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ABSTRACT

A computer program, HYDRA3D, to simulate cement microstructural

development and quantify microstructural characteristics has been developed.

HYDRA3D is a menu driven program available in either Fortran or C which allows a

user to create a starting microstructure, execute hydration, measure phase fractions,

and assess phase connectivity. This manual outlines the conceptual model on which

HYDRA3D is based, describes the programs in detail, and provides examples of

program usage. A system calling diagram, source code listings, guidelines for

modifying the programs, and system requirements are provided in the Appendices.

Keywords: Cement, computer modelling, hydration, interfacial zone, microstructure,

percolation, simulation, software.
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1. INTRODUCTION

In the past few years, researchers at the National Institute of Standards and
Technology (NIST) have developed a three-dimensional digital-image-based model for

simulating the microstructural development of hydrating cement (specifically tricalcium

silicate, C3S’) paste [1-3]. The advantages of a digital-image-based approach over

a continuum approach are several. First, since each particle in the model is a

collection of pixels (or voxels), real particle shapes may be used as well as

conventional geometric shapes such as spheres. Second, the rules for microstructural

development can be mechanism-based, as the processes of diffusion, nucleation, and
surface reaction can be conveniently simulated on a lattice of pixels. Third, since the

microstructure is defined on a lattice, techniques may be borrowed from statistical

physics to easily assess material properties such as percolation [4], electrical

conductivity [5], and ionic diffusivity [6]. Finally, by utilizing a graphics workstation,

the simulated microstructural development can be visualized "in situ" to provide new
insights into the hydration process and the relationships between microstructure and

material properties.

Over time, interest in the model by the cement research community outside of

NIST has increased to a point where other researchers have requested copies of the

model computer program, HYDRA3D. It is intended that this document serve as a

technical guide to using HYDRA3D as well as providing sufficient details that the

interested user might modify the code to better serve their purpose. The model code
is available from the Cementitious Materials Modelling Laboratory at NIST. The
authors may be contacted for details concerning acquisition.

Section 2 of this manual provides an overview of the conceptual model on
which HYDRA3D is based. Section 3 describes the programs (HYDRA3D.F and

HYDRA3D.C as the code has been developed in both Fortran and C), detailing both

the menu system by which the user controls program execution and the separate

modules (subroutines) comprising the overall code. Example runs including results are

provided in section 4. A calling diagram and commented source code listings are

given in the Appendices along with suggested guidelines for modifying the source

code and information on system requirements for executing the model.

2. MODEL DESCRIPTION

The key to the microstructural model is the representation of a unit volume as

a discrete three-dimensional array of elements (pixels). Each element is uniquely

identified as belonging to a single phase of the hydrating cement system and is

* Standard cement chemistry notation is used throughout this
document. That is, C=CaO, S=Si02, H=H20, A=Al203 ,

and F=Fe203 .
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typically 1 /ym on a side. The hydration process is simulated by performing operations

on these individual elements according to a prescribed set of rules as outlined below.

A starting cement microstructure consists of digitized spherical particles

randomly dispersed in water. Thus, each C3S particle consists of a set of pixels

representing a sphere of a desired diameter (e.g. 3 to 20 //m). The spheres are placed

at random (x,y,z) locations in the volume such that they do not overlap one another.

Since the model is relatively small, being 100*100*100 pixels in size, periodic

boundaries are utilized to eliminate artificial edge effects. Thus, if a spherical particle

extends out one face of the volume, it is completed on the opposite side. The cement
particles are added in order of largest to smallest to aid in achieving a random
dispersion without having to relocate the smaller particles to fit the larger ones into

the system.

In addition to cement particles, two other types of particles may be added to

the system. First, a single flat aggregate of user-specified thickness may be placed

in the middle of the 3-D system. The aggregate extends the length of the system in

the y and z directions. This allows one to study the microstructural development
occurring in the interfacial zone in a model concrete system [7,8]. Second, inert or

pozzolanic mineral admixture particles may be added to the system. In the case of

pozzolanic particles, the particles react with the CH produced during hydration to

produce pozzolanic or secondary C-S-H. Pozzolanic admixture particles are assumed
to be pure silica with a molar volume of 27 cmVmole but these assumptions may be

modified as outlined In Appendix D. The mineral admixture particles may be either 1

pixel (/ym) in size or of some variable diameters as in the case of the C3S particles.

The user may control the water-to-cement (w/c) ratio of a starting

microstructure by varying the number and size of C3S particles added to the system.

In a system containing only cement and water, if f is the volume fraction of pixels

which are C3S, then

w_ i-f
c 3 .2 * f

( 1 )

where 3.2 is the specific gravity of cement. For systems containing aggregates

and/or mineral admixtures, the above equation no longer holds. In such systems, to

determine the water-to-solids (w/s) ratio, the general equation

w
s

i-f -f -fagg •^cement adm.

P cement * ^cement *Pnd.n. adm,
*

•^min. adm.

( 2 )

where fj and p, represent the volume fraction and density of component i respectively,

should be utilized.
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The user of the model should keep in mind that the mineral admixture and
cement are typically of different densities, so that weight and volume fractions are not

identical. For example, the density of cement is about 3.2 g/cm^ while that of silica

fume is typically 2.2 g/cm^. Thus, replacing 10% by weight of the cement with silica

fume results in a system in which 13.9% of the total solids volume is silica fume.

Hydration of a starting microstructure is modeled as an iterative process

consisting of discrete cycles as illustrated schematically for a two-dimensional system
in Figure 1. Each cycle consists of three processes: dissolution, diffusion, and
reaction. Basically, material dissolves off the surfaces of the original cement particles,

diffuses around within the available pore space, and reacts to form hydration

products. The reactions are based on the hydration of tricalcium silicate which is

assumed to react with water as follows [9]:

C
3
S + 5.3if - q,75^4.0 + 1-3CH (3) .

On a volume basis, this reaction is equivalent to 1 unit of C3S producing 1 .7 units of

C-S-H and 0.61 units of CH [9]. Thus, 1 unit of solid reactant reacts with water to

produce 2.31 units of solid product. This volume expansion in terms of solids is

responsible for the evolution of a cement paste from a colloidal dispersion into a rigid

solid material. The similarity between this expansion factor for C3S hydration and

cement (C3S, C 2S, C 3A, C4AF, and gypsum) hydration has been discussed elsewhere

[4,6] and is one basis for considering the model to be a true model of cement
microstructure and not limited solely to pure C3S. Indeed, favorable comparisons

between model and real cement systems have been made [1,4-8].

When pozzolanic mineral admixtures are present in the system, diffusing CH
species are allowed to react at pozzolanic surfaces according to:

1.7 Cif + S + 2.3 if -» q 75 4̂,0 (4) .

Assuming specific volumes of 27 cmVmole for S, 33.1 cm^/mole for CH, and 124
cm^/mole for C-S-H, this reaction is equivalent to one unit of mineral admixture

reacting with 2.08 volume units of CH to produce 4.6 volume units of pozzolanic or

secondary C-S-H. Conversely, inert mineral admixtures do not react with any of the

cementitious species present in the system.

In the dissolution phase, the entire 3-D microstructure is first scanned to

identify all C3S pixels which have one or more neighbors which are water-filled

porosity. Six neighbors (_+ 1 In the x, y, and z directions) are checked to evaluate this

criteria. Next, in a second pass through the microstructure, each C3S pixel identified

in the first pass attempts to take a one step random walk. If the step is into porosity,

the C3S pixel is dissolved and a diffusing C-S-H species is created at the step's

destination location. If the step is into solid material, the C3S pixel remains as solid

3
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Figure 1 . Schematic Diagram of Steps in the Hydration Model

C3S for this cycle of the hydration. This algorithm produces the desired effect that

sharp edges will dissolve at a faster rate than flat surfaces and smaller particles will

dissolve at a faster rate than larger ones due to their larger surface to volume ratio.

Finally, after all C3S pixels have been checked for dissolution, extra CH and C-S-H

diffusing species are added at random locations in the water-filled space to maintain

the correct volume stoichiometry according to equation 3. For example, if in a given

cycle, 100 pixels of C3S dissolve, 70 extra pixels of diffusing C-S-H and 61 extra

pixels of diffusing CH would be added to the system.

Once the correct number of diffusing species have been created, each one

executes a random walk in the available porosity until reaction occurs. Thus, for each

diffusion step, every diffusing species remaining in the system continues its random
walk. For each step, a direction is chosen at random and the diffusing species is

allowed to move one pixel in the chosen direction if that pixel is currently unoccupied

(porosity). Since diffusing species may occasionally become trapped in regions where
no reaction (based on the rules outlined below) may occur, after some large number
of steps, all remaining diffusing species are converted into solid product.

The reaction rules differ for the C-S-H and CH diffusing species. The C-S-H

species execute random walks in the pore space until they encounter (run into) a solid

C 3S or solid C-S-H surface. When this event occurs, the diffusing C-S-H species is

converted into solid C-S-H. These rules for C-S-H formation combine aspects of both

the through solution (diffusion) and topochemical mechanisms (surface reaction) for

C-S-H formation outlined in the cement literature [10].

Solid CH forms by a nucleation and growth process in the pore space. For each
random step taken by a diffusing CH species, there is a probability that it will nucleate

at its current location. This probability is exponentially proportional to the number of

4



diffusing CH species remaining in pore solution and is given by

Pn^^Po * [1-- exp( )] (5)

where is the probability of nucleation, Pq is the maximum probability of nucleation,

[CH] is the number of CH diffusing pixels remaining in solution at each step, and
is a scale factor [7]. By varying Pq and [CH]^, the number and size of CH

crystals formed during the hydration can be controlled. In addition to nucleation, if

a diffusing CH species encounters a solid CH surface during its random walk, it is

converted into solid CH at its present location, resulting in growth of the CH crystal.

When pozzolanic mineral admixtures are present in the system, the diffusing CH
species may react at the pozzolanic surfaces to form pozzolanic C-S-H. Since

according to equation 4, this reaction is expansive in terms of solids, there is a

probability that two volume elements of pozzolanic C-S-H instead of one are formed
whenever this reaction occurs. This probability is 0.73 as 2.08 units of diffusing CH
should produce 3.6 units of pozzolanic C-S-H, in addition to the volume element
originally occupied by the pozzolanic mineral admixture. This extra pozzolanic C-S-H
is added at a random neighboring location if possible, and at a random location in the

pore space otherwise. When all of the pozzolanic mineral admixture has been
consumed by reaction with diffusing CH, the pozzolanic reaction is discontinued.

When all diffusing species generated during a given dissolution phase have

reacted, a new hydration cycle is begun with a new dissolution. The degree of

hydration, a, after m cycles of hydration Is given by

a im) =
[C,S]^-[C,S]„

[C3S]o
(6)

where [C^S], is the number of solid C3S elements remaining after i cycles of hydration.

Within HYDRA3D, the user may specify either the number of hydration cycles to

execute or the desired degree of hydration to be achieved.

Since the model microstructure is available in a digitized format, phase fractions

can be easily assessed by simply counting the number of pixels of each phase. These

phase fractions may be assessed globally or as a function of distance from the

aggregate surface when an aggregate is present in the system. In addition, due to the

underlying 3-D lattice structure of the model, the connectivity or percolation of the

individual phases or total solids may be easily determined using a simple burning

algorithm [1 1]. This algorithm is a simple way of identifying all pixels that are part of

a spanning cluster, if such a cluster exists, and works as follows. Conceptually, all

the pixels belonging to the phase(s) of interest are classified to be "combustible". A
"fire" is started on one side of the model's unit cell, and allowed to propagate only
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along these combustible pixels. Within HYDRA3D, this burning algorithm is executed

in a non-periodic manner such that the fire cannot exit one side of the unit cell and

enter the other (like the diffusing species can during the hydration). If any pixels on

the opposite side of the model cell are found to have been "burned", then a spanning

cluster of the phase of interest must exist. The number of "burned" pixels are

counted to determine the fraction of the phase of interest that is a part of the

spanning cluster. This connectivity can be assessed after any number of hydration

cycles.

3. PROGRAM DESCRIPTION

In developing HYDRA3D, an effort has been made to incorporate the guidelines

for the development of computer-based models as outlined by Kaetzel et al [12].

Three major software engineering considerations for such code are accessibility,

maintainability, and transportability. To increase accessibility, the code for the digital-

image-based hydration model has been developed In both Fortran and C, enabling

transfer to a wider audience of researchers. Additionally, a menu system has been
incorporated into the programs to guide the user in executing the code and to provide

flexibility in the analyses selected by the user. A modular approach, as shown in the

calling diagram provided in Appendix A, has been utilized to enhance code
maintainability. Transportability has been enhanced by including a portable random
number generator [13] as one of the modules of the code. It is hoped that these

steps will increase the usability of HYDRA3D by other cement researchers.

3.1 MENU SYSTEM

The program is menu driven, with the user being prompted to supply input

parameters based on their selection from the main menu shown in Figure 2. Each
menu choice is described in detail below.

Input User Choice:

1 ) Add a flat aggregate to microstructure

2) Add spherical particles (C3S or filler) to microstructure

3) Add one-pixel filler particles to microstructure

4) Hydrate microstructure

5) Measure phase fractions

6) Measure phase fractions as a function of distance from
aggregate surface

7) Measure single phase connectivity

8) Measure total solids connectivity

9) Exit

Figure 2. Main Menu for HYDRA3D
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1 ) Add a flat aggregate to microstructure

This selection is utilized to place a thin plate-like aggregate in the middle of the

3-D microstructure. The aggregate extends the length of the box (100 pixels) in the

y and z directions with the user specifying the thickness in pixels in the x direction.

The input thickness should be an even integer to maintain system symmetry, with

equal numbers of (paste) pixels to the left and right of the centered aggregate. Under
normal operating conditions, if an aggregate is desired, it should be added to the

system before any cement or mineral admixture particles. If any such particles are in

the system when the aggregate is placed. It will be superimposed over those particles

with ail pixels within the aggregate boundaries being set to the phase ID of aggregate.

2) Add spherical particles (C3S or filler) to microstructure

Via this selection, the user may add spherical (digitized spheres) cement or

mineral admixture particles to the 3-D microstructure. Once selected, the user will

first be prompted to enter the number of different sizes of spheres to be placed.

Next, the user will be prompted to enter the number, radius, and phase ID of the

spheres for each size class. The user should begin with the largest radius size class

and proceed sequentially to the smallest radius size class. The specified spheres will

be placed at random locations in the 3-D microstructure using periodic boundaries as

described in section 2.

When a user is adding both mineral admixture and C3S particles of the same
radius, they should place all the largest particles (C3S and filler) first, all the 2nd
largest particles next, etc. This provides the best chance for all particles to be placed.

If some of the smaller particles are placed before the larger ones, there may be no

remaining spaces into which the larger ones can fit. This procedure is illustrated in

one of the examples given in section 4.2.

3) Add one-pixel filler particles to microstructure

This selection is used to add small (1 pixel or 1 ;ym) mineral admixture particles

to a starting microstructure. The user must supply the number of particles to be

added and whether they are Inert or pozzolanic. Since these particles are typically

smaller than the cement particles used in the model (just as silica fume is finer than

cement), they should be added after the cement particles and larger filler particles (if

any) have been placed in the system.

4) Hydrate microstructure

This selection is utilized to execute the hydration model on a 3-D

microstructure. As described In section 2, a given cycle of hydration consists of

dissolution, diffusion, and reaction. When this menu item is selected, the user will be

7



prompted to choose either to specify the number of hydration cycles to execute or the

desired degree of hydration and must supply a numerical value for the item selected.

Additionally, the user must specify the maximum number of diffusion steps to take

in a cycle before converting all remaining diffusing species to product (see section 2),

and two parameters to control CH nucleation based on equation 5. The value for the

maximum number of diffusion steps to execute in a given cycle is generally on the

order of 5000 to 10000. Typical values for the two parameters controlling CH
nucleation would be 0.001 for the maximum probability of CH nucleation, Pq, and

200000. for the exponential scale factor, [CH],^.

5) Measure phase fractions

This selection will simply return counts of the volume (pixels) occupied by each

phase in the microstructure. This item is useful in verifying the original w/c ratio of

the system and to determine the degree of hydration, based on the C3S remaining

after some number of cycles of hydration.

6) Measure phase fractions as a function of distance from the

aggregate surface

When an aggregate is present in the 3-D microstructure, this selection may be

utilized to measure the phase fractions present as a function of distance from the

surface of the aggregate. Output consists of a table of the phase fractions of all

phases present for each (pixel) distance from the aggregate. This selection allows one
to study the microstructure of an Interfacial zone in a cement-based composite [7,8].

7) Measure single phase connectivity

This selection allows the user to determine the percolation characteristics of

any individual phase (porosity, etc.) present in the microstructure. The user will be

prompted to input the ID of the phase of interest, after which the program will

determine the number of pixels of this phase which are accessible from the top of the

system and the number of pixels of this phase which are part of a pathway(s) through

the system going from top to bottom. The burning algorithm described in the end of

section 2 is utilized to determine these values.

8) Measure total solids connectivity

This selection Is identical to selection #7 except that the percolation

characteristics of all solids present in the system (with the exception of any
aggregate) are assessed. As the hydration proceeds, the solids will eventually form
a rigid connected structure which spans the 3-D microstructure. This point should

correspond to the set point (time) commonly measured by cement researchers.

8



3.2 MODULE DESCRIPTIONS

Program Name: MAIN
Purpose: To initialize 3-D microstructure, present the user with a menu of

choices, and call routines to execute selected menu options

Calls: INTRO, ADDAGG, CREATE, FILLER, HYDRATE, MEASURE, MEASAGG,
CONNECT, CONSOLD

I/O: Outputs menu of selections to user

User inputs integer seed for random number generator

User inputs integers corresponding to menu choices

Module Name: INTRO
Purpose: To display an Introduction to HYDRA3D to the system user

Called By: Main program
I/O: Introductory text is output to the standard output unit (screen)

Module Name: ADDAGG
Purpose: To place a single plate-like aggregate in the middle of the 3-D

microstructure.

Called By: Main program
I/O: User inputs an even integer for aggregate thickness

Notes: Aggregate extends length of the system in the y and z directions and

specified thickness in x direction.

Aggregate Is assigned a phase ID of 8 and is inert with respect to

diffusing C-S-H and CH species.

Module Name: CREATE
Purpose: To obtain user input specifying spherical particles to be placed in 3-D

microstructure and call routine to execute placement.

Called By: Main program
Calls: GSPHERE
I/O: User Inputs parameters specifying spherical particles to be generated

Number of classes

Number of spheres, radius, and phase ID for each class

Module Name: GSPHERE
Purpose: To generate digitized spheres of a fixed number of classes by finding

random (x,y,z) locations at which the spheres can be placed.

Called By: CREATE
Calls: CHKSPH, RANI
Passed In: Number of classes to be generated

Arrays of number, radius, and phase ID for each class

Notes: For each random location generated, sphere placement is first tested (no

overlap with existing spheres) and then, if possible, performed.

9



Module Name: CHKSPH
Purpose: To check or perform placement of a digitized sphere of specified radius

and center location by operating on all pixels falling within the

boundaries of the sphere.

Called By: GSPHERE
Passed In: X, Y, and Z coordinates for sphere center

Radius of sphere

Flag indicating if sphere placement is to be checked or performed

Returns: Flag indicating if sphere placement is possible

Notes: Periodic boundaries are employed in checking and placing spheres.

Sphere diameter = 2*sphere radius +1 so that spheres can always be

centered on a pixel.

Module Name: FILLER

Purpose: To obtain user input as to the number and type of filler particles to be

generated and call routine to execute placement.

Called By: Main program
Calls: GENFILL
I/O: User inputs number and phase ID of filler particles to be generated

Module Name: GENFILL
Purpose: To place one pixel mineral admixture particles at random unoccupied

(pore) locations in 3-D microstructure.

Called By: FILLER

Calls: RANI
Passed In: Number and phase ID of 1 -pixel filler particles to generate

Module Name: HYDRATE
Purpose: To obtain user input and control hydration for some number of

cycles or to some degree of hydration.

Called By: Main program
Calls: DISSOLV, MVCHANT, MCSHANT
I/O: User inputs parameters to control hydration

Number of hydration cycles or degree of hydration to execute

Maximum number of diffusion steps per cycle

Maximum probability for CH nucleation

Exponential scale factor for CH nucleation

Outputs number of diffusing species generated during each hydration

cycle

Notes: For each cycle, hydration is controlled by calling a routine to perform the

dissolution and then calling routines to move the diffusing C-S-H and CH
species until all diffusing species have reacted.

10



Module Name: DISSOLV
Purpose: To perform dissolution for each hydration cycle.

Called By: HYDRATE
Calls: RANI
Returns: Arrays holding x, y, and z locations of generated diffusing species and

number of diffusing species generated.

Notes: Dissolution is performed by randomly dissolving C 3S species in contact

with pore space and creating the appropriate numbers of diffusing C-S-H
and CH species.

Extra diffusing species are added at totally random unoccupied locations

in the 3-D microstructure.

Module Name: MVCHANT
Purpose: To execute a single diffusion step for a diffusing CH species.

Called By: HYDRATE
Calls: RANI, ADDEXT
Passed In: Current location of diffusing CH species

Current nucleation probability for CH
Returns: New location of diffusing CH species

Flag Indicating If reaction has occurred

Notes: If nucleation is probable, the diffusing CH species Is converted to solid

CH at its current location. Otherwise, the diffusing CH species

undergoes a one-step random walk in 3-D. If it collides with solid CH,
it is converted to solid CH. If it collides with pozzolanic material, the

pozzolanic reaction occurs as long as sufficient pozzolanic mineral

admixture remains In the system. If the step is into pore space, the

location of the diffusing CH species is updated and returned to the calling

routine. If any reaction occurs, a flag is set and also returned to the

calling routine.

Module Name: ADDEXT
Purpose: To add extra pozzolanic C-S-H to microstructure when a diffusing CH

species reacts at a pozzolanic surface.

Called By: MVCHANT
Calls: RAN1
Passed In: X, Y, and Z coordinates of reaction site

Notes: The six neighboring locations of the reaction site are sampled at random,

looking for an unoccupied site to place the extra pozzolanic C-S-H. If no

such site exists, the extra pozzolanic C-S-H is placed at a random
unoccupied location in the 3-D microstructure.

Module Name: MCSHANT
Purpose: To execute a single diffusion step for a diffusing C-S-H species.

Called By: HYDRATE

11



Calls: RAN1
Passed In: Current location of diffusing C-S-H species

Returns: New location of diffusing C-S-H species

Flag indicating if reaction has occurred

Notes: The diffusing C-S-H species executes a one-step random walk in 3-D.

If it collides with solid C-S-H or C3S, it is converted to solid C-S-H. If the

step is into pore space, the location of the diffusing C-S-H species

is updated and returned to the calling routine. If reaction occurs, a flag

is set and also returned to the calling routine.

Module Name: RANI
Purpose: To generate random numbers for use by other routines in the model

program.

Called By: GSPHERE, GENFILL, DISSOLV, MVCHANT, ADDEXT, MCSHANT
Passed In: Seed for random number generator

Returns: A real number in the range [0.0, 1 .0)

Module Name: MEASURE
Purpose: To determine phase fractions of all phases present in the 3-D

microstructure.

Called By: Main program
I/O: Outputs global phase counts (in pixels) to the standard output unit (screen)

Module Name: MEASAGG
Purpose: To assess phase fractions as a function of distance from aggregate

surface to enable quantitative characterization of interfacial zone
microstructure.

Called By: Main program

I/O: Outputs phase fractions as a function of distance from aggregate surface

in tabular format

Module Name: CONNECT
Purpose: To assess the percolation characteristics of an individual phase using

a simple burning algorithm.

Called By: Main program
I/O: User inputs ID of phase of interest

Outputs number of elements of phase which are accessible from top

Outputs number of elements of phase which are part of pathways through

the 3-D microstructure from top to bottom
Notes: Burning algorithm is non-periodic.

Module Name: CONSOLD
Purpose: To assess the percolation characteristics of total solids present in the

3-D microstructure using a simple burning algorithm.
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Called By: Main program
I/O: Outputs number of elements of total solids which are accessible from top

Outputs number of elements of total solids which are part of pathways
through the 3-D microstructure from top to bottom

Notes: Aggregate is not included In total solids as it always forms a continuous
path from top to bottom of the 3-D microstructure.

Burning is non-periodic.

4. EXAMPLES

HYDRA3D can be executed either interactively or In a batch mode by piping the

standard input and output to datafiles. On a UNIX-based system, for example, typing

hydra3d <hydrate.inp >hydrate.out

would execute the program hydra3d, reading the menu selections and other input

from the datafile hydrate. inp and outputting all results to hydrate.out. The output file

could then be imported to a spreadsheet or graphical analysis package for further

analysis as illustrated below. All examples were executed in this batch mode using

the Fortran version of HYDRA3D.

4.1: EFFECT OF MINERAL ADMIXTURE PARTICLE SIZE ON INTERFACIAL ZONE
MICROSTRUCTURE

For this example, we will create starting systems consisting of an aggregate,

cement particles, and either large or one-pixel mineral admixture particles added at

20% replacement for cement on a weight basis. The one pixel admixture particles

would represent well dispersed silica fume while the larger admixture particles would
be indicative of an agglomerated silica fume system. The systems will be hydrated

to the same degree of hydration and the interfacial zone microstructures compared
based on the phase fractions present as a function of distance from the aggregate

surface. A w/s ratio of 0.45 will be utilized and hydration will be executed to 70%.
The cement particles (and large mineral admixture particles) will consist of equal

volume fractions of particles 21 and 11 pixels in diameter while the aggregate

thickness will be set at 2 pixels. The user of the system must decide on these system

variables before a simulation can be executed.

To know how many of each size particle are needed, the user must know how
many pixels are occupied by a single sphere of each particle radius. These values are

tabulated in Table I for sphere radii ranging from 1 to 10. As noted earlier, the sphere

diameter is equal to 2* radius -i- 1 so that the spheres may always be centered on a

pixel. It Is mot recommended that particles larger than 10 pixels in radius (21 in

diameter) be utilized in simulations so that a ratio of about 5 between system size

(100^) and individual particle size may be maintained. (If memory is available, the

system size can be increased to 200^ and larger particles used.) Using Table I, if the

13



Table I

Volume Occupied by Spheres of Various Radii

Radius Diameter Pixels per

(pixels) Sphere

1 3 19

2 5 81

3 7 179

4 9 389

5 11 739

6 13 1189

7 15 1791

8 17 2553

9 19 3695

10 21 4945

user knows the total number of pixels of a given size sphere needed, they may
calculate how many spheres will be required. Since only integer numbers of spheres

may be placed, some adjustment (rounding) may be required.

For this example, the aggregate occupies 20,000 pixels (2*100*100) so that

980,000 are left for the cement paste. Based on a 20% wt replacement of cement
with mineral admixture, a w/s ratio of 0.45, and specific gravities of 3.2 for cement
and 2.2 for the mineral admixture (silica fume), one can calculate based on equation

2 that 309,769 pixels of cement and 1 1 2,645 pixels of mineral admixture are needed.

Since half of the volume of cement should be composed of each particle size (11 and

21 pixels), we should place 31 of the 21 pixel diameter particles and 212 of the 1

1

pixel diameter particles for the cement, for a total of 309,963 cement pixels. For the

large mineral admixture particles, these numbers are 1 1 and 79 respectively, for a

total of 1 12,776 mineral admixture pixels. This will result in a w/s ratio of 0.4494,
very close to our desired value of 0.45. When small one-pixel mineral admixtures are

to be used, we will simply add 1 12,776 of them to the system (to have exactly the

same number of total admixture pixels as in the case of the larger particles). In order

to assure that both systems hydrate to the same degree of hydration, we will specify

hydration to a specified degree of hydration (70%) as opposed to hydration for some
fixed number of cycles.

14



The data files (examples of hydrate. inp) used to execute the two simulations

are as follows:

Example 1: Simulation with large mineral admixture particles

1639
1

2
2
4
31
10
1

11

10
10
212
5

1

79
5

10
5

6

4
1

0.7

10000
0.001
200000 .

5

6

9

random number seed

menu selection to add aggregate

aggregate thickness

menu selection to add spherical particles

number of different classes of particles to add
number of particles of class #1

radius of particles of class #1

phase ID of particles of class #1 (C3S)

number of particles of class #2
radius of particles of class #2
phase ID of particles of class #2 (min. admixture)

number of particles of class #3
radius of particles of class #3
phase ID of particles of class #3 (C3S)

number of particles of class #4
radius of particles of class #4
phase ID of particles of class #4 (min. admixture)

menu selection to measure global phase fractions

menu selection to measure phase fractions vs.

distance from aggregate surface

menu selection to execute hydration

selection to specify desired degree of hydration

degree of hydration desired

max. # of diffusion steps per cycle

maximum probability for CH nucleation

exponential scale factor for CH nucleation

menu selection to measure global phase fractions

menu selection to measure phase fractions vs.

distance from aggregate surface

menu selection to exit program

Example 2: Simulation with one pixel mineral admixture particles

1639 random number seed

1 menu selection to add aggregate

2 aggregate thickness

2 menu selection to add spherical particles

2 number of different classes of particles to add

31 number of particles of class #1
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10
1

212
5

1

3
112776
10

5

6

4
1

0.7

10000
0.001

200000 .

5

6

9

radius of particles of class #1

phase ID of particles of class #1 (C3S)

number of particles of class #2
radius of particles of class #2
phase ID of particles of class #2 (C3S)

menu selection to add one-pixel particles

number of one pixel particles to add
phase ID of one pixel particles

menu selection to measure global phase fractions

menu selection to measure phase fractions vs.

distance from aggregate surface

menu selection to execute hydration

selection to specify desired degree of hydration

degree of hydration desired

max. # of diffusion steps per cycle

maximum probability of CH nucleation

exponential scale factor for CH nucleation

menu selection to measure global phase fractions

menu selection to measure phase fractions vs.

distance from aggregate surface

menu selection to exit program

The major results of this example are the phase fractions as a function of

distance from the aggregate surface for the two systems. The global phase fraction

data can be used to assure that 70% hydration has been achieved. The phase

fraction vs. distance data were Imported into a spreadsheet program to produce

graphs of the various phase fractions as a function of distance for systems containing

large and small mineral admixtures. These graphs are given in Figures 3, 4, and 5.

Figure 3 shows the original particle packings. As shown previously [7], the

cement particles are not able to pack efficiently near the aggregate surface so that the

porosity in the interfacial zone Increases relative to that in the bulk paste. This also

holds true for the larger mineral admixture particles. However, the smaller (one pixel)

mineral admixture particles are able to pack much more efficiently than the cement
particles against the aggregate surface and, since this is the highest porosity region,

there are actually more mineral admixture particles in the interfacial zone than in the

bulk paste for this system.

The differences in original packings for the two systems manifest themselves
in different microstructures developing as hydration occurs. For systems with no
mineral admixtures, it has been shown that the interfacial zone is higher in porosity

and CH and lower in C-S-H and C3S than the bulk paste [7]. The effects of mineral

admixtures on this baseline microstructure are dependent on mineral admixture particle

size as shown in Figure 4. Both particle sizes decrease the CH formed due to the
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Figure 3. Original Particle Packings for a) Large and b) Small

Mineral Admixture Particles
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b)
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Figure 4. Phase Fractions vs. Distance from Aggregate Surface After

Hydration for a) Large and b) Small Mineral Admixture Particles
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occurrence of the pozzolanic reaction but a greater reduction is achieved with the

smaller particles as the pozzolanic surfaces are distributed more uniformly throughout

the microstructure. In fact, because with the one pixel admixture particles there is

actually more pozzolanic material near the aggregate surface (Figure 3), there is also

more pozzolanic C-S-H formed in the interfacial zone than in the bulk. This will aid In

offsetting the deficiency in primary C-S-H (that formed directly from C3S hydration)

normally found in this zone.

To quantitatively examine this effect, the total of the C3S, C-S-H, and
pozzolanic (admixture and C-S-H) phases are plotted as a function of distance from

the aggregate surface in Figure 5. From the figure, it is evident that the smaller

admixture particles result in a much more homogeneous distribution of these phases

as the decrease in this total phase fraction present as the aggregate surface is

approached is suppressed. While the effects of admixture particle size and reactivity

have been investigated in more detail [8], this simple study would suggest that

adequate dispersion of silica fume is needed to maximize its performance in concrete,

as the microstructure of an agglomerated system has been shown to be inferior to

that of a well-dispersed one.

0 20 '40

DisLanc*

Figure 5. Total C3S + C-S-H + Admixture Phase Fraction vs. Distance

from Aggregate Surface After Hydration
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4.2: EFFECT OF W/C RATIO ON CONNECTIVITY OF CAPILLARY POROSITY

For this example, we will vary the w/c ratio of ordinary cement paste and

monitor the percolation or connectivity of the capillary porosity as hydration occurs.

That is, we will hydrate a cement microstructure for a few cycles, measure the

connectivity of the porosity phase, hydrate a few more cycles, etc. The w/c ratios

employed are 0.35 and 0.5. The cement particles will consists of equal numbers of

four sizes of particles, with diameters of 1 5, 11, 7, and 3 pixels respectively. Since

each set of particles (one each of each of the four sizes) occupies 2728 pixels, 173
of each will provide a w/c ratio of 0.3497 while 141 of each will yield a w/c ratio of

0.4999. Because the hydration rate is faster during the early cycles of the hydration

process, the number of cycles executed to obtain each data point will be Increased

as the hydration proceeds.

The data files (hydrate, inp) used to execute the two simulations are as follows:

Examples 1 (2): Simulations with w/c = 0.3497 (w/c = 0.4999)

8291
2
4
173 (141)

7
1

173 (141)

5

1

173 (141)

3
1

173 (141)

1

1

5

7
0
4
0
1

10000
0.001

200000.
5

7

random number seed

menu selection to add cement particles

number of classes of particles to add
number of particles of class #1 to add
radius of particles of class #1

phase ID of particles of class #1 (C3S)

number of particles of class #2 to add
radius of particles of class #2
phase ID of particles of class #2
number of particles of class #3 to add

radius of particles of class #3
phase ID of particles of class #3
number of particles of class #4 to add
radius of particles of class #4
phase ID of particles of class #4
menu selection to measure global phase fractions

menu selection to measure single phase connectivity

phase ID of which to assess percolation (porosity)

menu selection to execute hydration

selection to specify number of hydration cycles

number of hydration cycles to execute
max. # of diffusion steps per cycle

maximum probability for CH nucleation

exponential scale factor for CH nucleation

menu selection to measure global phase fractions

menu selection to measure single phase connectivity
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0
4
0
2
5000
0.001

2000(

5

7
0
4
0
2
5000
0.001
2000(

5

7
0
4
0
3
5000
0.001

2000(

5

7

0
4
0
4
5000
0.001
2000(

5

7

0
4
0
4
5000
0.001
2000(

5

phase ID of which to assess percolation (porosity)

menu selection to execute hydration

selection to specify number of hydration cycles

number of hydration cycles to execute
max. # of diffusion steps per cycle

maximum probability for CH nucleation

exponential scale factor for CH nucleation

menu selection to measure global phase fractions

menu selection to measure single phase connectivity

phase ID of which to assess percolation (porosity)

menu selection to execute hydration

selection to specify number of hydration cycles

number of hydration cycles to execute

max. # of diffusion steps per cycle

maximum probability for CH nucleation

exponential scale factor for CH nucleation

menu selection to measure global phase fractions

menu selection to measure single phase connectivity

phase ID of which to assess percolation (porosity)

menu selection to execute hydration

selection to specify number of hydration cycles

number of hydration cycles to execute

max. # of diffusion steps per cycle

maximum probability for CH nucleation

exponential scale factor for CH nucleation

menu selection to measure global phase fractions

menu selection to measure single phase connectivity

phase ID of which to assess percolation (porosity)

menu selection to execute hydration

selection to specify number of hydration cycles

number of hydration cycles to execute

max. # of diffusion steps per cycle

maximum probability for CH nucleation

exponential scale factor for CH nucleation

menu selection to measure global phase fractions

menu selection to measure single phase connectivity

phase ID of which to assess percolation (porosity)

menu selection to execute hydration

selection to specify number of hydration cycles

number of hydration cycles to execute

max. # of diffusion steps per cycle

maximum probability for CH nucleation

exponential scale factor for CH nucleation

menu selection to measure global phase fractions
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7

0
4
0
4
5000
0.001

200000 .

5

7

0
4
0
10
5000
0.001
200000 .

5

7

0
4
0
15
5000
0.001
200000 .

5

7

0
4
0
55
5000
0.001
200000 .

5

7

0
4
0
100
5000
0.001

200000 .

menu selection to measure single phase connectivity

phase ID of which to assess percolation (porosity)

menu selection to execute hydration

selection to specify number of hydration cycles

number of hydration cycles to execute

max. # of diffusion steps per cycle

maximum probability for CH nucleatlon

exponential scale factor for CH nucleation

menu selection to measure global phase fractions

menu selection to measure single phase connectivity

phase ID of which to assess percolation (porosity)

menu selection to execute hydration

selection to specify number of hydration cycles

number of hydration cycles to execute

max. # of diffusion steps per cycle

maximum probability for CH nucleation

exponential scale factor for CH nucleation

menu selection to measure global phase fractions

menu selection to measure single phase connectivity

phase ID of which to assess percolation (porosity)

menu selection to execute hydration

selection to specify number of hydration cycles

number of hydration cycles to execute

max. # of diffusion steps per cycle

maximum probability for CH nucleation

exponential scale factor for CH nucleation

menu selection to measure global phase fractions

menu selection to measure single phase connectivity

phase ID of which to assess percolation (porosity)

menu selection to execute hydration

selection to specify number of hydration cycles

number of hydration cycles to execute

max. # of diffusion steps per cycle

maximum probability for CH nucleation

exponential scale factor for CH nucleation

menu selection to measure global phase fractions

menu selection to measure single phase connectivity

phase ID of which to assess percolation (porosity)

menu selection to execute hydration

selection to specify number of hydration cycles

number of hydration cycles to execute

max. # of diffusion steps per cycle

maximum probability for CH nucleation

exponential scale factor for CH nucleation
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5 menu selection to measure global phase fractions

7 menu selection to measure single phase connectivity

0 phase ID of which to assess percolation (porosity)

9 menu selection to exit program

Based on the output from the menu selections to measure global phase
fractions and to measure phase connectivity, the fraction of the total porosity which
forms a connected path across the three-dimensional microstructure can be

determined as a function of degree of hydration (amount of cement reacted). Figure

6 provides a plot of this connected fraction vs. degree of hydration for the two w/c
ratios used in this example. The connected fraction varies from 1, as initially the

OaoTM of Hycfatlon

Figure 6. Fraction Connected Porosity vs. Degree of Hydration

capillary porosity Is totally connected, to 0, as ultimately the hydration products fill

in the porosity to an extent that discontinuity of this phase occurs. Discontinuity of

the capillary porosity would be expected to have major effects on transport properties

as the primary pathways for transport would shift from being the capillary pores (//m

in size) to being the gel pores in the C-S-H (nm in size). Since the higher (0.5) w/c

ratio contains more porosity Initially, more hydration is required to achieve this

discontinuity. In fact, for high enough w/c ratios (w/c > 0.57), even at complete

hydration, the capillary porosity remains continuous across the system [4].

23



Since the phase fractions of all phases are known throughout the hydration, one

can also plot the fraction connected porosity vs. the total capillary porosity as shown
in Figure 7. Now, the data for the two w/c ratios overlap, suggesting that it is the

total capillary porosity fraction which controls the connectivity of porosity, at least for

the range of w/c ratios and cement particle sizes investigated in this study.

Capillary Porosity Practlon

Figure 7. Fraction Connected Porosity vs. Total Porosity
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APPENDIX B
Fortran Listing for HYDRA3D

c * *

C * PROGRAM HYDRA3D.F : 3-D MICROSTRUCTURAL MODEL FOR CEMENT *

C * *

C * DEVELOPERS: Dale P. Bentz and Edward J. Garboczi *

C * Building Materials Division *

C * Building and Fire Research Laboratory *

C * National Institute of Standards & Technology *

C * Gaithersburg, MD 20899-0001 *

C * (301)975-5865 FAX-(301 )975-4032

C *

C * DATE: 1990-1991 *

C *

0 «««««*«««•«««•«««««•««««*«««'»««*•«««««««*««««««*«««««««««««««

C This program simulates the microstructural development of

C cement (specifically C3S) as it hydrates. Model is image
C based (3-D lattice of 100*100*100 elements) and hydration is

C modelled as a dissolution/diffusion/reaction cyclic process.

C Tools are provided to assess phase fractions and phase

C connectivity as the hydration proceeds.

C Also includes the capability to add a single inert aggregate

C to the system and assess phase fractions as a function of

C distance from aggregate surface

C
C PHASE ID ASSIGNMENTS
C 0- Porosity

C 1- Cement (C3S)

C 2- Diffusing Calcium hydroxide (CH) species

C 3- Diffusing Calcium silicate hydrate (CSH) species

C 4- Solid CSH
C 5- Solid CH
C 8- Aggregate

C 9- Inert filler

C 10- Pozzolanic filler/ pozzolanic CSH
C Temporary IDs

C 6- Surface site eligible for dissolution

C 7- Burnt site in percolation routine

C
INTEGER CEMENT(101,101,101),CYCLENO,NTIMES,NFILL,NPZR
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INTEGER SYSSIZE,AGGSIZE,NCEMENT,NCEMDIS
INTEGER USERC
INTEGER*4 ISEED
DIMENSION R(97)

COMMON /A/CEMENT,CYCLENO,NTIMES,NFILL,NPZR,ISEED,SYSSIZE,
+ AGGSIZE,NCEMENT,NCEMDIS
COMMON /FR/IX1JX2,IX3,R

3-D microstructure is stored in the 3-D array CEMENT

System size set at 1 00

SYSSIZE = 100

Clear the microstructure to all porosity

DO 10 l = 1,SYSSIZE
DO 10 J = 1,SYSSIZE
DO 10 K = 1.SYSSIZE

10 CEMENT{l,J,K)=0

Call Routine to display an introduction

CALL INTRO

NCEMENT is counter for cement originally present

NCEMDIS Is counter for cement reacted so far

NFILL is counter of number of pozzolanic filler species

NPZR Is counter for number of pozzolanic filler species

which have been consumed

NCEMENT = 0
NCEMDIS = 0
NFILL = 0
NPZR = 0
AGGSIZE = 0
WRITE(6,*)'ENTER RANDOM NUMBER SEED (Integer)'

READ{5,*)ISEED
WRITE{6,*)ISEED

Present user with menu of choices and execute

appropriate option until user elects to stop
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40 WRITE(6, *)'INPUT USER CHOICE'
WRITE(6,*)' 1) ADD A FLAT INERT AGGREGATE TO MICROSTRUCTURE'
WRITE(6,*)' 2 ) ADD SPHERICAL PARTICLES TO MICROSTRUCTURE'
WRITEie,*)' 3) ADD ONE-PIXEL FILLER PARTICLES TO MICROSTRUCTURE'
WRITEie,*)' 4) HYDRATE MICROSTRUCTURE'
WRITEie,*)' 5) MEASURE PHASE FRACTIONS'
WRITE{6,*)' 6) MEASURE PHASE FRACTIONS AS A FUNCTION'
WRITEie,*)' OF DISTANCE FROM AGGREGATE SURFACE'
WRITEie,*)' 7) MEASURE SINGLE PHASE CONNECTIVITY'
WRITEie,*)' 8) MEASURE TOTAL SOLIDS CONNECTIVITY'
WRITEie,*)' 9) EXIT'

READ|5,*)USERC
WRITEie, *)USERC
IFIUSERC.EQ.1) THEN
CALL ADDAGG

ELSE IFIUSERC.EQ.2) THEN
CALL CREATE

ELSE IF IUSERC.EQ.3) THEN
CALL FILLER

ELSE IF IUSERC.EQ.4) THEN
CALL HYDRATE

ELSE IF IUSERC.EQ.5) THEN
CALL MEASURE

ELSE IF lUSERC.EQ.e) THEN
CALL MEASAGG

ELSE IF IUSERC.EQ.7) THEN
CALL CONNECT

ELSE IF IUSERC.E0.8) THEN
CALL CONSOLD

ELSE IF IUSERC.EQ.9) THEN
GOTO 50

ENDIF
GOTO 40

50 STOP
END
FUNCTION RAN1IIDUM)

Portable random number generator, RANI
To generate uniform random deviates between 0 and 1.0

From: Numerical Recipes in Fortran

Press, Flannery, Teukolsky, and Vetterling

DIMENSION RI97)

PARAMETER |M1 =259200,IA1 =7141,101 =54773,RM1 =1./M1)
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PARAMETER (M2 = 1 34456,IA2 = 81 21 ,IC2 = 2841 1 ,RM2 = 1 ./M2)
PARAMETER {M3 = 243000,1A3 = 4561 ,IC3 = 51349)
COMMON /FR/IX1,IX2,IX3,R

DATA IFF 101

IFdDUM.LT.O.OR.IFF.EQ.O) THEN
IFF = 1

1X1 =M0D{IC1-IDUM,M1)
1X1 =M0D{IA1 *1X1 +IC1,M1)
IX2 = MOD{IX1,M2)
1X1 =M0D{IA1*IX1 +IC1,M1)
IX3 = MOD(IX1,M3)
DO 11 J = 1,97

1X1 =M0D(IA1*IX1 +IC1,M1)
1X2 = MOD(IA2*IX2 + IC2,M2)

R(J) = (FLOATdXI ) + FL0ATdX2) *RM2) *RM1
1 1 CONTINUE

IDUM = 1

ENDIF
1X1 =M0DdA1*IX1 +IC1,M1)
1X2 = MODdA2*IX2 + IC2,M2)

1X3 = MODdA3*IX3 + IC3,M3)

J = 1 + {97*IX3)/M3
IF{J.GT.97.0R.J.LT.1) THEN
WRITE(6,*)'ERR0R IN RANDOM NUMBER GENERATOR'

ENDIF
RANI =R(J)

R{J) = (FLOATdXI ) + FL0AT(IX2) *RM2) *RM1
RETURN
END
SUBROUTINE INTRO

Subroutine INTRO to display an introduction to HYDRA3D
Called by: Main Program

WRITE(6,*)'Welcome to HYDRA3D, a digital-image-based cement'

WRITE(6,*)'microstructural model. This program has been '

WRITE(6,*)'developed to simulate the microstructural
'

WRITE(6,*)'development of cement, specifically tricalcium'

WRITE(6,*)'silicate, C3S, as it reacts with water. In
'

WRITE(6,*)'addition to C3S, the user may also add a single'

WRITE(6,*)'lnert aggregate and/or inert or pozzolanic mineral'

WRITE(6,*)'admixture particles to the microstructure. In'

WRITE(6,*)'addition to hydration, the user may also assess'
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WRITE{6,*)'phase fractions (either globally or as a function'

WRITE(6,*)'of distance from the aggregate surface) and '

WRITE(6,*)'the connectivity of any individual phase or of'

WRITE(6,*)'the total solids (neglecting any aggregate) present'

WRITE(6,*)'in the system.'

WRITE(6,*)' '

RETURN
END
SUBROUTINE ADDAGG
INTEGER CEMENT( 101,101,101 ),CYCLENO,NTIMES,NFILL,NPZR
INTEGER SYSSIZE,AGGSIZE,NCEMENT,NCEMDIS
INTEGER*4 ISEED
COMMON /A/CEMENT,CYCLENO,NTIMES,NFILL,NPZR,ISEED,SYSSIZE,
+ AGGSIZE,NCEMENT,NCEMDIS
INTEGER IX,IY,IZ

Subroutine ADDAGG to add a flat aggregate of user-specified

thickness to microstructure

Called by: Main program

WRITE(6,*)'ENTER AGGREGATE THICKNESS (even integer)'

READ(5,*)AGGSIZE
WRITE(6,*)AGGSIZE

DO 45 IX = ((SYSSIZE-AGGSIZE-l-2)/2),((SYSSIZE + AGGSIZE)/2)
DO 45 IY = 1,SYSSIZE
DO 45 IZ = 1,SYSSIZE

45 CEMENT(IX,IY,IZ) = 8

RETURN
END
SUBROUTINE CREATE
INTEGER CEMENT(101,101,101),CYCLENO,NTIMES,NFILL,NPZR
INTEGER SYSSIZE,AGGSIZE,NCEMENT,NCEMDIS
INTEGER*4 ISEED
COMMON /A/CEMENT,CYCLENO,NTIMES,NFILL,NPZR,ISEED,SYSSIZE,
AGGSIZE,NCEMENT,NCEMDIS

INTEGER NUMSIZE,SPHNUM(10),SPHRAD(10),SPHID(10)
C
C Subroutine CREATE to obtain user input to create a starting system
C consisting of digitized spheres of various radii and phase IDs

C Called by: Main program
C Calls: Subroutine GSPHERE
C
1 1 WRITE(6,*)'ENTER NUMBER OF DIFFERENT SIZE SPHERES TO USE(MAX 10)'
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READ(5,*)NUMSIZE
IF(NUMSIZE.LT.I.OR.NUMSIZE.GT.IO) THEN
GOTO 1

1

ENDIF
WRITE(6,*)NUMSIZE
WRITE(6,*)'ENTER NUMBER, SIZE, AND PHASE FOR EACH CLASS'
WRITE(6,*)'(LARGEST RADIUS 1ST)'

DO 21 l = 1,NUMSIZE
WRITE{6,*)'ENTER NUMBER OF SPHERES OF CLASS',1

READ{5,*)SPHNUM(I)
WRITE(6,*)SPHNUM(I)
WRITE(6,*)'ENTER RADIUS OF SPHERES OF CLASS',1

WRITE(6,*)'(lnteger < =10 PLEASE)'
READ(5,*)SPHRAD(I)
WRITE(6,*)SPHRAD(I)
WRITE{6,*)'ENTER PHASE ID TO BE ASSIGNED TO SPHERES OF CLASS',1

WRITE(6,*)'(1- CSS, 9- Inert filler 10- Pozzolanic filler'

READ(5,*)SPHID(I)

21 WRITE(6,*)SPHID{I)

C
CALL GSPHERE(NUMSIZE,SPHNUM,SPHRAD,SPHID)
RETURN
END
SUBROUTINE GSPHERE(NUMGEN,NUMEACH,SIZEEACH,PHEACH)
INTEGER CEMENT! 101,101,101 ),CYCLENO,NTIMES,NFILL,NPZR
INTEGER SYSSIZE,AGGSIZE,NCEMENT,NCEMDIS
INTEGER*4 ISEED
COMMON /A/CEMENT,CYCLENO,NTIMES,NFILL,NPZR,ISEED,SYSSIZE,
+ AGGSIZE,NCEMENT,NCEMDIS
INTEGER NUMGEN,NUMEACH(10),SIZEEACH{10),PHEACH(10),RADIUS
INTEGER PHSPH,COUNT,X,Y,Z
REAL RX,RY,RZ

Subroutine GSPHERE to generate spheres of a fixed number of size

classes

Input: Number of size classes, number, size, and ID of spheres

in each size class

Called by: Subroutine CREATE
Calls: Subroutine CHKSPH

Generate the requested number of each size of sphere

DO 131 l = 1,NUMGEN
RADIUS = SIZEEACH(I)
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PHSPH = PHEACH(I)

DO 131 J = 1,NUMEACH{I)
20 COUNT =0

Generate a random center location for this sphere

RX = RAN1{ISEED)
RY = RAN1{ISEED)

RZ = RAN1(ISEED)
X = SYSSIZE*RX + 1

Y = SYSSIZE*RY + 1

Z = SYSSIZE*RZ+1

Call routine to check is sphere can be placed at chosen location

CALL CHKSPH(COUNT,X,Y,Z,RADIUS,1 ,PHSPH)

IF(COUNT.NE.O) THEN
GOTO 20

ENDIF

Place the sphere at the selected location

31 CALL CHKSPH(COUNT,X,Y,Z,RADIUS, 2,PHSPH)
RETURN
END
SUBROUTINE CHKSPH(SFLG,XIN,Y1N,ZIN,RADD,WFLG,PHID)
INTEGER CEMENTd 01 ,101,101 ),CYCLENO,NTIMES,NFILL,NPZR
INTEGER SYSSIZE,AGGSIZE,NCEMENT,NCEMDIS
INTEGER*4 ISEED
COMMON /A/CEMENT,CYCLENO,NTIMES,NFILL,NPZR,ISEED,SYSSIZE,
+ AGGSIZE,NCEMENT,NCEMDIS
INTEGER SFLG,XIN,YIN,ZIN,RADD,WFLG,PHID,NOFITS
INTEGER XP,YP,ZP
REAL DIST

Subroutine CHKSPH to either check or perform sphere location

Inputs: Flag used to send back indication if sphere fits,

x,y, and z coordinates of sphere center, radius of

sphere, and flag indicating if sphere is to be

checked (1) or placed (2)

Called by: Subroutine GSPHERE

NOFITS = 0
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Check all pixels within the sphere

DO 221 l=XIN-RADD,XIN + RADD
DO 221 J=YIN-RADD,YIN + RADD
DO 221 K = ZIN-RADD,ZIN + RADD
XP = I

YP = J

ZP = K

Use periodic boundaries to wrap a sphere from one side of

the 3-D system to the other

IF(XP.LT.I) THEN
XP = SYSSIZE-t-XP

ENDIF
IF(XP.GT.SYSSIZE) THEN
XP = XP-SYSSIZE

ENDIF
IF(YP.LT.I) THEN
YP = SYSSIZE-l-YP

ENDIF
IF(YP.GT.SYSSIZE) THEN
YP = YP-SYSSIZE

ENDIF
IF(ZP.LT.I) THEN
ZP = SYSSIZE-»-ZP

ENDIF
IFCZP.GT.SYSSIZE) THEN
ZP = ZP-SYSSIZE

ENDIF

Compute the distance from the center of the sphere to this point

DIST = SQRT(FLOAT((l-XIN)*{l-XIN) + (J-YIN)*(J-YIN)-h

&{K-ZIN)*(K-ZIN)))

IF((DIST-0.5).LE.RADD) THEN
IF(WFLG.EQ.2) THEN
CEMENT(XP,YP,ZP) = PHID

Update counter of C3S species if necessary

IF(PHID.EQ.1)THEN
NCEMENT = NCEMENT

1

ENDIF
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non Update counter of pozzolanic filler species if necessary

IF(PHID.EQ.IO) THEN
NFILL = NFILL+1

ENDIF
ENDIF
IFIWFLG.EQ.I .AND.CEMENT(XP,YP,ZP).NE.O) THEN

Sphere can not be fit at present location without overlapping

some other sphere so notify calling routine of lack of fit

NOFITS = 1

GOTO 231
ENDIF

ENDIF
221 CONTINUE
231 SFLG = NOFITS

RETURN
END
SUBROUTINE FILLER

INTEGER CEMENT{101,101,101),CYCLENO,NTIMES,NFILL,NPZR
INTEGER SYSSIZE,AGGSIZE,NCEMENT,NCEMDIS
INTEGER*4 ISEED
COMMON /A/CEMENT,CYCLENO,NTIMES,NFILL,NPZR,ISEED,SYSSIZE,
+ AGGSIZE,NCEMENT,NCEMDIS
INTEGER FILLID,NADD

C
C Subroutine FILLER to obtain user input as to number and type of

C filler particles

C Called by: Main program
C Calls: Subroutine GENFILL
C

WRITE(6,*)'ENTER NUMBER OF FILLER PARTICLES TO ADD'
READ{5,*)NADD
WRITE(6,*)NADD
WRITE(6,*)'ENTER FILLER ID TO USE (10-POZZOLANIC, 9-lNERT)'

READ{5,*)FILLID

WRITE(6,*)FILUD
IF(FILLID.NE.9.AND.FILLID.NE.10) THEN
STOP

ENDIF
CALL GENFILL(NADD,FILLID)
IF(FILLID.EQ.IO) THEN
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NFILL = NF1LL + NADD
ENDIF
RETURN
END
SUBROUTINE GENFILL(NTOPL,FILVAL)
INTEGER CEMENTd 01 ,101,101 ),CYCLENO,NTIMES,NFILL,NPZR
INTEGER SYSSIZE,AGGSIZE,NCEMENT,NCEMDIS
INTEGER*4 ISEED

COMMON /A/CEMENT,CYCLENO,NTIMES,NFILL,NPZR,ISEED,SYSSIZE,
+ AGGSIZE,NCEMENT,NCEMDIS
INTEGER NTOPL,FILVAL,PFILL,XFILL,YFILL,ZFILL

REAL RXF,RYF,RZF
C
C Subroutine GENFILL to locate one pixel filler particles at random
C unoccupied locations in the 3-D microstructure

C Input: Number and ID of filler particles to generate

C Called by: Subroutine FILLER

C
DO 683 l = 1,NTOPL
PFILL = 0

PFILL indicates successful placement of this filler particle

Generate a random location and attempt to place filler particle

there

684 RXF = RANI (ISEED)

RYF = RANI (ISEED)

RZF = RANI (ISEED)

XFILL = SYSSIZE*RXF-f-1
YFILL = SYSSIZE*RYF-l-1

ZFILL = SYSSIZE*RZF-I-1

C
IF(CEMENT(XFILL,YFILL,ZFILL).EQ.O) THEN
PFILL = 1

CEMENT(XFILL,YFILL,ZFILL) = FILVAL
ENDIF
IF(PFILL.EQ.O) THEN
GOTO 684

ENDIF
683 CONTINUE

RETURN
END
SUBROUTINE HYDRATE
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INTEGER CEMENTd 01 ,101,101 ),CYCLENO,NTIMES,NFILL,NPZR
INTEGER SYSSIZE,AGGSIZE,NCEMENT,NCEMDIS
INTEGERM ISEED
COMMON /A/CEMENT,CYCLENO,NTIMES,NFILL,NPZR,ISEED,SYSSIZE,
+ AGGSIZE,NCEMENT,NCEMDIS
INTEGER NITER,NUMANTS,ANTSX(500000),ANTSY(500000)
INTEGER ANTSZ(500000),XANT,YANT,ZANT,NUMLEFT,NBLEFT,ALIVE
INTEGER NBLUE,ANTTYPE,STOPCH
REAL NUCPROB,NUCSCALE,BETERM,BBIAS,ALPHA,ALMAX

Subroutine HYDRATE to obtain user input and control execution

of a number of hydration cycles

Called by: MAIN program

Calls: Subroutines DISSOLV, MVCHANT, MCSHANT

NITER Is number of hydration cycles to perform

NTIMES is number of random steps diffused per cycle

before all diffusing species convert to solid

at current location

NUCPROB and NUCSCALE are parameters to control the number
and size of nucleating CH crystals by controlling

the nucleation probability

WRITE(6,*)'DO YOU WISH TO SPECIFY 0) MAX. # OF CYCLES OR'
WRITE{6,*)'1) MAXIMUM DEGREE OF HYDRATION'
READ(5,*)STOPCH
IF(STOPCH.EQ.O) THEN
WRITE{6,*)'ENTER NO. OF CYCLES (ITERATIONS) TO PERFORM'
READ(5,*)NITER
WRITE(6,*)NITER
ALMAX = 1.0

ENDIF
IFISTOPCH.EQ.I) THEN
WRITE{6,*)'ENTER DESIRED DEGREE OF HYDRATION'
READ(5,*)ALMAX
WRITE(6,*)ALMAX
NITER = 5000

ENDIF
WRITE{6,*)'ENTER MAX. NUMBER OF DIFFUSION STEPS PER CYCLE'
READ(5,*)NTIMES
WRITE(6,*)NTIMES
WRITE(6,*)'ENTER MAXIMUM PROBABILITY FOR CH NUCLEATION (0.0-1. 0)'

READ(5,*)NUCPROB
WRITE(6,*)NUCPROB
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WRITE{6,*)'ENTER EXPONENTIAL SCALE FACTOR FOR CH NUCLEATION'
READ(5,*)NUCSCALE
WRITE{6,*)NUCSCALE

Loop for each hydration cycle

ALPHA = FLOAT(NCEMDIS)/FLOAT(NCEMENT)
DO 22 1 = 1,NITER
IF(ALPHA.GE.ALMAX) THEN
GOTO 28

ENDIF

NUMANTS is counter for number of diffusing species generated

NUMANTS = 0
CALL DISSOLV(ANTSX,ANTSY,ANTSZ,NUMANTS)
NUMLEFT = NUMANTS
ALPHA = FLOAT(NCEMDIS)/FLOAT(NCEMENT)
WRITE{6,*)'NUMBER DISSOLVED = ',NUMANTS

NBLUE Is counter for number of diffusing CH species

NBLUE = 61 *NUMANTS/231

Loop for each diffusion step

DO 32 J = 1,NTIMES
CYCLENO = J

If no diffusing species remain then go to next dissolution

IFINUMLEFT.EO.O) THEN
GOTO 22

ENDIF
NUMLEFT = 0
NBLEFT = 0

Compute probability of CH nucleation based on current system

BETERM = EXP{-FLOAT{NBLUE)/NUCSCALE)
BBIAS = NUCPROB*{1 .-BETERM)

Loop for each diffusing species remaining
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DO 52 K = 1,NUMANTS

Obtain the location and type of this diffusing species

XANT = ANTSX(K)
YANT = ANTSY(K)
ZANT = ANTSZ(K)
ANTTYPE = CEMENT(XANT,YANT,ZANT)

ALIVE indicates if species is still diffusing or has

become solid

ALIVE = 1

IF((ANTTYPE.NE.2).AND.(ANTTYPE.NE.3)) THEN
WRITE{6,*)'Error- Cement pixel is ANTTYPE

ENDIF
IF(ANTTYPE.EQ.2) THEN
Call routine to move a CH diffusing species

CALL MVCHANT{XANT,YANT,ZANT,ALIVE,BBIAS)
ENDIF
IF(ANTTYPE.EQ.3) THEN
Call routine to move a CSH diffusing species

CALL MCSHANT(XANT,YANT.ZANT,ALIVE)
ENDIF
IF(ALIVE.EQ.1)THEN
NUMLEFT = NUMLEFT + 1

Store new location of diffusing species if still alive

ANTSX(NUMLEFT) =XANT
ANTSY(NUMLEFT) = YANT
ANTSZ(NUMLEFT) =ZANT
IF(ANTTYPE.EQ.2) THEN
NBLEFT = NBLEFT+1

ENDIF
ENDIF

52 CONTINUE
NUMANTS = NUMLEFT
NBLUE = NBLEFT

32 CONTINUE
22 CONTINUE
28 RETURN

END
SUBROUTINE DISSOLV{DISX,DISY,DISZ,NUMDIS)
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INTEGER CEMENT( 101,101,101 ),CYCLENO,NTIMES,NFILL,NPZR
INTEGER SYSSIZE,AGGSIZE,NCEMENT,NCEMDIS
INTEGER*4 ISEED
COMMON /A/CEMENT,CYCLENO,NTIMES,NFILL,NPZR,ISEED,SYSSIZE,
+ AGGSIZE,NCEMENT,NCEMDIS
INTEGER DISX{500000),DISY(500000),DISZ{500000),NUMDIS
INTEGER XC,YC,ZC,NEDGE,NCHADD,NCSHADD,NUMORG
REAL RDIS,RDX,RDY,RDZ
INTEGER IRND

C
C Subroutine DISSOLV to perform dissolution at beginning of hydration

C cycle

C Returns arrays of x,y, and z coordinates of generated diffusing

C species and number of species generated

C Called by: Subroutine HYDRATE
C

NUMDIS = 0

HIGHLIGHT ALL C3S EDGE POINTS

DO 15 l = 1,SYSSIZE
DO 15 J = 1,SYSSIZE
DO 15 K = 1,SYSSIZE
IF(CEMENT(I,J,K).EQ.1) THEN
NEDGE=1

Check all six neighbors in 3-D to see if pixel is on edge
Note that periodic boundaries are employed throughout

XC = I-1

IF(XC.LT.I) XC = SYSSIZE
NEDGE = NEDGE*CEMENT(XC,J,K)
XC = l-h1

IF(XC.GT.SYSSIZE) XC = 1

NEDGE = NEDGE*CEMENT(XC,J,K)
YC = J-1

IF(YC.LT.I) YC = SYSSIZE
NEDGE = NEDGE*CEMENT(I,YC,K)
YC = J-I-1

IF(YC.GT.SYSSIZE) YC = 1

NEDGE = NEDGE*CEMENT{I,YC,K)
ZC = K-1

IF{ZC.LT.1) ZC = SYSSIZE
NEDGE = NEDGE*CEMENT(I,J,ZC)
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ZC = K + 1

IF(ZC.GT.SYSSIZE) ZC = 1

NEDGE = NEDGE*CEMENT(I,J,ZC)

If on edge, assign temporary ID for second stage

IF{NEDGE.EQ.O) CEMENT(I,J,K) = 6

ENDIF
15 CONTINUE

RANDOMLY DISSOLVE ALL EDGE POINTS

DO 25 l = l,SYSSIZE
DO 25 J = 1,SYSSIZE
DO 25 K = 1,SYSSIZE
IF{CEMENT(I,J,K).EQ.6) THEN

Dissolution is performed by having pixel of interest

execute a one-step random walk and seeing if it steps

into pore space

RDIS = RAN1(ISEED)
IRND = 6*RDIS-l-1

XC = I

YC = J

ZC = K
IF(IRND.EQ.I) THEN
XC = XC-1
IF(XC.LT.I) XC = SYSSIZE

ENDIF
IF(IRND.E0.2) THEN
XC = XC-h1
IF(XC.GT.SYSSIZE) XC = 1

ENDIF
IFdRND.EQ.S) THEN
YC = YC-1

IF{YC.LT.1) YC = SYSSIZE
ENDIF
IF(IRND.EQ.4) THEN
YC=YC+1
IF{YC.GT.SYSSIZE) YC = 1

ENDIF
IF(IRND.EQ.5) THEN
ZC = ZC-1
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IF(ZC.LT.I) ZC = SYSSIZE
ENDIF
IF(IRND.EQ.6) THEN
ZC = ZC + 1

IFIZC.GT.SYSSIZE) ZC = 1

ENDIF
IF(CEMENT{XC,YC,ZC).EQ.O) THEN

Generate a diffusing C-S-H species at the new location

CEMENT{XC,YC,ZC) = 3
CEMENT(l,J,K)=0
NUMDIS = NUMDIS + 1

DISX(NUMDIS) = XC
DISY(NUMDIS) = YC
DISZ(NUMDIS)=ZC

ELSE
CEMENT(I,J,K) = 1

ENDIF
ENDIF

25 CONTINUE

ADD IN EXTRA DIFFUSING SPECIES

WRITE(6,*)'ORIGINAL DISSOLVED = ',NUMDIS
NUMORG = NUMDIS
NCEMDIS = NCEMDIS + NUMDIS

Expansion factors 0.7 for C-S-H and 0.61 for CH are

taken from data of Young & Hansen
MRS Proceedings, Vol. 85, pp. 313-22, 1987.

NCSHADD = 0.7*FLOAT(NUMDIS)
NCHADD = 0.61 *FLOAT(NUMDIS)
NUMDIS = NUMDIS -h NCSHADD -f NCHADD
IF(NUMDIS.GT.500000) THEN
WRITE{6,*)Too many dissolved species created'

WRITE(6,*)'Aborting execution'

STOP
ENDIF
DO 35 I = 1,NCHADD NCSHADD

C Locate extra diffusing species at random unoccupied

C sites in the pore space
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45 RDX = RAN1(ISEED)

RDY = RAN1(ISEED)
RDZ = RAN1{ISEED)
XC = SYSSIZE*RDX + 1

YC = SYSSIZE*RDY + 1

ZC = SYSSIZE*RDZ + 1

IF(CEMENT{XC,YC,ZC).EQ.O) THEN
DISX(NUMORG + l) = XC
DISY(NUMORG + l)=YC
DISZ(NUMORG + l)=ZC
IF(I.LE.NCHADD) THEN
CEMENT{XC,YC,ZC) = 2

ELSE
CEMENT(XC,YC,ZC) = 3

ENDIF
ELSE
GOTO 45

ENDIF
35 CONTINUE

RETURN
END
SUBROUTINE MVCHANT{XMCH,YMCH,ZMCH,CHYET,PNUC)
INTEGER CEMENT! 101,101,101 ),CYCLENO,NTIMES,NFILL,NPZR
INTEGER SYSSIZE,AGGSIZE,NCEMENT,NCEMDIS
INTEGER*4 ISEED
COMMON /A/CEMENT,CYCLENO,NTIMES,NFILL,NPZR,ISEED,SYSSIZE,
+ AGGSIZE,NCEMENT,NCEMDIS
INTEGER XMCH,YMCH,ZMCH,CHYET,XM,YM,ZM,MGEN
REAL PNUC,PGEN
REAL RM

Subroutine MVCHANT to move a diffusing CH species and check
for nucleation or surface reaction

Inputs: Current location of diffusing species and
current probability for nucleation (PNUC)

Returns: Flag indicating if reaction has occurred (CHYET)
Called by: Subroutine HYDRATE
Calls: Subroutine ADDEXT

FIRST CHECK FOR NUCLEATION
If last diffusion step in this cycle, convert to solid CH
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PGEN = RAN1(ISEED)
IF{{PNUC.GT.PGEN).OR.(CYCLENO.EQ.NTIMES))THEN
CEMENT(XMCH,YMCH,ZMCH) = 5

CHYET = 0
ELSE

C GENERATE A RANDOM MOVE
RM = RAN1(ISEED)
MGEN = 6*RM + 1

XM=XMCH
YM=YMCH
ZM =ZMCH
IF(MGEN.EQ.I) THEN
XM = XM-1
IF(XM.LT.I) XM = SYSSIZE

ENDIF
IF{MGEN.E0.2) THEN
XM =XM + 1

IF(XM.GT.SYSSIZE) XM = 1

ENDIF
IF(MGEN.E0.3) THEN
YM = YM-1
IF(YM.LT.I) YM = SYSSIZE

ENDIF
IF{MGEN.EQ.4) THEN
YM=YM+1
IFIYM.GT.SYSSIZE) YM = 1

ENDIF
IF(MGEN.EQ.5) THEN
ZM=ZM-1
IF(ZM.LT.I) ZM = SYSSIZE

ENDIF
IF(MGEN.EQ.6) THEN
ZM =ZM + 1

IF(ZM.GT.SYSSIZE) ZM = 1

ENDIF

Check for surface reaction

IF{CEMENT(XM,YM,ZM).E0.5) THEN
CEMENT(XMCH,YMCH,ZMCH) = 5

CHYET = 0
ENDIF

Check for pozzolanic reaction of diffusing CH
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C Each pozzolanic filler particle may react with

C up to 2.08 CH diffusing species

C Assumes pozzolanic filler is pure silica with a

C molar volume of 27 cm'^S/mole

C
XNFILL = NFILL

IF((CEMENT(XM,YM,ZM).EQ.10).AND.(NPZR.LE.{INT{2.08*XNFILL))))

&THEN
CEMENT(XMCH,YMCH,ZMCH) = 10
NPZR = NPZR + 1

CHYET = 0
RM = RAN1(ISEED)

In pozzolanic reaction there is a probability of 0.73 that

two pixels of product should be produced instead of one

IF(RM.LE.(0.73)) THEN
CALL ADDEXT(XMCH,YMCH,ZMCH)
ENDIF

ENDIF

If new location is pore space, perform the move

IF(CEMENT(XM,YM,ZM).EQ.O) THEN
CEMENT{XM,YM,ZM) = 2

CEMENT(XMCH,YMCH,ZMCH) =0
XMCH=XM
YMCH=YM
ZMCH=ZM

ENDIF
ENDIF
RETURN
END
SUBROUTINE ADDEXT(XINN,YINN,ZINN)
INTEGER CEMENTd 01 ,101,101 ),CYCLENO,NTIMES,NFILL,NPZR
INTEGER SYSSIZE,AGGSIZE,NCEMENT,NCEMDIS
INTEGER*4 ISEED
COMMON /A/CEMENT,CYCLENO,NTIMES,NFILL,NPZR,ISEED,SYSSIZE,
+ AGGSIZE,NCEMENT,NCEMDIS
INTEGER XINN,YINN,ZINN,XCHR,YCHR,ZCHR,FCHR,MGEN1
INTEGER TFACT,TRIED{6)
REAL RMADD

Subroutine ADDEXT to add in extra pozzolanic CSH when CH
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C reacts with silica fume (pozzolanic filler)

C Inputs: x,y, and z coordinates of new pozz. CSH
C Called by: Subroutine MVCHANT
C
C ADD IN EXTRA POZZOLANIC CSH TO ACCOUNT FOR VOLUME BALANCE
C RANDOM TRIES AT NEIGHBORING LOCATIONS (6) UNTIL SUCCESSFUL
C OR ALL 6 HAVE BEEN TRIED
C

DO 93 II =1,6
93 TRIED(I1)=0
FCHR=0
TFACT = 0

88 RMADD = RAN1(ISEED)
MGEN1 =6*RMADD + 1

XCHR = XINN
YCHR = YINN
ZCHR = ZINN
IF((MGEN1 .EQ.1 ).AND.(TRIED{1 ).EQ.O)) THEN
XCHR = XCHR-1
TRIED{1) = 1

TFACT =TFACT+1
IF{XCHR.LT.1) XCHR = SYSSIZE

ENDIF
IF{{MGEN1 .EQ.2).AND.(TRIED{2).EQ.O)) THEN
XCHR = XCHR + 1

TRIED(2) = 1

TFACT =TFACT+1
IF(XCHR.GT.SYSSIZE) XCHR = 1

ENDIF
IF{{MGEN1 .EQ.3).AND.(TRIED{3).EO.O)) THEN
YCHR = YCHR-1
TRIED{3) = 1

TFACT =TFACT+1
IF(YCHR.LT.I) YCHR = SYSSIZE

ENDIF
IF{{MGEN1 .EQ.4).AND.(TRIED(4).EQ.O)) THEN
YCHR = YCHR + 1

TRIED(4) = 1

TFACT =TFACT+1
IF{YCHR.GT.SYSSIZE) YCHR = 1

ENDIF
IF{{MGEN1 .EQ.5).AND.(TRIED(5).EQ.O)) THEN
ZCHR = ZCHR-1
TRIED(5) = 1
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TRACT = TFACT+1
IF(ZCHR.LT.I) ZCHR = SYSSIZE

ENDIF
IF((MGEN1 .EQ.6).AND.{TRIED(6).EQ.O)) THEN
ZCHR=ZCHR+1
TRIED(6) = 1

TRACT =TRACT +1
IF{ZCHR.GT.SYSSIZE) ZCHR = 1

ENDIF
IF(CEMENT(XCHR,YCHR,ZCHR).EQ.O) THEN
CEMENT(XCHR,YCHR,ZCHR) = 10
FCHR=1

GOTO 89
ENDIF
IF(TFACT.EQ.6) GOTO 89
GOTO 88

89 IF(FCHR.EQ.O) THEN

TRY EXTRA CSH AT RANDOM LOCATIONS IN PORE SPACE
UNTIL IT FINDS AN EMPTY SITE

RMADD = RAN1(ISEED)
XCHR = SYSSIZE*RMADD + 1

RMADD = RAN1{ISEED)
YCHR = SYSSIZE*RMADD + 1

RMADD = RAN1(ISEED)
ZCHR = SYSSIZE*RMADD + 1

IF(CEMENT{XCHR,YCHR,ZCHR).EQ.O) THEN
CEMENT{XCHR,YCHR,ZCHR) = 10
FCHR=1

ENDIF
GOTO 89
ENDIF
RETURN
END
SUBROUTINE MCSHANT(XMCSH,YMCSH,ZMCSH,CSHYET)
INTEGER CEMENT{101,101,101),CYCLENO,NTIMES,NFILL,NPZR
INTEGER SYSSIZE,AGGSIZE,NCEMENT,NCEMDIS
INTEGER*4 ISEED
COMMON /A/CEMENT,CYCLENO,NTIMES,NFILL,NPZR, ISEED,SYSSIZE,
+ AGGSIZE,NCEMENT,NCEMDIS
INTEGER XMCSH,YMCSH,ZMCSH,XS,YS,ZS,MSGEN,CSHYET
REAL RMCSH
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C Subroutine MCSHANT to move a diffusing CSH species and check for

C reaction

C Inputs: x,y, and z coordinates of current location of species

C Returns: Flag (CSHYET) indicating if reaction has occurred

C
C GENERATE MOVE
C

RMCSH = RAN1(ISEED)
MSGEN = 6*RMCSH + 1

XS=XMCSH
YS=YMCSH
ZS =ZMCSH
IF(MSGEN.EQ.I) THEN
XS = XS-1

IF(XS.LT.I) XS = SYSSIZE
ENDIF
IF{MSGEN.EQ.2) THEN
XS=XS+1
IF(XS.GT.SYSSIZE) XS = 1

ENDIF
IF(MSGEN.EQ.3) THEN
YS=YS-1
IF(YS.LT.I) YS = SYSSIZE

ENDIF
IF{MSGEN.EQ.4) THEN
YS=YS+1

IF(YS.GT.SYSSIZE) YS = 1

ENDIF
IF(MSGEN.EQ.5) THEN
ZS = ZS-1

IF(ZS.LT.I) ZS = SYSSIZE
ENDIF
IF(MSGEN.EQ.6) THEN
ZS = ZS + 1

IF(ZS.GT.SYSSIZE) ZS = 1

ENDIF

If diffusing CSH encounters CSS or solid CSH, it is

converted to solid CSH

IF((CEMENT(XS,YS,ZS).EQ.1).0R.(CEMENT(XS,YS,ZS).EQ.4).
&OR.(NTIMES.EQ.CYCLENO)) THEN
CEMENT{XMCSH,YMCSH,ZMCSH) =4
CSHYET = 0
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ENDIF
IF{{CEMENT(XS,YS,ZS).EQ.O).AND.(NTIMES.NE.CYCLENO)) THEN
CEMENT{XS,YS,ZS) = 3

CEMENT(XMCSH,YMCSH,ZMCSH) =0
XMCSH = XS
YMCSH=YS
ZMCSH=ZS

ENDIF
RETURN
END
SUBROUTINE MEASURE
INTEGER CEMENTd 01 ,101,101 ),CYCLENO,NTIMES,NFILL,NPZR
INTEGER SYSSIZE,AGGSIZE,NCEMENT,NCEMDIS
INTEGER*4 ISEED
COMMON /A/CEMENT,CYCLENO,NTIMES,NFILL,NPZR,ISEED,SYSSIZE,
+ AGGSIZE,NCEMENT,NCEMDIS
INTEGER NP0R,NCSH,NC3S,NCH,NINERT,NP0ZZ,NAGG

Subroutine MEASURE to assess phase fractions in 3-D system
Called by: MAIN program

Initialize counters for various phases

NPOR=0
NCSH=0
NCH = 0
NC3S=0
NINERT = 0
NPOZZ = 0
NAGG=0

Update counters for all locations in 3-D system

DO 14 l = 1,SYSSIZE
DO 14 J = 1,SYSSIZE
DO 14 K = 1,SYSSIZE
IF(CEMENT(I,J,K).EQ.O) NPOR = NPOR -h 1

IFICEMENTd,J,K).EQ.4) NCSH = NCSH -H 1

IF{CEMENT(I,J,K).EQ. 1 ) NC3S = NC3S -h 1

IF{CEMENT{I,J,K).E0.9) NINERT = NINERT-I-

1

IFICEMENTd,J,K) .EO. 1 0) NPOZZ = NPOZZ -H 1

IF(CEMENTd,J,K).EQ.5) NCH = NCH-H
IFICEMENTd,J,K).EQ.8) NAGG = NAGG -H 1

14 CONTINUE
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ooo Output Results

WRITE(6,*)'Porosity= ',NPOR
WRITE(6,*)'C3S= ',NC3S
WRITE(6,*)'C-S-H= ',NCSH
WRITE(6,*)'CH= ',NCH
WRITE{6,*)'lnert= ',NINERT

WRITE(6,*)Tozzolanic= ',NPOZZ
WRITE{6,*)'Aggregate= ',NAGG
RETURN
END
SUBROUTINE MEASAGG
INTEGER CEMENT! 101,101,101 ),CYCLENO,NTIMES,NFILL,NPZR
INTEGER SYSSIZE,AGGSIZE,NCEMENT,NCEMDIS
INTEGER*4 ISEED
COMMON /A/CEMENT,CYCLENO,NTIMES,NFILL,NPZR,ISEED,SYSSIZE,
+ AGGSIZE,NCEMENT,NCEMDIS
INTEGER PHASEd 1 ),PTOT,PHREAD,IDIST,ICNT,IXL,IXR,IY,IZ

Subroutine MEASAGG to measure phase fractions as a function of

distance from aggregate surface

Called by: MAIN program

WRITE(6,*)'Distance Porosity C3S C-S-H CH Inert Pozz'

Measure phase fractions as distance from aggregate increases

DO 61 IDIST=1,((SYSSIZE-AGGSIZE)/2)

Initialize phase counts for this distance

PTOT = 0
DO 62 ICNT = 1,11

62 PHASE{1CNT)=0

Check all pixels which are this distance from aggregate

IXL = ((SYSSIZE-AGGSIZE + 2)/2)-IDIST

IXR = ((SYSSIZE + AGGSIZE)/2) + IDIST

DO 63 IY = 1,SYSSIZE
DO 63 IZ = 1,SYSSIZE

Check pixel left of aggregate
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PHID = 1 + CEMENT{IXL,IY,IZ)

PHASE(PHID) = PHASEIPHID) + 1

PT0T = PT0T+1

Check pixel right of aggregate

PHID = 1 + CEMENT(IXR,IY,IZ)

PHASE(PHID) = PHASE{PHID) + 1

PTOT = PTOT+1
WRITE{6,*)IDIST,PHASE(1),PHASE{2),PHASE{5),PHASE(6),

+ PHASE(10),PHASE(11)
CONTINUE
RETURN
END
SUBROUTINE CONNECT
INTEGER CEMENT! 101,101,101 ),CYCLENO,NTIMES,NFILL,NPZR
INTEGER SYSSIZE,AGGSIZE,NCEMENT,NCEMDIS
INTEGER*4 ISEED
COMMON /A/CEMENT,CYCLENO,NTIMES,NFILL,NPZR,ISEED,SYSSIZE,
+ AGGSIZE,NCEMENT,NCEMDIS
INTEGER NTOP,NTHROUGH,NCUR,NMATX(8000),NMATY(8000)
INTEGER NMATZ{8000),XCN,YCN,ZCN,X1 ,Y1 ,Z1 ,IGOOD,NNEW
INTEGER NTOT,NNEWX(8000),NNEWY(8000),NNEWZ(8000)
INTEGER NPIX

Subroutine CONNECT to assess connectivity (percolation) of

a single phase

WRITE(6,*)'ENTER PHASE TO ANALYZE 0) PORES 1) C3S'
WRITE(6,*)' 4) CSH 5) CH 9) Inert 10) Pozzolanic'

READ(5,*)NPIX
WRITE{6,*)NPIX

Counters for number of pixels of phase accessible from

top and number which are part of a percolation path

NTOP=0
NTHROUGH=0

Percolation is assessed from top (K = 1) to bottom (K = SYSSIZE)

K = 1
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Start a burn pattern from all pixels on the top surface

DO 17 l = 1,SYSSIZE
DO 17 J = 1,SYSSIZE
NCUR=0
NTOT=0
IGOOD = 0
IF(CEMENT(I,J,K).EQ.NPIX) THEN

Use a temporary ID of 7 to identify burnt pixels

CEMENT(I,J,K) = 7
NTOT = NTOT+1
NCUR = NCUR + 1

Store the burn front coordinates in the matrices NMAT* and
NNEW*

NMATX(NCUR) = I

NMATY{NCUR)=J
NMATZ(NCUR) = 1

57 NNEW = 0

Propagate fire from all pixels in the current burn front

DO 27 INEW = 1,NCUR
XCN = NMATX(INEW)
YCN = NMATY{INEW)
ZCN = NMATZ(INEW)

Check for propagation in all six directions

DO 37 JNEW = 1,6

XI =XCN
Y1 =YCN
Z1 =ZCN
IFUNEW.EQ.I) XI =XCN-1
IF(JNEW.EQ.2) XI =XCN + 1

IF(JNEW.EQ.3) Y1 =YCN-1
IF(JNEW.EQ.4) Y1 =YCN + 1

IF(JNEW.EQ.5) Z1 =ZCN-1
IF{JNEW.E0.6) Z1 =ZCN + 1

Note that burning is non-periodic

53



ooo

ooo

ooo

IF((X1.GE.1).AND.(X1.LE.SYSSIZE).AND.(Y1.GE.1).

&AND.(Y1 .LE.SYSSIZE).AND.{Z1 .GE.1 ).AND.(Z1 .LE.SYSSIZE)) THEN
IF(CEMENT{X1 ,Y1 ,Z1 ).EQ.NPIX) THEN
NT0T = NT0T+1
CEMENT(X1,Y1,Z1) = 7

NNEW = NNEW+1
NNEWX(NNEW) = X1
NNEWY(NNEW)=Y1
NNEWZ(NNEW)=Z1

Check if new burnt pixel is on the bottom face of the system

IF{Z1.EQ.SYSSIZE) THEN
IGOOD = 1

ENDIF
ENDIF

ENDIF
CONTINUE
CONTINUE
IF(NNEW.GT.O) THEN
NCUR=NNEW

Copy the new burn front locations to matrices NMAT*

DO 47 ICUR = 1,NCUR
NMATX(ICUR) = NNEWX(ICUR)
NMATY(ICUR) = NNEWY(ICUR)
NMATZ(ICUR) = NNEWZ(ICUR)

47 CONTINUE
GOTO 57
ENDIF
NTOP = NTOP + NTOT
IFdGOOD.EQ.I) THEN
NTHROUGH = NTHROUGH + NTOT

ENDIF
ENDIF

17 CONTINUE
WRITE{6,*)'Phase ID= ',NPIX

WRITE(6,*)'Number accessible from top= ',NTOP
WRITE(6,*)'Number contained in through pathways = NTHROUGH

Restore all burnt pixels to original phase IDs
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DO 67 l = 1,SYSSIZE
DO 67 J = 1,SYSSIZE
DO 67 K = 1,SYSSIZE
IF{CEMENT(I,J,K).EQ.7) CEMENT{I,J,K) = NPIX

67 CONTINUE
RETURN
END
SUBROUTINE CONSOLD
INTEGER CEMENT{ 101,101,101 ),CYCLENO,NTIMES,NFILL,NPZR
INTEGER SYSSIZE,AGGSIZE,NCEMENT,NCEMDIS
INTEGER*4 ISEED
COMMON /A/CEMENT,CYCLENO,NTIMES,NFILL,NPZR,ISEED,SYSSIZE,
+ AGGSIZE,NCEMENT,NCEMDIS
INTEGER NTOP,NTHROUGH,NCUR,NMATX(8000),NMATY(8000)
INTEGER NMATZ(8000),XCN,YCN,ZCN,X1 ,Y1 ,Z1 ,IGOOD,NNEW
INTEGER NTOT,NNEWX(8000),NNEWY(8000),NNEWZ{8000)

Subroutine CONSOLD to assess connectivity (percolation) of

total solid phases with exception of aggregate if

one is present

Counters for number of pixels of solid accessible from

top and number which are part of a percolation path

NTOP=0
NTHROUGH=0

Percolation is assessed from top (K = 1) to bottom (K = SYSSIZE)

K = 1

Start a burn pattern from all pixels on the top surface

DO 17 l = 1,SYSSIZE
DO 17 J = 1,SYSSIZE

NCUR=0
NTOT=0
IGOOD = 0
IF((CEMENT(I,J,K).NE.0).AND.(CEMENT(I,J,K).LT.12)

+ .AND.(CEMENT(I,J,K).NE.8)) THEN

Use a temporary ID of 12 + present ID to identify burnt pixels
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CEMENTd,J,K) = CEMENTd,J,K) + 1

2

NT0T = NT0T+1
NCUR = NCUR + 1

Store the burn front coordinates in the matrices NMAT* and
NNEW*

NMATX(NCUR) = I

NMATY(NCUR)=J
NMATZ(NCUR) = 1

57 NNEW = 0

Propagate fire from all pixels in the current burn front

DO 27 INEW = 1,NCUR
XCN = NMATXdNEW)
YCN = NMATYdNEW)
ZCN = NMATZdNEW)

Check for propagation in all six directions

DO 37 JNEW = 1,6

XI =XCN
Y1 =YCN
Z1 =ZCN
IF(JNEW.EQ.I) X1 =XCN-1
IF(JNEW.EQ.2) X1 =XCN + 1

IF{JNEW.EQ.3) Y1 =YCN-1
IF(JNEW.EQ.4) Y1 =YCN + 1

IF{JNEW.EQ.5) Z1 =ZCN-1
IF(JNEW.EQ.6) Z1 =ZCN + 1

Note that burning is non-periodic

IF((X1 .GE.1 ).AND.(X1 .LE.SYSSIZE).AND.(Y1 .GE.1).

&AND.(Y1 .LE.SYSSIZE).AND.{Z1 .GE.1 ).AND. {Z1 .LE.SYSSIZE)) THEN
IF{(CEMENT(X1 ,Y1 ,Z1 ).LT.1 2).AND.(CEMENT(X1 ,Y1 ,Z1 ).NE.O)

.AND.(CEMENT{X1 ,Y1 ,Z1 ).NE.8)) THEN
NT0T = NT0T-H1
CEMENTIXI ,Y1 ,Z1 )

= CEMENT(X1 ,Y1 ,Z1) 1

2

NNEW = NNEW -Hi

NNEWX(NNEW) = X1
NNEWY{NNEW)=Y1
NNEWZ(NNEW)=Z1
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ooo Check if new burnt pixel is on the bottom face of the system

IF(ZI.EQ.SYSSIZE) THEN
IGOOD = 1

ENDIF
ENDIF

ENDIF
37 CONTINUE
27 CONTINUE

IF(NNEW.GT.O) THEN
NCUR=NNEW

Copy the new burn front locations to matrices NMAT*

DO 47 ICUR = 1,NCUR
NMATXdCUR) = NNEWX(ICUR)
NMATY(ICUR) = NNEWYdCUR)
NMATZdCUR) = NNEWZdCUR)

47 CONTINUE
GOTO 57
ENDIF
NTOP = NTOP + NTOT
IFdGOOD.EQ.DTHEN
NTHROUGH = NTHROUGH + NTOT

ENDIF
ENDIF

17 CONTINUE
WRITE(6,*)'FOR TOTAL SOLIDS '

WRITE(6,*)'Number accessible from top= ',NTOP
WRITE(6,*)'Number contained in through pathways = NTHROUGH

Restore all burnt pixels to original phase IDs

DO 67 l = 1,SYSSIZE
DO 67 J = 1,SYSSIZE
DO 67 K = 1,SYSSIZE
IF(CEMENTd,J,K).GT.12) CEMENTd,J,K) =CEMENTd,J,K)-1

2

67 CONTINUE
RETURN
END
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APPENDIX C
C Listing for HYDRA3D

#include <stdio.h>

#include <math.h>

#define SYSSIZE 100

/* phase identifiers */

#define POROSITY 0
#define CSS 1

#define DIFFCH 2

#define DIFFCSH 3

^define CSH 4
#define CH 5

#define SURFID 6
#define BURNT 7

^define AGG 8

#define INERT 9
^define POZZ 10

/* number of different classes of spheres allowed */

#define NUMSIZES 10

/* definitions for portable random number generator */

#define Ml 259200
^define IA1 7141
#define IC1 54773
#define RM1 (1.0/MI)

#define M2 134456
#define IA2 8121
^define IC2 2841

1

#define RM2 (1.0/M2)

^define M3 243000
#define IA3 4561
#define ICS 51349

/* 3-D microstructure is stored in 3-D array cement */

static unsigned short int cement [101] [101] [101];

long int nfill,npr,ncement,ncemdis;

int cycleno,ntimes,aggsize, *seed;
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/ *########################## ################################## * /

/*

/*

/*

/*

/*

I*

/*

/*

/*

/*

/*

/*

/*

/ ########################## ################################## /

Program:HYDRA3D.C
Programmer: Dale P. Bentz

Building and Fire Research Laboratory

National Institute of Standards and Technology
Building 226 Room B-348
Gaithersburg, MD 20899-0001
(301)975-5865 FAX (301) 975-4032

Date: 8/91

*

Purpose: To execute a three-dimensional cement
hydration model

V
*/

V
*/

*/

*/

V
*/

*/

*!

*1

*/

*/

/* Portable random number generator routine, rani, from */

/* Numerical Recipes in C */

/* Press, Flannery, Teukolsky, and Vetterling */

/* Returns floating point random numbers between 0 and 1 */

float rani (idum)

int *idum;

{

static long ix1,ix2,ix3;

static float r[98];

float temp;

static int iff = 0;

int j;

if (*idum < 0
1 1

iff = = 0) (

iff=1;

ixl =(IC1-(*idum)) % Ml;
ixl =(IA1*ix1 +\C^) % Ml;
ix2 = ix1 % M2;
ixl =(IA1*ix1 -I-IC1) % Ml;
ix3 = ix1 % M3;
for (j

= 1;j< =97;j-i- +) {

ixl =(IA1*ix1 +\C^) % Ml;
ix2 = (IA2*ix2-l-IC2) % M2;
r[j) = (ix1 -^ix2*RM2)*RM1;

}

*idum = 1;

}

ixl =(IA1*ix1 +\C^) % Ml;
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ix2 = (IA2*ix2 + IC2) % M2;
ix3 = (IA3*ix3 + IC3) % M3;

j
= 1 + ((97*ix3)/M3);

if (j > 97
1 1 j

< 1) printf("RAN1 : This cannot happen.");

temp = r[j];

r[j] = (ix1 +ix2*RM2)*RM1;
return temp;

}

/* undefine variables in case needed later *!

#undef Ml
#undef IA1

#undef IC1

#undef RM1
#undef M2
#undef IA2

#undef IC2

#undef RM2
#undef M3
#undef IA3

#undef IC3

/* routine to display an introduction to the user */

void introO

{

printf("Welcome to HYDRA3D, a digital-image-based cement \n");

printf{"microstructural model. This program has been \n");

printf("developed to simulate the microstructural \n");

printf("development of cement, specifically tricalcium \n");

printf("silicate, C3S, as it reacts with water. In \n");

printfC'addition to C3S, the user may also add a single \n");

printf("inert aggregate and/or inert or pozzolanic mineral \n");

printf("admixture particles to the microstructure. In \n");

printf{"addition to hydration, the user may also assess \n");

printf("phase fractions (either globally or as a function \n");

printf("of distance from the aggregate surface) and \n");

printf{"the connectivity of any individual phase or of \n");

printf("the total solids (neglecting any aggregate) present \n");

printf("in the system. \n \n");

}

/* Routine to add a flat plate aggregate through the 3-D microstructure */

void addaggO
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{

int ix,iy,iz;

printf("Enter aggregate thickness (even number of pixels) \n");

scanf{"%d",&aggsize);

printf("%d \n",aggsize);

/* Aggregate extends through entire system in y and z directions *!

for(ix = ((SYSSIZE-aggsize + 2)/2);ix < = ((SYSSIZE + aggsize)/2);ix + + ){

for(iy = 1 ;iy < = SYSSIZE;iy + + ){

for(iz = 1 ;iz < = SYSSIZE;iz + + ){

cement [ix] [iy] [iz] = AGG;

}

}

}

}

/* routine to check or perform placement of sphere centered */

/* at location xin,yin,zin of radius radd */

/* wfig = 1 check for fit of sphere */

/* wflg = 2 place the sphere */

int chksph(xin,yin, zin, radd,wflg,phasein)

int xin,yin,zin,radd,wflg,phasein;

{

int sflg,nofits,xp,yp,zp,i,j,k;

float dist;

nofits = 0; /* Flag indicating if placement is possible */

/* Check all pixels within the digitized sphere volume */

ford =xin-radd;({i< =xin + radd)&&(nofits= =0));i+ +){

for(j = yin-radd;((j< =yin + radd)&&(nofits= =0));j+ +){

for{k = zin-radd;((k< =zin + radd)&&(nofits = =0));k+ +){

xp = i;

yp=j;
zp = k;

/* use periodic boundary conditions for sphere placement */

if(xp<1) {xp+ = SYSSIZE;}

lf(yp<l) {yp+ = SYSSIZE;}

if(zp<1) {zp+ = SYSSIZE;}

lf(xp> SYSSIZE) {xp- = SYSSIZE;}

if{yp> SYSSIZE) {yp- = SYSSIZE;}
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if(zp>SYSSIZE) {zp- = SYSSIZE;}

/*

/*

/*

}

}

}

Compute distance from center of sphere to this pixel */

dist = sqrt((float)((i-xin)*{i-xin) + {j-yin)*(j-yin) + (k-zin)*(k-zin)));

if((dist-0.5)< =(float)radd){

if(wflg= =2){
cement [xp] [yp] [zp] =phasein;

Update counter of C3S species if necessary */

if(phasein= =C3S){
ncement+ = 1

;

}

Update counter of pozzolanic filler species if necessary */

if(phasein= =POZZ){
nfill + = 1

;

}

}

if{{wflg= =1)&&(cement [xp] [yp] [zp] I =POROSITY)){
nofits = 1

;

}

}

/* return flag indicating if sphere will fit */

return{nofits);

/* routine to place spheres of various sizes and phases at random */

/* locations in 3-D microstructure */

void gsphere{numgen,numeach,sizeeach,pheach)

int numgen;
long Int numeach[NUMSIZES];
int sizeeach[NUMSIZES],pheach[NUMSIZES];

{

int count,x,y,z, radius, ig, kg, phsph;

long int jg;

float rx,ry,rz;

/* Generate spheres of each size class in turn (largest first) */

for(ig = 0;ig<numgen;ig -h -l-){

radius = sizeeach[ig]; /* radius for this class */
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phsph = pheach[ig]; / phase for this class */

/* loop for each sphere in this size class */

for(jg = 1 ;jg < = numeach[ig];jg + + ){

do{

r generate a random center location for the sphere */

rx = rani (seed);

ry = ran1(seed);

rz = ran1(seed);

X = {int)({float)SYSSIZE*rx) + 1

;

y = {int)({float)SYSSIZE*ry) + 1

;

z = (int){(float)SYSSIZE*rz) + 1

;

/* see if the sphere will fit at x,y,z */

count = chksph(x,y,z,radius, 1 ,
phsph);

} whilelcount! =0);

/* place the sphere at x,y,z *!

count = chksph(x,y,z,radius, 2, phsph);

}

}

}

/* routine to obtain user input and create a starting microstructure */

void createO

{

int numsize,sphrad [NUMSIZES],sphid [NUMSIZES];
long int sphnum [NUMSIZES], invall

;

int isph,inval;

printf("Enter number of different size spheres to use (maximum is 10) \n");

scanf("%d",&numsize);

printf("%d \n",numsize);

if((numsize>0)&&(numsize< (NUMSIZES + 1 ))){

printf("Enter number, size, and phase ID for each class (largest radius

1st) \n");

/* Obtain input for each size class of spheres */

fordsph = 0;isph < numsize;isph + + ){

printf("Enter number of spheres of class %d \n",isph + 1);

scanf("%ld",&inval1 );

printf("%ld \n", invall);

sphnum[isph] = invall

;
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printf("Enter radius of spheres of class %d \n",isph + 1);

printf("(lnteger < =10 please) \n");

scanf("%d",&inval);

printf("%d \n",inval);

sphrad[isph] = inval;

printf{"Enter phase to create for spheres of class %d \n",isph + 1);

printf("{1-C3S, 9- Inert filler, 10- Pozzolanic filler \n");

scanf("%d",&inval);

printf("%d \n",inval);

sphid[isph] = inval;

}

gsphere(nunnsize,sphnum,sphrad,sphid);

}

}

/* routine to place one pixel filler particles at random
unoccupied locations in 3-D system */

void genfill(ntopl,idtouse)

long int ntopi; /* Number of filler pixels to place */

int idtouse; /* Phase to be assigned to filler */

{

int pfili,xfill,yfill,zfill;

long int ifill;

float rxf,ryf,rzf;

/* Place each filler particle In turn */

for(ifill = 1 ;ifill < = ntopl;ifill + + ){

pfill = 0;

/* place this filler pixel at a random unoccupied location */

while (pfill = =0){
rxf = ran1 (seed);

ryf = ran1 (seed);

rzf = ran1 (seed);

xfill = (int)((float)SYSSIZE*rxf) -f 1

;

yfill = (int)((float)SYSSIZE*ryf) -h 1

;

zfill = (int)((float)SYSSIZE*rzf) -I- 1 ;

if(cement [xfill] [yfill] [zfill] = =POROSITY){
pfill = 1;

cement [xfill] [yfill] [zfill] = idtouse;

}
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}

}

}

/* subroutine to obtain user input as to filler to be added */

void fillerO

{

long int nadd;

int fillid;

printf("Enter number of filler particles to add \n");

scanf("%ld",&nadd);

printf("%ld \n",nadd);

printf("Enter filled id to use (9- inert, 10- pozzolanic) \n");

scanf("%d",&fillid);

printf("%d \n",fillid);

/* If

}

phase ID is valid, call routine to place the filler

if((fillid = = INERT)
1 1

(fillid = = POZZ)){

genfilKnadd, fillid);

jf(fillid= =POZZ){
nfill+ =nadd;

}

}

*/

/* routine to perform the dissolution process for a hydration cycle */

/* Locations of dissolved species are returned in arrays disx,disy, and *!

I* disz */

long int dissolv(disx,disy,disz)

unsigned short int disx [200000], disy [200000], disz [200000];

{

long int numdis,nchadd,ncshadd,numorg,i,],k;

int xc,yc,zc,irnd,nedge;

float rdis,rdx,rdy,rdz;

/* counter for number of species dissolved */

numdis = 0;

/* Pass 1: Highlight all edge points */

/* (C3S with at least one neighbor porosity) */

for(i = 1 ;i < = SYSSIZE;i + -h ){

for(j = 1;j< =SYSSIZE;]-H -h){
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forik = 1 ;k < = SYSSIZE;k + + ){

/* if pixel is cement, see if it is on an edge */

if(cement [i] [j] [k] = =C3S){
nedge = 1

;

xc = i-1;

/* periodic boundaries once more */

if(xc<1) {xc = SYSSIZE;}
nedge* =cement [xc] [jl [k];

xc = i + 1

;

if(xc>SYSSIZE) {xc = 1;}

nedge* = cement [xc] [j] [k];

yc=j-1;

if(yc<l) {yc = SYSSIZE;}
nedge* =cement [i] [yc] [k];

yc=j + 1;

iflyOSYSSIZE) {yc = 1;}

nedge* =cement [i] [yc] [k];

zc = k-1;

if(zc<1) {zc = SYSSIZE;}

nedge* =cement [i] [j] [zc];

zc = k + 1

;

if(zc>SYSSIZE) {zc = 1;}

nedge* =cement [i] [j] [zc];

/* if nedge is zero, at least one neighbor was porosity */

if{nedge= =0){cement [i] [j] [k] = SURFID;}

}

}

}

}

/* Pass 2: Dissolve all highlighted edge points at random */

/* by allowing each to attempt a one step random walk */

for(i = 1;i< =SYSSIZE;i+ +){
for(j = 1 ;]

< = SYSSIZE;] + + ){

for(k = 1;k< =SYSSIZE;k+ +){
ificement [i] [j] [k] = =SURFID){
/* Choose a random direction for the step */

rdis = rani (seed);

irnd = {int)(6.*rdis) + 1

;

xc = i;

yc=];

zc = k;

/* dissolution is attempted by performing */
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/* a one-step random walk */

switch (irnd) {

case 1:

xc- = 1

;

if(xc<1) {xc = SYSSIZE;}
break;

case 2:

xc-i- = 1;

if(xc>SYSSIZE) {xc = 1;}

break;

case 3:

yc- = 1

;

if(yc<l) {yc = SYSSIZE;}

break;

case 4:

yc -I- = 1 ;

if(yc>SYSSIZE) {yc = 1;}

break;

case 5:

zc- = 1

;

if(zc<1) {zc = SYSSIZE;}

break;

case 6:

zc-f = 1;

if{zc>SYSSIZE) {zc = 1;}

break;

default:

break;

}

/* if step is not into porosity, remain as solid C3S */

ificement [xc] [yc] [zc] !=POROSITY){
cement [i] []] [k] = C3S;

}

/* if step is into porosity, perform the dissolution */

/* and store location of dissolved species */

ificement [xc] [yc] [zc]= =POROSITY){
cement [xc] [yc] [zc] = DIFFCSH;

cement [i] [j] [k] = POROSITY;
numdisH- = 1

;

disx[numdis] =xc;

disy[numdis] =yc;
disz[numdis] =zc;

}

}
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}

}

}

printf{"Original number species dissolved = %ld \n",numdis);

numorg = numdis;

ncemdis+ =numdis;

/* Add in extra diffusing species *!

I* One dissolved unit of CSS should produce 1.7 units of C-S-H */

/* and 0.61 units of CH */

/* Expansion factors of 0.7 and 0.61 are taken from work of */

/* Young & Hansen, MRS Proceedings, Vol. 85 , pp. 313-322, 1987 */

ncshadd = {int)((float)numdis*0.7);

nchadd = (int){(float)numdis*0.61 );

numdis -i- = (nchadd + ncshadd);

if{numdis> =200000){
printfC'Too many dissolved species generated \n");

printf("Aborting run \n");

exitd );

}

for(i = 1 ;i < = (nchadd -i- ncshadd);i -i- -f ){

nedge = 0; /* flag Indicating successful placement */

do{
/* extra diffusing species are added at totally */

/* random unoccupied locations in system */

rdx = ran1 (seed);

rdy = rani (seed);

rdz = ran1 (seed);

xc = (int)((float)SYSSIZE*rdx) -l- 1

;

yc = (int)((float)SYSSIZE*rdy) + 1

;

zc = (int)((float)SYSSIZE*rdz) + 1

;

if(cement [xc] [yc] [zc]= =POROSITY){
nedge = 1;

disx[numorg -I- i] = xc;

disy[numorg -i- i] = yc;

disz[numorg -I- i] = zc;

if(i< =nchadd){
cement [xc] [yc] [zc]=DIFFCH;

}

if(i>nchadd){
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}

}

cement [xc] [yc] [zc] = DIFFCSH;

} while (nedge= =0);

/* return number of generated diffusing species */

return(numdis);

}

/* routine to add in extra pozzolanic CSH when diffusing CH */

/ species reacts with pozzolanic filler */

void addext(xinn,yinn,zinn)

int xinn,yinn,zinn; /* location of reaction site */

{

int xchr,ychr,zchr,fchr,mgen1

;

long int tfact; /* indicates when all 6 neighbors have been tested */

float rmadd;

/* Add in extra pozzolanic CSH to account for volume balance */

/* Random tries at neighboring locations (6) until all tried */

fchr = 0; /* Flag indicating successful placement */

tfact = 1

;

whiledtfact! =30030)&&(fchr= =0))(
/* Generate a random direction to test */

rmadd = ran1 (seed);

mgeni ={int)(6.*rmadd) + 1;

xchr = xinn;

ychr = yinn;

zchr = zinn;

switch(mgen1 ){

case 1:

xchr- = 1;

/* periodic boundaries once again */

if(xchr<1) (xchr = SYSSIZE;}

if({tfact%2)! =0){tfact* = 2;}

break;

case 2:

xchr+ = 1

;

if(xchr>SYSSIZE) {xchr = 1;}

if((tfact%3)! =0){tfact* =3;}

break;

case 3:
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ychr- = 1 ;

if(ychr<1) {ychr = SYSSlZE;}
if{(tfact%5)! = 0){tfact* = 5;}

break;

case 4:

ychr+ = 1

;

if(ychr>SYSSIZE) {ychr = 1;}

if((tfact%7)! =0){tfact* =7;}
break;

case 5:

zchr- = 1

;

if(zchr<1) {zchr = SYSSIZE;}

if((tfact%1 1 )! =0){tfact* = 11;}

break;

case 6:

zchr + = 1

;

if{zchr>SYSSIZE) {zchr = 1;}

if({tfact%13)! =0){tfact* = 13;}

break;

default:

break;

}

ificement [xchr] [ychr] [zchr]= =POROSITY){
cement [xchr] [ychr] [zchr] = POZZ;
fchr = 1

;

}

}

/* If initial efforts unsuccessful, then */

/* Add extra CSH at random location in pore space */

while(fchr = =0){
rmadd = rani (seed);

xchr = (int)((float)SYSSIZE*rmadd) + 1

;

rmadd = rani (seed);

ychr = (int)((float)SYSSIZE*rmadd) + 1

;

rmadd = rani (seed);

zchr = (int)((float)SYSSIZE*rmadd) + 1

;

if(cement [xchr] [ychr] [zchr]= =POROSITY){
cement [xchr] [ychr] [zchr] = POZZ;
fchr = 1;

}

}

}
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/* routine to move/react a diffusing CH species */

int mvchant(xmch1 ,ymch1 ,zmch1 ,pnuc)

int *xmch1 ,*ymch1 ,*zmch1 ;
/* location of CH species to move */

float pnuc;

{

int xm,ym,zm,mgen,chyet,xmch,ymch,zmch;
float pgen,rm;

zmch = {*zmch1);

xmch = (*xmch1);

ymch = (*ymch1 );

chyet = 1

;

/* first allow for random nucleation at current location */

/* if last step in this cycle, convert to solid CH */

pgen = rani (seed);

if((pnuc>pgen)i |(cycleno= =ntimes)){

cement [xmch] [ymch] [zmch] = CH;
chyet = 0;

}

/* If no nucleation, allow for diffusion *!

if(chyet = = 1 ){

/* Generate a move */

rm = rani (seed);

mgen = {int)(6. *rm) + 1

;

xm = xmch;
ym = ymch;
zm = zmch;
switch {mgen){

case 1:

xm- = 1

;

if(xm<1) {xm = SYSSIZE;}

break;

case 2:

xm+ =1;
if(xm>SYSSIZE) {xm = 1;}

break;

case 3:

ym- = 1

;

if(ym<1) {ym = SYSSIZE;}

break;

case 4:
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ym + =1;
if(ym>SYSSIZE) {ym = 1;}

break;

case 5:

zm- = 1

;

if{zm<1) {zm = SYSSIZE;}
break;

case 6:

zm + = 1;

if(zm>SYSSIZE) {zm = 1;}

break;

default:

break;

}

/* check for growth of a solid CH crystal */

if(cement [xm] [ym] [zm]= =CH){
cement [xmch] [ymch] [zmch] = CH;
chyet = 0;

}

/* check for pozzolanic reaction of CH */

/* Each volume unit of pozzolanic filler can */

/* react with 2.08 volume units of CH to produce */

/* 4.6 volume untis of pozzolanic C-S-H */

/* This assumes the pozzolanic filler is pure silica */

/* with a molar volume of 27 cm^3/mole */

if{(cement [xm] [ym] [zm]= =P0ZZ)&&
{npr< ={int)((float)nfill*2.08))){

cement [xmch] [ymch] [zmch] = POZZ;
chyet = 0;

npr+ =1;
rm = rani (seed);

/* Expansion probability = (4.6-1 )/2.08-1 =0.73 *!

/* where the 1 taken away from the 4.6 represents

/* the original silica fume particle pixel */

if(rm< =0.73){
addext(xmch,ymch,zmch);

}

}

if(cement [xm] [ym] [zm]= =P0R0SITY){
/* Diffusion by moving species to new location */

cement [xm] [ym] [zm] = DIFFCH;

cement [xmch] [ymch] [zmch] = POROSITY;
xmch = xm;
ymch = ym;

V
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zmch =zm;

}

}

*zmch1 =zmch;
*ymch1 =ymch;
*xmch1 =xmch;

/* return flag indicating if diffusing CH species reacted */

return(chyet);

}

/* routine to move/react a diffusing CSH species */

int mcshantlxmcshl ,ymcsh1 ,zmcsh1

)

int *xmcsh1,*ymcsh1,*zmcsh1;

{

int xmcsh,ymcsh,zmcsh,xs,ys,zs,msgen,cshyet;

float rmcsh;

cshyet = 1

;

/* choose a random direction for the move */

rmcsh = rani (seed);

msgen = (int)(6. *rmcsh) + 1

;

xmcsh = (*xmcsh1 );

ymcsh = ( *ymcsh1 );

zmcsh = (*zmcsh1);

xs = xmcsh;
ys= ymcsh;
zs = zmcsh;

switch(msgen) {

case 1:

xs = xs-1

;

if(xs<1) {xs = SYSSIZE;}

break;

case 2:

xs + = 1

;

if(xs>SYSSIZE) {xs = 1;}

break;

case 3:

ys- = 1

;

if{ys<’D {ys = SYSSIZE;}

break;

case 4;
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ys + = 1

;

if{ys>SYSSIZE) {ys = 1;}

break;

case 5:

zs- = 1

;

if(zs<1) {zs = SYSSIZE;}
break;

case 6:

zs + = 1

;

if(zs>SYSSIZE) {zs = 1;}

break;

default:

break;

/* check for reaction at solid C3S or C-S-H surface */

/* If last diffusion step this cycle, convert to solid C-S-H */

if((cement [xs] [ys] [zs]= =C3S)|
|
(cement [xs] [ys] [zs]= =CSH)

I
i(ntimes= =cycleno)){

cement [xmcsh] [ymcsh] [zmcsh] = CSH;
cshyet = 0;

}

if((cshyet! =0)&&(cement [xs] [ys] [zs]= =POROSITY)){
/* Diffusion by moving species to new location */

cement [xs] [ys] [zs] = DIFFCSH;
cement [xmcsh] [ymcsh] [zmcsh] = POROSITY;
xmcsh =xs;
ymcsh =ys;

zmcsh =zs;

}

*xmcsh1 =xmcsh;
*ymcsh1 =ymcsh;
*zmcshl =zmcsh;

I* return flag indicating if diffusing CSH species has reacted */

returnicshyet);

}

/* routine to control the hydration process *!

void hydrateO

{

int niter,stopch;

static unsigned short int antsz[200000],antsx[200000],antsy[200000];
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int xant,yant,zant, alive;

int anttype,i,j,k;

long int nunnants,numleft,nbleft,nblue;

float nucscale,nucprob;

float beterm,bbias,bnew,almax, alpha;

clo{

printf("Do you wish to specify 0) max. # of cycles or 1) max.
degree of hydration \n");

scanf{"%d",&stopch);

} while ({stopchl = 1 )&&(stopch! =0));

printf("%d \n",stopch);

if(stopch = =0){
printf("Enter number of hydration cycles (iterations) to perform \n");

scanf{"%d",&niter);

printf{"%d \n", niter);

almax = 1 .0;

}

if(stopch = = 1 ){

printf("Enter maximum degree of hydration \n");

scanf("%f",&almax);

printf("%f \n",almax);

niter = 5000;

}

printf("Enter maximum number of diffusion steps per cycle \n");

scanf("%d",&ntimes);

prlntf("%d \n",ntlmes);

printf("Enter maximum probability for CH nucleation \n");

scanf("%f",&nucprob);

printf{"%f \n",nucprob);

printf{"Enter exponential scale factor for CH nucleation \n");

scanf{"%f",&nucscale);

printf("%f \n",nucscale);

alpha = (float)ncemdis/(float)ncement;

for(i = 1;({i< =niter)&&(alpha<almax));i+ +){

numants = 0;

!* perform the dissolution step */

numants = dissolv(antsx,antsy, antsz);

numleft = numants; /* Number of diffusing species remaining */

alpha = {float)ncemdis/(float)ncement;
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printf{"Number dissolved = %ld \n",numants);
nblue = (int)(61 . *{float)numants)/231 .0;

/* diffuse until all species have reacted or maximum number of */

/* steps is exceeded */

for{j = 1;{(j< =ntimes)&&(numleft! =0));j+ +){

cycleno=j;

numleft = 0;

nbleft = 0;

bnew = (float)nblue;

bnew/ = nucscale;

beterm = exp{-bnew);
/* determine new probability of CH nucleation */

bbias = nucprob*(1 .-beterm);

/* Move each remaining diffusing species in turn */

for{k = 1;k< =numants;k+ + ){

/* get the current location and type */

/* of this diffusing species */

xant = antsx[k];

yant = antsy[k];

zant = antsz[k];

anttype = cement [xant] [yant] [zant];

alive = 1; /* Flag Indicating reaction */

/* Note that addresses are passed to routines mvchant and */

/* mcshant so that new locations of diffusing species can */

/* be updated (returned) */

if(anttype= =DIFFCH){
alive = mvchant{&xant,&yant,&zant,bbias);

}

if(anttype= =DIFFCSH){
alive = mcshant(&xant,&yant,&zant);

}

lf(alive = = 1 ){

numleft-i- =1;
/* store the new location of the */

r diffusing species *!

/* Note that we use only one array here, because */

/* the number of diffusing species remaining after */

/* a diffusion step is always less than the number */

/* present at the start of the step */
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antsx[numleft] =xant;

antsy[numleft] = yant;

antsz[numleft] =zant;

if(anttype= =DIFFCH){
nbleft+ =1;

}

/* Update number of diffusing species still in system *!

numants = numleft;

nblue = nbleft;

}

}

}

/* routine to assess global phase fractions present in 3-D system */

void measure!)

{

long int npor,ncsh,nc3s,nch,ninert,npozz,nagg;

int l,j,k;

/* counters for the various phase fractions */

npor = 0;

ncsh = 0;

nch = 0;

nc3s = 0;

npozz = 0;

ninert = 0;

nagg=0;

/* Check all pixels In 3-D microstructure */

ford = 1;i<=SYSSIZE;i -»-+){

for(j = 1;j< =SYSSIZE;j-H -H){

for(k = 1 ;k < = SYSSIZE;k + -f- ){

if(cement [i] [j] [k]= = POROSITY) {npor-i- =1;}

if(cement [i] [j] [k]= =CSH) {ncsh+ =1;}

ificement [i] [j] [k]= =C3S) {nc3s+ =1;}

ificement [i] [j] [k]= = INERT) {ninert-i- =1;}

ificement [I] [j] [k]= =POZZ) {npozz-i- =1;}

ificement [i] [j] [k] = = CH) {nch + = 1 :}

lf(cement [i] [j] [k]= =AGG) {nagg-i- =1;}
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}

}

}

/* Output results */

printf("Porosity = %ld \n”,npor);

printf{”C3S= %ld \n”,nc3s);

printf("C-S-H = %ld \n",ncsh);

printf(”CH= %ld \n",nch);

printfC’Inert = %ld \n",ninert);

printfC'Pozzolanic = %ld \n",npozz);

printf("Aggregate = %ld \n",nagg);

}

/* Routine to measure phase fractions as a function of distance from */

/* aggregate surface */

void measaggO

{

int phase [1 1],ptot;

int icnt,ix,iy,iz,phidjdist;

printfC'Distance Porosity C3S C-S-H CH Inert Pozzolanic \n");

/* Increase distance from aggregate in increments of one */

for{idist = 1 ;idist< = (SYSSIZE-aggsize)/2;idist+ +){

/* Initialize phase counts for this distance *!

for{icnt = 0;icnt< 1 1 ;icnt+ +){
phase[icnt] =0;

}

ptot = 0;

/* Check all pixels which are this distance from aggregate surface */

for(iy = 1 ;iy < = SYSSIZE;iy + + ){

forliz = 1 ;iz < = SYSSIZE;iz + + ){

/* Pixel left of aggregate surface *!

ix = ((SYSSIZE-aggsize + 2)/2)-idist;

phid= cement [ix] [iy] [iz];

ptot + = 1

;

phaselphid] + = 1;

/* Pixel right of aggregate surface *!

ix = ((SYSSIZE + aggsize)/2) + idist;
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phid= cement [ix] [iy] [iz];

ptot + = 1

;

phase[phidl+ =1;

}

}

r Output results for this distance from surface */

printf("%d %d %d %d %d %d %d \n", idist,phase[0],phase[1],

phase[4],phase[5l,phase[9],phase[10l);

}

}

/* routine to assess the connectivity (percolation) of a single phase */

/* Two matrices are used here: one to store the recently burnt locations */

/* the other to store the newly found burnt locations */

void connect!)

{

long int ntop,nthrough,ncur,nnew,ntot;

int i,inew,j,k,nmatx[9000],nmaty[9000],nmatz[9000];

int xcn,ycn,zcn,npix,x1 ,y1 ,zl ,igood,nnewx[9000],nnewy[9000],nnewz[9000];

int jnew,icur;

printf{"Enter phase to analyze 0) pores 1) CSS 4) CSH 5) CH \n");

printf{" 9) Inert 10) Pozzolanic \n");

scanf("%d",&npix);

printf("%d \n",npix);

/* counters for number of pixels of phase accessible from top surface */

/* and number which are part of a percolated pathway */

ntop = 0;

nthrough = 0;

/* percolation is assessed from top to bottom only *!

/* and burning algorithm is nonperiodic in x and y directions */

k = 1;

for(i = 1;i< =SYSSIZE;i+ +){
for(j = 1 ;j < = SYSSIZE;j + + ){

ncur = 0;

ntot = 0;

igood=0; /* Indicates if bottom has been reached */

if(cement [i] [jl [k]= =npix){
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/* Start a burn front */

cement [i] [j] [k] = BURNT;
ntot + = 1

;

ncur+ = 1

;

/* burn front is stored in matrices nmat* *!

I* and nnew* *!

nmatx[ncur] = i;

nmaty[ncur] =j;

nmatz[ncur] = 1

;

/* Burn as long as new (fuel) pixels are found *!

do(

nnew = 0;

for(inew = 1 ;inew< =ncur;inew+ +){
xcn = nmatx[inew];

yen = nmaty[inew];

zen = nmatz[inew];

I* Check all six neighbors */

forijnew = 1 ;jnew < = 6;jnew + + ){

x1 =xcn;

y1 =ycn;
z1 =zcn;

if(jnew= = 1 ){x1- = 1 ;}

ifijnew = = 2){x1 + = 1 ;}

if(jnew = =3){y1- = 1;}

if{jnew= =4){y1 + =1;}
if(jnew= =5){z1- = 1;}

if(jnew = = 6){z1 + = 1 ;}

/* Nonperiodic so be sure to remain in the 3-D box */

if({x1 > =1)&&(x1 < =SYSSIZE)&&{y1 > =1)&&(y1 < =SYSSIZE)&&(z1 > =1)&&
{z1 < = SYSSIZE)){

if(cement [x1 ] [y1 ] [z1 ]
= = npix){

ntot -f- = 1

;

cement [x1] [y1] [z1l = BURNT;
nnew -I- = 1

;

if(nnew> =9000)(
printfC'error in size of nnew \n");

}

nnewx[nnew] =x1

;

nnewy[nnew] = y1

;

nnewz[nnew] =z1

;

I* See if bottom of system has been reached */
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if(z1 = = SYSSIZE){igood = 1 ;}

}

}

}

}

if(nnew>0){

ncur = nnew;
/* update the burn front matrices *!

for(icur = 1;icur< =ncur;icur+ +){
nmatx[icur] = nnewx[icur];

nmaty[icur] = nnewy[icur];

nmatz[icur] = nnewz[icur];

)

}

}while (nnew>0);

ntop + = ntot;

if(igood = = 1){

nthrough+ =ntot;

)

}

}

}

printf("Phase ID= %d \n",npix);

printf("Number accessible from top= %ld \n",ntop);

printf("Number contained in through pathways = %ld \n",nthrough);

/* return the burnt sites to their original phase values */

for(i = 1;i< =SYSSIZE;i+ +){
for(j = 1 ;j < = SYSSIZE;j + + ){

for(k=1;k< =SYSSIZE;k+ + ){

iflcement [i] [j] [k]= =BURNT){
cement [i] [j] [k] = npix;

}

}

}

}

/* routine to assess the connectivity (percolation) of total solids */

/* excluding aggregate when one is present in the system */
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void consoldO

{

long int ntop,nthrough,ncur,nnew,ntot;

int i,inew,j,k,nmatx[9000],nmaty[9000],nmatz[9000];

int xcn,ycn,2cn,x1 ,y1 ,z1 ,igood,nnewx[9000],nnewy[9000],nnewz[9000];

int jnewjcur;

/* counters for number of pixels of solids accessible from top surface *!

/* and number which are part of a percolated pathway *!

ntop = 0;

nthrough = 0;

/* percolation is assessed from top to bottom only */

/* and burning algorithm is nonperiodic in x and y directions */

k = 1;

for{i = 1;i< =SYSSIZE;i+ +){
for(j = 1 ;j < = SYSSIZE;j + + ){

ncur = 0;

ntot = 0;

igood=0; /* Indicates if bottom has been reached *!

if{(cement [i] [j] [k]! = POROSITY)&&(cement [i] [j] [k] < 1 2)&&{cement [i]

[j] [k]!=AGG)){
/* burnt site has value 12 greater than original phase ID *!

cement [i] [j] [k] + = 1 2;

ntot + = 1

;

ncur+ = 1

;

/* burn front is stored in matrices nmat* */

/* and nnew* */

nmatx[ncur] = i;

nmaty[ncur] =j;

nmatz[ncur] = 1

;

/* Burn as long as new (fuel) pixels are found *!

do{

nnew = 0;

for{inew= 1 ;inew< =ncur;inew+ +){
xcn = nmatx[inew];

yen = nmaty[inew];

zen = nmatz[inew];

I* Check all six neighbors */

for(jnew= 1 ;jnew< =6;jnew+ +){
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x1 =xcn;

y1 =ycn;
z1 =zcn;
if{jnew= = 1){x1- = 1;}

ifijnew = = 2){x1 + = 1 ;}

if(jnew= =3){y1- = 1;}

if(jnew= =4){y1 + =1;}
if(jnew= =5){z1- = 1;}

if(jnew= =6){z1 + =1;}

I* Nonperiodic so be sure to remain in original 3-D box */

if{(x1 > = 1 )&&(x1 < = SYSSIZE)&&{y 1 > = 1 )&&(y 1 < = SYSSIZE)&&(z1 > = 1 )&&
(z1< =SYSSIZE)){

if((cement [x1] [y1] [z1]! = POROSITY)&&(cement [x1] [y1] [z1]<12)

&&(cement [x1] [y1] Iz1]!=AGG)){

ntot + = 1

;

cement [x1 ] [y1 ] [z1 ] -I- = 1 2;

nnew-l- = 1

;

if(nnew> =9000){
printf("error in size of nnew \n");

}

nnewx[nnew] =x1

;

nnewy[nnew] = y1

;

nnewz[nnewl =z1

;

I* See if bottom has been reached */

if(z1 = =SYSSIZE){igood = 1;}

}

}

}

}

if(nnew>0){

ncur = nnew;
for(icur= 1;icur< =ncur;icur+ +){

nmatx[icur] = nnewx[icurl;

nmaty[icur] = nnewy[icur];

nmatz[icur] = nnewz[icur];

}

}

}while (nnew>0);

ntop + = ntot;

ifligood = = 1 ){

nthrough+ =ntot;
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}

}

}

}

printf("For total solids \n");

printf("Number accessible from top= %ld \n",ntop);

printfC’Number contained in through pathways = %ld \n",nthrough);

/* return the burnt sites to their original phase values */

for(i = 1;i< =SYSSIZE;i+ +){
for(j = 1 ;j < = SYSSIZE;j + + ){

for(k = 1;k< =SYSSIZE;k+ +){

if{cement [i] [j] [k]>12){

cement [i] [j] [k]- = 12;

}

}

}

>

}

main{){

int userc; /* User choice from menu */

int nseed,ig,jg,kg;

/* Display an introduction to the user */

introO;

printfC'Enter random number seed value \n");

scanf("%d",&nseed);

printf("%d \n",nseed);

seed = {&nseed);

/* Initialize counters and system parameters */

nfill = 0;

ncement = 0;

ncemdis = 0;

npr = 0;

aggsize = 0;

r clear the 3-D system to all porosity to start */

for(ig = 1;ig< =SYSSIZE;ig -h ){
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for(jg = 1 ;jg < = SYSSIZE;jg + + ){

forlkg = 1 ;kg < = SYSSIZE;kg + + ){

cement [ig] [jg] [kg] = POROSITY;

}

}

}

/* present menu and execute user choice *!

do{

printfl" \n Input User Choice \n");

printf("1) Add a flat inert aggregate to microstructure \n");

printf{"2) Add spherical particles (CSS or filler) to microstructure \n");

printf("3) Add one-pixel filler particles to microstructure \n");

printf("4) Hydrate microstructure \n");

printf("5) Measure phase fractions \n");

printf("6) Measure phase fractions as a function \n");

printfl" of distance from aggregate surface \n");

printf("7) Measure single phase connectivity \n");

printf("8) Measure total solids connnectivity \n");

printf("9) Exit \n");

scanf("%d",&userc);

printf{"%d \n",userc);

switch (userc) {

case 1:

addaggO;
break;

case 2:

created;

break;

case 3:

fillerO;

break;

case 4:

hydrated;

break;

case 5:

measured;

break;

case 6:

measaggd;
break;
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}

case 7:

connect!);

break;

case 8:

consoldO;

break;

default:

break;

}

} while (userc<9);
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APPENDIX D
Modifying HYDRA3D

It is recognized that other cement researchers may want to use HYDRA3D as

a starting point for developing their own simulations of material microstructure and
properties. This appendix will attempt to provide a few guidelines for this process.

1) Maintain an original version of the code.

The user should not modify the original version of HYDRA3D, but rather should

copy the source file to a new file and modify the new file to suit their needs. In this

manner, the original code is always available as a baseline.

2) Limit the scope of modifications.

Since HYDRA3D has been developed in a modular fashion, the user should be

able to make changes without changing every module in the program. For example,

to change the shape of particles (from spheres to ellipses for instance), the user

should only need to change the routines CREATE, GSPHERE, and CHKSPH to create

the appropriately shaped particles. Since all routines operate at the pixel level, the

hydration and analysis routines are independent of initial particle shape. To change
the characteristics of the mineral admixture particles, the user would modify the

routines MVCHANT and possibly ADDEXT to reflect the new reaction and volume

stoichiometry of the pozzolanic reaction.

New analysis routines can simply be added as new modules, with a new menu
selection added to allow the user to select the new feature. The three-dimensional

microstructural representation is available globally so that any new module can easily

access individual pixels of the current microstructure.

3) Make changes in an incremental fashion

If a user intends to make several modifications to the code, they should be

made sequentially as opposed to concurrently. Although interactions between

modifications are always a concern, sequential modification should limit the time

needed to develop and debug the new (changed) program.

4) Understand the existing code before modifying it

Above all, the user should be sure that they understand the workings of the

existing code before attempting any modifications!
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APPENDIX E

System Requirements

The system configuration needed to successfully execute the HYDRA3D
program will depend largely on the computing environment. Since the program is

designed to implement a rather large scale simulation (one million pixel elements), the

system requirements are not trivial. Sample system configurations at NIST on which
HYDRA3D has been successfully implemented are outlined in Table II. While the

source code file size remains constant from system to system, the executable code
file size and memory needed for execution are both functions of the system being

considered, as the default implementation of integer and real variable sizes will vary

from computer to computer. At a minimum, it appears that 4 Mb of system memory
would be required to execute HYDRA3D without extensive paging. Disk space
requirements are generally minimal.

Table II

Memory Requirements for HYDRA3D

Computer
System

Language Source Code
File Size

(kilobytes)

Executable

File Size

(kilobytes)

Memory for

Execution

(Megabytes)

CONVEX C120 Fortran 38 264 11

CONVEX Cl 20 C 30 74 3.5

SUN 3/160
ffpa accel.

C 30 41 3.3

CRAY Y-MP Fortran 38 833 21.5

CRAY Y-MP C 30 13228 14.2

The time required to execute HYDRA3D will naturally depend on the "problem"

being simulated. However, to provide some idea of time requirements. Table III lists

the execution times for the Fortran and C versions of HYDRA3D on a variety of

computers. All times are those necessary to execute example 2 (w/c = 0.5) from

Section 4.2 of this report. The times may seem quite large, but it should be kept in

mind that HYDRA3D simulates the complex process of cement hydration for a

relatively large system, not a trivial task.
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Table III

Timing Benchmarks for HYDRA3D
(Example 2 from Section 4.2)

Computer System Programming Language Execution Time
(seconds)

SUN 3/160 (ffpa) C 35932

CONVEX Cl 20 C 9159

CONVEX Cl 20 Fortran 9009

CRAY Y-MP C 2197

CRAY Y-MP Fortran 1123
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