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ABSTRACT

This paper deals with new and simple representations of 3-D points in a moving-

observer coordinate system. Assuming rectilinear motion with no rotation of an

observer where the optical axis coincides with the direction of motion, and a stationary

scene, points in 3-D space that lie on a particular 3-D surface produce constant value of

some nonlinear function of the measurable image optical flow. Five sets of different

surfaces are introduced and there is one optical-flow based constant value for each sur-

face. We called these values "invariants". It is shown how to extract these invariants

and how to use them for representing 3-D space.
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1. INTRODUCTION

During eye motion in a stationary environment, the projection of objects in the

world is continuously changing, but we perceive the world as stationary. Are there pro-

perties of the image that under some transformation remain constant during the motion

of the eye? In other words, are there visual invariants?

Gibson [11] capured this idea as follows:

"If invariants of the energy flux at the receptors of an organism exist and if these

invariants correspond to the permanent properties of the environment, and if they are

the basis of the organism’s perception of the environment instead of the sensory data

on which we have thought it based, then I think there is new support for realism in

epistemology as well as for a new theory of perception in psychology."

This paper deals with new and simple representations of 3-D points in a moving-

observer coordinate system. Assuming rectilinear motion with no rotation of an

observer where the optical axis coincides with the direction of motion, and a stationary

scene, points in 3-D space that lie on a particular 3-D surface produce constant value of

some nonlinear function of the measurable image optical flow. Five sets of different

surfaces are introduced and there is one optical-flow based constant value for each sur-

face. We called these values "invariants". For example, one invariant corresponds to

all points in 3-D that lie at the same distance from an observer. This means that a non-

linear function of optical flow will result in the same value for all points on a particular

sphere that surrounds the observer.

The optical flow analysis takes place in a spherical coordinate system

(rather than X-Y-Z). In this representation, since we deal with translation only along

the optical axis, any point in this coordinate system moves along a constant <j) radial

line and can be processed independently of any other point.

There are several advantages to using these invariants:

1. They are measured in camera coordinates, i.e., there is no need to transform to

object’s coordinate system.

2. They can be very useful when local qualitative as well as quantitative vision-based

motion related decisions need to be made e.g., how to avoid an obstacle.

3. Only one camera is needed to extract these invariants, and all measurements can

be obtained from the visual data.

4. The magnitude of the camera velocity vector need not be known. The invariants

are measured in time units rather than distance units.
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5. Using the invariants it is possible to obtain simple representation of space, and

define obstacles in a relatively simple way.

6. The measurement of these invariants become very simple when logarithmic retinas

are used.

7. These calculated values of optical flow can be used to find relative locations of 3-

D points without first reconstructing the 3-D world.

Several uses of the invariants such as understanding of fixation, analysis of loom-

ing, robust methods for 3-D reconstruction, etc. are mentioned in the text.

2. COORDINATE SYSTEM FOR 3-D SPACE

In a rectilinear motion with no rotation, points in the image plane move away

from the Focus of Expansion (FOE) (Figure la) and towards the Focus of Contraction

(FOC) (Figure lb). Based on this observation we use an RS-O spherical rather than

an X -Y -Z cartesian representation of points in space, which reduces to a 0-C) represen-

tation in the image domain.

Figures 2 and 3 show the chosen coordinate system and the definitions of r and

the angles 0 and (}). (Note that the R -0-0 coordinate system corresponds to the velocity

egosphere defined in [7].) If the optical axis coincides with the translational vector then,

in the image domain, constant (j) corresponds to a radial line that emerges from the FOE
and constant 6 corresponds to a circle whose center is the FOE. Given a point in carte-

sian coordinate system, it can be transformed to a (r-O-tj)) point in the (/?-0-O)

domain and vice versa.

In this paper we assume that the camera (observer) undergoes translational

motion along the optical axis. Using the R-Q-^ coordinate system, any point in the

image domain moves radially i.e., along a constant (j) line. In this coordinate system a

point in the image can be processed independently of any other point, and a constant (\>

line may be processed as a 1-D image. For example, in a translational motion when the

optical axis coincides with the translation vector, each point on an edge in the image

moves radially away from the FOE. This point can be traced and both its optical flow

and location in the image can be obtained independently of any other point in the

image.

3. MOTION INVARIANTS

We describe five invariants. First, we derive the general relationship between the

moving observer and a point in 3-D space. Based on this relationship the invariants are

obtained. It is shown that points in space that lie on a specific 3-D surface share the

same time-dependent invariant. Geometrical invariants are introduced, followed by a

derivation of each invariant from the image optical flow.
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The invariants are time-dependent only, i.e., points in space are described in terms

of time (scaled space) [1,2,4] rather than their location in space.

Refer to Figure 4. For a rectilinear and continuous motion of the camera, any

point in space obeys:

Al = V At sin0 (1)

A/ = (r-Ar) tanA0 (2)

Except for 0=0 and 0=7t, then from (1) and (2), for Ar-^0, tanA0—>A0, and A0Ar—>0

0
V =r-

sin0
(3)

where the dot denotes differentiation with respect to time. 0 is the optical flow along a

0
radial line, i.e., for constant <j). The value r—— is the same for all points (except

sin0

those with 0=0 and 0=7t) in 3-D space. If, in addition, the velocity V of the observer

remains constant, then this relationship holds for all time instants. 0 and 0 can be

measured/computed at each instant of time, and hence the nonlinear function

be obtained.

0

sin0
can

The following is a description of the five invariants in terms of optical flow. We

denote them by and They all have units of —r—

.

Xr Xq- Xq Xp time

1 0
1. The equal range invariant —=—— (Figure 5): All points in 3-D space (except

Xr sin0

those that lie on the motion axis, i.e., with 0=0 and 0=7t) that lie on a sphere

whose center is the pinhole point of the camera share this invariant, i.e., have the

same Xr. In this case the radius r is constant, and so, using Equation (3), the

V 0
ratio — is kept constant, and —— remains constant. The meaning of this invari-

r sin0

0
ant is that the modified optical flow —— is the same for all points on a sphere

sin0

(except those which are on the axis motion of the camera). Points inside the

0
sphere ("close" points) produce higher values of

. ^ and points outside the
sin0

sphere ("far" points) produce smaller values of
0

sin0
Therefore it is possible to

find the relative distance of a point simply by calculating or measuring this value.

Points in 3-D space can be viewed as lying on shells, each of which has a

different —^ invariant.
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2 .

3.

4.

5.

The fixation invariant—=6 (Figure 6): All points in 3-D space (except those that
Xt

lie on the motion axis, i.e., with 6=0 and 6=7c) that lie on a torus obtained by

rotating a circle which is tangent to the direction of motion axis about this axis,

share this invariant, i.e., have the same Xj. This circle is an "Equal Flow Circle"

r
(EFC) as described in [6]. In this case the diameter of the torus, i.e., —— is con-

sin0

stant, and so using Equation (3), 0 remains constant. (Note that r is the distance

from the observer to the point and not the radius of the torus.) An extension of

this invariant to a more general motion of a camera has led to a quantitative

approach to camera fixation [5,6] and to road following [10].

1 0
The looming invariant —=—— (Figure 7): All points in 3-D space (except

tan0

those that lie on the motion axis, i.e., with 0=0 and 0=7t) that lie on a sphere

which lies in front of the camera share this invariant, i.e., have the same X5. The

center of the sphere lies on the optical axis of the camera, and the camera lies on

the sphere’s surface. In this case the diameter of the sphere
COS0

is constant, and

SO, using Equation (3),
6

tan0
remains constant. It has been shown by Raviv in [9]

that aU points on a particular sphere result in the same visual looming.

The clearance invariant =—

—

(Figure 8): All points in 3-D space (except

'^c sin'^O

those that lie on the motion axis, i.e., with 0=0 and 0=7t) that lie on a cylindrical

surface whose axis coincides with the camera translational motion vector share

this invariant, i.e., have the same x^ . In this case the radius of the cylinder r sin0

0 ...
is constant, and so, using Equation (3),

—

—

remains constant. This mvanant
sin26

has been used by Raviv [3] to develop a robust, integration-based, and massively

parallel method for reconstructing 3-D scenes. Albus [7] has suggested that this

invariant can be used to measure clearance.

1 26
The time to contact invariant —= — (Figure 9): All points in 3-D space

Xp sin20

(except those that lie on the motion axis, i.e., with 0=0 and 6=7c) that lie on a

plane which is perpendicular to the direction of motion of the camera, share this

invariant, i.e., have the same Xp. In this case rcos0 (the distance from the sur-

20
face) is constant, and so, using Equation (3), remains constant.

sin26
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Xp is the "time to contact" as described by Lee in [1], and by Lee and Reddish

[2]. Lee observed that two macroscopic visual parameters are essential for animals’

d X
behavior, the time-to-contact x and its derivative . He also showed how to derive

dt

these parameters from the optical flow. These parameters "tell" the animal how to con-

trol its motion in order to avoid collision. Diving birds use it to fold wings for entry

into water [2]. x is specific to the immediacy of contact (i.e., when contact will be

dx .

made), and is specific to the harshness of contact (i.e., the type of contact) with the

environmental surface. In this paper we referred to the "time to contact" as Xp and

showed its formulation in an image centered spherical coordinate system. More about

extraction of Xp from visual data can be found in [3].

Figure 10 is a summary of the invariants. It shows the basic relationship between

space, speed and optical flow (top equation), from which the five invariants are derived.

Based on geometrical properties, the time-dependent invariants are shown as a function

of optical flow. The geometrical interpretations of all invariants are summarized at the

bottom of Figure 10.

4. REPRESENTATIONS USING MOTION INVARIANTS

Two different representations of 3-D space using the invariants are shown in Fig-

1 0
ure 11. Figure 11a shows a representation that uses the clearance invariant —=—

^

'Cc sin^e

1 20
(Figure 8) and time to contact invariant —=—— (Figure 9). Figure lib shows a

Xp sin20

representation that uses the fixation invariant -^=0 (Figure 6) and the looming invari-
Xj

1 0
ant —= (Figure 7). In both 11a and 11b Figures, the third dimension is O.

X5 tan0
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Figure la; Optical Bow Relative to the Focus of Expansion (FOE)
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Figure lb: Optical Flow Relative to the Focus of Contraction (FOC)
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Figure 5: Meaning of the —

—

(a) In 2-D

Invariant
sin0

(b) In 3-D: Equal distance sphere 12



(b)

Figure 6: Meaning of the = 6 Invariant
Tj

(a) In 2-D

(b) In 3-D: Equal flow toms
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sphere

Figure 7: Meaning of the ^ Invariant
7^ tan0

(a) In 2-D

(b) In 3-D: Equal looming sphere
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