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Analyzing and Exploiting Numerical Characteristics of

Zone Fire Models

Glenn P. Forney* William F. Moss^

Abstract

In order to design robust and stable zone fire modeling algorithms, the nu-

merical properties of computer arithmetic and the modeling differential equa-

tions must be understood. This report examines some of these properties and

provides tools for their analysis. Many sets of differential equations for zone fire

modeling can be derived using the laws of conservation of mass and energy. A
comparison between various possible formulations is made in terms of numer-

ical properties. One property that many formulations possess is the presence

of multiple time scales. Pressures equilibrate much faster than other quanti-

ties such as density and temperature. Numerically, this property is known as

stiffness. Stiffness, in the context of fire modeling, and numerical methods for

handling it are discussed.

1 Introduction

1.1 Background

An understanding of the numerical properties of computer arithmetic and the dif-

ferential equations used in modeling is required for the design of robust and stable

zone fire modeling algorithms. The basic premise used to formulate a zone fire

model is that an enclosure can be divided into a number of regions or zones each

with approximately uniform conditions. These zones interact by exchanging mass

and energy [1]. Mass and energy conservation along with expressions relating mass,

density, volume, internal energy, temperature and pressure can be used to show

that many formulations exist for tracking conditions in zones. These formulations

are equivalent in the sense that one formulation may be converted to another using

physical laws such as the ideal gas law or definitions such as that for density or inter-

nal energy. Computationally, zone fire modeling is challenging due to the numerical
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characteristics of the basic conservation equations used to simulate mass and energy

exchange between various zones. The purpose of this report then is to provide a

numerical foundation for the design of fire modeling algorithms. It is important to

understand when differences in these algorithms are numerically significant so that

the best possible fire modeling algorithms can be designed and implemented.

1.2 Overview

Fire modeling algorithms need to be designed with the limitations of floating point

arithmetic in mind. The types of error encountered in a computational algorithm are

described. Basic tools from numerical analysis are presented in order to understand

how errors introduced in the modeling process propagate or grow.

Several zone fire modeling formulations are derived using conservation of mass

and energy. The advantages and disadvantages of each formulation from a numerical

perspective are indicated. Approximate formulations based on the rapid equilibra-

tion of pressure are discussed. Other approximate formulations based on a simplified

treatment of the lower layer are also discussed.

The numerical characteristics of a few physical models for exchanging mass and

energy between zones where interesting numerical problems have been observed

are discussed. The behavior of the differential equations treated as a system is

also discussed. The fact that pressure in a room equilibrates rapidly in response to

changing fire size, vent area, and layer height causes difficulties in the solution of the

differential equations. This phenomenon is called stiffness. Algorithms for solving

stiff systems of ordinary differential equations are outlined.

Floating point numbers, model numbers and machine or computer numbers are

all terms that refer to those numbers that are exactly representable on the com-

puter. The appendix presents a model of floating point arithmetic which details

how numbers are represented in computers and how operations with these numbers

behave.

2 Sources and Analysis of Numerical Error

The introduction of error into a fire modeling algorithm is inevitable; however, the

algorithm should be designed to minimize the impact of these errors. Some common
sources of error are physical models which do not completely describe the phenomena

of interest, imprecise data, limitations of the algorithms used to solve the modeling

equations, and numerical errors introduced when these algorithms are implemented

on a computer. This report is mainly concerned with the last two sources of error.

2.1 Sources of Numerical Error

Numerical error can be divided into three categories: roundoff, truncation and dis-

cretization error. Roundoff error occurs because computers represent real numbers
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using a finite number of digits. The best that can be expected is that the computed

result of an operation is the nearest floating point number to the true result. The

appendix details the properties of computer arithmetic as implemented on most

computers used today. These properties can be summarized by the statement that

“subtractions can cause significant loss of accuracy in a numerical computation and

this loss of accuracy can be greatly amplified in subsequent calculations, a condi-

tion termed catastrophic cancellation.” Truncation error occurs when an infinite

process is replaced by a finite one. This can happen, for example, when an infinite

series is truncated after a finite number of terms or when an iteration is terminated

after a convergence criterion has been satisfied. Discretization error occurs when

a continuous process such as a derivative is approximated by a discrete analog such

as a divided difference.

Consider the problem of finding the solution at f > 0 to the scalar initial value

problem

fr =

y(0) = h .

Denote this solution by y{t). A discrete analog of problem (1) is obtained by re-

placing the derivative by a divided difference. The simplest example is the Euler

method. The advantages and disadvantages discussed below of using the explicit and

implicit Euler methods are representative of more complicated methods for solving

differential equations. These alternate methods differ in the number of terms in the

Taylor expansion that are considered.

Choose a positive integer n (the number of steps) and define r,- = ih, z = 1, . .
. ,

n,

where the stepsize h = t/n. Then = t and y{i) is approximated by which is

defined by the recurrence

= fin, yi), z = 1, . .
. ,
n - 1

yo = b

.

The quantity yiTi) — y{ is usually called the global error. Disregarding roundoff error,

the final global error, y{t) — z/„, can be shown to be proportional to the stepsize h

under fairly general assumptions about / (see [2]).

A problem such as (1) is called stable or well-conditioned if small changes

in the data or input parameters produce small changes in the solution; otherwise,

the problem is called unstable or ill-conditioned. It is important to note that

this concept has nothing to do with numerical methods for solving the problem. If

fi'’’,y) = o.y ill (1) with a > 0, then this problem is unstable or ill-conditioned. This

can be seen by examining the family of solutions to the differential equation that

pass close to the initial point (0, h). As illustrated in Figure 1, two of these solutions

can be close at t = 0, but widely separated at t > 0. Similarly, if /(r, y) = ay in (1)

with a < 0, then this problem is stable or weU-conditioned.
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Figure 1: A Graphical Example of Instability

The inherent error of a problem is the maximum error that could occur in the

solution if the data were perturbed by a relative amount no greater than machine

epsilon where machine epsilon is the smallest positive number added to one that gives

a result different than one. This and other floating point properties are discussed

in more detail in the appendix. In the simplest case where f{T,y) = ay in (1), the

inherent error would arise from perturbations in a and b. An algorithm for solving

a problem is called numerically stable if the error in the numerical solution is the

same order of magnitude as the inherent error; otherwise, it is called numerically

unstable. Roughly speaking, an algorithm is numerically unstable if small errors

made at one stage are amplified in subsequent stages and seriously degrade the

accuracy of the overall computation.

It is important to distinguish between iU-conditioned problems and numerically

unstable algorithms. An iU-conditioned problem cannot be made well-conditioned

by simply using stable algorithms. AU algorithms will have difficulties for such

problems. In extreme cases, when increasing the precision of the computation does

not help, it may be necessary to modify the problem.

Consider the Euler method applied to (1) with /(t, y) = —ay and a > 0. The

analytic solution is y(t) = yoexp{—at) which decays with increasing t. The discrete

solution using the explicit Euler method and assuming exact arithmetic is t/,- =

yi-i(l - ah) = yo{l - ah)'. The growth of the global error, e,- := |y(r,) - y,|, will

determine if the Euler method is numerically stable. The global error at step i

can be expressed in terms of the global error at the previous step to be

e,+i = |y(r,+i) - j/i+il

= - (1 - (^h))y{Ti) + (1 - ah){y{Ti) - y,)|

< yo^-^ - ah\ei .

The expression |1 — a/i| is called the amplification factor. If h > 2/a, then |1 — a/i| > 1
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and both e, and grow exponentially with the index i. In this case the Euler method

will be numerically unstable (even on a computer that uses an infinite number of

digits in its arithmetic).

If a > 0, the best option is to change to an implicit method such as the backward

Euler method given by

Vi+i - Vi

h

yo

f{ri+i,yi+i), i = I

b .

The error bound for the backward Euler method is

C:+l <
|1 + ah\

Here the amplification factor is 1/(1 + ah). For aU positive h, the amplification

factor is less than or equal to one and the backward Euler method is numerically

stable.

This example says that an unstable algorithm can give the wrong result for

a stable or well-conditioned problem, whereas a stable algorithm will give correct

results. Further, ill-conditioned problems cannot be made weU-conditioned by using

stable algorithms. Strategies for improving the solution of ill-conditioned problems

must center on methods for changing the problem to make it more stable.

2.2 Analyzing Numerical Error

Floating point error bounds, such as those presented in the appendix, derived using

fundamental properties of computer arithmetic, are difficult to apply to complicated

problems. Simpler tools, however, can be derived for analyzing error propagation

properties of differentiable functions. Suppose that a fire algorithm can be expressed

as a function f{x). As an example, the input x could represent pressure and the

value of / could represent enthalpy flow rate through a vent. If x is perturbed by

an amount h, how is f{x) affected? This question can be addressed using condition

numbers. Suppose / has two continuous derivatives. From Taylor’s Theorem, it

follows that

Af := fix + h)- fix) = f'ix)h -b 0(h2) (2)

where Oih?) denotes a term that is bounded by a constant times h^. The absolute

condition number of /, denoted Ca(/), is defined to be the coefficient of h in an ex-

pansion of Af in powers of h. To a first order approximation, the absolute condition

number relates the absolute changes or error in x with the absolute changes in /
according to

A/ = Caif)h.
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Consequently

Caif) = fix) .

Similarly, the relative condition number of f, denoted Cr(/), is defined to be the

coefficient of h/x in an expansion of A/// in powers of h/x. From ( 2 )
it follows

that

Crif)
xfjx)

fi^)

Similarly, the relative condition number relates the relative error of x with the

relative error of / according to

— =

The absolute and relative condition numbers Ca and Cr can be used to analyze

numerical properties of fire algorithms. These condition numbers give a quantitative

measure of how input errors are magnified by a problem. For example, consider the

expression

9vent — K\/Pi — P2

for enthalpy flow rate through a vent where K = CpCvent^vent y/‘^PventTvent »
Cp is the

constant pressure specific heat, Avent is the area of the vent, Cvent is the vent flow

coefficient, and Pvent a-nd Tvent are the density and temperature of the gas flowing

through the vent. The pressure difference Pi — P2 across the vent drives the flow of

mass through the vent. The relative and absolute condition numbers for ^vent with

respect to pressure Pi are

^ai^vent) —

^r(9vent) —

Both condition numbers show that problems can occur when Pi and P2 are close

and in the case of the relative condition number, these problems are independent of

K.

Condition numbers can be generalized to predict error propagation properties of

vector-valued functions, for example see
[
3]. Table 1 gives the absolute and relative

condition numbers for a few elementary functions.

9vent

Pi

Pi -P2'
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Table 1: Absolute and Relative Condition Numbers for a Few Elementary Functions

/ Ca(/) Crif)

fix) fix)
f(^)

X a 1
X

x+a

ax a 1

sin(a;) cos(x) X cot(x)

a;“ a

eax ax

3 Zone Fire Modeling Formulations

The zone fire models presented here take the mathematical form of an initial value

problem for a system of differential equations. These equations are derived using the

conservation of mass or continuity equation, the conservation of energy or the first

law of thermodynamics, the ideal gas law, and definitions of density and internal

energy (for example, see [4]). The conservation of momentum is ignored. These

conservation laws are invoked for each zone or control volume. A zone may consist

of a number of interior regions (usually an upper and a lower gas layer), and a number

of wall segments. The basic assumption of a zone fire model is that properties such as

temperatures can be uniformly approximated throughout the zone. It is remarkable

that this assumption seems to hold for as few as two gas layers.

Many differential equation formulations based upon these assumptions can be

derived. One formulation can be converted into another using definitions of density,

internal energy and the ideal gas law. Though equivalent analytically, these formu-

lations differ in their numerical properties. One property that many share is the

presence of multiple time scales. Physically, the pressure in a compartment equili-

brates much quicker than densities and temperatures. Numerically, this property is

known as stiffness and requires the use of special differential equation solvers. The
physical origins and numerical consequences of stiffness are discussed in more detail

in section 4.2.

Each differential formulation can be expressed in terms of mass and enthalpy flow

rates. These flow rates represent the exchange of mass and/or energy between zones

due to physical phenomena or sub-models such as fire plumes, natural and forced

vents, convective and radiative heat transfer etc. For example, a vent exchanges
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mass and energy between zones in connected rooms, a fire plume typically adds heat

to the upper layer and transfers entrained mass and energy from the lower to the

upper layer, and convection transfers energy from the gas layers to the surrounding

walls.

Using the formalism developed by Cooper for CCFM.VENTS [4] the mass flow

rate to the upper and lower layers is denoted mu and mi and the enthalpy flow

rate to the upper and lower layers is denoted qu and qi. It is tacitly assumed that

these flow rates may be computed in terms of zone properties such as temperatures,

densities, etc. These rates represent the net sum of all possible sources of mass and

energy due to phenomena like those listed above. The numerical characteristics of

the differential equation formulations are easier to identify if the underlying physical

phenomena are decoupled in this way.

Many approximations are obviously necessary when developing physical sub-

models for the mass and enthalpy flow rate terms. For example, most fire models

assume that 1) the specific heat terms Cp and Cy are constant even though they

depend upon temperature, 2) hydrostatic terms can be ignored in the equation of

state (the ideal gas law) relating density of a layer with its temperature. We wish to

distinguish between various formulations according to whether they are mathemati-

cally equivalent to the conservation laws of mass and energy. A formulation which is

equivalent to the conservation laws will be denoted conservative otherwise it will

be identified as approximate. Conservative formulations in this sense are not nec-

essarily better than approximate ones. The next two sections discuss formulations

which are conservative and approximate. Again, two conservative formulations that

are equivalent mathematically need not be equivalent numerically.

3.1 Conservative Formulations

A compartment can be divided into two control volumes, an upper layer of hot gases

and smoke and a lower layer of air as illustrated in Figure 2. The gas in each layer

has attributes of mass, internal energy, density, temperature, and volume denoted

respectively by m,-, Ei, pi, Ti, and Vi where i = L for the lower layer and i = U
for the upper layer. The compartment as a whole has the attribute of pressure P.

These eleven variables are related by means of the following seven^ constraints

Pi = Y (density) (3 )

Ei = CymiTi (internal energy) (4 )

P = RpiTi (ideal gas law) (5 )

V = Fl + Vu (total volume) . (6 )

^We get seven by counting density, internal energy and the ideal gas law twice (once for each

layer).

8



Components of mass and
enthdpy entering or leaving a
zone

Figure 2: Two Layer Zone Model Setup

The specific heats at constant volume and at constant pressure Cy and Cp, the uni-

versal gas constant, i?, and the ratio of specific heats, 7, are related by

7 =

R =

For air, Cp « 1000 kJ/kg K and 7 = 1.4.

The differential equations for mass in each layer are trivially

dmi
dt

dmu
dt

mi

mu .

The first law of thermodynamics states that the rate of increase of layer internal

energy plus the rate at which the layer does work by expansion is equal to the rate

at which enthalpy is added to the gas. In differential equation form this is

internal energy work

dt dt

enthalpy

( 7 )

A differential equation for pressure can be derived by adding the upper and lower

9



layer versions of equation (7), noting that
dVj,

dt

dVr,

dt
and

to obtain

dEi di^c.ijTTiiTi) Cfj d
f p-y \

dt dt R dt
*

dP 7 - 1 ..
,

.

lu
= •

(8)

(9)

Differential equations for the layer volumes can be obtained by substituting equation

(8) into equation (7) to obtain

f = ^((7 - IW. - Kf ) . (10)

Equation (7) can be rewritten to eliminate the ^ term to obtain

dEi 1 jrdP.

Differential equations for the densities can be derived by applying the quotient rule

to ^ ^ (^) using equation (10) to eliminate ^ to obtain

dpi

dt

-1 ^
( 11 )

Differential equations for temperatures can be derived by applying the quotient rule

to ^ ^ using equation (11) to eliminate ^ to obtain

dTi 1 //• • T.,.rdP.
( 12 )

Differential equations for each of the eleven variables are summarized in Table 2.

Notice that a ^ term occurs in all but the mass equations. For many fire scenarios

this term can be set to zero. Section 3.3 discusses approximations to the zone fire

modeling equations derived by dropping the pressure transient terms.

Using the constraint equations (3) to (6), it can be shown that four of the

eleven variables can be chosen as solution variables. The time evolution of these

solution variables can be computed by solving the corresponding differential equa-

tions together with appropriate initial conditions. The remaining seven variables

can be determined from the solution variables. There are, however, many possible

differential equation formulations. The numerical characteristics of some of these

formulations will be discussed in the next section.
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Table 2: Conservative Zone Modeling Differential Equations

Equation Type Differential Equation

i’th layer mass

pressure ^ + qu)

i’th layer energy

i’th layer volume ^ = :^((7 - 1)9. - Kf

)

i’th layer density
dt - CpT,V,ii^t CplhiTt)

i’th layer temperature
dt ~ cpPiV,(^^^

Cpth^Tt) + ^1 dt.)

Table 3: Conservative Zone Model Equation Selections

Zone Fire Model Equations Substitutions

CFAST, FAST [5]
d^P dVjj dTjj dTj,

dt ^ dt dt I dt
AP=P- Pref

CCFM.HOLE [6]
dAP dy dpu dpi
dt ' dt' dt ' 'dt

AP = P - Pref, y = VL/Aroom

CCFM.VENTS [4]
dAP dy dmjj dmr.
dt ' dt' dt ' dt

AP = P - Pref, y = VllAroom

FIRST, HARVARD V [7]
dEjj dEj. dmrr dmr.
dt ' dt ' dt ' dt

3.2 Numerical Characteristics of Several Zone Fire Modeling Dif-

ferential Equations

There are 330 different ways to select four variables from eleven to form a system of

differential equations. Many of these systems are incomplete due to the relationships

that exist between the variables given in equations (3) to (6). For example the

variables, pjj, Vu, mu and P form a dependent set since pu = mufVu- Table 3

shows the solution variable selection made by a few zone fire models. The variable

y that appears in this table is the height of the upper layer above the compartment

floor.

The number of differential equation formulations can be considerably reduced

by not mixing variable types between layers; that is, if upper layer mass is chosen

as a solution variable, then lower layer mass must also be chosen. For example, for

11



two of the solution variables choose mi, and mu, or pi, and pu, or Tl and Tf/. For

the other two solution variables pick El and Eu or P and Vl or P and Vu- This

reduces the number of distinct formulations to nine. Since the numerical properties

of the upper layer volume equation are the same as a lower layer one, the number
of distinct formulations can be reduced to six.

The next several subsections discuss the numerical implications of using these

formulations. Some of the problems discussed can be solved by ignoring the pressure

equation. The resulting approximate equations and their implications are discussed

in section 3.3.

3.2.1 Pressure

Some of the numerical problems that arise in zone fire modeling are due to the

difficulty of computing accurate pressure differences across vent openings. When
adjacent room pressures are close, a catastrophic cancellation will lead to a loss

of significant digits. If the pressures are too close, the result of the subtraction is

roundoff noise. This can cause problems if the noise is amplified in the next stage

of the computation; that is, the noise is propagated and may dominate some later

stage of the calculation. This problem is compounded by the fact that the base

pressure in a room at 1 atmosphere is about 10^ pascals (Pa). Pressure drops across

a vent as low as .1 Pa can cause significant mass flow through a vent. Therefore,

if pressure is used as a solution variable, seven accurate digits must be carried in

order to have one significant digit in the vent flow calculation. One way around this

problem is to solve for an offset pressure, AP, where for some reference pressure,

Pre/, the room pressure is given by

P = PreJ + AP .

The differential equation for relative pressure, AP is given by

dAP
dt

3.2.2 Internal Energy

The problem with using internal energy in a formulation is the difficulty in accurately

determining the offset pressure, AP, needed for accurate vent flow calculations. In

large part this is due to the fact that energy is not an intensive variable, it is

proportional to layer volume as well as temperature. To illustrate, consider that

the total room pressure can be expressed in terms of lower and upper layer internal

energy and room volume by using equations (3) to (6) to obtain

P = ^{El + Ei,).

dPref
dt dt

dP
-r- if Pref is Constant
dt

’

12



Substituting El = Ere/ + ^El, Eu = Eref + ^Eu and P = Pref + AP into the

above equation and solving for Eref and AP we obtain

AP

Eret

l-^(AEi. + AEu)

P,dV

2(7-1)

The term, AP can be small while the term \AEl\ + |AP(/| is large. This will result

in cancellation errors. The term, AP, will not be zero in general, therefore we can

not assume that AEl = —AEu. Section 3.3.2 discusses the approximation where

AP is assumed to be zero.

3.2.3 Temperature and Density

The temperature and density differential equations have several advantages and

disadvantages in common. As seen in Table 2, both the density and temperature

equations have the term qi — CpihiTi. The vent flow component of this term is

identically zero for flows leaving a zone since the enthalpy flow rate for a vent

flow is 9vent = CpThyent^vent- An Unnecessary subtraction can be avoided by setting

this vent flow component to zero analytically, thereby avoiding a loss of significant

digits. This property of the density and temperature equation is due to the fact

that, ignoring pressure transients, the temperature of a room is not affected by flows

leaving it. Similar cancellations must also be eliminated in the pressure equation

for this strategy to be useful. Unfortunately, this is not possible unless the pressure

equation is dropped from the equation set.

The density and temperature equations also have a problem in common. Both

have layer volume terms in the denominator which may vanish. Although these

singularities are removable (if they were not the derivatives ^ and ^ would be

infinite), they cause numerical problems since it is difficult to determine proper

values for ^ and ^ in this case. One method used to solve this problem is not to

allow layers to vanish.

3.2.4 Mass

The mass equation does not have the vanishing denominator problem of the density

or temperature equation. Using the mass equation allows sensible initial conditions.

The mass for a layer with zero height is just zero. However, quantities derived from

mass such as density are only valid when a layer volume has a significant number

of accurate digits.

3.3 Approximate Formulations

The formulations discussed in this section are approximate in the sense that cer-

tain terms deemed negligible are removed from the modeling differential equations

13



Table 4: Approximate Zone Model Equation Selections

Zone Fire Model Equations Substitutions

ASET [8, 9] y — ^l!^Toom

BRI [10, 11] oII

LAVENT [12, 13] P — P . ^ 'T^ — 'T ,

eimb? df ^ (If ^ L — amo y — ^l!-^room

derived in Section 3.1. Three types of approximations and their error behavior are

discussed. Two involve the elimination of the pressure transient, (^), terms. A
third way approximates the differential equations by assuming that the conditions

in the lower layer remain at ambient. Some fire models along with their variable

choices that use some of the approximation techniques discussed in this section are

listed in Table 4. ASET assumes the pressure remains at ambient and uses a non-

dimensional form of the layer height and upper layer density equations. BRI assumes

that the pressure relaxes to quasi-steady values instantly. BRI solves a non-linear

algebraic equation equivalent to equation (9) with ^ set to zero. First, we examine

the behavior of pressure as motivation for making these approximations.

3.3.1 Behavior of the Pressure Equation for a Heated Enclosure with a

Small Leak

The pressure in a compartment approaches steady state rapidly if other compart-

ment properties such as layer temperatures, fire size, and vent sizes are constant.

The equilibrium pressure value depends on the fire size and vent areas or more

generally on the sources and sinks of enthalpy in the room. To characterize the

equilibrium pressure value and the time required to reach equilibrium, consider a

room with a fire that is vented to the outside as illustrated in Figure 3.

To simplify the analysis assume that the vent is a slit located at the floor so that

Bernoulli’s law.

^vent — CventAvent vent^P ?

can be used to model the mass flow through the vent. The conclusions found here

hold for more general vent algorithms since they aU use or compute pressure dif-

ferences. Here Ayent denotes the area of the vent, Cyent? the vent coefficient, while

Pvent denotes the density of the vent flow gas. Further, assume that the density and

temperature of the gas flowing through the vent is constant over the time period

required to reach pressure equilibrium. This is reasonable since this time period is

typically rather short.
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Figure 3: One Room Test Case

The source of enthalpy in the room is the fire and is denoted by 9fire^* The
enthalpy flow rate out of the room is due to the vent and is denoted by ^vent- The

initial value problem for the pressure drop across the vent is

dAP
dt

AP(0)

y ( 9fire 9vent

)

0

(13)

where AP is the pressure drop across the vent, V is the volume of the room, and

the other terms have been defined previously. Setting

a =

b =

problem (13) simplifies to

7 - 1 .

Y 9fire

7-1
V CpCvent •'4-ventTvent vent ?

dAP
dt

AP(0)

a-b\fAP

0 .

This differential equation is separable and can be integrated to obtain the implicit

solution

‘ ^ ( i- VaV/apJ -

^Most entrainment models used by fire plume models do not affect the calculation of the pressure

rise or transient time since the enthalpy entrained from the lower layer cancels with the enthcdpy

added back into the upper layer.
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Figure 4: Pressure Equilibrium Values for a One Room Case

or equivalently

AP = APoo (15)

with the equilibrium pressure APo© given by

ap.= (2)^i.ooxio-(^)\ (16)

where Tvent = 300ii',/>vent = l-2fcfif/m^,Cvent = -68 and Cp = lOOOkJ/kgK

.

Taking

the limit as t —>• oo, equation (15) verifies that AP©© is the equilibrium pressure and

equation (14) shows how long it takes to achieve it. Substituting AP/AP©© = .99

into equation (14) gives the time required for the pressure to reach 99 per cent of

APoo or

<.99 « 21.5
AP©©

9fire/k^

For a room with volume 18m^, a 100 kW fire, and an equilibrium pressure of .1

Pa, the time required to reach 99 per cent of the equilibrium value is approximately

.00038 seconds.

Figure 4 shows the dependence of equilibrium pressure on fire size and vent area.

Figure 5 shows how the time required to reach equilibrium is affected by these same

two quantities.

This analysis shows that pressures tend towards equilibrium values very quickly.

The equilibrium pressure value is a function of quantities that affect the sources

or sinks of enthalpy in a room. The flow of enthalpy through a vent into and out

16



Figure 5: Pressure Equilibrium Times for a One Room Case

of a room is affected by vent area, layer heights and temperatures etc. The fire

also contributes to the enthalpy gain in a room. As these quantities (vent area,

layer heights, fire size, etc) change, the room pressure adjusts almost instantly to a

new quasi-steady state value. Numerically, this property is known as stiffness. A
numerical challenge of zone fire modeling is to determine pressures accurately and

efficiently.

For a one room model the algebraic equation (16) can be used to determine the

equilibrium pressure instead of the pressure differential equation (13). Furthermore,

the ^ term in the other zone modeling differential equations (as expressed in Table

2) can be dropped in cases when ^ goes to zero almost instantly.

3.3.2 Constant Pressure Approximation

The constant pressure approximation is based on the assumption that ^ = 0 and

that the compartment pressure is given by the pressure at some particular elevation

usually the floor. It is further assumed that Pqoot is hydrostatically related to a

reference pressure using

Pfloor — -fref PrefdV&ooT

where Pref a.nd pref are the reference pressure and density, g is the acceleration

of gravity, and y^oor is the distance between the floor and the reference elevation.

Usually, Pref is the atmospheric pressure at the reference elevation under ambient

conditions and pref is the ambient density. In the simplest case, when each room’s

floor is at the reference elevation, the floor pressure is the same as the reference
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Table 5: Approximate Zone Modeling Differential Equations

Equation Type Differential Equation

i’th layer energy
dE, ^
dt 7

i’th layer volume rfV. _ (7-1)9.
dt -yP

i’th layer density il 1 1

i’th layer temperature dTi _ q,-Cpm,Ti
dt ~ Cpp,V,

pressure for aU rooms. Table 5 gives the approximate zone modeling differential

equations corresponding to the conservative ones given previously in Table 2. The
equations in this table were obtained by neglecting the dP/dt term in Table 2 where

P is the total pressure in a room.

These approximate equations are reasonable if the true pressure offsets (with

respect to Pfioor) small compared to the hydrostatic head, the pressure drop

between the floor and the ceiling. This pressure drop is about 35 Pa for a room
with a 3m ceiling containing air at ambient conditions (p = 1.2kg/m^). Equation

(16) shows that for a simple one room model an equilibrium pressure offset of .1 pa

corresponds to a ^fu-e of 100 kw, an Avent of Im^, and ambient pvent and Pvent-

The absolute errors generated by using the approximate equations in Table 5

can be estimated by defining an error differential equation for each variable. As-

suming that the mass and enthalpy sources are the same for the conservative and

approximate differential equations, define the approximation error for the tempera-

ture equation using

where T, denotes the approximate temperature. An initial value problem for ef can

be derived using

de
t̂

dfi dTi

dt dt dt

-1 dP

CpPi dt

ef(0) = 0 .

This equation can be solved assuming that the density is constant over the time

period required to achieve equilibrium. The result is

-APc
temperature error

CpPi
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Table 6: Approximate Zone Modeling Differential Equation Error

Equation Type Error Estimate

i’th layer energy
7

i’th layer volume VijAPpo
7P

i’th layer density APpn
CpTi

i’th layer temperature -APoo
Cppi

The error in temperature resulting from this approximation is related to the mag-

nitude of the equilibrium pressure. The approximate equations are then valid eis

long as the pressure rise is not significant. Another way of looking at this is that

the conservative equations in Table 2 are essentially the same as the approximate

equations in Table 5 except during a transient period when ^ decays to zero.

Approximate errors for the other zone modeling equations are derived similarly

and are presented in Table 6. The error defined by equation (17) underestimates

the actual error since the enthalpy flow rate out of a room is highly sensitive to the

pressure drop across the vent.

3.3.3 Algebraic Pressure Approximation

The pressure differential equation (9) can be approximated algebraically by deter-

mining the pressure that satisfies the non-linear equation

iL(^) + = 0
. (18)

Unlike the pressure approximation in the previous section, this pressure will not in

general be constant in time. For simple cases, such as a one room model with one

fire and layer height above a thin slit vent, this equation can be solved analytically

for F. For example, using equation (16) for the equilibrium pressure offset AFqo,

this equation has the solution

^ — ^ref +
Qfire

CpCyentAvent^vent \/^Pvent

2

Rehm and Baum in [14] similarly calculate the equilibrium pressure rise in the

context of field modeling.

For multiple room simulations the approximation is more complicated. An equi-

librium pressure offset must be calculated for each room using an equation similar
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to (18). This results in a system of equations since the equilibrium pressure in one

room depends on the equilibrium pressure in another via vent connections. Differen-

tial equation solvers such as Petzold’s DASSL [15, 16] can solve algebraic equations

simultaneously with differential equations. This was tried with CCFM.VENTS.
It was found that there was no advantage to doing this. The algebraic pressure

equation version could not track rapidly changing pressures and run times were not

significantly shorter.

3.3.4 A One Zone Approximation

Conditions in the lower layer are essentially ambient for many fire scenarios of

interest. This observation may be exploited by replacing the differential equation

for lower layer density (equation (11)) with pi, = Pamb or the differential equation

for lower layer temperature (equation (12)) with Ti = Tamb- This is equivalent to

assuming that the rate of mass and enthalpy additions to the lower layer satisfy

qL/{cpmL) = Tamb which wiU be true as long as the temperature of flows added to

the lower layer are at ambient.

4 Zone Fire Modeling Numerical Characteristics

Physical models of natural and forced vent flow, fire plumes, radiation, conduction,

convection etc are used to exchange or transfer mass and/or energy between zones.

As with the differential equation formulations discussed in the previous section, two

physical models for computing these phenomena may be identical physically but be

different numerically. This section addresses some of the numerical issues important

in the design of physical algorithms, some miscellaneous numerical considerations

appropriate for any fire model and finally discusses the numerical properties of

systems of differential equations.

4.1 Numerical Characteristics of Some Physical Models

4.1.1 Natural Vent Flow

Numerical difficulties can arise when calculating vent flow because of its dependence

on the square root of pressure differences. This is especially a problem when the

pressure drop across the vent is small relative to the pressure computed in each room

adjacent to the vent. To illustrate this phenomena consider two rooms. Suppose

the first room has a fire and is connected to the outside and to a second room which

does not have a fire. This second room is assumed to be connected only to the first

room and not to the outside. To simplify the analysis assume that the vents are

narrow slits located at the floor. This configuration is depicted in Figure 6.

Suppose that the pressure above ambient in rooms 1 and 2 are denoted APi
and AP2 . Theoretically, these pressure offsets will be the same after the initial
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Figure 6: Two Room Test Case Configuration

pressure transient dies away according to the analysis in Section 3.3.1. Numerically,

however, these two offsets will be different. Though this difference may be insignif-

icant physically, the magnification of the cancellation error occurring in the vent

flow computation may be significant numerically. Unfortunately, simply setting the

pressure drop to zero for physically insignificant flows is not an adequate solution

to this problem of unwanted error propagation as will be explained next.

In this test problem, the pressure in room 1 will rise to its equilibrium value

as given by equation (16) in a time period given by equation (14). If a cut off

pressure drop APcut is chosen so that = 0 for IAP2 ~ APi| < APcut? then APi
will continue to rise (since is not zero) while AP2 remains fixed. Eventually

IAP2 — APil win exceed APcut so that will not be zero. Again, AP2 wiU rapidly

approach APi until IAP2 — APi| < APcut- This type of algorithm will result in a

drastic reduction in time step size as the differential equation solver tries to track

the solution due to the “stair stepping” behavior of AP2 illustrated in Figure 7. Of

course, for this test problem special methods may be used to resolve the problem

such as eliminating the differential equation for by setting AP2 = APi. This

will not work for the general case.

Denote the pressure difference across the vent by AP = APj —AP2 . This section

establishes a criterion for choosing APcut such that pressure differences satisfying

AP > APcut contain at least some accurate digits and gives a method for smoothly

damping AP to zero when AP < APcut*

Although the Bernoulli law for computing vent flow is known to break down for

small pressure differences, the problems discussed here are solely numerical and are

a consequence of the fact that only a finite number of digits are used to compute
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cd

o
1-1

D.

• vent pressure drop smaller than cutoff

. _ => no pressure rise in room 2

vent pressure drop larger than cutoff

=> pressure rise in room 2

time (s)

Figure 7: Numerical Pressure Behavior for Two Room Test Case

and represent the pressure offsets APi and AP2 .

Suppose that APi is an o(l) quantity and is known to an absolute error tolerance

of 10“^. The binary representation of APi then has about 10 base 2 digits of

information. This number is obtained by solving the equation 2“” = 10“^ for n.

The other 14 base 2 digits (assuming a 24 bit mantissa) contain roundoff noise.

If the first 13 base 2 digits of two o(l) pressure offsets APi, AP2 agree, then the

subtraction APi — AP2 will result in loss of aU significant digits. It is therefore

important to know when a subtraction will result in total cancellation.

The number of decimal digits lost in the subtraction APi —AP2 can be estimated

using

majc(l, APi, AP2 )
Wlost - ogio

|APi - AP2I

If logio is replaced by log2 then niost estimates the number of binary digits lost.

Suppose that APi and AP2 each have m significant digits and suppose that

niost < rn .

Substituting equation (19) and exponentiating, it follows that

lAPi - AP2
I

> Cpmax(l, APi, AP2 )

where Cp = 10“”^. This inequality gives a criterion for deciding if APi -AP2 has any

accurate digits. To smoothly damp the roundoff noise present in the computation

AP = APi — AP2 ,
AP can be replaced by

AP = AP
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where Ccut defined by

Ccut = 10€pmax(l, APi, AP2 )
•

When AP is large relative to Ccut? a-nd AP are essentially the same. On the

other hand, when AP is small relative to tcut? AP is essentially zero.

4.1.2 Forced Vent Flow

A forced ventilation system consists of a network of ducts and supply and exhaust

fans. In general, the volume flow rate delivered by a fan depends on the pressure

drop across the fan. This relation is known as the fan curve. Numerical problems

can occur even in simple systems consisting of one fan with a constant volume flow

rate and one duct connecting two rooms. For example, consider a fan exhausting

a room where sources of enthalpy such as fires and natural vents are small relative

to the enthalpy removed by the exhaust fan. Numerical problems occur when the

fan is modeled by removing flow at a single elevation. In this case, the fan is either

in the lower layer or the upper layer. While the fan is in the lower layer, the layer

interface drops since the fan is “stronger” than the fire. Similarly, while the fan

is in the upper layer the layer interface rises. This problem is ill-conditioned since

the total enthalpy flow rate, {qi + qu), is a discontinuous function of layer height.

When the layer interface is near the fan elevation, small changes in the layer height

produce large changes in the layer height derivative. A differential equation solver

detecting this jump in the layer height derivative (or layer volume derivative) will

reduce the time stepsize drastically to try and track the layer height.

The solution to this problem is to model the fan by withdrawing air over a finite

but nonzero height in the wall. When the layer is within a forced fan duct flow is

withdrawn from both layers. This results in smoother transition in the layer height

derivative.

4.1.3 Fire Plumes

A fire deposits energy denoted q^^, q^^ into the lower and/or upper layer. This

lower layer contribution is set to zero in most plume models. A fire also transfers

mass and energy from the lower layer to the upper layer by entraining a portion

of the lower layer into the hot plume which in turn flows due to buoyancy into the

upper layer. Let the energy entrainment terms be denoted and The total

energy contribution to the lower and upper layers due to both mechanisms is then

Qplume = 9L + 9^nt. (20)

9^ume = + (21)

It is usually assumed that all of the energy taken out of the lower layer due to

entrainment is added back into the upper layer so that g^^ = —g^f Therefore

•L -u - aL , aU
Vplume ' Tfplume 9fire ' 9fire (22 )
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To avoid a catastrophic cancellation, a plume model should calculate the total energy

contribution using equation (22) rather than summing the terms as calculated in

equations (20) and (21). This is especially important when is large compared

9fire*
total energy term is required by zone fire models which use the

pressure differential equation or its equivalent.

4.2 Numerical Characteristics of the Zone Fire Modeling Differen-

tial Equations

In Section 3.2 the numerical properties of individual differential equations were

discussed. It is important, however, to understand how these equations behave

together as a system in order to implement accurate and efficient algorithms for

their solution. The key property that zone modeling differential equations possess

is called stiffness. Differential equation solvers not taking this property into account

wiU at best be grossly inefficient and at worst give wrong answers.

4.2.1 Comparison of the Physical and Numerical Behavior of the Dif-

ferential Equations

Stiff systems of ordinary differential equations (ODE’s) are an important class of

problems that can occur when the modeled phenomenon possesses characteristic

time scales that vary by several orders of magnitude. Physically, the system of

ODE’s used in zone fire modeling are stiff because the pressure adjusts to changing

conditions much faster than other quantities such as upper and lower layer temper-

atures or layer heights.

The numerical difficulties encountered because of stiffness can not be avoided

by exchanging the pressure equation for some other equation such as temperature,

density, or internal energy. As shown in Table 2, each zone modeling differential

equation contains a ^ term. If the pressure is computed using one of the approx-

imations discussed in sections 3.3.2 or 3.3.3 and ^ is removed from the modeling

differential equations, the resulting approximate ODE’s are not stiff and a standard

nonstiff solver may be used. However, the class of problems that can be solved is

reduced since large pressure fluctuations can not be modeled properly.

The curious aspect of stiff ODE’s is that the solution appears to be chang-

ing slowly and yet the computational costs of computing the solution are enormous

when using standard nonstiff algorithms such as Runge-Kutta methods or predictor-

corrector methods such as Adams-Bashforth. The question then is why does it cost

so much to solve a problem whose solution changes slowly? To maintain stability,

a nonstiff solver must use a stepsize that is small enough to track the part of the

solution corresponding to the shortest time scale even when this solution component

decays rapidly to some quasi-steady value. This stepsize is much smaller than re-

quired to accurately track the desired part of the solution which corresponds to one

of the longer time scales. So for stiff problems the choice of stepsize is dominated
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by considerations of stability, not accuracy. These concepts and their significance

will be discussed in section 4.2.2.

Stiff differential equation solvers are expensive to use. This is because a nonlinear

set of simultaneous equations involving the solution variables must be solved at each

time step. Newton’s method is typically used for this and requires the solution of a

system of linear equations at each Newton iteration. Consequently, it is inefficient

to use stiff methods for nonstiff problems. Stiff methods work because their choice

of stepsize is dominated by considerations of accuracy, not stability. As a result,

they allow larger time steps to be taken than nonstiff methods. Even though the

work per step is greater, the number of steps is sufficiently smaller that the total

work is smaller.

Several approaches can be taken to decide whether a given system of differential

equations is stiff. One approach is to let the solver decide. Many modern ODE
solvers have built-in heuristics to determine if a problem is stiff. To analyze the nu-

merical character of the ODE’s in the zone fire model CCFM.VENTS, DEPAC was

used. DEPAC is a set of three ODE solvers DERKF, DEABM, and DEBDF designed

by Shampine and Watts. DERKF is a fifth order variable step size Runge-Kutta

code. It can be used for nonstiff and mildly stiff ODE’s when derivative evaluations

are not expensive. It should not be used for high accuracy, nor for answers at a great

many points. DEABM is a variable order, variable step size Adams code. It can be

used for nonstiff and mildly stiff ODE’s when high accuracy is required. DEBDF is

a variable order, variable step size backward differentiation formula code which can

be used on stiff ODE’s when moderate accuracy is required. DERKF and DEABM
attempt to determine when their use is not suitable by performing diagnostics for

stiffness. When used in CCFM.VENTS both DERKF and DEABM reported that

the problem might be stiff. This occurred for a wide range of fire scenarios.

A second approach is to analyze the Jacobian of the right hand side of the sys-

tem of ODE’s. A subroutine, EIGF, was written to approximate this Jacobian and

its eigenvalues. The characteristic local time scales of the solution were determined

from the eigenvalues. It was found that the characteristic time scales for the pres-

sure variables were much smaller than for the other solution variables. For some

problems, the variation in time scales was over five orders of magnitude. As a result

of this analysis, the stiff ODE solver DEBDF was chosen.

4.2.2 Some Numerical Considerations of Solving Stiff Differential Equa-
tions

A zone fire modeling initial value problem can be expressed in vector form as follows.

At time t > to find the value to the solution y to

(23)

y{to) = yo
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where y and / are a real valued N-vector functions. The vector y contains the

solution variables chosen and the right hand side / gives the rate at which these

variables change with time.

Modern ODE solvers use a variable stepsize strategy; that is, the solver takes a

number of steps to integrate (23) from to to /, but these steps are not generally all

of the same size. Suppose that K steps are taken and approximations t/,- are found

to y{T) at T = = t. Consider the “local” initial value problem: find the

solution at t,- to

— it) = /(^,^)

z{U-\) = Vi-i •

The local error is defined by z{ti) — yi, for i = 0,. ..,K. Most solvers control the

local error at each step. The true or global error is defined by e,- = y{ti) — yi,

i = 0, . .
. ,
K

.

Note that = yit) — yK is the error in the approximate solution at

time t. Consider the decomposition

e,- = {y{U) - z{U)) + {z{ti) - yi) . (24)

A linearization shows that to terms of first order

(y(r) - z{t))' = fy{T, y{T)){y{T) - z{t)) .

The N X N matrix fy is called the Jacobian matrix. If the initial value problem

(23) is stable (all the eigenvalues of fy have negative real parts), then the first term

in (24) will not grow with index i. The second term is the local error and will be

dependent on the accuracy and stability of the numerical method employed. If the

numerical method is stable, then the growth of e,- with i will be at most linear (and

not exponential).

Let yi denote the numerical solution determined from exact data y(t,_i), y(t,_ 2 ),. . ..

The following alternative decomposition of the global error is also useful:

local truncation error propagation error

e.- = (y{U) - yi) + (yi - yi) • (25)

The propagation error can be written as a product of an amplification factor and

the error term e,_i. If the numerical method is stable, the absolute value of the

amplification factor will be less than or equal to one and the propagation error term

will not grow with i. The local truncation error depends on the accuracy of the

numerical method. These errors at z = 2 are illustrated in Figure 8.

There is no one definition of stiffness that is universally applied to initial value

problem (23). One that is commonly applied is the following (see [17]). Definition:

The initial value problem (23) is called stiff (oscillatory) if the eigenvalues, Xj =

Uj ivj, j = 1, . . ., A of the Jacobian, fy, satisfy

Uj < 0, i = 1,...,A
,
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Solution to the Solution to:

dy/dt = f(y,t)

y(h)= yi

Figure 8: Differential Equation Error Terms
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and

mcLx(|nj|)> niin(|nj|);.
i<J<N ^ l<j<N ^

A physical interpretation of stiffness, which is imprecise mathematically, is to say

that the initial value problem (23) is stiff if the process being modeled possesses

multiple time scales which vary widely. As has been discussed earlier, this is the

case with zone fire models because pressures equilibrate much quicker than do layer

volumes, masses, densities, or temperatures. Yet another (imprecise) way to char-

acterize stiffness woidd be to say a problem is stiff if explicit solvers such as DERKF
or DEABM cannot handle it. ODE solvers are either explicit or implicit. Implicit

solvers are generally stable for a much wider range of stepsizes than are explicit

solvers. If a solver were capable of performing the decomposition (25), it would

regard a problem as stiff if the stepsize required to maintain stability (keep the

propagation error term from growing) is much smaller than that required to keep

the local truncation error term small. In this case, the stepsize is said to be re-

stricted by stability, rather than by accuracy. Unfortunately, there is no practical

way to make this characterization quantitative. What is estimated at each step

is the local error. Stepsize choice is based on this estimate. Diagnostic messages

are issued when the stepsize is extremely small or the number of steps taken has

exceeded a predetermined bound. These messages typically suggest that the user

try a stiff solver such as DEBDF.
Implicit methods are more suitable for stiff problems. In the case of the backward

differentiation formulas used in DEBDF, the stepsize choice for a stiff problem will

generally be restricted by accuracy, not by stability. Stepsize can be increased at a

fixed accuracy level by increasing the order (of accuracy) of the method. DEBDF
provides formulas of orders one through five, all of which have excellent stability

properties.

The simulation time interval [to, t] for a zone fire model can be broken into two

types of subintervals, stiff transient and stiff. In the stiff transient subintervals,

the pressure is rapidly moving toward a quasi-steady state value. The simulation

generally begins with a stiff transient. Each time layer height passes a vent boundary

or the fire output takes a jump, a new stiff transient begins. During a stiff transient,

stepsize wiU generally be small because it will be restricted by accuracy; that is, a

small stepsize wiU be required to accurately track the rapidly changing pressure.

Nonstiff solvers can generally integrate over the stiff transient time subinterval.

Outside of these very short time intervals, a stiff solver is required. Since there is

a large overhead associate with switching solvers, it is more efficient to use the stiff

solver throughout the computation.
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5 Conclusions

Tools were presented for analyzing the numerical behavior of fire algorithms. These

tools show that natural vent flow is particiilarly susceptible to numerical problems

due to the loss of significant digits that can occur when computing pressure dif-

ferences. One approach for reducing this problem is to modify the subtraction

|APi — AP2I in order to damp out unwanted error that occurs when APi and AP2
are nearly equal.

Many model formulations can be derived from the basic mass and energy con-

servation equations some of which are analytically equivalent; that is, the equations

in one formulation can be converted into those of another using the ideal gas law

and definitions of density and internal energy. These formulations, however, are not

equivalent numerically. When pressure changes are significant, the pressure equa-

tion should be included in a multi-room model. The significance of pressure changes

can be evaluated in terms of flow through a vent since vent flow is quite sensitive

to small pressure changes. When it is valid to assume that pressures are constant,

the modeling differential equations can be simplified by setting ^ to zero. The
resulting ODE’s have the added advantage that they are easier to solve since they

are no longer stiff.
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Nomenclature

a, b

•^vent

b

Ca(/)(Cr(/))

Cp(Ci,)

Cyent

T
e/

e,

E

Eref

e

^min (^max)

/

fy

fl()

h

K

m

J^lost

p

Pent

PreJ

Pamb

QlAqu)

Qfiie

Qvent

R

miscellaneous constants used in the equilibrium pressure relation,

equation (16)

area of vent vn?

base used in the Wilkinson floating point model

absolute (relative) condition number of f

specifle heat at constant pressure (volume) kJ/kg K

vent coefficient, usually has a value of around .68

absolute error of temperature K

global error of the differential equation solution

internal energy kJ

reference internal energy kJ

Exponent in Wilkinson floating point model

smallest (largest) exponent in the Wilkinson floating point model

a vector valued function which is the right hand side of the dif-

ferential equation to be solved

Jacobian of the right hand side vector function /

The operator fl maps a real number to its floating point repre-

sentation.

Step size

Vent flow coefficient kJ>/m/kg

mass kg

number of digits (decimal) lost due to cancellation in a subtrac-

tion

absolute pressure Pa

pressure below which flows (through vents) are deemed to be

negligible Pa

reference pressure Pa

ambient pressure usually about 101325 Pa

total enthalpy flow rate into the lower (upper) layer W
energy release rate of a Are W
energy flow rate through a vent W

2

universal ideal gas constant
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T

to

t.99

Tvent

t

t

Tkinb

V

y

y

yi

yo

AP
AP

AP
APi,(AP2)

^Pcut

A Poo

1

P

Pamb

P\ent

T

temperature K

initial time s

time for pressure in a room to reach 99 percent of its final value

s

temperature of gas flowing through vent K

number of digits in the Wilkinson floating point model

independent variable, time, in the differential equations

ambient temperature

volume

layer height m
solution of the differential equation

numerical solution of a differential equation at step i

solution of a differential equation at time to

pressure drop across a vent Pa

pressure drop across a vent modified to account for catastrophic

cancellation errors Pa

Pressure offset satisfying P = P^e/ + AP Pa

pressure rise above floor pressure in room 1 (2) Pa

pressure below which flow is insignificant numerically Pa

Equilibrium pressure Pa

machine epsilon, smallest number added to 1 on the computer

that gives a result different than 1.

error tolerance of pressure variables used in the calculation vent

flows

ratio of specific heats Cp,

density kg/m^

ambient density kg/m^

density of gas flowing through vent

time s
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A A Description of Floating Point Arithmetic

A model of floating point arithmetic consists of a description of how floating point

numbers are represented (word length and bits for sign, exponent, and mantissa),

how operations with these numbers behave (error properties), and what happens

when an arithmetic fault occurs such as division by zero.

Properties of the real number line such as closure, distributivity and associativity

do not hold for “computer” numbers. Consequently, two algorithms may be equiva-

lent analytically but not the same numerically. The methods used for implementing

equations that arise in Are modeling are therefore important.

An early problem in scientiflc computation was the lack of a uniform floating

point environment. Each computer manufacturer had their own method for repre-

senting and using floating point numbers. As a result, scientiflc programs running

on different computers would occasionally produce significantly different numerical

results.

Wilkinson, considered the father of floating point error analysis describes [18, 19]

a simple model of floating point arithmetic. To address the problem of lack of

uniformity in floating point implementations, Kahan [20, 21] extended the Wilkinson

model and proposed a standard for floating point arithmetic. Kahan’s proposal

along with features of several other proposals became the IEEE Standard for Binary

Floating Point Arithmetic [22, 23, 24].

The IEEE Standard uses three formats to represent floating point numbers, sin-

gle, double and extended precision. Single uses 32 bits, double uses 64 bits. The

format of extended arithmetic is left open. Two special bit patterns designated

NaN (not a number) and infinity are used to represent the results of special op-

erations. When the result of a mathematical operation is undefined such as zero

divided by zero a result of NaN is returned. Some compilers initialize variables with

NaN to detect the use of undefined variables. The standard also specifies that the

operations addition, subtraction, multiplication, division, square root, remainder

and comparison be provided. The default rounding behavior takes the result of

an operation as if correct to infinite precision and rounds it to the nearest machine

number. Rounding the result toward or away from zero is also provided. Rounding

towards zero is sometimes called chopped or truncated arithmetic.

The real number line is modeled on the computer as a finite collection of floating

point numbers where each floating point number consists of a mantissa or fraction,

an exponent, and a sign. These numbers are sometimes called model or machine

numbers. Wilkinson [18, 19] parameterizes the mantissa and exponent in terms of

the four parameters: 6, t, Cmin and Cmax where b represents the base (6 = 2 for binary,

6 = 16 for hexa-decimal), t is the precision or number of digits in the mantissa, Cnun

is the smallest exponent and e^ax is the largest. Values of these parameters for

various computers are presented in Table 7.

The IEEE Standard is a model of binary floating point arithmetic. Most comput-
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Table 7: Single Precision Floating Point Characteristics for Various Computers

Computer b t €min ^max € - b^-^

Univac 1100 2 27 -128 127 1.49 X 10-*

PDP-ll/Vax 11/780 2 24 -127 127 1.19 X 10“'^

Cray - 1 2 47 -8189 8190 1.42 X lO-i'*

Apple Macintosh, IBM PC 2 24 -128 127 1.19 X lO-"^

IBM 360/370, Concurrent 7/32 16 6 -64 63 9.54 X lO-"^

CDC 200 (Cyber 205) 2 47 -28625 28718 1.42 X 10-1^

IEEE 754 Standard 2 24 -128 127 1.19 X 10"^

ers built today use this standard or make it available as an option. The Apple Mac-

intosh, the IBM PC and clones, and UNIX workstations from Sun, Silicon Graphics,

DEC, IBM, and HP aU use the IEEE Standard for floating point arithmetic. Im-

plementations differ from vendor to vendor, but these vendors claim to adhere to

the IEEE Standard. Other manufacturers such cis Convex make it available as an

option. The Cray series of computers is a notable exception. Programs that run

on computers that use IEEE Standard arithmetic should give similar floating point

results.

The floating point numbers of the Wilkinson model, on which the IEEE Standard

is based, can be generated from the four parameters 6, t, Cnum
following representation

Cmax using the

± (6i X 6“ + 62 X 6-' + ... + 6, X 6‘-‘) X 6' (26)

where

1VIVI (27)

0 < bi < b — 1, i = 2, . . .,t (28)

^min ^ C ^ ^max* (29)

The numbers 6i ,. . bt form the mantissa and e denotes the exponent. If the

first bit of the mantissa, 6i, is never 0 then the set of floating point numbers is

said to be normalized. For normalized binary systems the first bit is usually not

stored (since it is always 1). Then 32 bits can then be used to represent 1 sign bit,

an 8 bit exponent and a 24 bit mantissa.
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Figure 9: Example Floating Point Model

The real number line and the floating point numbers which approximate it for

b = 2, t = 3, emin = “1? s-nd Cmax = 2 are depicted in Figure 9. The set of positive

floating point numbers can be easily counted. For each of the Cmax + 1 — ^min values

of the exponent e, there are (6 — 1)6*”^ positive floating point numbers. For the

example of Figure 9, there are 33 floating point numbers; 16 are positive, 16 are

negative and one is zero. These numbers are not evenly spaced. Numbers with

small exponents are near the origin and closely spaced, while numbers with large

exponents are far from the origin and widely spaced. In fact, the absolute spacing

between consecutive positive floating point numbers with exponent e is b^b^~* which

depends on e. On the other hand, the largest relative spacing for positive floating

point numbers with exponent e is 6^”^ which is independent of e. Here, the spacing

has been divided by 6®, the smallest positive floating point number with exponent

e.

One particular parameter of interest, machine epsilon, can be derived from the

base b and the precision t. The smallest floating point number that can be added to

1.0 so that the result is a floating point number larger than 1.0 is called machine
epsilon. If default rounding is used, this number is Cm = since is the

spacing between consecutive positive floating point numbers with exponent 0. For

the floating point system illustrated in Figure 9, machine epsilon is 1/8.

The error in representing a nonzero real number, x, on the computer can be

expressed in terms of machine epsilon. This error is sometimes called rounding

error. Suppose that x falls in the range of floating point numbers; that is, b^ <

|x| < (1 — b~^)b^'^^ where Cnun ^ e < Cmax- Using default rounding, the maximum
distance (or error) between x and the closest floating point number is 6^€in. The

relative distance between x and the closest floating point number is less than or equal

to Cm- If |x| < X is said to “hard” underflow. The IEEE Standard also

defines a “soft” underflow by allowing the floating point numbers with exponent Cmin

to be denormalized; that is, bi is allowed to be zero. In this case “soft” underflow
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occurs if |a:| < If |a;| > (1 — x is said to overflow. Compilers

often provide options for dealing with underflows and overflows. The default is

typically to set underflows to zero and to stop execution when overflows occur.

A standard approach for obtaining the correct floating point characteristics of

a computer is to use the three Fortran function subprograms, IlMACH, for integer

parameters, RIMACH, for real parameters, and DIMACH, for double precision

parameters. These routines were originally written at BeU Labs by P. A. Fox, A.

D. Hall, and N. L. Schryer and are currently widely available [25]. Many scientific

computer applications written in Fortran now have these three function subprograms

as part of their distribution. When such an application is installed on a particular

computer, the installer must uncomment the data statements in these routines that

correspond to the appropriate computer before compilation.

Numerical errors produced by an algorithm arise from errors in representing

the data, errors in floating point arithmetic, and amplification of errors due to the

sensitivity of various parts of the algorithm to perturbations. The notation fl() is

often used to indicate the floating point result of a machine computation. If 2 is a

real number in the range of the floating point numbers, then

11(2) = Z{1 + €),€< €ra

This means that the relative error in representing 2 on the machine is bounded by

machine epsilon.

Let X and y denote nonzero floating point numbers. The IEEE Standard requires

that fl(ar + y) equal the actual result, x + y, rounded to the nearest floating point

number, and similarly for subtraction, multiplication, and division. In practice, this

is accomplished by using extended length registers for the arithmetic. The extra

bits in these registers are called “guard” bits. The number of guard bits used varies

with vendor. It follows that

fl(z±y) = (a: ± y)(l + e), c < Cm (30)

fl(xy) = zy(l + c), 6 < Cm (31)

fl(z/y) = (x/y)(l + c), c < Cm. (32)

Suppose on the other hand that x and y are the result of a machine computation

whose exact answer is given by the nonzero numbers x and y. Let and €y denote

the relative errors in approximating x and y by z and y; that is, x = x(l + €x) and

y = y(l + €y). Then substituting these relations for x and y into the right hand side

of equations (30), (31), and (32) it follows that

|fl(z ±y)-{x± y)|

|z±y|

|fl(zy) - zy|

\xy\

|fl(z/y) - z/y|

\^/y\

<

<

<

iJ^kxKl + Cm) + + C„) + Cm

kx| + |fj/| + + 1(1 "I* €x)(l + €y)\€ja

1 + ft
+ 1

1 + fr

I I
^

I

^'l + cj'"

(33)

(34)

(35)

37



Equations (34) and (35) show that the error in x and y is not amplified by multi-

plication or division. Also, equation (33) shows that if cancellation does not occur

in X ± y, then again the error in x and y is not amplified. But if cancellation does

occur in X ± y and this number is close to zero, then the errors in x and y can be

greatly amplified. This condition is usually referred to as “catastrophic cancella-

tion.” Whenever possible, such cancellations should be avoided in the construction

of an algorithm although it is often difficult to anticipate where they will occur.

Equations (33) and (34) can be used to show that the equivalent expressions

a(b — c) and ab — ac are also equivalent numerically (both expressions have the

same error bounds). In fire modeling this may arise when computing enthalpy

differences. There is no numerical advantage to computing an enthalpy difference

using CpT{mi — m2 )
instead of CpTm\ — CpT'th2 .

Figure 10 illustrates the steps involved in multiplying two numbers on the

computer using the example floating point model given in Figure 9. For this

example,Cx = -05, Cy = .1, = 1/8 and

|fl(xy) - xy|/lxy| « .1453

which is indeed smaller than

kx| + kyl + kxCyl + 1(1 + fx)(l + €j,)€m| ^ .2994 .

Some vendors provide additional extended length registers for storage of interme-

diate results. In this case, intermediate results are not rounded to working precision

before they are used.

The issue of loss of accurate digits due to cancellation arises in the choice of

unknowns in a zone fire model. The presence of a fire in a building causes a pres-

sure change in each room. This pressure change is generally small (a few Pascals)

compared with the ambient pressure Pamb (usually one atmosphere or about 10^

Pascals). The pressure differential across a door or other opening drives the transfer

of mass and energy between connected rooms. Accurate mass and energy transfer

computations require accurate pressure differentials as input. Here is a case where

reasonable accuracy is desirable in a computation which is subject to catastrophic

cancellation. Let a and b denote pressure changes in adjoining rooms. If the total

pressure in each room is chosen as an unknown, then the pressure differential will

be computed as (Pamb + a) — (Pamb + &)• On the other hand, if the pressure rise

in each room is chosen as an unknown, the pressure differential wiU be computed

as a — 6. Noting that generally |a|, |6| -C Pamb? examination of equation (33) shows

that this second choice is numerically superior to the first.
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x=1.3 y=3.6 **y=4.68

01/2- 2 4

Figure 10: Sample Floating Point Multiplication
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