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operating Principles of MULTIKRON
Performance Instrumentation for MIMD Computers

Alan Mink and Robert J. Carpenter

The single-chip MULTIKRON design replaces our earlier event trace (uTRAMS)
and resource utilization (uREMS) performance instrumentation chips. It incorporates a

longer timestamp, more bits of user-event and processor identification, and 16 counters

for resource utilization measurements. The initial implementation uses a 64-bit proces-

sor bus, though the design allows simple modification to a 32-bit bus. The collection

network output has a width of eleven bits (eight data, one parity, and two control), and

can transfer up to 25 million data bytes per second.

Key words: Computers; hardware support; MIMD; multiprocessor computers;

performance characterization; VLSI.

INTRODUCTION

From our experience in performance characterization of MIMD computers and software [CAR88,

LY089A, LY089B, LY089C, LYO90A, LYO90B, LYSN89, MDRC87, MRDC86, NAMI89, RAM89,
ROB86], we observed the need for a timed trace of user-defined events during software execution, and a

need to quantify very-frequently-occurring events (such as memory accesses) related to utilization of the

computer’s hardware resources. Hardware support is needed to obtain these data with tolerable perturba-

tion.

The MULTIKRON chip provides this hardware support for a combination of trace measurement and

resource measurement Trace measurement provides timestamped program event traces. For example, the

duration of time spent in a state or routine can be calculated from the entry event and exit event times-

tamps. Alternatively, the set of sixteen resource counters can be used to count clock ticks (i.e., accumulate

the time between events), external hardware events, or software-commanded events. The accumulated

value of these counts can be sent to the collection point with any or aU trace samples. Once we agreed to

increase the number of "resource" counters, it was recognized that they would also have considerable utili-

ty as a very-low-overhead means of merely counting chosen software events [LYO90C, MIL90].

The single-chip MULTIKRON replaces our earlier event trace (uTRAMS) [CAR89, MCNR90] and

resource utilization (uREMS) [MCNR, NAMI89] performance measurement instrumentation chips. It in-

corporates a much wider (56-bit) timestamp, many more bits of user-event and processor identification,

and sixteen counters for resource utilization measurements. The initial implementation uses a 64-bit pro-

cessor bus, though the design allows simple modification to a 32-bit bus. The byte-wide collection net-

work output is now sjmchronous, with a simple two-way-handshake protocol. The network can collect

about 1.5 million event trace samples or 0.3 million trace-with-resource samples per second. This discus-

sion is based on Revision 7 (910703) of the MULTIKRON Preliminary Data Sheet. The reader should

refer to Figure 1, the overall block diagram of the MULTIKRON, during the following discussion.
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Event Tracing

The fundamental measurement function in event tracing is to determine the time of occurance of

various key events in the execution of a computer’s tasks with high precision. These times can be used

later to calculate elapsed time, duty cycle, access latency, and the like. In theory, one could passively

monitor program execution to determine when events occurred. In practice, passive monitoring requires a

very large content-addressable memory to recognize the events [NAMI89]. Economical, large, fast

content-addressable memories do not yet exist. In addition, many computers are based on microprocessors

which contain an internal instruction cache or queue. External monitoring of instructions fetched is fruit-

less, since they do not closely correlate with actual program execution. Many fetched instructions are nev-

er executed. Yet another problem is that compilers produce code in terms of virtual addresses, and the

translation into physical addresses is defered to run time, and may even change during execution.

Although passive monitoring does not perturb program execution, its severe drawbacks, just men-

tioned, have led us to employ a hybrid approach to event tracing. The tracing function relies on embedded

code in the software running on the machine being measured to establish an event [MDRC87, MRDC86] .

This very brief added code triggers hardware capture of the data about the event Execution of this embed-

ded code informs the measurement hardware of events by writing an event identification as data to a

memory-mapped register. Our earlier measurement hardware allowed only 11 to 16 bits of user-written

event identification [MRDC86, MCNR90]. This has proven inadequate, so that we now recommend 32 or

more bits of arbitrary event identification.

As mentioned, current time is the most important data collected at an event. Again, we "saved bits"

in earlier designs, resulting in an unacceptably-short epoch before the timestamp counters wrapped

around. In order to have a reasonable epoch with the time resolution required by today’s high processor

clock rates, at least 40 bits and a 10 MHz timestamp timebase are recommended. The timestamp counter

must have a private input pin, so that all timestamp counters in a system can be incremented by the same

system-wide timebase signal. Provision must be made to synchronize all timestamp counters, at least at

hardware reset time.

The event identification is a user-chosen value written to the measurement chip to initiate a trace

sample which identifies where in program execution the event occurred. It does not identify which process

may be using the (possibly-shared) code where the event occurred.

Process Identification. When a trace data sample is to be captured, the identity of the processor, the node

(which may contain more than one processor), and the associated process must be determined and included

in the data sample. The most practical solution to process identification seems to be the provision of a spe-

cial Source Address register (containing process identification), which is updated by the operating system

at each task change. Since a single measurement chip may be used to measure a number of tightly-

coupled processors, each working on a different process, process identification must be kept for each pro-

cessor. This requires a set of Source Address registers; each processor is assigned its own Source Address

register, in which process identification is kept.

Node Identification. Many modem computers are composed of a number of nodes. The coupling

between nodes may be fairly loose, but each node may consist of a number of processors which are

tightly-coupled together. A single measurement chip can efficiently serve all the tightly-coupled proces-

sors at a node. The identification of the node where a process is located should be concatenated with the

process identification stored in the Source Address registers.
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A trace measurement sample consists of the concatenation of the user-written event identification,

the hardware-determined identification of the processor that wrote the sample, a 32-bit field which

identifies the process and node, and 40 bits of the timestamp counter. To allow correlation of samples tak-

en by multiple MULTIKRON chips, the timestamp counters must all be driven by a common clock, and

they are all reset to zero by the hardware reset signal [CAR88, CAR89, SNE91]. One can instrument sub-

routine entry and exit points, operating system calls, or processing "states" [LYO90B]. Many billions of

individual event / processor / process combinations can be resolved, if needed.

Subset Data. Sixteen different classes or sets of user-defined trace data sampling commands are defined.

The measurement chip can be configured by a Filter Register to accept or ignore any combination of these

subsets at run-time. All trace data samples will belong to one of these classes. Once instrumented, embed-

ded measurement code can remain undisturbed when different types of measurement reports are desired (or

no repon at all). Thus, software can be extensively instrumented and yet not burden the data-capture sys-

tem in routine operation. Neither modification nor recompilation of the software on the measured comput-

er is required to change the measurement set [MCNR90, MICA90]. The simple method we use to indicate

trigger subset is to assign a block of address for triggering the taking of a data sample. The lowest four bits

of the address then indicates the subset to which the trigger belongs.

Processor Identification. The tightly-coupled processors at a single node will often share code. Software

techniques which could be used to identify between the processors have too much overhead to be accept-

able. The solution is to include a few wires for processor identification in the interconnection network

between each measurement chip and the small number of processors it measures. The processor

identification is included in each trace measurement sample.

Relating Events on Multiple Processors or Nodes. To correlate the activities reported by the the various

measurement chips in a system for measurement purposes, it is often important simultaneously to know the

current state of all the processors in a multiprocessor / multinode system to a very fine time resolution.

This is particularly important at the time of some "major" events. In our earlier uTRAMS we synchronized

the timestamp counters in all chips and provided a global interrupt to be used to cause all processors to

drop their current activity and enter a routine to capture current status information [CAR88, MICA90]
[RAM89, SNE91]. The &st application of MULTIKRON is expected to be on the Touchstone SIGMA,
which already provides global signaling. Other recent computer buses, such as IEEE 896 Futurebus+, also

provide for global signaling or interrupt Thus we did not incorporate a global interrupt function in the

current MULTIKRON.

Hardware Resource Utilization

Trace events occur relatively infrequently, typically hundreds or thousands of program instructions

apart Other types of events occur much more frequently, even on every processor clock cycle for short

periods. The hybrid approach recommended for event trace support is unsuitable for measuring these very

frequent events; they demand a fully-hardware measurement technique. As a compromise between resolu-

tion, cost and data storage requirements, we have chosen to accumulate counts as a measure for these

events. This amounts to a form of preprocessing of the measurement data, with a great reduction in the

cost and data storage requirements. Of course some detail is lost
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Resource Counters. Resource Counters can be used for a wide range of measurement if flexible input

switching is provided on a per-counter basis. It must be possible to increment each by hardware signals

such as cache hits or misses, clock cycles during waits for shared-resource access, or events such as mes-

sage transmissions. If the counters can also be incremented by software, some can be used to keep running

tallies of items added to, or removed from, software-managed queues or buffers, average frequency-of-use

of code, or other frequent software events.

The content of all Resource Counters is concatenated with a Trace Sample to form a Resource Sam-

ple. Resource samples should be collected at key points in program execution to resolve resource utiliza-

tion to specific activities. Collection network bandwidth and data collection storage could be conserved if

means were provided to read only a subset of all the Resource Counters. For flexibility in application, a

measurement chip should have at least 16 Resource Counters, and 32 would be much better. Since

counters will be incremented at the processor clock rate during some intervals, a size of 32 bits seems to be

a lower limit.

In our earlier uREMS chip, we implemented pairs of resource counters which automatically scaled to

13 bits of precision with a five-bit exponent common to both values. This reduced the amount of data

storage required [NAMI89]. We now feel that was a poor decision. The size and complexity of the

automatic-scaling hardware greatly reduced the number of signals we could measure, with little saving in

the data collection and analysis system.

Counter Sources. In the normal mode of operation, it is expected that all resource counters will be dis-

abled prior to a measurement experiment Then the counting source for each counter will be selected by

setting an source multiplexer selection register. During the measurement period, each counter can be

selectively enabled and disabled as many times as desired, and can thus accumulate counts during multiple

uses of a piece of code, for example. The enable register allows the resource registers to be individually

enabled for counting. The source multiplexer selection register can configure the input of each of the

resource registers to be incremented by:

> The processor clock frequency - for measuring short intervals of elapsed time with high precision.

> A source at 1/10 or 1/100 of the timestamp clock’s frequency - for measuring much longer elapsed

times with reduced precision.

> Positive-going transitions on its private external package pin, up to the processor clock frequency

- for accumulating numbers of (positive going) transitions in any electrical signal in the sys-

tem,

> A processor "write" to the address corresponding to the specific counter - for a low-overhead way

of accumulating the number of software events.

Local Access to Measurement Registers

Many benefits accrue if processors closely-coupled to a measurement chip can directly read its regis-

ters. The time dilation technique for exploring the effects of proposed variations in loosely-coupled sys-

tems is an example [AS90]. Direct read access also allows many of the features of a measurement chip to

be used even though there may be no measurement data collection network.
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PROCESSOR INTERFACE

The data path between a processing node and the MULTIKRON is 64 bits wide. On a read by an

node processor, any unused bit positions return a logical "0". On a write from the node, any unused bit po-

sitions are ignored. The MULTIKRON expects to receive seven bits of address, the least-significant of

which corresponds to 32-bit data entities (four-byte increments). All higher address bits must be external-

ly decoded to establish the base address of the MULTIKRON. The address format and mapping for the 7

low-order address bits to the MULTIKRON is:

Field Width 1 bit 2 bits 4 bits

Upper

Bits of

Base

Address

Command
= 0

Enc

con

oded "register" and

trol commands

Sample

= 1

Sample Type

Trace w or w/o

Resource Data

Filter

Value

Table 1

Use of MULTIKRON’s seven low-order address bits

Thus addresses 0-63 are used for commands, such as read or write a register, and addresses 64-127

are used to trigger samples with various options. The Filter Value allows run-time selection of subsets of

the possible data samples, as described in the discussion of the Filter Register. The external higher-order

address decoder output must be externally ANDed with the processor’s READ or WRITE pulse and so that

the RD and WR signals to the MULTIKRON are only asserted (LOW) when the MULTIKRON is ad-

dressed. After the MULTIKRON has completed its commanded action, it will assert (LOW) the RDY line.

Actual transfers are at positive-going transitions of the processor clock; ADDR(ess), DATA, RD, WR, and

RDY signals must have adequate setup and hold times relative to these transitions. The processor inter-

face timing is illustrated in Figure 2.

The data from the different sections of the MULTIKRON can be used in some combination of the fol-

lowing ways: read by the node, written by the node, and captured as part of the measurement sample

(sample generation). For each of the MULTIKRON sections listed below, the ofifeet from the MUL-
TIKRON base address, the data field and its size are specified in parenthesis following the register name.

Appendix A summarizes the addresses of all internal MULTIKRON registers.

EVENT TRACE MEASUREMENT SUPPORT

It is expected that one MULTIKRON chip will be used for each node of a multiprocessor, where a

node is a shared-memory, tightly-coupled cluster of one or more processors. The MULTIKRON chip (Fig-

ure 1) is a memory mapped device requiring a block of addresses. In this discussion, addresses are those

of 32-bit locations (or the less-significant part of a 64-bit location), and are given as decimal numbers. A
sample is triggered by a memory write to a specified address within that block of addresses. A sample al-

ways contains trace data (Tables 5 and 6) which consists of the data from the memory write, along with a

timestamp, error and class information, and a source address. The trace data is assembled and stored in a

small internal FIFO. Optionally, a sample may also include the contents of the resource counters (Tables 5
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and 7). The contents of the resource counters are stored in a set of shadow registers before transmission.

Each sample is sent out over the collection network byte-serially, with a parity bit and end-of-message flag

bit on each byte.

Software Reset

This pseudoregister (Address=base+0; Write Only, data is ignored) initializes most of the machine

state of the MULTIKRON. Unlike the hardware reset pin, it does not affect the contents of the Timestamp

Counter.

Timestamp

This 56-bit counter (Address=base+2; Read Only, 56 bits) tallies the Timestamp clock (10 MHz) and

is reset to zero by a system reset on power-up. The MULTIKRON contains a 56-bit timestamp counter,

with provisions for synchronizing this counter in all MULTIKRONs in a system by a system reset. Only

the lower-order 40 bits of the counter are included in a data sample, although the processor to which the

MULTIKRON is attached can read all 56 bits. This hardware system reset signal is a low-active asynchro-

nous signal and must be active for a minimum of five node clock cycles. To synchronize the timestamp in

every node in the machine the occurance of this reset should be synchronized throughout the machine.

Synchronization is then maintained by distribution of a common clock to each MULTIKRON chip. In the

earliest runs of the MULTIKRON, the timestamp clock must not exceed 1/3 (one third) of the node clock.

Thus for a node clock of 50 MHz, the timestamp clock can not exceed 16.6 MHz. The timestamp is read-

able in full 56-bit precision, but is not writable. The 40-bit time field of collection-network samples yields

a wrap-around epoch of about 20 hours. Thus, as long as any node takes one sample within each 20 hour

interval, time can be resolved for all nodes for an experiment of unlimited duration.

CSR Register

The Control and Status Register (Addiess=base+1; Read/Write, 32 bits) is used to configure the most

basic operational modes of the MULTIKRON and to allow examination of these settings. A logical "1" in

a bit position of the data written to the CSR commands the corresponding action. A logical "0" in a bit po-

sition of the data written to the CSR causes no effect on the corresponding action. All unused bit positions

in the control and status register return a logical "0" on read. The current register contents are:
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Status Bit Control

(CSR read) Position (CSR write of "1" in this bit position)

Sampling Enabled 0 Enable Sampling

Logical "0"
1 Disable Sampling (default on reset)

Write Wait on Overrun 2 Wait for free FIFO/coimters to avoid write overrun

Logical "0" 3 Discard data sample if write overrun would occur (default)

Read Wait for shadow regs. 4 Enable processor read wait if counters busy

Logical "0" 5 Cancel read wait if counters busy (Error bit returned) (default)

FIFO Full 6 Read Only, write data ignored.

Resource Shadow Registers Full 7 Read Only, write data ignored.

FIFO Overrun 8 Read Only, write data ignored.

Resource Shadow Register Overrun 9 Read Only, write data ignored.

129th FIFO output bit (w/Resource data) 10 Read Only, write data ignored.

Logical "0" 11 Read Only, write data ignored.

Number of Wait States 12-13 Read Only, write data ignored.

10 us slow clock enabled 14 Set slow clock to 10 us.

Logical "0" 15 Set slow clock to 1 us. (default on reset)

Logical "0" 16-31 Read Only, write data ignored.

Table 2

Control and Status Register Bit Assignments

The number of (processor clock) Wait States (bits 12-13) is set by the logic levels at package pins

during hardware reset. The wait states allow use with processors that would otherwise allow very short

times for address decoding by MULTIKRON.

Filter Register

The Filter Register (Address=base-i4; Read/Write, 32 bits) controls whether or not a sample is taken

when a trigger occurs. Sixteen filter levels (or subsets) of measurement data are defined. Any combination

of subsets can be enabled by the pattern of bits in the Filter Register. Each sample specifies, as part of its

address, a 4 bit encoded filter value which is decoded into one of 16 filter levels. If the corresponding bit in

the Filter register is enabled (a "1"), the sample is taken. If the corresponding bit in the Filter register is

disabled (a "0"), then the sample is discarded. This allows the program to be extensively instrumented

with measurement triggers, while only taking data samples at the desired subset of these triggers. Thus the

measurement instrumentation code could remain in the program, causing no difference in execution time,

while only taking selective measurements or none at all.
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Source Address Registers

The eight Source Address Registers (Addresses=base+16 to 23; Read/Write and Sample Generation,

32 bits) contain the identity ("node.process" - node number and process identification) of the process exe-

cuting on the corresponding processor and should be updated at each context switch. The MULTIKRON
contains a Source Address register for each of the eight processors that it can simultaneously support. The

system’s operating system should be instrumented to update the corresponding MULTIKRON Source Ad-

dress register at each processor’s context switches. That is, the identity of the process executing on pro-

cessor 3 should be contained in source address register 3. Eight pins on the MULTIKRON chip are used to

identify the processor writing the measurement sample and are used as an index (select) into this set of

eight registers, causing the corresponding contents to be included in the trace sample. Thus, at most, only

one of the eight lines can be active at any time. Each source address register is assigned a unique address,

which is used when the contents must be updated or examined by a processor. Any processor in the node

can read or write all of the source address registers.

RESOURCE UTILIZATION MEASUREMENT SUPPORT

The sixteen resource counters can be used to count clocks, external hardware events, or software-

commanded events. The accumulated value of these counts can be sent over the collection network with

any or all desired trace events.

Resource Counters and their Shadow Registers

The resource counters (Addresses=base+32 to 47; Read Only and Sample Generation, 32 Bits) accu-

mulate counts of either the node clock (50 MHz), slow clock (either 1 MHz or 100 kHz), external signals

(rising edge), or software generated triggers. In the current MULTIKRON, the slow clock frequency is the

same for all resource counters and is prescaled from the Timestamp clock, either 1/10 or 1/100 of its fre-

quency. Thus for a 10 MHz Timestamp clock, the slow clock is either 1 MHz or 100 kHz, selectable via

the CSR register. Additional flexibility may be added in future versions. The external input signals must

not exceed the processor clock frequency.

When a Resource sample is triggered (or one of the Resource counters is being read), the contents of

all resource counters are copied into the corresponding shadow registers. This ensures that the counter

contents used in the resource measurement sample all correspond to the same instant - the time of the sam-

ple. Then the contents of the shadow register can be used for data output and the resource registers can

continue to be incremented. There is only one rank of shadow registers, in effect a one-level FIFO. The

shadow registers wiU remain occupied for about 80 network clock periods (160 processor clock periods)

during the normal capture of a resource data sample. The shadow registers cannot be reused during this

period.
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The resource counters will not count beyond their maximum value (i.e, no wrap around), but will

stick at this maximum value until reset. The length of time it takes for a counter to reach its maximum
value depends on the rate of the signal being tallied. For a 50 MHz signal a 32-bit counter fills in about 85

seconds; for a 1 MHz signal a 32-bit counter fills in about 1.2 hours; for a 100 kHz signal a 32-bit counter

fills in about 12 hours.

Command

Com

Shadow

Registers

iitions

"Wait on

Processor

Read"

Control bit Actions

Read

Resource

Register

Empty
Don’t

Care

Resource Register data immediately

returned; bit 63 = 0

FuU

Disabled

= 0

Wrong data immediately

returned; bit 63 = 1

Enabled

= 1

Wait until shadow register

available, then return

correct data; bit 63 = 0

Table 3A
Effects of "Wait on Processor Read" Control Bit

Conditions Actions

"Wait on

Shadow Overrun" Data Overrun

Command Registers Control Bit SampUng Flag

Take

Empty
Don’t

Care

Resource Data immediately

put in shadow register for output
0

Disabled No new resource sample
1

Resource
= 0 taken; no wait

FuU Enabled Wait until shadow register

Sample
= 1 available, then take

resource sample

0

Table 3B
Effects of "Wait on Overrun" Control Bit

Overruns and Waits on Resource Counter Use. There are two optional actions when an attempt is made

to use the data in the resource counters when their shadow registers are still full from the previous

Resource Sample. The shadow registers act as a one-level-deep FIFO for the resource counters. Table 3

indicates the situations in which program execution is temporarily blocked when the resource shadow re-

gisters are full and another sample with resource data is attempted, or a CPU attempts to read a resource

register. The next sample with resource counter data may be blocked (but probably not Trace samples

without resource counter data, since Trace samples have a deeper FIFO) while these shadow registers are

being output to the collection network a byte at a time. For sixteen resource counters, this blockage could

last 80 output network clocks, since only one byte is transferred on each network clock cycle. A Resource

sample, containing both Trace data and Resource Counter contents, is eighty bytes. Attempts to read a

resource register by a node CPU may sufer the same duration of blockage. When the shadow registers are

empty, reading a resource counter by the CPU at the node will not cause a blockage to succeeding opera-

tions, since this is accomplished in a single CPU instruction.
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Processor Reading of a Resource Counter. Each resource counter has a specific address and may be

read by a processor. Data from the resource counters is read after transfer to the shadow register, just as in

the case of a resource data sample. If the shadow registers are not already full (and in the process of out-

putting their contents to the network), then all the counters are copied to the shadow registers but only the

selected counter’s data is returned to the CPU. If the shadow registers are busy, there are two options con-

trolled in the CSR:

(1) Read wait on Counters Busy asserted - The read will wait until the shadow registers are firee, the new

counter value will be transferred to the shadow registers, and then the requested data wiU be returned

to the processor with bit 63 set to a logical "0".

(2) Read Wait on Counters Busy unasserted - The shadow register will not be modified, and incorrect data

will be returned to the processor with bit 63 set to a logical "1".

Processor Incrementing of a Resource Counter. Writing a resource counter’s specific address (the same

one used to read the individual register) causes the corresponding resource counter to be incremented, if

the corresponding position in its MUX SEL (MUX select) register is set to the "software increment" op-

tion. This software command allows the programmer to selectively use the resource counters to accumu-

late counts of software events.

Resource Counter Control Registers

The resource counters can be individually controlled via a set of control registers: the MUX SEE;

Reset; Enable; and Disable registers. Each of these control registers is configured to allow 32 resource

counters, although only the lower sixteen fields are implemented in the current 16-counter MULTIKRON.
It is expected that all the counters would be disabled prior to a measurement experiment, and the counting

source selected for each counter via the MUX SEL (multiplexer selection) register. Each counter can then

be selectively enabled and disabled as desired to accumulate counts during the program execution.

MUX SEL Register. The MUX SEL Register (Address=base+8; ReadAVrite, 64 bits) is used to select one

of four counting inputs to each resource counter: a node clock (50 MHz); a slow clock of one-tenth or

one-hundredth the timestamp clock frequency (1 MHz/lOOkHz); a software generated signal; or an exter-

nal signal from a package pin private to each counter. These four selections are encoded into a two bit

field.

Two Bit

Encoding Counting Input Selected

00 Slow Clock, 1 or 10 us

01 External Signal

10 Software Signal

11 Node Clock

Table 4

Resource Counter Input Multiplexer Choices
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The MUX SEL register is configured to allow expansion to 32 resource counters. Currently only half

of this register is used (bit 0-15 and 32-47); the other half is reserved for future expansion (bit 16-31 and

48-63). The two bit field is divided between the upper and lower half of the MUX SEL register. The least

significant bit of the two bit field is allocated to the low order half of the MUX SEL Register, whUe the

most significant bit is allocated to the corresponding bit in the high order half of the MUX SEL Register.

The i-th field is assigned to the corresponding i-th bit in the low and high order halves of the MUX SEL re-

gister (i.e., the two bit field for counter 0 is assigned to bits 32, MSB, and 0, LSB). For example, to select

all odd counters (1,3,..., 15) to count 50 MHz node clocks (encoding=ll) and all even counters (0,2,..., 14)

to count external signals (encoding=01) requires the following 64 bit setting:

MUX SEL = 0000000000000000 1010101010101010 0000000000000000 1111111111111111

Reset Register. A "1" written into a bit position of the Reset Register (Address=base-i-10; Write Only, 32

bits) causes the corresponding resource counter to be cleared. A "0" written into a bit position is ignored.

This provides a method by which disjoint subsets of resource counters can be independently controlled by

difierent parts of a program or different programs without interfering with each other. This is a self-

clearing register; the register is immediately cleared after the resetting action has been completed.

Currently only half of this register is used (bit 0-15); the other half is reserved for future expansion (bit

16-31).

Enable Register. A "1" written into a bit position of the Enable Register (Address=base-i-ll; ReadAVrite,

32 bits) enables the corresponding resource counter to accumulate counts of the occurrences of the

currently selected counting signal. A "0" written into a bit position causes no change in the status of the

corresponding counter (i.e., "0" inputs are ignored). This allows disjoint subsets of resource counters to be

independently controlled by different parts of a program or different programs without interfering with

each other. Currently only half of this register is used (bit 0-15); the other half is reserved for future ex-

pansion (bit 16-31).

Disable Register. A "1" written into a bit position of the Disable Register (Address=base-t-12; Write Only,

32 bits) disables the corresponding resource counter from counting. A "0" written into a bit position

causes no change in the status of the corresponding counter (i.e., "0" inputs are ignored). This permits dis-

joint subsets of resource counters to be independently controlled without interfering with each other.

Currently only half of this register is used (bit 0-15); the other half is reserved for future expansion (bit

16-31).

Wait Counter

The Wait Counter (Address=base-i-5; Read or Clear, 32 Bits) tallies the number of 50 MHz cycles in

which the measurement chip has delayed the ready (RDY) signal to the CPUs, beyond the normal preset

number (i.e., invoked additional wait states) because the FIFO or Shadow Registers of the Resource

Counters are full. This counter is only activated when either the "Write (sample) Wait on Overrun" or

"Read Wait on counters" options are enabled in the CSR register. In the unlikely event that the number of

waits reaches 2"32, this counter wraps around to zero and continues counting.

- 11 -



Overrun Counter

The Overrun Counter (Address=base+6; Read or Clear, 32 Bits) tallies the number of times a sample

has failed to be taken because either the Trace sample FIFO or the Shadow registers were already full

when the sample required these resources. This counter is only activated when the "Write Wait on Over-

run" option is disabled in the CSR register. In the unlikely event that the number of overruns reaches 2"32,

this counter wraps around to zero and continues counting.

NETWORK OUTPUT

The data collection network output of the MULTTKRON chip provides a way for the data samples to

reach a central collection point without using the computer’s normal data paths. Output from the MUL-
TIKRON consists of ten-bit elements: eight data bits, an odd-parity bit, and a sample-end flag bit. The

MULTIKRON delivers a Network Clock output signal at one-half the processor clock frequency. Data out-

put is synchronous with this signal. See Figure 3 for timing specifications of the network output. There

are two control signals:

(1) External FIFO Free (input) . The network must assert (high) or de-assert (low) the External FIFO Free

signal at least 16 nanoseconds before the positive-going transition of the Network Clock output of

the MULTIKRON.
(2) Load External FIFO (output). The MULTIKRON asserts (low) the Load External FIFO signal at least

12 nanoseconds before the positive-going edge of the Network Clock if the network must accept the

accompanying output data byte. This signal will not be asserted if the External FIFO Free signal is

not asserted.

Data Sample Formats

The MULTIKRON data sample has the basic format of a header byte (Table 5), which is included in

the Trace sample data (Table 6). The Resource information is appended to these to form the Resource

sample (Table 7). The Trace data sample contains 128 bits (16 bytes). In a resource sample, each of the

sixteen Resource counters adds 32 more bits, for a grand total of 640 bits (80 bytes).

CPU ID

Encoded

Sample

Type

10=Trace

ll=Resource

FIFO

Over-

run

Error

RSRC
Over-

run

Error

RSRC
Read

Error

3 bits 2 bits Ibit 1 bit Ibit

Table 5

Header for both Trace and Resource Sample Types
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Error & Class Field of Sample

(Sample Generation Only, 8 bits: 3 - CPU ID, 2 - sample class, 3 - error flags). This field in each data

sample (Table 5) is used to identify the CPU within the node taking the sample, any error flags associated

with the sample, and the sample class (type) identification. The three error flags are:

1) FIFO overrun - previous sample(s) lost (reset by next successful sample),

2) Shadow register overrun - previous sample(s) lost (reset by next successful sample),

3) No Resource Counter data returned to processor due to Shadow register overrun (this should always be

a logical "0" since resource counter reads are indivisible commands and the flag is cleared at the end

of the read).

Two bits are allocated for sample class, trace sample - with (encoding 11) or without (encoding 10)

resource counter data The CPU ID is a 3 bit encoding of the 8 CPU lines (external MULTIKRON pins)

associated with the memory bus, only one of which is active at any time.

Sent first TRACE SAMPLE (128 bits / 16 bytes)

Header Timestamp Source User-written Data

Identification

8 bits 40 bits 32 bits 48 bits

Table 6

Trace Sample

Sent first RESOURCE SAMPLE (640 bits / 80 bytes)

Header

8 bits

Timestamp

40 bits

Source

Identification

32 bits

User-written

Data

48 bits

Resource Counter Resource Counter Resource Counter Resource Counter

0 1 2 3

32 bits 32 bits 32 bits 32 bits

Resource Counter Resource Counter Resource Counter Resource Counter

4 5 6 7

32 bits 32 bits 32 bits 32 bits

Resource Counter Resource Counter Resource Counter Resource Counter

8 9 10 11

32 bits 32 bits 32 bits 32 bits

Resource Counter Resource Counter Resource Counter Resource Counter

12 13 14 15

32 bits 32 bits 32 bits 32 bits

Table 7

Resource Sample (includes Trace Sample)
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STATUS

The MULTIKRON integrated circuit illustrates that powerful hardware support for multiprocessor

computer performance characterization can be incorporated in a single chip. The chip has been fabricated

in 1 micrometer CMOS using a scalable standard cell library. A 60 percent yield was achieved from the

first fabrication run, based on 40 MHz testing. We are making slight modifications to the chip design to

reduce the data access times to ensure operation up to 50 MHz. Further investigation may reveal that other

changes are needed for correct operation at 50 MHz.
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Appendix A - REGISTER ADDRESS ASSIGNMENTS

32-bit

Address

Ofeet

Write Read

0 Reset chip. Timestamp unchanged N/A

1 Load CSR Register CSR Register

2 N/A Timestamp Register (56 bits)

4 Load Filter Register Filter Register (16 bits)

5 Reset Wait Counter to zero Wait Cotmter

6

7

Reset Overrun Counter to zero Overrun Counter

8

0

Load MUX SEL Register (64 bits) MUX SEL Register (64 bits)

10 Pulse Resource Reset Register N/A

11 Load Resource Enable Register Enable Register

12 Load Resource Disable Register N/A

13 N/A (32 bits of) FIFO Output (test mode ONLY)
14 Load TEST Register (test mode ONLY) TEST Register (test mode ONLY)
15 - -

16-23 Load Source Addr Register (0..7) Source Addr Register (0..7)

24-31 - -

3247 Increment Resource Counter (0..15) Resource Counter (0..15)

48-63 Reserved for more Resource Counters Reserved for more Resource Counters

64-95 - -

96-111 Trigger a Trace sample w/o resource data,

with filter level 0..15 and Source

address index 0..7 from hardware

pins.

N/A

112-127 Trigger a Resource sample including

Trace data, with filter level 0..15

and Source address index 0..7

from hardware pins.

N/A

Table A-1

MULTIKRON Address Assignments

A Trace sample w or w/o resource data, contains 48 bits of user data

The source address index for commands 16-23 is computed from the 3 least significant address bits.

The source address index for sample triggering, commands 96-127, is the encoded value of the active

CPU ID line of the MULTIKRON package. Only one of the eight CPU ID lines may be active at a

time.

The filter level for sample triggering, commands 96-127, is computed from bits 0-3 (the least

significant 4 bits) of the address.

The resource counter in commands 32-47 is computed from bits 0-3 (the least significant 4 bits) of

the address.
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Appendix B - PIN USAGE

Number Input

of or Use

Pins Output

64 I/O CPU data bus

16 I External inputs for resource counters

7 I Address lines

8 I CPU ID (NOT encoded)

1 I Reset

1 I SOMHzClk
1 1 lOMHzClk
1 I Read strobe

1 I Write Strobe

2 I Number of CPU Wait States (encoded), valid only during reset

1 0 RDY (read/write ACK)

10 0 Network output (8 data; 1 odd parity; 1 EOM, high active)

1 I Ext FIFO Free

1 0 Load Ext FIFO
1 0 clock to external synchronous FIFO

1 I TEST Mode
1 I Internal TEST Mode, GND in normal use

1 I Place all output pins in high impedance mode

8 0 used for internal testing

127 TOTAL Data pins

52 I PWR&GND
179 GRAND TOTAL pins

Table B-1

MULTIKRON Pin Usage for a 179 PGA package
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Appendix C - TEST MODE Functions

The MULTIKRON chip can be placed in the test mode only by enabling the TEST Mode pin. This

enables the TEST Register and any associated test functions. Test input data and test instructions are writ-

ten into the TEST Register and then executed.

TEST Register

(Address=base-(-14; Read/Write - Operational Only in Test Mode, 48 bits) This register holds a test

instruction (bits 32-47), and any associated data (bits 0-31). The set of TEST instructions, their associated

data and functional description are listed in Table C-1. It is easily possible to encode conflicting com-

mands into the TEST register. Detailed knowledge of the MULTIKRON’s test architecture is needed to

avoid error. For example, bits 0-3 of the TEST instruction must not be set so as to command setting and

incrementing the same counter(s).

Set Counters Field. When in the test mode, setting bits 0-1 of the instruction portion of the test register

(bits 32-33 of the test register) causes the specified counter to be set according to the associated test data in

the data portion of the test register. No counters are writable in normal operational mode, but in test mode
they can be written. All of the Resource Counters are written simultaneously with the same value. All 32

bits of associated test data are used to write these 32-bit counters. To save space in the timestamp counter

and the error counters, groups of four bits are tied together for writing in the test mode. For the 56-bit

timestamp counter we only need 14 (56/4=14) bits of associated test data and for the error counters (both

the wait state and overrun counters are written simultaneously) we only need 8 (32/4=8) bits of associated

test data to specify the write data pattern loaded. The least significant bit of data then sets the four least

significant bits of the counter (i.e., data-bit[0]=0 sets counter-bits[0-3]=0000 and data-bit[0]=l sets

counter-bits[0-3]=llll), and so on for each group of four bits in the counters. This method does limit the

bit pattern that can be loaded into the counters, but since its purpose is for testing, this limited ability is

sufficient for testing all bits and carries for stuck-at faults and to verify that the counter is counting.

Increment Counters Field. When in the test mode, setting bits 2-3 of the instruction portion of the test

register (bits 34-35 of the test register) causes the specified counters to be incremented. The normal incre-

menting of all counters is disabled in test mode and the only way to increment them is through the ap-

propriate test instruction. To save space the error counters (both the wait state and overrun counters) are

incremented simultaneously, and all the Resource Counters are also incremented simultaneously. This

avoids the extra complexity of specifying which counter of a group to operate on, and also speeds up test-

ing by doing these operations in parallel. There is no associated test data with this instruction.

Select FIFO Read Group Field. When in the test mode, the FIFO can be read by the CPU, but only in

groups of 32 bits. Bits 4-5 of the instruction portion of the test register (bits 36-37 of the test register)

selects which of these four groups will be selected. Once set, the selected group stays in effect until

changed. There is no associated test data with this instruction.

- 17-



TEST Instruction

(TEST Reg)

bits

Functional

Description

bits 1-0 (33-32) Set Counter from associated test data

Encodings (Encoding selects counter)

00 NOP
01 Error Counters - both simultaneously (least significant 8 data bits)

10 Timestamp Counter (least significant 14 data bits)

11 Resource Counters - all simultaneously (all 32 data bits)

(NOTE that the error counters are the Wait and Overrun counters)

bits 3-2 (35-34) Increment Counter - no associated test data

Encodings (Encoding selects counter)

00 NOP
01 Error Counters - both simultaneously

10 Timestamp Counter

11 Resource Counters - all simultaneously

bits 5-4 (37-36) Select 32-bit Read field of FIFO output - no associated test data

Encodings

00 FIFO bits 0-31

01 FIFO bits 32-63

10 FIFO bits 64-95

11 FIFO bits 96-127

(NOTE that "bit 128" of the FIFO output is readable as CSR bit 10)

bit 6 (38) Disable Network Output - no associated test data

Encoding

0 Network output Enabled

1 Network output Disabled

bit 7 (39) Select FIFO data source

Encoding

0 Connect FIFO input to normal TRACE data sources. No write occurs

1 Load the data portion of the TEST Register and write it into the FIFO

bit 8 (40) Shiftout (Advance) FIFO & free Shadow registers,

no associated test data

Table C-1

TEST Instruction Register Bit Usage

Disable Network Output Field. When in the test mode, bit 6 of the test register (bit 38 of the test regis-

ter) enables or disables the network output Once set, the selection stays in effect until changed. When the

network output is enabled and data is available at the output of the FIFO, the data will be transferred from

the FIFO to the network (if it’s operational) and will pass too quickly to be available for the processor to

examine.

- 18 -



Select FIFO Data Source Field. When in the test mode, bit 7 of the instruction portion of the test register

(bit 39 of the test register) selects the FIFO data source as either the normal Trace Sample data or the asso-

ciated test data, which is placed in the data portion of the TEST Register. A "0" specifies that the FIFO

should load its normal Trace Sample Data when the next Trace sample is requested, and ignore the associ-

ated test data. No data is immediately loaded into the FIFO for the "0" option. A "1" specifies that the

data portion of the TEST Register, which is being loaded from the 32 bits of associated test data, is im-

mediately written to the FIFO. The 32 bits of TEST Register data is replicated in each of the four 32-bit

groups of the FIFO input for a total of 128 input bits (bits 0-127). The least significant bit of the TEST re-

gister data is also loaded into the 129th bit of the FIFO (bit 128). The 129th bit of the FIFO (bit 128) is al-

ways available from the CSR Register. Once set, the selected mode stays in effect until changed. Note

that if the CPU requests a Trace Sample in the Test Mode (by writing to an address in the range 96-127),

and if this Data Source instruction bit is set to "1", the sample data is loaded from the data portion of the

TEST Register and not the normal Trace data.

Shiftout FIFO Field. When in the test mode, setting bit 8 of the instruction portion of the test register (bit

40 of the test register) shifts out the FIFO (i.e., advances the data in each level of the FIFO, and discards

the current readable data in the last level) and frees the Resource shadow registers (i.e., clears their busy

flag). Setting this bit of the test register sends a single advance pulse to the FIFO, and need not be reset.

Additional writes, with this bit set, will each send an advance pulse to the FIFO.

FIFO Output

(Address = base -i- 13; Read Only - Operational Only in Test Mode, 32 bits). When in the test mode,

the 128-bit output (bits 0-127) of the FIFO can be read by the processor in groups of 32 bits. This allows

testing of the FIFO and Trace Sample Data path. The selection of which 32-bit group is specified by the

last select FIFO group instruction written to the TEST Register. The 129th bit of the FIFO (bit 128) is a

flag to indicate whether or not the Resource Counters are included in the sample.
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