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ABSTRACT

This report presents the power-normal and -lognormal models, which describe the effect of

specimen size on the distribution of life or strength of a product or material. Such a model arises when
any specimen can be regarded as a series system of smaller portions, where portions of a certain size have

a normal or lognormal life (or strength) distribution. Also, this report documents the first computer

program that fits this model to data (including censored and interval life data) from specimens of various

sizes. The program employs maximum likelihood fitting and provides approximate confidence limits, as

well as estimates, for model parameters, distribution percentiles, and other quantities of interest. How
to run the program is explained with an analysis of data on time to electromigration failure of aluminum

conductors for microcircuits. The program runs on the VAX computer and SUN workstation.

1. INTRODUCTION

Purpose. This report describes in detail properties of the power-lognormal and related power-

normal models. The report also presents the first computer program for fitting these models to data. This

introduction briefly presents the history of the models, the models, the computer program, and an

overview of this report. Then the introduction describes electromigration failure data used to illustrate

1) use of the models of Section 3 and 4 and 2) how to run the computer program in Section 2.

1.1. Background

History. The power-normal and -lognormal models have long been used to represent the effect

of specimen size on the distribution of life or strength of products and materials. In an early application,

Chaplin (1880) used the power-normal model to describe the distribution of tensile strength of steel bars

of various lengths. Nelson (1990, pp. 385-392) presents models for size effect and applications to cable.

Harter (1977) surveys the literature on this and other models for the effect of specimen size for a great

variety of applications. Our work on this model and computer program was motivated by an application

to data on time to electromigration failure of aluminum conductors in microcircuits. A key

electromigration reference is LaCombe and Parks (1986), who use the model for their data.

The models. The power-normal and power-lognormal models are briefly described here. Full

details appear in Sections 3 and 4. For specimens of size S ,
the reliability function of the power-normal

distribution is the population fraction above the value y (of life, strength, etc.); namely,

F(y,S;n,a,SJ = {$t-(y-^)/a]}
5/5

°, -oo < y < ». (1.1)

This is a power of the normal reliability function. Here <i>[ ] is the standard normal cumulative

distribution function and the minus sign converts it into a reliability function. The location parameter \i

has the range — oo < ^ < » . The scale parameter a is positive. The normal size parameter S0 is positive;

that is, y has a normal distribution when S = S0 . In previous work, people had to assume a value for So->

which is unknown. The computer program here provides an estimate of S0 (and of p. and a) from data.

The ratio p = S/S0 is called the power parameter. The reliability function of the power-lognormal

distribution is the population fraction above the value t; namely,
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( 1 .2)Git,S;n,<y,SJ = {^-(ln(r)-M)/a]}
5/5

°, t > 0.

The parameters n and a have the same names and ranges. Here S0 is the lognormal size parameter
;
that

is, t has a lognormal distribution when S = S0 .

Computer program. The computer program POWNOR uses maximum likelihood (ML) methods

to fit the model to data. Program output includes ML estimates and approximate confidence limits for

model parameters, distribution percentiles, and other quantities of interest. User friendly, the program

is written in Fortran 77 and runs on the VAX 1 1/785 computer under the VMS operating system and on

the SUN workstation. It employs IMSL routines. Copies of the program may be requested from the

Statistical Engineering Division, Adm. Bldg. A337, National Institute of Standards and Technology,

Gaithersburg, MD 20899, (301) 975-2839.

Overview. This report contains:

• Section 2 on how to run the computer program, illustrated with data on time to electromigration

failure. Many readers need to read only Section 2.

• Section 3 on the statistical properties of the power-normal model.

• Section 4 on the statistical properties of the related power-lognormal model.

• Section 5 on the maximum likelihood theory for fitting either model to data, which may be

censored (unfailed runouts) or interval data.

• Section 6 on the numerical methods employed to carry out the maximum likelihood calculations.

Acknowledgments. The authors gratefully acknowledge the support of this research under their

NIST/NSF/ASA Research Fellowship at the National Institute of Standards and Technology (NIST). The
National Science Foundation (NSF) generously provided our salary and travel expenses. NIST kindly

provided research facilities and colleagues. The American Statistical Association (ASA) handled the

Fellowship selection and administration. Dr. Robert Lundegard and Mrs. Ruth Varner of NIST
effectively and graciously administered our work at NIST. Mr. Harry Schafft and Dr. Jim Lechner of

NIST provided much valued stimulation for this report in our collaboration on electromigration research

with them.

1.2 Example Data

Overview. This section presents electromigration failure data used to illustrate how to run the

program to fit a power-(log)normal model to data. The section first gives background on

electromigration. Then it describes the data. Finally it states a purpose of fitting a power-lognormal

model to the data. The results of fitting appear in Section 2.

Electromigration. Aluminum conductors in microcircuits can fail from movement of atoms

resulting in an open conductor or in a short (due to an aluminum filament growing between adjoining

conductors). Such failures occur more quickly at high current density and high temperature. Microcircuit

components and conductors are being built smaller and smaller for higher speed, resulting in higher

current densities and temperatures in conductors. The microcircuit industry fears that electromigration

failure may limit such size reduction. So the industry seeks more knowledge of electromigration including
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a model for the distribution of time to failure and for the effect of conductor length. The power-

lognormal model has been proposed, but some experts have observed that such time to failure data for

various specimen lengths all appear adequately described by a lognormal distribution. The following data

yield information on the adequacy of the power-lognormal and lognormal distributions.

Data. Table 1.1 displays hours to failure of 59 test conductors of length S = 400 microns. All

specimens ran to failure at a certain high temperature and current density. The data come from an

interlaboratory comparison reported by Schafft and others (1987). The 59 specimens were all tested under

the same temperature and current density. The data appear in a lognormal probability plot in Figure 1.1.

The plot is relatively straight. Thus it suggests that a lognormal distribution adequately fits the data and

that a power-lognormal distribution fitted to the data is "close" to lognormal; that is, p = S/S0 is "close"

to 1.

Table 1.1 Hours to Failure of 400-micron Electromigration Specimens

6.545 9.289 7.543 5.956 6.492 5 .459
S . 120 4 .706 8.637 2 . 997 8.591 6.129

11. 033 5.331 6 .953 4 . 283 6 . 522 4.137
7 .459 7.495 6.573 6 . 533 5 . 539 6.037
5.307 5.725 8.532 9.563 6.369 7.024
3.336 9 .218 7.945 6 .869 6.352 4 .700
6 . 54S 9 . 254 5 . 009 7.439 7 .393 6.033

10 . 092 7.496 4.531 7 . 974 3 .799 7.633
7.224
6.515

7.365
6.476

6 . 923
6 . 071

5 . 540
10 . 491

5.434
5 .923

7.937

tlM

Fig. 1.1 Lognormal Probability plot of 400-micron data.
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Purpose. Fitting the power-lognormal distribution to the data serves certain purposes. First, it

provides an estimate of the lognormal length which previously has not been properly estimated and

may lead to physical insight. Second, wide confidence limits for p = S/S0 that enclose 1 (the lognormal

distribution) would indicate why many data sets appear adequately described by a lognormal distribution.

Third, extrapolation to estimate the life distribution of the total length of conductor in microcircuits under

normal temperature and current density is of interest. Fourth, the uncertainty of that distribution estimate

provides guidance on the appropriate number of test specimens needed to yield estimates of a desired

accuracy.

2. HOW TO RUN THE POWNOR PROGRAM

Introduction. This section explains how to run the program POWNOR to fit a power-normal

or -lognormal model to data. It describes and illustrates input files, program operation, and printed

output. The examples here use the electromigration data of Section 1.2.

Input files. The user must create two input files before the program can be run. One of these

files POWNOR.DATA stores data on specimen failure times and specimen lengths. The other file

POWNOR.OPTIONS contains various user choices (e.g., desired level of detail in printing results,

starting values for parameters, etc.). The user can employ his favorite text editor to create the input files.

In both of these files, values in a line are separated by one or more spaces (free format). Each line

contains at most 80 characters and spaces (typical line length on many computer terminals).

Data file. This file contains data on specimen failure times and specimen lengths. Figure 2.1

shows the electromigration data as they appear in the data file POWNOR.DATA. On each line (record)

of this file, enter the data on a particular specimen. The three values on the line for a specimen are:

1 . The lower endpoint of the censoring interval. This data value is numerical and must not be below

— IE 10.

2. The upper endpoint of the censoring interval. This data value is numerical and must not exceed

1E10.

3. Length of the specimen. This data value is numerical and cannot be zero or negative.

Censoring is indicated as follows:

• If the specimen fails at an exactly known age, set the two endpoints of the censoring interval

equal to the failure age.

• If the failure is in a known interval, set the lower and upper endpoints equal to the interval

endpoints.

• If the specimen is left censored, set the lower endpoint equal to — 1E10, and the upper value

equal to the censoring age.

• If the specimen is right censored, set the lower endpoint equal to the censoring age and the upper

endpoint equal to IE 10.
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LOWER

6 . 545
8.120

11.038
7.459
5.807
8 .336
6.948

10.092
7.224
6.515
9.289
4.706
5.381
7.495
6.725
9.218
9.254
7.496
7.365
6 . 476
7.543
8 . 637
6.958
6.573
8 . 532
7.945
5.009
4.531
6.923
6.071
6.956
2.997
4.288
6.538
9.663
6.869
7.489
7.974
5.640

10.491
6.492
8.591
6.522
5.589
6.369
6.352
7.398
8.799
5 .434
5.923
5.459
6 . 129
4 . 137
6 .087
7 . 024
4 .700
6.033
7 . 683
7.937

UPPER LENGTH

6.545 400
8 . 120 400

11.038 400
7 .459 400
5.807 400
8 .336 400
6.948 400

10 . 092 400
7 .224 400
6.515 400
9 .289 400
4.706 400
5.381 400
7.495 400
6.725 400
9.218 400
9.254 400
7 . 496 400
7.365 400
6 . 476 400
7.543 400
8 . 687 400
6.958 400
6.573 400
8.532 400
7.945 400
5 . 009 400
4.531 400
6 . 923 400
6.071 400
6.956 400
2.997 400
4.288 400
6.538 400
9.663 400
6.869 400
7.489 400
7.974 400
5.640 400

10.491 400
6.492 400
8.591 400
6.522 400
5.589 400
6 .369 400
6.352 400
7.398 400
8.799 400
5.434 400
5.923 400
5 .459 400
6.129 400
4 . 137 400
6.087 400
7.024 400
4 .700 400
6.033 400
7 . 633 400
7 .937 400

Fig. 2.1 Electromigration life data in the file POWNOR.DATA.
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Section 5.2 defines different types of censored data. The electromigration data in Figure 2.1 do not

include any censored observations. In this example, each specimen has the same length, 400 microns.

The file must not contain the headings LOWER, UPPER, and LENGTH added to Figure 2.1 for

explanation. The data file cannot contain more than 10,000 lines.

Options file. The POWNOR.OPTIONS file contains the following choices of the user, which

are explained later:

• Whether or not log transformation of failure data in POWNOR.DATA is required.

• Level of detail in documenting the iteration history.

• Starting values for parameters to be estimated and fixed parameter values.

• Specimen lengths for which estimates of distribution percentiles and their associated confidence

limits are desired.

Figure 2.2 shows the POWNOR.OPTIONS file used for the electromigration data example.

1

1

0 2.9219

0 -0.7186

0 2.5415

400

Fig. 2.2 The POWNOR.OPTIONS file with options for the electromigration data.

Log transformation. Enter 1 on the first line to calculate natural logs of the failure (and

censoring) times in POWNOR.DATA. If no log transformation is required, enter 0. The

electromigration example requires log transformation of failure times. This is provided by the value 1

on the first line of the file POWNOR.OPTIONS in Figure 2.2. The program fits the power-normal

distribution to the log data.

Iteration history. Enter 1 on the second line for detailed printout of iterations. The program

then stores the iterations output in a file named POWNOR.ITERATIONS. Enter 0, if the detailed

iteration history is not required. This output is recommended as an aid to understanding iterative fitting

that is not converging well. The POWNOR.OPTIONS file in Figure 2.2 requests that the detailed

iterations be saved.

Parameter values. The user is required to supply starting values of the parameters for numerical

maximization of the sample log likelihood function. Section 6 provides guidelines to obtain starting

values. Alternatively, the user may wish to hold some of the parameters fixed at desired values. The

lines 3, 4, and 5 ofPOWNOR.OPTIONS specify such choices for /z, ln(cr), and ln(S0), respectively. Each

of these lines must contain 2 values. A 0 for the first value indicates that the parameter is to be estimated

from data. The second value is then taken to be the starting value for the parameter. A 1 for the first

value indicates that the parameter value is held fixed at the second value. This feature is particularly
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useful in likelihood ratio tests for parameters, as described in Nelson (1990, Chapter 9). Figure 2.2

indicates that all three parameters in the electromigration data example are to be estimated from data.

The starting values for the /x, ln(a), and ln(50) are 2.9219, —0.7186, and 2.5415, respectively. These

starting values were obtained following the guidelines in Section 6.

Specimen lengths for percentile estimates. Line 6 and the ones below it contain the specimen

lengths for which estimates and confidence limits for distribution percentiles are desired. Each line

contains a single length value. The user can specify at most 10 lengths. In the electromigration example,

such percentile estimates are requested only for specimens of length 400 microns.

Program operation. The user must previously create the two input files as described above. The
program then can be run by typing RUN POWNOR at the $ prompt of a VAX computer with a VMS
operating system. Figure 2.3 shows program messages during run for the electromigration data example.

The underlined entries in the figure are user responses.

$ RUN POWNOR

PROGRAM MESSAGE: The program POWNOR reads the

user options from POWNOR. OPTIONS
and data lines from POWNOR.DATA

PROGRAM MESSAGE: Iteration history is in POWNOR.ITERATIONS

PROGRAM MESSAGE: Program output is in POWNOR.OUTPUT

FORTRAN STOP

$ TYPE POWNOR.OUTPUT

Fig. 2.3 How to submit a POWNOR run on a VAX computer.

Output. Figure 2.4 displays the program output in the file POWNOR.OUTPUT from the ML
fitting of a power-normal model to the logs of the electromigration data. This output is explained below;
the numbers correspond to those in the figure.

I. This output states the number of uncensored and censored observations in the data file

POWNOR.DATA.
II. This output shows the ML estimates of the (transformed) model parameters Ox,lncr,lnS0) and their

approximate 95% confidence limits. For example, the estimate of a is o = exp(— 0.7336) =
0.48, and its 95% confidence limits are a = exp(-1.6375) = 0.19 and a = exp(0.1704) =
1.19.
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POWNOR Version 1.0 3 O-AUG-9 1 11:50:49

Developed by Necip Doganaksoy and Wayne Nelson under 1991 Fellowship
grant from ASA/NSF/NIST. The program is documented in NIST Report#.

Il Total number of data cases= 59
Exact observations = 59
Left censored observations= 0

Right censored observations = 0
Interval censored observations= 0

Maximized log-likelihood = 55.8554

Maximum likelihood estimates for distribution parameters
with approximate 95% confidence limits

II:

III:

IV:

Parameter ML Estimate Lower Limit Upper Limit
1 mu 2.8779 0.8280 4 . 9279
2 ln(sigma) -0.7336 -1.6375 0.1704
3 In (normal length) 2.6779 -3 . 1808 8 . 5366

Estimated information matrix
1 2 3

1 1159.60 -985.06 255.65
2 -985.06 947.61 -200.44
3 255.65 -200.44 59.00

Estimated covariance matrix
1 2 3

1 1.09391 0.47809 3.11576
2 0.47809 0.21270 1.34900
3 -3 . 11576 -1.34900 8.93479

Estimated correlation matrix
1 2 3

1 1.00000 0.99115 0.99662
2 0.99115 1.00000 0.97856
3 -0.99662 -0.97856 1.00000

Maximum likelihood estimates for distribution percentiles
with approximate 95% confidence limits

Length= 400.0000

Pet. ML Estimate Lower Limit Upper Limit Std. Error
0.1 0.9731 0.5994 1.3463 0.1907
0.2 1.0541 0.7256 1.3825 0.1676
0.5 1.1664 0.8968 1.4360 0.1375
1 1.2561 1.0297 1.4825 0.1155
2 1.3507 1.1655 1.5358 0.0945
5 1.4853 1.3496 1.6210 0.0692
10 1.5973 1.4930 1.7016 0.0532
30 1.8074 1.7357 1.8792 0.0366
50 1.9360 1.8719 2 . 0001 0.0327
70 2 . 0528 1.9921 2 . 1135 0.0310
90 2 . 2044 2 . 1380 2 . 2709 0.0339
95 2.2714 2 . 1944 2 . 3485 0 . 0393
98 2 .3431 2.2475 2 .4387 0.0488
99 2 .3890 2.2776 2 . 5004 0.0568
99 .

5

2 .4298 2 .3020 2 . 5576 0.0652
99 .

9

2 .5108 2 . 3439 2 . 6776 0.0851

Std.

Fig. 2.4 POWNOR output for the electromigration data.

Error
1.0459
0.4612
2 . 9891

8



III. The local estimates of the information, covariance, and correlation matrices for the (transformed)

parameter estimates are shown here. The high correlations (near + 1) indicate that convergence

to the ML estimates may be incomplete and that a better parameterization of the model could

avoid convergence problems.

IV. This output shows the ML estimates of percentiles (log values) and their 95% confidence limits

at each specified length.

The theory underlying the ML fitting is in Section 5. Section 6 explains numerical methods used in

fitting.

Reparametrization. The program POWNOR maximizes the log likelihood function with respect

to p, ln(a), and ln(S0). Sometimes, this parametrization of the model must be altered to improve

numerical convergence to the ML estimates. Linear orthogonalization of the parameters provides a

convenient means for improving convergence as described, for example, in Ross (1990). Section 6

describes such linear orthogonalization of parameters. Another version of the program

POWNOR_ORTHO uses such orthogonalization. The input files, operation, and outputs of

POWNOR_ORTHO are very similar to those of POWNOR.

3. THE POWER-NORMAL DISTRIBUTION

Introduction. This section presents properties of the power-normal distribution. As background,

readers need to know basic properties of the normal distribution and normal probability paper. For

example. Nelson (1982, 1990) covers these topics and the series-system model (below) in detail. The
following topics include its reliability function, cumulative distribution function, the series-system model,

percentiles, median, probability density, mode, mean, variance, standard deviation, and hazard function

(failure rate).

Reliability function and cdf. The reliability Junction of the power-normal distribution is the

population fraction above the value y; namely.

F(y;p,a,p) {${-(y-p)/o]}‘
)

,
-oo < y < oo. (3.1)

Here - oo < p < oo is the location parameter, a > 0 is the scale parameter, and p > 0 is the power
parameter p = S/S0 in (1.1). Note the minus sign in the standard normal cumulative distribution function

$[ ]; it yields the upper tail probability of the normal distribution. For p = 1, the distribution is normal;

only then is p the mean and median of the distribution, and only then is a the standard deviation of the

distribution. The cumulative distribution function (cdf) is the population fraction below y; namely,

F(y;p,o,p )
= 1 -

{
<t(-(y-/i)/a]}p ,

-oo < y < oo. (3 -2)

The distribution is simpler in terms of the standardized deviate z = (y-p)/a. Then

F(y;p,o,p ) = [<$(-z)]
p

, F(y;p,o,p)\ = 1 - [<i<-z)]p ,
-oo < z < oo. (3 - 3 )

David (1981, p287) lists tables of these functions for integer p values.
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Fig. 3.1 Power-normal cdfs on normal probability paper.

Probability plot. Figure 3.1 displays power-normal cdfs for selected p values on normal

probability paper. For p = 1, the cdf is normal and is a straight line. For p > 1, the cdfs curve

concave to the left and shift toward lower y (and z

)

values as p gets larger. For 0 < p < 1, the cdfs

curve concave to the right and shift toward higher y (and z ) values as p gets smaller.

Approximate cdf. For large p, the exact cdf formula (3.2) requires a table or algorithm for <£( )

that is accurate in the far tails. Asymptotically as p -* oo, the power-normal cdf approaches the cdf of

a smallest extreme value distribution (convergence in law or in distribution). Bury (1975) gives the

location and scale parameters of that distribution as a function of p, a, and p. Convergence to this

asymptotic distribution is slow. That is, p must be very large (say well above 100) for a satisfactory

approximation.

Series-system model. In some applications, product comes in different sizes, and its life,

strength, or some property depends on size. For example, time to electromigration failure of conductors

in microcircuitry depends on conductor length. Also, strength of metal bars depends on bar length

(Chaplin (1880)). Harter (1977) surveys models for the effect of size. The following series-system model

is a simple, widely-used model for the effect of size. For purposes of presenting the model, reliability

terminology and product life are used. The assumptions of the series-system model for size effect are:

1 . If product is conceptually divided into portions of any size of interest, it is assumed that the times

to failure of the portions are statistically independent.

2. The product fails when the first such portion fails.

3. Portions of size S0 have a reliability function R0(t), which is the population fraction surviving

beyond age t.

10



(3.4)

It follows from these assumptions that product of size S has a reliability function

R
s
(t) = [ff

0
(/)]“0.

Nelson (1982, 1990) presents this model in more detail and gives various applications. When R0(t) is the

reliability function of a normal distribution, (3.4) is the power-normal reliability function (3.1). Then the

power parameter p = S/S0 is the ratio of the product size S to the "normal size" S0 .

Fractiles. The F tractile of the power-normal distribution is

VF = n * zF -a; (3.5)

here zr is the F' = 1 - (1 -F) I/p
fractile of the standard normal distribution. For p > > 1, F' usually

is very near zero. For p near zero, F' usually is very near one. Tables of zF > appear in most statistics

books. However, few tables adequately provide zF> values for F' very near zero or one.

Median. The median is the 0.50 fractile 7
j0 50 . It is a "center" of the distribution in that half of

the population is below 77 50 and half is above it. For the power-normal distribution,

^0.50 = M + zr (3>6)

here F’ = 1 — (0.5)
1/p

. For p = 1, the distribution is normal, F = 0.50, zF = 0, and tj0 50 = p.

Density. The power-normal probability density is the derivative of the cdf (3.2); namely,

fiy;n,t.p) - (pic)m-p)lc] W-ly-tilc}]"-'-, (
3 7)

here 0(z) = (27r)
_1/2

exp(-z2/2) is the standard normal probability density. In terms of the standardized

deviate z = (y-p)/a,

fiy;p,a,p) = (pic) tfz) [^-z)]"'
1

.
(3 - 8>

Figure 3.2 displays such probability densities as a function of z for selected p values where p = 0 and

cr = 1 . For p = 1, the density is the standard normal density. These densities are unimodal.

SHO-tOOQO 3000 1000 300 100 *0 20 3 1 0.5 0.2 0.1

2

Fig. 3.2 Power-normal probability densities.
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Mode. The mode of a power-normal distribution is the value i]m where the probability density

peaks. It is the most probable y value. t]m is the solution of dfly;p,o,p)/dy = 0; namely,

1m ' /* + Zm0 ' <39)

Here zm is a function of just p and is the solution of -zm$(-zm)/<t>(zm) - p — 1. For p = 1, zm = 0 and

the mode r;m = p, a well-known property of the normal distribution.

Mean. The mean of the power-normal distribution is

EY =
\

yfy;p,a,p ) dy = p + E
p
a. (3 - 10)

Here the mean E
p
for the standardized distribution (p = 0 and a — 1) is a function of p only; namely,

£
p l T.

w #z> w-z)]''
1 *• (3 - U)

For integer p, E
p

is the mean of the first order statistic of a sample of size p. David (1981, p291) lists

tables of E
p
for integer p. E

p
apparently has not been tabulated for non-integer p; then (3.11) must be

evaluated by numerical quadrature.

Variance and standard deviation. The variance of the power-normal distribution is

V(Y) -
|
°‘jy-EY?fly,w,p)dy = V/ (3.12)

here the variance V
p
for the standardized distribution (p = 0 and a = 1) is

v, = |_"
<>
(z-£p

2
<><«z)W-z)r

1&. (3- 13)

For integer p, V
p

is the variance of the first order statistic of a sample of size p from a standard normal

distribution. David (1981, p291) lists tables of V
p
for integer p. V

p
apparently has not been tabulated

for non-integer p; then (3.13) must be evaluated by numerical quadrature. The standard deviation of the

power-normal distribution is

sd{Y) = [V{Y)]
m = (3 - 14)

For p = 1, the distribution is normal, and Vj = 1, V(Y) — a
2

,
and sd(Y) = a.

Hazard function. Much used in reliability work, the hazard function (also called the

instantaneous failure rate) of the power-normal distribution is

h(y;p,o,p) m fy;p,a,p)/[l-F(y;p,o,p)]

= (p/o)<t>[(y-p)/o]/${-(y-p)/o]

= p-h[(y-n)la] = ph(z).
(3 ' 15)

Here h(z) = 4>(z)/$(—z) is the hazard function of the standard normal distribution and is an increasing

function of z = (y—p)lo. Figure 3.3 depicts h(z). Any power-normal hazard function is merely a

multiple p of h{z).

12
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z

Fig. 3.3 Standard power-normal hazard function.

4. THE POWER-LOGNORMAL DISTRIBUTION

Introduction. This section presents properties of the power-lognormal distribution. As

background, readers need to know basic properties of the power-normal and normal distributions and

lognormal probability paper. For example, Nelson (1982, 1990) covers these topics and the series-system

model (below) in detail. The following topics include its reliability and cumulative distribution functions,

its relationship to the power-normal distribution, the series-system model, percentiles, median, probability

density, mode, mean, variance, standard deviation, and hazard function (failure rate).

Reliability function. The reliabilityfunction of the power-lognormal distribution is the population

fraction surviving beyond age t > 0; namely,

- {4(-(lii(f)-(*)/<7]}'.f>0. (4 - [)

Here <i>[ ] is the standard normal cumulative distribution function, and p > 0 is called the power

parameter. Also p (-<» < p < co)is called the location parameter, but is better called "mu". Strictly

speaking, p is a location parameter only for the power-normal distribution when y = ln(f) is used. For

the power-/pgnormal distribution, r = e^ is a scale parameter as shown below. Similarly, a > 0 is

called the scale parameter, but is better called "sigma". Strictly speaking, a is a scale parameter only

for the power-normal distribution, when y = ln(r) is used. For the power-/ognormal distribution, p and

a are actually shape parameters. For p = 1, the distribution is lognormal; only then is p the mean of log

life y = ln(r), is the median life, and is a the standard deviation of log life y = ln(r). The lognormal

distribution is briefly presented in Nelson (1982, 1990) and in many other statistics books; Shimizu and

Crow (1988) devote a book to it.

Cdf.

namely,

The cumulative distribution function (cdf) is the population fraction failing before age r;

G(r,p,o,p )
= 1 - (f{-(ln(r)-p)/a]}p ,

t > 0.
(4.2)
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The distribution is simpler in terms of the log-transformed standardized deviate z = [ln(f)— /z]/ct. Then

G(r,p,o,p) - [4<-z)]», G(t;p,o,p) - 1 - [<K-z)]<\
(4 ' 3)

David (1981, p287) list tables of these functions for integer p values.

Probability plot. Figure 4.1 displays power-lognormal cdfs for selected p values on lognormal

probability paper. Figure 4.1 is the same as Figure 3.1, except that Figure 4.1 has a data scale (for t)

that is logarithmic and Figure 3. 1 has a data scale (for y) that is linear. For p = 1, the cdf is lognormal

and is a straight line. For p > 1, the cdfs curve concave to the left and shift toward lower t (and z)

values as p gets larger. For 0 < p < 1, the cdfs are curves concave to the right and shift toward higher

t (and z) values as p gets smaller. Figure 4.2 shows selected cdfs that have common values for the 0.25

and 0.75 fractiles to give these distributions roughly the same spread, as if fitted to the same data set.

The figure shows that the lower tails differ appreciably. Thus it is important to know p if extrapolating

into the lower tail in high reliability applications.

Other parameters. For some purposes, it is useful to express the distribution in terms of its true

scale parameter r = exp(p). Then

C{t-p,a,p) = {4f-(ln(//7))/o])
p = {4t-(In(f/r)'

/

»)J}
p

,

G(t;p,a,p) = 1 - {$(-(ln(//T))/a]}p = 1 - {<S{-(ln(r/r)
1
'«)]}‘’.

For p = 1, t is the distribution median; otherwise, it is the 1 — (0.5)° ffactile.

(4.1’)

(4.2')

Approximate cdf. For large p, the exact cdf formula (4.2) requires a table or algorithm for <£( )

that is accurate in the far tails. Asymptotically as p -* oo, the power-lognormal cdf approaches the cdf

of a Weibull distribution (convergence in law or in distribution). Bury (1975) gives the scale and shape

parameters of that Weibull distribution as a function of p, a, and p. Convergence to this asymptotic

Weibull distribution is slow. That is, p must be very large (say, well above 100) for a satisfactory

approximation.

Series-system model. As described in Section 3, a product may come in different sizes, and its

life may depend on size. The previous assumptions for a series-system model are assumed here.

However, if in (3.4) the reliability function R0(t) for product of size S0 is lognormal, then the reliability

function (3.4) of product of size S is the power-lognormal one (4. 1). Then the power parameter p = S/S0
is the ratio of the product size S to the "lognormal size" S0.

Relation to the power-normal. The power-lognormal distribution has a relationship to the

simpler power-normal distribution. If t has a power-lognormal distribution with parameters p, o, and p,

then y = ln(r) has a power-normal distribution with the same values of the parameters p, a, and p. Thus,

one can analyze power-lognormal data by fitting the power-normal distribution to the log data y = ln(r).

The power-normal distribution is simpler in that only p is a shape parameter, whereas, for the power-

lognormal distribution, both p and o are shape parameters.

14
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Fig. 4.1 Power-lognormal cdfs on lognormal probability paper.
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Fractiles. The F fractile of the power-lognormal distribution is

tF = exp(/i+zF -o); (4.4)

here zr is the F' = 1 - (1 -F) llp
fractile of the standard normal distribution. tF is the antilog of the F

fractile (3.5) of the corresponding power-normal distribution.

Median,. The median of the power-lognormal distribution is

*o.5o
= exp(ji+zF .o) (4.5)

where F' = 1 — (0.5)
1/p

. For p = 1 (the lognormal distribution), zF > = 0 and t0 50 = exp(p).

Density. The power-lognormal probability density is the derivative of the cdf (4.2); namely,

g(f,p,a,p) = (pita) «{[ln(0-M]/o} W-tlnW-rf/ojr
1

;
(46)

here 4>(z) = (2ir)“
1/2

exp(-z2/2) is the standard normal probability density. Figure 4.3 displays such

densities as a function of r = r/r, where r = exp(p). The densities have a variety of shapes depending

on the p and a values. These densities are unimodal. For p= 1, the density is lognormal.

Mode. The mode of a power-lognormal distribution is the value tm where the probability density

peaks. It is the most probable value. tm is the solution of dg(t;p,o,p)ldt = 0; namely, the solution

zm = [\n(tm)—p\lo of

(zm+a)$(-zj
= -0-1). (4.7)

Here zm is a function of p and a. For p = 1 (the lognormal distribution), zm = —a and tm = exp(p—

a

2
).

Mean. The mean of the power-lognormal distribution is

ET =
|
“f g(t;p,o,p) dt

=

|
“(p/a) <*>{[ln(r)-/x]/a) [c^ -[ln(r)-M]/a}]

p_1
dt. (4 -B)

= r|°° pew<fr(u){$(-u)}
p ~

x

du = rE{o,p).

Here r = exp(p) is the scale parameter, and E{o,p) is a function of a and p but not p = ln(r). David

(1981, p 288) references tables of E{a,p) for integer p and a = 1. The integral can be evaluated with

numerical quadrature.

Variance and standard deviation. The variance of the power-lognormal distribution is

V(T) = g(t;p,a,p) dt

=
j
~(t-ET)2

(plot) <*>{[ln(r)-,*]/a} [<&( -Dn(f)-^/ff}]'
>
-

1

dt, (4-9)

= r
2 l“je’u

-E(a,p)]
2
pm [4<-h)]'’-

1 du - r
2
V(a,p).

Here r = exp(p) is the scale parameter, and V(o,p) is a function of o and p but not p=ln(r). David

(1981, p288) references tables of the integral for integer p and a= 1. The integral can be evaluated with

numerical quadrature. The standard deviation of the power-lognormal distribution is
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sd(T) - [V(T)]
U1 = tma,p)]'

n
.

(4I0)

Forp=l, the lognormal distribution, V(a,l) = [exp((T) — 1] exp((T), V(T) = r
2
[exp(<r)-l] x expCa

2
),

and

sd{T) = r[exp(a
2
)-l]

1/2
exp(a

2
/2).

(4.11)

is

Hazard function. The hazard function (or "failure rate") of the power-lognormal distribution

h(t\iL,o,p ) = g(t;p,o,p)/G(r,p.,o,p ) = p-h(t;p,a, 1);
(4.12)

here h(t;ix,o,l) = {\lot)4>{[\n(t/f)\/o} / ${-[ln(r/T)]/(7} is the lognormal hazard function and r = exp(/r)

is the scale parameter. Rewritten

h(t‘,p,a,p) = p-/2(r;0,a,l) (4 - 13 )

where r = t/r. Figure 4.4 shows h(r;0,a,l) for selected values of o. These are a multiple of the

lognormal hazard functions. Thus, they have the same behavior as lognormal hazard functions. In

particular, they are all zero at t= 0
,
increase to a maximum, and then decrease back toward zero with

increasing time. For most o values seen in practice, the maximum occurs in the far upper tail. Thus,

for most practical purposes, the failure rate increases as the population ages.

raio-i SlflM” 0.2. 0.4, 0.7. 1.0

Fig. 4.4 Power-lognormal hazard functions.
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5. MAXIMUM LIKELIHOOD THEORY FOR FITTING THE POWER-(LOG)NORMAL
MODEL TO DATA

5.1 Introduction

Purpose. This section presents maximum likelihood (ML) theory for fitting the power-

(log)normal model to data. As explained in detail by Nelson (1982, 1990), the ML method has good

properties including

• It is versatile; that is, it applies to most models and types of data including censored and interval data.

• It has good statistical properties; namely, the method yields good estimators and confidence limits.

Overview. The contents of this section are:

• Specimen and sample likelihoods (Section 5.2),

• Maximum likelihood estimates (Section 5.3),

• Fisher and covariance matrices (Section 5.4), and

• Confidence limits (Section 5.5).

5.2 Likelihoods

Introduction. This section presents specimen and sample (log) likelihoods for the power-

(log)normal model and observed, left censored, right censored, and interval data. Terminology for life

data is used, but the model may be fitted to strength and other types of data. Needed background is in

Section 3 on the power-normal distribution. As background, the following paragraph describes types of

sample data.

Data. The types of censored life data are defined here. For specimen i with size S
it

failure may
occur at an exactly observedfailure age (life) yf

. If an age t
t
is from a power-lognormal distribution, then

one uses the log age yf
= ln(r

f) throughout. If the specimen has run a time y, without failure, then the

failure age is beyond and is censored on the right at age y,-; then yf
is called the survival age without

failure. If the failure occurs at some unknown age before a known first inspection age yf ,
then the failure

age is censored on the left at age yt
. If the failure occurs at some unknown age between two adjoining

inspection ages (y,- < yf), then the failure age is interval censored and in the interval (y„y/). For a

specimen, each such type of data has a corresponding likelihood for the power-(log)normal model, as

described in the following paragraphs.

Observed. The likelihood L, for specimen i of size S
t
that has an observed failure at (log) age

y,- is the probability density (3.7); namely,

l, = (kS/o) Wy-iiVo] {4<-0’
i-M)/«];'‘

Srl
.

(51)

This and other likelihoods are functions of the datay, and S, and the model parameters \i, a , and k = 1 IS0
where S0 is the size of specimens with a (log) normal distribution. The log likelihood is

2,. - in(L
(
.)
= ln(*S/<7) - ln(2,r)

1/2
- \[(yrli)la)

2 - (*S,-l)fl[0<rfi)/<j]; (5.2)
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here

H{z) - -Inm-z)] (5.3)

is the cumulative hazardfunction of the standard normal distribution.

.KS:

Right censored. The likelihood L, for specimen i of size S
t
that is right censored at (log) age yit

its current unfailed age, is the survival probability (3.1); namely,

(5.4)

(5.5)

The log likelihood is

^ = W-(yrn)/o]}

% = -KS'UUy-ri/o].

Left censored. The likelihood for specimen i of size S, which is left censored at (log) age yh its

inspection age after its unknown failure age, is the failure probability (3.2); namely.

The log likelihood is

L, - l - {fl-ty-jO/a]}'*

% = ln[l -

(5.6)

(5.7)

Interval censored. The likelihood L, for specimen i of size S
t
which is known to have failed in

the interval between inspections at ages yt < y[ is the probability of failure in that interval; namely,

L, - (5 - 8)

The log likelihood is = ln(L,-).

Sample likelihood. The specimen likelihoods for a sample of n specimens yield the sample

likelihood below. The sample log likelihood yields ML estimates and confidence limits for model

parameters and other quantities, as described in the following sections. The specimen lifetimes are

assumed to be a random sample of statistically independent lifetimes from a power-(log)normal

distribution. The sample likelihood is the probability of the n specimen outcomes (observed, censored,

or interval data). For independent specimen lifetimes, the sample likelihood L is the product of the

specimen likelihoods; namely,

L = L
x
x 1^ x ... x L

n
. (5.9)

Here the sample likelihood is a function of the data values y,- (and y[) and S
t ,

the type of data, and the

model parameters \i, a, and k = l/50 . The sample log likelihood 2? = ln(L) is the sum of the specimen

log likelihoods; namely,

S£ = S£j + + - + 9P
n

.
(5.10)
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5.3 Maximum Likelihood Estimates

Introduction. This section defines maximum likelihood (ML) estimates and presents related

theory.

Definition. The maximum likelihood estimates for the model parameters \i, a, and k are the
A A A

values /x, o, and k that maximize the sample likelihood (5.9) (or equivalently that maximize (5.10)) over

the range of mathematically allowed values of those parameters. For many models and types of data, the

maximum likelihood estimates are unique. Also, the ML estimates (/x,a,/c) have an asymptotic joint

normal distribution with mean vector (/x,a,x), the true population values, and covariance matrix (5.20)

below. Nelson (1982, 1990) references authors who state regularity conditions that the model and data

must satisfy to assure this. For some models and types of data, there may be local maxima; then the

parameter values at the global maximum are the ML estimates. In many computer programs, the ML
estimates are iteratively calculated by direct numerical search for the maximum of (5.10); Section 6

describes such calculations. An alternative calculation involves the likelihood equations which follow.

Likelihood equations. For some models and types of data, the ML estimates can be found by

the calculus method. That is, the parameter values for which the partial derivatives of the sample log

likelihood with respect to each parameter all equal zero are the ML estimates. For the power-(log)normal

model and complete data (all specimens have exactly observed failure ages yf), the partial derivatives set

equal to zero are:

o = ase% = (i/a){Lz,. + E( f̂
-1)/I(z

f)},

o = aae/da = (i /o){-n + Ez? + E(*sr i)z/z(z,.)}, (5 -H >

0 = d&ldK = (n/K) - ZSfliZf).

Here the standardized deviate z,- s= (y.—^)la is a function of /x and a, and each sum runs over all n

specimens. These likelihood equations cannot be solved explicity for /x, a, and k. They must be solved

iteratively.

Expectations. Mathematical expectations of various quantities appear in the ML theory below.

Such expectations are defined here for complete data; Nelson (1982, 1990) defines them for other forms

of data. Let u(y
t)

denote a given function of the random failure age y{
of specimen i. Then the

expectation of the random quantity u(y
()

is

E{u(y,)} =
J

°a

_Ji(yl)ftyi
\W,K) dy{, (5-12)

here./( ) is the power-normal probability density (3.8), and the parameters fi , a, and k have the true

population values.

Relationships. A useful general property of the first partial derivatives of the specimen and
sample log likelihoods is that their expectations are zero. That is,

0 = (l/a)[E E{Zj} + L(jcSr l)£{/i(z,.)}],

0 = E{dWdo} = (1 /a)[-n + lE{tf} + £ («Sr l)E{z/r(z,)}], (5 - 13 )

0 = £{a9£/a*} = (nU) - Y.SjE{H(Zi)}.
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In these formulas, the y{
are regarded as random quantities and the parameters are equal to their true

(unknown) population values. These formulas aid in the evaluation of various expectations later. For

example, for a single specimen i, the third (5.13) equation yields

ms,) - E{H(z,)} » f
"

dy, = (I/O)
f

"
dz,; (5 . 14)

J—oo J
— oo

Here^jO,!,^,) is the standard power-normal distribution with p,- = kS
{

. Similarly, the first (5.13)

equation yields

£Wz,)} - £{z,}/(«S,) = (k5 - 1 )

-
1

( 1 /o)
f

"
z, Az„0.US,)*,. (515 )

The last integral is the mean of the standard power-normal distribution with p (

- = kS
(

. These results are

used to evaluate integrals below.

5.4 Fisher and Covariance Matrices

Introduction. This section presents the theoretical Fisher information matrix and the theoretical

asymptotic covariance matrix of the ML estimates. The subsequent estimates of these matrices are used

to obtain approximate confidence limits in Section 5.5.

Second derivatives. ML theory employs the second partial derivatives of the sample log

likelihood. For the power-normal model and complete data, they are:

3
2
a/a,x

2 = (-l/ff
2
){n.5;(/(Sr l)/!fe

1
.)[/i(z

1
)-z

1
.]},

dtydodn = (- 1 /<T
2
) {2 E z, + E (K^ -

1 )A (z,) [ 1 [A(z() -z; ] ] }

,

a
2
a/3><dfi = (SJa)h(z

:
),

3
2
2/3<t

2 = (-l/ff
2
){-/!+3Ez^+£(KSj-l)z

j
/t(z

I
-)[2+z

J
.[/!(z

i
)-z

i]]},

3
2
2/3*3ff = (1 lo)£S,z,Ji(z,),

SHf/S*
2 = -Vk 2

.

In these equations, the derivative of the standard normal hazard function satisfies h'iz,) = /i(z,)[/2(z,)-z,].

Fisher matrix. The theoretical Fisher (information ) matrix is the matrix of expectations of the

negative second partial derivatives; namely,

F =

E{-d2<
y>/dfi

2
}

E{-d2
g/dodn}

E{-d2
&/dKdn}

Ei-d^/dudo}

E{-d2&/do2
}

E{-d2Wdicdo}

£{-a2
9£/dpax}

E{-d2
<£JdodK}

E{-d2(£]dK
2
}

(5.17)

This matrix is symmetric and a function of the parameters, which equal their true (unknown) population

values here. The ML estimate F of this matrix is obtained by replacing the parameters with their ML
estimates in (5. 17). Some integrals in (5. 17) have not been evaluated analytically. For the ML estimate,

the integrals can be evaluated by numerical quadrature when the true unknown parameter values are

replaced by their ML estimates. For censored data, general formulas for such integrals appear in Nelson
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(1982, p. 378) and require a censoring time for each specimen, even those that failed. Such a planned

censoring time may not be known for field data. The theoretical matrix is useful for theoretically

evaluating proposed test plans where all censoring times are specified. Another estimate of F that does

not require all censoring times and is easier to calculate is the local estimate

F* =

-d
2
9£/3/i

2 -d2Q/dfido -d
2
Q/dndic

-d
2
Q/dodn -d2Q/dcr

2 -d2<
sZ/dodic

-tf&ldicdfi -d
2&/dKdo -d

2&ldn
2

(5.18)

This is the matrix of negative second partial derivatives ((5.16) for complete data) of the sample log

likelihood where the caret
A

indicates that the parameters are set equal to their ML estimates. For

example,

-d
2
&ldKdfi = -(1 loyES/iiZ,) (

5 - 19 )

where z
{
= (yi—^/a. Nelson (1982) gives other (equivalent) formulas for the theoretical Fisher

information matrix and other estimates for it. This local estimate of the Fisher matrix does not require

a censoring time for each specimen, only for the censored specimens. Thus it can always be used, even

when the ML estimate F cannot due to unknown censoring times for failed specimens.

Covariance matrix. The theoretical asymptotic covariance matrix 2 of the ML estimates \l, a,

and k is the inverse of the theoretical Fisher information matrix; namely,

z

Var(/t) Cov(ji,d) Cov(/t,x)

Cov(a,/t) Var(a) Cov(d,k)

Cov(x,/i) Cov(k,a) Var(x)

= F'1
(5.20)

Nelson (1982, pp. 384-386) gives a heuristic argument for this result. 2 is a function of the parameters

H, a, and k set equal to their true (unknown) population values. The ML estimate of the covariance

matrix is the inverse of the ML estimate (5.17) of the Fisher matrix; namely, 2 = F-1
. Similarly, the

local estimate of the covariance matrix is the inverse of the local estimate (5.18) of the Fisher matrix;

namely, 2* = (F*)
-1

. An estimate of the covariance matrix yields approximate confidence limits for

parameters and functions of parameters as described in Section 5.5.

5.5 Confidence Limits

Introduction. This section presents approximate confidence limits for model parameters and

functions of them.

Function estimate. Often one wishes to estimate some function 6 = d(ji,a,K) of the model

parameters. For example, the F fractile of the power-normal model for specimens of size S is the

function tjf = /t + zra where F = 1 — (1 — F)
VkS and zF = <i>

-1
(F'). Also, for example, the "normal

size" is the function S0 = 1 Ik of just k. The ML estimate of the true function value d = 6(ji,o,k) is the

function evaluated at the ML estimates of the parameters; namely, 6 = 0(ll,o,k). For example,

F' = 1 — (1 -F) 1 K and tjf = n + Under certain regularity conditions that hold for many models

and data, the asymptotic cumulative distribution of 6 for "large" samples is close to a normal cumulative
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distribution with mean 6 (the true population value) and variance Var(0) given below in (5.22). This

asymptotic normal distribution yields the approximate confidence limits in the next paragraph.

Confidence limits. Based on the asymptotic normal distribution of 6, lower and upper two-sided

approximate 100C% normal confidence limits for the true value 6 are

6 =0 - zc .[Var(#)]
I/2

,
6 = $ +zc -[Var(0)]

1/2
;

(5.21)

here zc is the standard normal C' = (1 + Q/2 fractile, and Var(0) appears below in (5.22). In practice,

one uses in (5.21) an estimate of Var(0) given below.

Variance. This paragraph presents the formula for the theoretical asymptotic variance Var(0).

It is assumed that the function 6(ji,o,k) has continuous partial derivatives with respect to the parameters

fi, a, and k. Then

Var($) = [dd/dfi 36 Ida 3613k} 2

= (36l3ii)
2
\2s{p.) + 2 (3d/3iJ.)(dd/do)Co\(jL,d)

+ (36 l3a)
2Vai(o) + 2 (36 ldo)(36 /3k)Co\(o,k)

+ (36/3K)
2
Vai(k ) + 2 (36 I3k)(36 l3v)Co\(iL,k).

Here the partial derivatives and variances and covariances are all evaluated at the true values of the

parameters. The local (or maximum likelihood) estimate of this variance is given by (5.22) where the

partial derivatives are evaluated at the ML estimates of the parameters and the variances and covariances

are replaced by their local (or maximum likelihood) estimates. In practice, the local estimate is usually

easier to calculate. Either estimate is used to obtain the confidence limits (5.21).

Covariance. Suppose that one wishes to estimate another function \

p

= iJ/(jjl,o,k) of the model

parameters. Its ML estimate \j/ = \(/(Jl,o,k) and 6 = 6(Jl,o,k) have an asymptotic joint normal cumulative

distribution for large samples. That joint distribution has a mean vector (6,\J/), the true population values,

variances given by (5.22), and covariance

Cov(M) = (36/dii)(dt/dn)Var(ti)+(d6ldo)(d\J//da)Vai(d)+ (36 I3k)(3\PI3k)W2s(k)

+ [(36 ldn)(3\J//do)+(dd /da)(3\J//dn)] Cov(/t,a)
(5 23 )

+ [(36 /3o)(d\l/ldK)+(36 ldK)(d\f//do)\ Co\(o,k)

+ [(36 ldii)(d\p/dK)+(dd /dK)(d\p/dn)\ Cov(ji,k).

This result is used in Section 6 for transformed parameters used for convenience in place of the natural

model parameters n, a, and k.

LR limits. The approximate normal limits (5.21) are simple to calculate for most models and

types of data, and they are widely used. In practice, such limits usually enclose the corresponding true

value with a probability below the stated confidence 100C%. Calculation of likelihood ratio (LR)

intervals is described by Nelson (1990, pp. 297-301). Such intervals usually have a confidence level

36 1dii

36 Ido

3613k
(5.22)
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closer to the stated 100C%. However, their computation is more complex, and they are not yet available

in POWNOR and in most computer programs for ML fitting.

Improved normal limits. The approximate normal confidence limits (5.21) can often be

improved by working with a transformed value f = £(0) and treating its ML estimate f = £(0) as

normally distributed. Then one calculates the limits

f = f - zc .[Var(r)]
1 '2

. r - f + zc .[Var(r)]
1/2

(5.24)

Here Vard") = (df/30)
2 Var(0) and is estimated as described above. Then the limits for 0 are obtained

by inverting the monotone function £( ) to get 0 =r~
l

(f ) and d =f
_1

(r) ,
if is a*1 increasing function

of 0. Otherwise, 0 =r"
1

(f) and d=£~ l

(£), if~f(0) is a decreasing function of 0. For example, in the

power-(log)normal 'model, a useful transformation is f = ln(or). This transformation assures that the

confidence limits for a are positive, whereas, (5.21) may yield a negative lower limit, which is

unacceptable since a > 0. Such transformed limits may have a confidence level that is closer to the

stated 100C%.

6. NUMERICAL METHODS

Introduction. This section describes numerical methods that facilitate the calculations involved

in the ML theory in Section 5. Many formulas and ideas in Section 5 are computationally naive and must

be altered as shown here. In particular, finding the ML estimates by iteratively maximizing the log

likelihood is difficult unless the model is reparametrized. Even the best optimization routine has difficulty

optimizing the log likelihood of a poorly parametrized model, and the natural model parameters are often

a poor choice. As background, Ross (1990) discusses such numerical problems and solutions in detail,

and Nelson (1982, pp. 386-395) provides further solutions. This section will interest only a few who are

concerned with numerical methods.

Starting values. The following method uses percentile estimation to obtain starting values n0 ,

o0, and k0 for the ML iteration. The method employs three selected sample order statistics y,- < yr <
yr with corresponding probability plotting positions P < P' < P". The next paragraph deals with the

choice of i, i', and i"

.

For a complete sample of n specimens of size S, the plotting position of order

statistic i is P
t
= (i-0.5)/n . The P fractile of the power-normal distribution is

tj p = n + zra (6.1)

where ir = 1— <2
1/<s

and Q —
1 —P. For specified

Q = \-P = (n-i+0.5)/n, Q' = 1-P' = (n-i '+0.5)/n, Q~ = 1-P' = (n-i~+0.5)/n, (
6 - 2 )

the differences of the corresponding fractiles are

VP~- V P
- = (V V)a

’ Vp - V P = (V zt)° • (6 - 3 ^

The ratio of these equations yields

(Vp- - Tip-) / (tIp - Tip) = [Z^qJ/kS - Z^qI/kS] / [Z^qJ/kS - Z
x
_^-ksY (6 -4)

Substitute the order statistics y„ yr ,
and yr for the corresponding fractiles 7jP ,

tjp ., and 7
iP » on the left

side of this equation, and iterate on b = 1 I(kS) on the right side to find the value b0 that satisfies this
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A

Then use k0 = 1 /(boS) as the starting value. Then substituting the order statistics j, and yr for t]p and

rip. into (6.3) yields a starting value 60 ;
namely,

°o =0v
~ ~ zt>-

(6 -5)

where ir = l-^°and i

V

= \-Q'
b
°

.

Finally, substituting the order statistic yt
for tjp in (6.1) yields

£0
=

y> " zfdo-
(6 -6)

These starting values are the percentile estimates based on the order statistics yh yr,
and yr . These

starting values can be used to calculate starting values for another parametrization of the model. This

method extends readily to multiply (right) censored samples, but must be adapted to interval data. Treat

each failure in an interval as if it occurred at the midpoint of its interval, and use the method above. This

yields crude starting values.

Order statistics. For a complete sample, the order statistics used in the previous paragraph are

chosen as follows. For a (log)normal distribution (p= 1), the asymptotically "best" (as n -* 00
) two order

statistics for estimating a have ranks i and i

"

satisfying

0.0694 = (i-0.5)/n, 0.9306 = (*'-0.5)//2. (6 - 7)

The solutions are

i = 0.0694/2+0.5, r = 0.9306/2+0.5, (6 - 8)

which each must be rounded to the nearest integer. Use the rounded values in (6.8) to calculate the

plotting positions in the previous paragraph. For the middle order statistic use the sample median; that

is, 2
' = nil for even n and V = (/2+l)/2 for odd n, and P' = Q' = 0.50. For a (multiply) censored

sample, calculate plotting positions for the failure times as described by Nelson (1982, Chap. 4), and use

one of the early failures P
t ,
one of the last failures Pr and one about midway between them, Pv — (P,-

+ Pr)l2.

Iteration parameters. The theory in Sections 3, 4, and 5 employs the natural model parameters

p, a, and p (or equivalently S0 or k = l/50). These parameters are mathematically convenient and easy

to interpret, especially p and a, which are well understood as parameters of the normal distribution

(p= 1). For purposes of calculating ML estimates by optimizing a sample log likelihood, other parameters

work better. POWNOR uses the parameters p, 5 = ln(a), and u> = ln(50) in the log likelihood. That

is, exp(S) replaces a, and exp(oo) replaces S0 . The new parameters all range from - 00 to + 00
. Thus

the optimization with respect to p, 5, and w is unconstrained; whereas iterated values of a and S0 would

have to be constrained to be positive, which complicates the optimization calculations. Moreover,

confidence limits (5,6) and (w,w) convert into positive confidence limits a = exp(5), <7 = exp(5),

So = exp(w), and So = exp(ai) avoiding negative lower limits. Also, for various models, such

transformations tend to give actual confidence levels that are closer to the intended levels than

untransformed parameters (Nelson (1982, p.393)).

Optimization of the log likelihood. The ML estimates of the model parameters are the parameter

values that maximize the sample log likelihood, which is calculated as described in Section 5.2. The

program employs the Powell (1964) method to iteratively search for the values of the model parameters

that maximize the log likelihood. This method does not use the explicit derivatives of the log likelihood

function taken with respect to the parameters. The user must provide the Powell method with starting
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values for the ML estimates of model parameters. A method to obtain starting values for the ML iteration

is given above.

Trimmed standardized deviates. In searching for the parameters that maximize the log

likelihood function, POWNOR works with standardized deviates z
t
= (y-folo of observations. If the

starting values of the model parameters are far from their ML estimates, the standardized deviates are

large. Such large values can cause overflow problems and slow down or prevent the convergence of the

iterative method. POWNOR avoids this through the use of trimmed standardized deviates, as described

in Nelson (1982, p. 394). POWNOR uses the trimmed standardized deviates until the iteration is close

to converging. Then the program switches to using the (untrimmed) standardized deviates of the

observations and completes the ML iteration.

Standard normal cdf and its inverse. As described in Section 5, the log likelihood function for

a censored value contains the standard normal cdf. POWNOR uses the double-precision IMSL (1987)

subroutine DNORDF to evaluate the standard normal cdf.

Fisher matrix. After POWNOR obtains the ML estimates, it calculates the local estimate of the

Fisher (information) matrix. The elements of this matrix are the negative second partial derivatives of

the log likelihood taken with respect to the (transformed) model parameters and evaluated at their ML
estimates. POWNOR uses the STATLIB subroutine HESS which obtains these derivatives numerically

by a perturbation calculation using only the values of the log likelihood function.

Covariance matrix. The local estimate of the covariance matrix for the ML estimates of the

model parameters is the inverse of the local estimate of the Fisher matrix. The program uses the IMSL
(1987) subroutine DLINDS to invert the local estimate of the Fisher matrix.

Confidence limits. The program calculates approximate confidence limits for n, ln(a), and ln(S0),

using their ML estimates and local estimates of their variances. This assures positive lower limits for a

and S0 . Calculation of confidence limits for a distribution percentile requires the inverse of the standard

normal cdf. The program uses the IMSL (1987) subroutine DNORIN to evaluate the inverse of the

standard normal cdf.

Reparametrization. Numerical maximization of the log likelihood function is typically facilitated

by orthogonality of the model parameters. Two parameters are defined to be orthogonal if the

(asymptotic) covariance of their ML estimators is zero (Cox and Reid (1987)). Ross (1990) describes how
to use the information matrix to obtain (approximately) orthogonal parameters. This reparametrization

multiplies the original parameter vector by the upper triangular Cholesky decomposition of their

information matrix. The routine POWNOR_ORTHO uses the information matrix for fi, ln(u), and ln(S0)

evaluated at the current values of these parameters in such reparametrization. If the current values of the

parameters are already close to the ML estimates, the transformed parameters are then approximately

orthogonal. The routine POWNOR_ORTHO usually maximizes the log likelihood more quickly with

respect to the transformed parameters.
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