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Abstract

Calculating the distance from camera to feature point by

temporal cross-correlation of pixels in a flat image plane is better

done using simple geometric relations than using time differentials.

Both these methods of computation will be presented and contrasted.

The effect of measurement error and other inaccuracies on the

determination of range is also described.
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1 Introduction

An important problem in machine vision is to determine the

distance from camera to feature by appropriately interpreting a two

dimensional image or sequence of images of that feature [1,2, 3, 4, 5].

Several solutions have succeeded well by exploiting a sequence of

images obtained through relative motion of camera and feature point

[6,7,8,9,10,11,12,13]. Another method of determining distance,

called temporal cross-correlation [14], which exploits known motion

shows promise. This is similar in principle to the Reichardt model of

human motion sensors in which one calculates the time required for

a feature (e.g., a point source of light) to move between two small

detectors which are separated by a known and fixed distance [15].

The problem might best be introduced by examining figure 1

and the definitions within it.

vAt = vdftf))
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The goal is to determine the perpendicular depth, h, to a small

(small enough to be nearly flat), yet, finite sized feature. We assume

a simple case where a camera is moving perpendicular to the optical

axis and there is only one component of camera motion. It is

assumed that the velocity of the camera is known and constant over

the time interval t0 to t
x

. Figure 1 indicates that pixels 0 and 1 are

symmetrically located in the image plane on either side of the optical

axis. We define d as the center-to-center distance between pixels.

The actual width of each of the two pixels will, typically, be less than

d. If one can determine the time. At, required for the feature to be

detected by the pixel (picture element) at position 1 on the flat image

plane after it is detected by the pixel at position 0, then h can be

found. Two methods of obtaining h will be given: a simple geometric

method and a time differential method.

2 Geometric Method

A geometric method for finding the depth, h, falls easily out of

the definitions in figure 1 by noting the two similar triangles.

h s , svAt= — => h =
vAt d d

( 1 )

At is the only unknown in this expression and is obtained by the

method of temporal correlation as discussed in section 4.

3 Time Differential Method

A time differential method for finding the depth, h, can also be

derived using the definitions in figure 1.

A(t) is defined as the angle (at time t) between the camera

velocity vector, v, and the range vector, r(£), from lens to feature. h

is the perpendicular distance from camera to feature and is constant

with respect to time (see figure 1). Let t0 = -t
l

in figure 1. This

implies (assuming a constant camera velocity) that A(t = 0) = n/2 . As a

result of these definitions.
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From simple geometry,

csc(A(£)) =

(2 )

(3)

If we substitute equation 3 into equation 2, we get.

v _ dA(t) r(t)

h dt h
csc(A(f)) or r(t) =

usin(A(f))

dA(t)/dt
(4)

The accuracy of equation 4 for calculating r(t) is dependent on

whether one can accurately evaluate dA(t)/dt, which, among other

things, is dependent on the shape of A(i). From equation 2,

A(£) = cot
-1
(-vt/h) ^

Referring back to figure 1, we see that £0 = -At/2 and tj =A£/2. Then

we can define AA(0)4A(£j)- A(t0 ). From equation 5 and figure 2 it can

be seen that A(t) is not a linear function of t. In fact.
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Using equation 4 and since the derivative is only approximated by

AA(t)/At.

r(0-
uAtsin(A(t))

AA(0 (7)

Referring to figure 1 again and letting t = 0,

r(0) = h «
vAt

AA(0) (8 )

Equation 8 says that the depth, h, to the feature is approximated by

the constant velocity of the camera times the time. At, it takes the

light from the feature to traverse through AA(0) radians divided by

AA(0). In addition, the expression, uAt/AA(0), in equation 8 will

always be greater than the correct value for the depth, h. This can

be seen from the shape of A(t) as depicted in figure 2.

4 Temporal Correlation

It has been shown [14] that At (in equations 1 and 8) can be

found by doing cross-correlation of time sequences of intensity

output of the pixels at positions 0 and 1 on the image plane (see

figure 1). Each of these time sequences have N components. In this

sense. At is equal to the shifting required to match or "fit" one time

sequence with the other. In mathematical terms, if xn is the finite

series of discrete time samples of the analog output of the pixel at

position 0, and yn is the same for the pixel at position 1, then we

want to find the pmtn e {0,1,...} that minimizes

N -
1 2

X(*n-yn+p) (9)

over all positive integers p. If the sampling period is T, then

A£ = PmlnT.

5 Error in the Distance to a Feature

An advantage to equation 1 (h = svAt/d) is that there might be a

gain in the precision (and, perhaps, accuracy) of h (the
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perpendicular distance to a feature) by making d bigger without

sacrificing the exactness of the expression. It is argued below that,

under certain conditions, there is some (possibly slight) gain in

precision by making d bigger.

Equation 1 is only theoretically exact. Alas, the true values, d

and s, may not perfectly match the published specifications of the

manufacturers of the detector and camera. In addition, v is a

measured quantity that will have its own errors, dependent upon the

precision and accuracy of the velocity measuring equipment. At

results from the cross correlation operation and is also a measured

quantity with its own sources of error (e.g . detector noise, amplifier

noise, poor focus to the feature, quantization, occlusion, and lack of

flatness in the feature).

We will now define these errors and analyze their effect on h.

For the remainder of this section, consider that h, s, d, v. At are

random variables of mean /zh ,
/xs , /id ,

/iv , and variance o£, oj, c^.

In addition, it can be expected that the errors in s and d will

be fixed with respect to time and are therefore semi-correctable (i.e.

calibrate the optical system by placing an object at a known distance

from the lens and making a sufficient number of measurements of h

in order to determine the correction factor). In this case, we can

assume that

tf = o?=0 ( 10 )

implying that s and d are deterministic. We will further assume that

the random variables, v and At, are independent since their errors

are caused by independent measurement systems. From equation 1

we get an expression for ojj, the error in depth.

( 11 )

Now we will show that an increase in d will cause a decrease in

o£. From figure 1 we see that, if we increase d to d', /iM will

increase to, say, nM .. In addition.

5



A*At - £W
d d'

( 12 )

This gives a new expression for o£
2

, the new error in depth.

In equation 13, it is assumed that crf
(
* o^,, which is to say that the

variance of the random variable At will be effectively independent of

the size of its mean.

Using equation 12, we find that the second terms on the right

hand side of equations 11 and 13 are equal. Therefore, the first and

third terms on the right hand side of equations 11 and 13,

^{rfol. + ol^/d 2 and s
2 (o^

t + c^
t
/z

2
)/d'

2
, respectively, prove our

claim (i.e., if d < d', > o£).

To give a realistic example, let s = 60 mm, d = 0.5 mm,

Hv - 1 m/s, and /zh = 30 cm (corresponds to a thin lens system with

focal length equal to 50 mm). These values imply that nAt = 2.5 ms.

Let <7V = 0.05 m/s and <r
At = 50 |is. If we increase d by a factor of ten,

d' = 5 mm (with no change in the size of each pixel) and iiM . =25 ms.

Finally, using equations 11 and 13, we see that, indeed, the error in

depth is reduced slightly, since cfh = 1.5 cm < <jh = 1.6 cm. Note,

however, that a rather large change in d produces a relatively small

change in depth accuracy, since (crh -a£)//zh <1%.

It should also be noted that an increase in At might cause

greater error in camera velocity (i.e., an increase in o^). Therefore,

an increase in d may very well not decrease the error in depth. To

demonstrate this, using the values given in the above example, say

that gv = 0.05 m/s increases to &v = 0.055 m/s. With only this slight

change, we see that (even with the tenfold increase in d)

&h = 1.65 cm > <xh = 1.62 cm, i.e. the error in depth increases.

There is a further cost for choosing d large. If the scene has

lots of occlusion, the pixel at position 0 may see the feature while the

pixel at position 1 does not, if, at that perspective, the feature is

occluded by some other feature. This tradeoff between accuracy and
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occlusion would have to be considered for each individual

application.

In conclusion, if the scene has minimal occlusion and one

expects no increase in the camera velocity error, one might choose d

to be large as possible to get maximum accuracy. However, in

general, one can more easily maintain the required constant camera

velocity over a shorter time period which argues for d small.

Otherwise, one would choose pixels that are adjacent or nearly

adjacent (which is equivalent to choosing d small).

6 Conclusion

All else being equal, it has been demonstrated that equation 1

(the geometric method) is a more accurate way to calculate depth, h,

than is equation 8 (the time differential method), assuming a flat

image plane (which will be true for the vast majority of available

semiconductor photo detector arrays). Both methods require that

the camera velocity, v , be constant over the time. At. At can be a

relatively long time for distant features. Nonetheless, for many
applications, the variation of v during the time. At, will be negligible.

It is argued in section 5 that, under certain conditions (minimal

occlusion and no change in camera velocity error), there is some gain

in precision by making d (in equation 1) bigger. However, there is a

loss using the time differential method of equation 8 in making d

larger (increasing the field -of-view) as can be seen by examining

figure 2.
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