schmidt-number approximation. Results determined from the

expressions derived in Section 3 are compared with those determined by methods described

in
[
8

]
also making a large-Schmidt-number approximation. As noted earlier, the approximate

solution described in Section 3 is much simpler than that obtained earlier
[
8 ], and this simpler

solution (and the transformation used to obtain it) allow one to carry the analysis in the

finite-rate-chemistry case much further.

In Figure 2a are shown contours of constant mixture-fraction variable Z in the Lagrangian

coordinate system as a function of p and 60 . These contours were determined using the

methods described in
[
8

]
and are for Re = 100, Sc = 10. (For display purposes, the data

was generated on a 151 2
grid.) The contours are for |

Z

— 0.5| = e, 0.1, 0.2, 0.3, 0.4 with

e = 10
-2

. The contours Z = 0.5 ± 10
-2

are close to the critical one for stoichiometry, and

these contours in Lagrangian coordinates remain close to the y-axis away from the origin and

broaden due to combustion to a flat circular region around the origin. In Figure 2b is shown

the same set of contours, but with e = 10
-4

. In Figure 2d is shown the same set of contours,

but with e = 0.0. Note that the contour for | Z — 0.5| = 0.0 behaves in an unusual, not

symmetrical fashion; it is not correct. As shown in [12], this behavior is a result of numerical

underflow in computing the asymptotic expressions in
[
8 ]. In Figure 2c is shown the same
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set of contours with e = 0.0 but computed using symmetric level index (sli) arithmetic [13].

Sli is a methodology for computing quantities over a much wider dynamical range than is

usually available in standard computer arithmetic. With sli, numerical underflows can be

significantly reduced, and this procedure was used to determine results for Fig. 2c [12].

These contours are correct.

Figures 3a through 3d show the same contours as those shown in Figures 2a through

2d and calculated in the same way, but in Eulerian coordinates. The contours in Eulerian

coordinates display the winding which is characteristic of the process and difficult to compute

accurately by standard numerical methods. The incorrect behavior exhibited in Fig. 2d is

reflected in Fig. 3d; compare the correct behavior shown in Fig. 3c.

Each contour in Figures 2 and 3 represents a flame sheet for a different value of the

mixture fraction initially (or a different value of a = T10/V20). As noted earlier, only for

stoichiometry does the flame sheet remain along the y-axis far from the origin; for other

values of the mixture fraction initially, the flame sheet either follows a contour on the fuel-

rich side (1/2 < Z < 1) or on the fuel-lean side (0 < Z < 1/2). Therefore, when each of these

contours is displayed in Eulerian coordinates, it represents a flame sheet for an appropriate

initial mixture fraction in the laboratory reference frame.

Figures 4 and 5 show the same contours displayed in Figures 2 and 3 respectively, but

calculated using the asymptotic expressions obtained in Section 3. In Figs. 4a and 5a,

the contours are shown for e = 10
-2

while in Figs. 4b and 5b, the contours are for e =

0.0; the contours for e = 10
-4

are indistinguishable from those for e = 0.0 in each case.

These figures were generated using sli. However, for the expressions derived in Section 3,

the underflow does not occur and, therefore, correct contours are generated using standard

computer arithmetic.

Only in Figures 4a and 4b, where the contours are displayed in Lagrangian coordinates,

can any significant differences between the two asymptotic expressions be seen, and then

only in the neighborhood of the origin. The most apparent difference is that the contours

are symmetric with respect to the x-axis using the expressions derived in Section 3, whereas

they are not in the expressions derived in [8]. For the purpose of calculating the reaction-

rate enhancement due to vortex mixing, these differences are relatively small since near the

origin, where the differences are largest, the reaction rate has been significantly reduced due

to the mixing and diffusion.

For finite-rate chemistry, we show results at a few times for only one set of parameters

assuming large Reynolds and Schmidt numbers and stoichiometry, Re = 100, Sc = 10, and

a = 1. In Figure 6, four plots of W are shown at dimensionless times t'=20.4, 152, 1136 and

3103 as computed from Eq.(23) over a 10x10 region of the 77 plane and plotted by evaluating

W on a grid and using NCAR graphics. The deviation of the species from that found using

flame-sheet analysis, W, is found to change from its initial value, zero, to its minimum value,

-0.5, as a spiral that slowly winds up and expands out into the plane, indicating how the

structure of the combustion zone changes in physical space as time progresses. It should be

noted that in the core of the expanding spiral region, the value of W becomes zero again

where the reaction is complete. As noted in the last section, for early times, there is only

a reaction-diffusion balance; convection has not had time to develop and to distort this

balance. For the scale used here, this balance is the appropriate one everywhere except near

the origin. Therefore, in the plot of W, even up to a few units of time, W is essentially zero

12



everywhere except along the z-axis and within about a unit of the origin, where only slight

rotational distortion has begun to occur. For comparison, Z, the mixture-fraction variable

is shown at the same four times in Figure 7. The reaction rate at these times is shown in

Figure 8, showing how the structure of the reaction zone developes as time progresses.

In Fig. 9, the reaction rate at several times is contrasted for (a) stoichiometry (a = 1.0)

versus (b) nonstoichiometry (a = 0.5). The reaction rate is plotted at a specified value of

t/, or radius, as a function of //, the coordinate normal to the flame front, for eight times in

each case. Note that the reaction is skewed toward the fuel-rich side for a = 0.5 compared

to the symmetric case of a = 1.0.

Finally, in Figure 10 is shown the result of plotting Y\/Y\o and Y2/Y20 versus Z at many
spatial points for three different times. At relatively early time, the concentration ratios for

each species vary smoothly from zero to one with mostly fuel on the fuel side and mostly

oxidizer on the other, but some of each on both sides of the reaction zone. At later times,

however, the region of orerlap where both fuel and oxidizer are nonzero decreases. Finally,

at the last time, a state relation develops in which the relative concentration depends only

upon Z and not on time, and only fuel is found to the left of the flame while only oxidizer

is found to the right. Also, the flame structure has collapsed to a flame sheet.
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Figure Captions

Figure 1. Schematic diagram of vortex, flame-sheet interaction.

Figure 2.a. Contours of constant mixture-fraction variable Z in Lagrangian coordinates

for Re = 100, Sc = 10 using the asymptotic epressions from [8]. The contours are for

|

Z — — 0.5| = e, 0.1, 0.2, 0.3, 0.4 with e = 10
-2

.

Figure 2.b. Contours of constant mixture-fraction variable Z in Lagrangian coordinates

for Re = 100, Sc = 10 using the asymptotic epressions from [8]. The contours are for

|

Z

= — 0.5| = e, 0.1, 0.2, 0.3, 0.4 with e = 10~4
.

Figure 2.c. Contours of constant mixture-fraction variable Z in Lagrangian coordinates

for Re = 100, Sc = 10 using the asymptotic epressions from [8]. The contours are for

|

Z

= — 0.5| = e, 0.1, 0.2, 0.3, 0.4 with e = 0.0, and symmetric-level-index arithmetic has

been used to evaluate the asymptotic expression.

Figure 2.d. Contours of constant mixture-fraction variable Z in Lagrangian coordinates

for Re = 100, Sc = 10 using the asymptotic epressions from [8]. The contours are for

|Z = — 0.5| = e, 0.1, 0.2, 0.3, 0.4 with e = 0.0, and standard arithmetic has been used to

evaluate the asymptotic expression. Note that the graphical representation of the function

is misleading.

Figure 3.a. Contours of constant mixture-fraction variable Z in Eulerian coordinates for

Re = 100, Sc = 10 using the asymptotic epressions from [8]. The contours are for

|

Z

= — 0.5| = e, 0.1, 0.2, 0.3, 0.4 with e = 10
-2

.

Figure 3.b. Contours of constant mixture-fraction variable Z in Eulerian coordinates for

Re = 100, Sc = 10 using the asymptotic epressions from [8]. The contours are for

|Z = — 0.5| = e, 0.1, 0.2, 0.3, 0.4 with e = 10" 4
.

Figure 3.c. Contours of constant mixture-fraction variable Z in Eulerian coordinates for

Re = 100, Sc = 10 using the asymptotic epressions from [8]. The contours are for

|Z = — 0.5| = e, 0.1, 0.2, 0.3, 0.4 with e = 0.0, and symmetric-level-index arithmetic has

been used to evaluate the asymptotic expression.

Figure 3.d. Contours of constant mixture-fraction variable Z in Eulerian coordinates for

Re = 100, Sc = 10 using the asymptotic epressions from [8]. The contours are for

|Z = — 0.5
1

= e, 0.1, 0.2, 0.3, 0.4 with e = 0.0, and standard arithmetic has been used

to evaluate the asymptotic expression.

Figure 4. a. Contours of constant mixture-fraction variable Z in Lagrangian coordinates

for Re = 100, Sc = 10 using the asymptotic expressions given in Section 3. The contours

axe for | Z = — 0.5
1

= e, 0.1, 0.2, 0.3, 0.4 with e = 10
-2

.
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Figure 4.b. Contours of constant mixture-fraction variable Z in Lagrangian coordinates

for Re = 100, Sc = 10 using the asymptotiv expressions given in Section 3. The contours

are for \Z = — 0.5
1

= e, 0.1, 0.2, 0.3, 0.4 with e = 0.0.

Figure 5. a. Contours of constant mixture-fraction variable Z in Eulerian coordinates for

Re = 100, Sc = 10 using the asymptotic expressions given in Section 3. The contours are

for |Z = — 0.5| = e, 0.1, 0.2, 0.3, 0.4 with e = 10
-2

.

Figure 5.b. Contours of constant mixture-fraction variable Z in Eulerian coordinates for

Re = 100, Sc = 10 using the asymptotic expressions given in Section 3. The contours are

for |

Z

= — 0.5| = e, 0.1, 0.2, 0.3, 0.4 with e = 0.0.

Figure 6. Plots of the variable W at four different times, P=20.4, 152, 1136 and 3103,

for the parameters Re = 100, Sc = 10 and a = 1. IT is defined as the dimensionless

difference between species 1 and the mixture-fraction variable (see Eq.(6)).

Figure 7. Plots of the variable Z at four differenc times, P=20.4, 152, 1136 and 3103,

for the parameters Re = 100, Sc = 10 and a = 1. Z is the mixture-fraction variable (see

Eq.(3)).

Figure 8. Plots of the rate of reaction at four differenc times, f'=20.4, 152, 1136 and 3103,

for the paxameters Re = 100, Sc = 10 and a = 1. The rate of reaction is given by the

expression (W + Z)(aW -f 1 — Z) (see the right side of Eq.(21) for example).

Figure 9. a. Plots of the rate of reaction as a function of //, the coordinate normal to the

flame front, for a fixed value of i/, the radius, at eight times, for Re = 100, Sc = 10 and

a = 1 .

Figure 9.b. Plots of the rate of reaction as a function of //, the coordinate normal to the

flame front, for a fixed value of v, the radius, at eight times, for Re = 100, Sc = 10 and

a = 0.5.

Figure 10. Plots of the variables Ti/Fio and versus the mixture- fraction variable

Z at three different times, t' = 7.5,20.4, and 1136. The parameters for the plots are

Re = 100, Sc = 10 and o = 0.5.
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