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Abstract

Let the m x n linear model

y — Kx + e

be obtained by discretizing a system of first-kind integral equations

Vi = f Ki(£)x(() d£ + ii
,

i — 1, . .
. ,
m

,

J a

with known functions Ki(£), unknown function z(£), and an m-vector y of measurements corrupted by

random errors e drawn from a distribution with zero mean vector and known variance matrix. Consider the

problem of estimating linear functions of the form

4> = wT x
[ H0x(t)d£ .

J a

where u;(£) is an averaging function designed to elicit some desired information about z(£). For such prob-

lems, the least squares solution is a highly unstable function of the measurements, and the classical confidence

intervals are too wide to be useful. The solution can often be stabilized by imposing physically motivated, a

priori nonnegativity constraints on x. This paper will show how to extend the classical confidence interval

estimation procedure to accommodate these nonnegativity constraints in order to obtain improved confidence

intervals. The technique defines valid confidence intervals even for problems with m < n.
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1. Introduction

Consider the linear model

y ~ Kx + e
, (1.1)

where y is a measured m-vector, K is a known m x n matrix, x is an unknown n-vector, and e is a random

77>vector with zero mean and known positive definite variance matrix S2
,
i.e.,

5(e) = o,5 (ee
T
)
= S2

. (1.2)

We are particularly interested in the case when this model arises in discretizing a system of first kind integral

equations

Vi - J
Ki(()x(()d^ + ii ,

* = 1
,—

,

m (1.3)

We assume that n is chosen large enough to assure that the discretization errors are negligible in comparison

with the Ci.

Without severe a priori restrictions on x(£), the m discrete relationships (1.3) cannot determine the value

of z(£) at every point on the interval [a, b]. Therefore we seek instead to estimate a finite set of average

values of i(£), averaged on various subintervals of [a, 6]. More precisely, we choose p representative points

£i < £2 < • • • < £p in [a, b
]
and for each ( k choose a corresponding window function wk (s) designed so that

(1.4)

is an average value of the unknown function in a subinterval around £*. Discretizing these averaging integrals

by the same method used to discretize (1.3) gives a set of p linear functions

<t>k
- wT

k x ,
k = l,2,...,p

, (1.5)

which approximate the desired averages. We are again assuming that the discretization errors are negligible

in comparison to the Note that the individual components of x can be specified by choosing p — n and

w k - e k ,
k = 1,2, ... ,n ,

where ek is the fcth column of the identity matrix.

(
1 . 6

)
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Having accomplished the discretization, the task becomes one of estimating each of the p linear functions

(1.5) subject to the statistical constraints (1.1) and (1.2). If rank(.K') = n, then these are classical linear

regression problems with the well known best linear unbiased (least squares) estimates

h = wT
k x ,

x = (KT S-’K)~'KT S- 3
y . (1.7)

When each of these point estimates is associated with the corresponding subinterval about £*. ,
the resulting

set of pairs comprises a discrete approximation to the unknown function x(£). The reliability of such an

approximation can be assessed by computing confidence interval estimates
\<f>

l

k ,
for each of the (p k . There

are two kinds of confidence intervals that can be considered [8, Chapt. 6]:

one-at-a-time confidence intervals : Each
<f>k is treated individually, and for a pre-specified probability

a (0 < a < 1), the 100a% confidence intervals are determined separately. Each individual interval

contains the corresponding true value with probability a, i.e.

,

Pr {<t>[° < <
<t>

u
k
v

}
- a

,
k — 1,2 ,...,p . (1.8)

Repeating the measurements a large number of times M, and calculating the full set of p intervals

each time, would give roughly aMp intervals containing the corresponding true values and roughly

(1 — a)Mp failing to contain the true value.

simultaneous confidence intervals : All of the <f>k are treated together, and the intervals are constructed

so that, with probability a, they all contain the corresponding true values, i.e.,

Pr
{ <t>[° < 4>k < 4>7 ,

A = l,2,...,p}>a . (1.9)

Repeating the measurements M times, and calculating a full set of p confidence intervals each time,

would give roughly aM sets in which all of the intervals contain the corresponding true values, and

roughly (1 — a)M sets containing at least one interval which fails to contain the corresponding true

value. It is clear that this is a more exacting requirement than that for one-at-a-time intervals, so it

is not surprising that, for a given a, each of the simultaneous intervals is wider than its one-at-a-time

counterpart.

The inversion of first kind integral equations is an ill-posed problem, so the matrix K is usually ill-

conditioned or even rank deficient. As a result the confidence intervals are typically extremely wide or even

unbounded. To get physically plausible solutions, it is necessary to impose a priori constraints on the solution.

In many real-world problems the solution is known to be nonnegative, and good algorithms for computing

nonnegatively constrained point estimates have been widely available for some time [10] . In previous work

[12] we considered the problem of computing nonnegatively constrained, simultaneous confidence intervals

when e is normally distributed. We showed that the confidence intervals can be computed by solving certain

constrained optimization problems and presented an algorithm for solving them. In this paper we extend

those results to include nonnegatively constrained one-at-a-time intervals.

In §2 we present two example problems used throughout the paper to illustrate our results. In §3

we briefly review classical point estimation theory with an emphasis on the effects of ill-conditioning and

rank-deficiency. In §4 we briefly review classical, one-at-a-time confidence intervals, and in §5 we consider

the geometrical basis for interval estimation in order to characterize the bounds as solutions to certain

constrained optimization problems which will later be augmented to include the nonnegativity constraints.

In §6 we briefly review the estimation of classical, simultaneous confidence intervals, whose geometrical basis

is identical to that for the one-at-a-time intervals. The purpose of the discussion in these initial sections

is to note the deficiencies of the classical bounds and point estimates when used for discretizations of ill-

posed problems. In §7 we formally append the constraints x > o to the classical linear regression model

and demonstrate their effectiveness in stabilizing the point estimates. We also show that these constraints

almost always produce bounded confidence intervals, even for underdetermined problems, and show how to

extend the theory for simultaneous intervals to accommodate them. The extension of the classical theory

for one-at-a-time intervals is considerably more difficult, but in §8 we prove a conjecture, first made some 20

years ago by Walter R. Burrus [17], which allows the calculation of such intervals using the same algorithm

3



we originally developed for simultaneous intervals. Finally, a real-world example involving the measurement

of a gamma-ray spectrum is presented in §9. Since we assume that the only significant errors are the random

perturbations e in the measured data, we implicitly assume that the model is correct. In particular, this

implies that errors due to discretization of the integrals are negligible. Thus we produce confidence intervals

corresponding to the class of functions for which the quadrature is sufficiently accurate (or the instrument

resolution sufficiently fine).

2. Test Problems

To generate problems with known solutions, we use the integral equation studied by Phillips [14]

y(t ) = j ,

-6 < t < 6

where

and

K(t, 0 = 1 + cos
3

0

, | £ -t |< 3
, 1

1 |< 6 ,

,
otherwise

,

y(0 _ |
(
6-

I
* I)

[l + 3 cos (f )] + £ sin
,

|t|< 6
,

0
,

otherwise .

(
2 . 1

)

(2.2)

(2.3)

The kernel K(t,£) is nonnegative, a property common in many real-world applications. The function y(t)

is also nonnegative, symmetric about t = 0, and bell-shaped, with maximum value y(0) = 9 and minimum
value y(—6) — 0 = y(+6). The exact solution is

*(0
1 + cos^^j

, | £ |< 3 ,

,
otherwise .0

(2.4)

This nonnegative function also defines a symmetric bell-shaped curve with a maximum z(0) = 2 and minima

z(-3) = 0 = x(+3).

To get a system of integral equations, we chose m mesh points

- 6 < tx < <2 < t3 < • • • < im_i < tm < +6

and define Kt (£)
= K(ti,£). This gave

Vi = y(U) = J
Ki(t)x(()d£ ,

i — 1,2,..., m

We used the trapezoidal rule on the mesh

£i = — 3 , £2 = —2.95
, £3 — —2.90

,

• •
•

, ^6i = 0 ,

• •
•

, £ 12 i - 3

to reduce this system of integral equations to

y — Kx
,

(2.5)

(2.6)

(2.7)

( 2 . 8
)

where the are calculated from (2.3) and the Xj = x(£j) are calculated from (2.4). In order to assure that

every row of the matrix K subtends at least one quadrature panel, we chose the t-mesh to be equally spaced

on the interval [—5.925, 5.925]:

11.85
U = —5.925 -\ (i — 1) ,

z = 1, 2, . . .,m .m—1 (2.9)

In order to obtain test problems in which the quadrature errors were completely negligible relative to the

statistical errors, we did not use the y-vector computed from (2.3), but rather used y defined by

y = Kx
(
2 . 10

)
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The calculation of y was double precision, with results rounded to single precision on a machine with

fmoch — 7 x 10
-15

. The vector x can be regarded as the exact quantity to be estimated, and the vector y
can be regarded as the measurements obtained without error.

To get the random “measuring” errors £{, we let Sj = (I0“ 6
)i/i, i — 1,2, . . ., m, and picked sample vectors

e from a multivariate normal distribution with independently distributed elements, i.e.,

e = (ti,e 2 ,...,£m)
T ~ N(o

,
S 2

) , (2.11)

where S2 = diag
(
s
2

,
s
2

,

• •
•

,
). Adding the random errors chosen in this manner to the system (2.10)

gave

y = Kx + e
,

e ~ N( o
,
S 2

) (2.12)

where y is the vector of “measured” values. Since the calculation of the yx assures that (2.10) is satisfied to 14

digits, the above standard deviations are all from 6 to 8 orders of magnitude greater than the corresponding

truncation errors that arose in forming y. Thus the random errors were essentially the only errors in the

problem.

2.1. Problem I — An Overdetermined Problem

For the first test problem we chose m — 150 and n = 121, producing a matrix K of rank n. For statistical

studies, we generated several such problems by randomly choosing different error vectors e, but picked a

typical one for use in this paper. The least squares solution for this one is shown in the top of Figure 1,

together with the exact solution x(s). The maximum and minimum singular values of the scaled matrix

S~ 1K are cti = 3.3950 x 10 9 and a 121 = 1.1610 so the condition number is cond(S
-1

.RT) = 2.924 x 10 9
.

Since ema c/i — 7 x 10
— 15

,
we could reasonably expect to compute x accurate to 6 digits. This means that

all of the variation of the x(£j) about the true solution x(£) can be attributed to the measurement errors

£i

.

This variation is surprisingly small in view of the large condition number of the matrix, but is still

distressingly large when viewed as relative error in the solution. Many of the ii are negative even though

the exact solution x(£) is everywhere nonnegative.

2.2. Problem II - An Underdetermined Problem

Although the matrix in Problem I has a large condition number, the least squares problem is better than most

that arise from first kind integral equations. Many problems have rank deficient or even underdetermined

matrices. If the kernel is accessible, then it is always possible to choose n < m, but this may produce

discretization errors larger than the measuring errors. Even if discretization error is acceptably small,

choosing n < m may still generate a rank-deficient problem. Many real-world problems are quite naturally

underdetermined, with m and n being fixed by hardware considerations or other physical constraints. Often

the analyst is given not the kernel functions but rather the matrix K with m < n. To simulate such

problems we discretized the Phillips equation with m = 108 and n — 121. The matrix K has rank 108, and

the maximum and minimum non-zero singular values of S~ lK are <j\
— 3.3728 x 10 9 and Cios — 0.14635.

The bottom frame of Figure 1 gives a plot of the generalized inverse (minimal length least squares) solution

*= {S-'K)' S-'y
,

(2.13)

which oscillates about the true solution with wider variations than those obtained for Problem I. This higher

noise level is due mostly to the loss of information in using fewer observations. Of course the estimate is not

unbiased, but the oscillations tend to be centered on the true curve, so the bias is evidently small relative

to the random scatter.

2.3. Window Functions and Window Vectors

The solutions presented in the preceding section were highly oscillatory because of the ill-conditioning of the

regression model. These oscillations can be damped to some extent by seeking estimates for a set of average

values of the function z(£) as in (1.4). The simplest set of window functions is

M0 = 6(Z-h) .
* = l,2,...,n

,
(2.14)
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150 X 121 Phillips Problem
Classical Least Squares Solution

I

108 X 121 Phillips Problem
Generalized Inverse Solution

*

Figure 1. Classical solutions. Dashed lines are exact solutions z(£) and solid lines are estimates ijt =
Top: Problem I, least squares estimate. Bottom: Problem II, generalized inverse estimate.



where 6{(, — (k) is the Dirac delta function centered at the point In this case the corresponding window

responses are

<t>k = / = .

J a

(2.15)

and the corresponding window vectors (1.6) are just the columns of the n-th order identity matrix. No actual

averaging is involved and the estimates k) correspond to those computed in the previous section.

The simplest set of real averages is defined by

k = ~ [

ih+l

x{()dt ,
k = 1,2, 1 , (2.16)

where = £k+i — Each of these non-overlapping averages is combined with its corresponding ^-interval

to give

V2 = { ([&,fc+i],&) = k = l,2,...,n-l } , (2.17)

a histogram approximation to z(£). Using the trapezoidal rule to discretize the integrals (2.16) gives the

window vectors

Wi = (
0.5 0.5 0 0 0 ••• 0

)

w 2 = (° 0.5 0.5 0 0 ••• 0
)

W3 - (0 0 0.5 0.5 0 ... 0
)

Wn-1 = (0 0 0 0 0.5 0.5
)

(
2 . 18

)

so we call this process 2-point averaging.

Averaging can be extended to include more than one quadrature panel in each average, ending ultimately

with n-point averaging which would seek to estimate only the average value of a:(£) on the whole interval

[o, 6]. In general, v-point averaging uses window functions

•»*({) =
{

• * = 1
'
2 p. (2- i9 >

where p is the largest integer less than or equal to (n - l)/(t/ — 1). The typical window vector has the form

Wife = ( °> 7^1- ITT! I
•••>

7=T> 2f7^TJ’ °> •••> °) ’ (
2 -20

)

with exactly u non-zero elements beginning with element number (

k

— l)(i/ — 1) + 1. The corresponding

histogram approximation,

'Pv — { ([^(it-i)(i'-i)+i!^ifc(i/-i)+i]) (^ife) : k — 1)2, . .
. , p | , (2.21)

will cover the whole interval [a, 6] only if (n — 1) is an exact multiple of
(
i> — 1). Otherwise, there will be

one or more (but fewer than v) quadrature panels that will not be included in the set of averages.

3. Classical Point Estimation

Consider the problem of estimating the linear function

<p — wT x (3.1)

subject to the statistical constraints

y = Kx + ~e
,

£(e) = o
,

£ (ee
T
)
= S 2

. (3.2)

A linear estimator

<f>
= uTy ,

(3.3)

with mean and variance

£(<p) — uTKx
,

Var(0) — uT S 3u . (3.4)

is unbiased if £(<f>) — (j) = wTx identically in * [18, Chapt. 1]. Thus 4> is unbiased if and only if

utK = wt
,

(3.5)

which means the vector w is a linear combination of the rows of K.
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3.1. Full Rank Problems - The Best Linear Unbiased Estimator

If rank(itT) — n < m, an unbiased estimator exists for any linear function wT
x. In fact, there will be many

unbiased estimators

(3.6)
T -u y wT K' + zT

(
Im-KK t

y

where K * is the generalized inverse of K and z is any nwector. The best linear unbiased estimator is the

one that minimizes the variance, i.e., the one corresponding to the vector u that solves the constrained

optimization problem

Var(u
T
y) = min

{
uT S 3 u

|

uTK — wT
}

.

It is easy to see that the solution vector is

u= S~ 3K(KT S~ 3 K)~'w
,

so the best linear unbiased estimator is

= uTy = wT(KT S~ 3K )~ 1Kt S~ 3
y

This estimator can also be written

(/) - wT x
,

where

x = {KT S~ 3K)~'Kt S~ 3
y

is the solution vector for the weighted least squares problem

r
2 = min {(y — Kx)T S~ 2

(y — Kx)} .

•E

It follows from (3.4) and (3.8) that the minimum variance is

Var(<^) = uTS 2u = wT(KT S~ 2 K)~ lw

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

As an example, consider Problem I. If the set of window vectors is taken to be the columns of In ,
then

the <j) k are just the elements of the least squares solution x as in the top frame of Figure 1. The estimates

corresponding to the window vectors (2.20) for 2-point averaging are shown in the top frame of Figure 2,

and the estimates for 3-point averaging are shown in the bottom frame. The noise level has been reduced

by averaging, but this improvement is achieved only at the expense of a reduction in resolution for the

independent variable (. Note also that the averaging does not prevent the occurrence of some negative

estimates.

3.2. Underdetermined Problems

If K has less than full column rank, then the set of all least squares solutions can be written

*(*) = (
s
- 1

*:) 1 s ~ l

y +
\
Jn - {s-'Ky

(
S- 1^) (3.14)

where z is an arbitrary ra-vector. An unbiased estimator for wT x exists only if wT
is an exact linear

combination of the rows of K, in which case the best linear unbiased estimate is given by the u-vector

u = S- 1 [(S- 1 #) 1
T
w

, (3.15)

so

= uT y = wT (S 1 K) S

where x is the minimal length solution (2.13). The variance

1 - t -

y = w x
,

of this estimator is

(3.16)

Var(<£) = uT S2u = wT (ktS 2k\ w . (3.17)
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150 X 121 Phillips Problem
Classical Least Squares, 2-Point Averaging

150 X 121 Phillips Problem
Classical Least Squares, 3-Point Averaging

*

Figure 2: Best linear unbiased estimates for Problem I. Dashed lines are exact solutions z(£) and solid lines

are histogram estimates <j> k .

Top: 2-point averages over intervals [£i,£jfe+i]. Bottom : 3-point averages over intervals +
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Being limited to window vectors expressible as linear combinations of the rows ofK places severe restrictions

on the information that can be elicited about the unknown function x(£). This restriction is imposed in

the method of Backus and Gilbert [19, Chapt. 7] that constructs just such a set of window vectors, called

averaging kernels. Ideally, each averaging kernel should resemble a narrow Gaussian centered on the point

In practice the rows of K rarely admit good resemblances to Gaussians, so the estimates are usually

non-symmetric weighting functions that change from one £* to the next. The resulting set of point estimates

(£k,<t>k) comprise a smoothed discrete approximation to the unknown function i(£). This smoothing is

difficult to characterize and non-uniform over the range of £.

If w is not expressible as a linear combination of rows of K
,
then the average wT x is said to be

inestimable. This does not mean that no unbiased estimate exists, but rather that there exists no unbiased

estimator of the form uT y. In theory, there exist unbiased estimates of the form wT x(z) where x (z) is

some solution (3.14) of the underdetermined least squares problem. In reality, it is necessary to accept the

fact that computable estimates will be biased and to try to assure that the errors due to bias axe small in

comparison to the random variations introduced by the e.

In Section 2 we presented the generalized inverse solution for Problem II. It is apparent from the bottom

frame of Figure 1 that any bias in this approximation is smaller than the scatter due to the random errors.

In Figure 3 we give the histogram approximations corresponding to the 2-point averaging windows and the

3-point averaging windows. Even though the averaging considerably reduces the scatter due to the random

errors, it is still not possible to detect the bias. It would seem that the bias is not so large that it rules out

the possibility of obtaining useful information about the function x(£).

4. Classical One-at-a-Time Confidence Intervals

For any unbiased estimator <j> — uT y, one-at-a-time confidence intervals for
<f>
— wT x can be constructed

from the transformed random variable

>

n

<t>-4>
T A T —

u 1
y — w 1 x

\/Var(<f>) y/uTS3u

where the latter equality follows from (3.4). It also follows from (3.4) and (3.5) that

£(t]) = 0 ,
Var(7?) = 1 .

(4.1)

For a given probability a, a 100a% confidence interval for 4> can be constructed by determining a number /c

such that

Pr { —

k

< r] < +/c } = a .

Substituting (4.1) and rearranging gives

(4.2)

iber k.

(4.3)

Pr
| |

<j> — /c\/Var(</>) <
<f>

<
<t> + «\/Var($)

| j
= a

,

or

Pr
| ^

uTy — k\/ut S3u
j
< wT x < (^u

T
y + k\/ut S3u

j j
= a .

Thus, the interval

I(or,n)= (yU
T
y — k,\/ut S3uj

, ^
uTy + K\/uTS3 u'j

(4.4)

(4.5)

(4.6)

is a 100a.% confidence interval for
<f>.

Given the value k, the foregoing results are valid for any unbiased estimator uT y. The best linear

unbiased estimator (3.9) gives the confidence interval J(a
;
re) = <j>

up
],
where

2.lo a T a * / * T c*2 a

<t>
= u y - kVuS_u

,
. .

(f)

uP — uTy -)- K.y/

u

TS 2u .

It is clear from Eqs. (3.8), (3.9) and (3.10) that these bounds can also be written

4>
l° = wTx - k^/wt(Kt S- 3 K)-'w

,

p = WT X + Ky/l

V

T{KT S- 3 K)~'w
,

(4.8)
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108 X 121 Phillips Problem
Gen. Inverse Solution, 2-Point Averaging

*

108 X 121 Phillips Problem
Gen. Inverse Solution, 3-Point Averaging

*

Figure 3: Generalized inverse estimates for Problem II. Dashed lines are the exact solution x({) and solid

lines are histogram estimates <£ fc
.

Top: 2-point averages over intervals [£*, Bottom: 3-point averages over intervals [^ 2 fc — l , fat + i]-

11



where x is the least squares solution vector (3.11).

The width of the confidence interval (4.6) is directly proportional to the value of k. Optimally narrow

confidence intervals can be computed only if the probability density function for 77 is known, and this requires

a knowledge of the joint probability density function for the vector e.

4.1. Confidence Intervals for Normally Distributed Errors

In many applications, e is known (or assumed) to have a multivariate normal distribution, e ~ N (o,S 2

),

so 77 follows the standard normal distribution, 77 ~ n(0, 1). This means that for any a (0 < a < 1), it is

possible to find a corresponding value k (0 < k < 00) satisfying

WrL “P (-?)*' = “ '

which defines the relation between the /c and the a required in (4.4).

As an example, consider Problem I and the best linear unbiased estimators for the 2-point averaging

window vectors (2.18). Using k — 1.960, for 95% intervals, Equations (4.8) give the confidence bounds

plotted as solid lines in the top frame of Figure 4. There are 120 window vectors in the whole set, so we

expect approximately 6 of the confidence intervals to fail to bracket the corresponding true averages. In this

particular problem there were 9 bracket failures.

4.2. Confidence Intervals From Chebyshev’s Inequality

If the joint probability density function for e is not known, then valid, suboptimal confidence intervals can

be constructed by using Chebyshev’s inequality [9, Chapt. 1], which guarantees that, for any k > 0,

Pr { |
77
- 5(77)

|

> KVar(77) } < \ .
(4.10)

It follows then that, for any unbiased estimator uTy ,

Pr
| |

uTy — wT x
|

< kVut S3u
j
> 1 ^ . (4-11)

Therefore, for any a (0 < a < 1), if

K =
> (412)

then

Pr
| ^

uTy — k\/uT S3 u^j < wTx <
^
uTy -f re\/uT S3 u^j

|
> a

,
(4-13)

so the interval (4.6) is a 100a% confidence interval for
<f>.

Confidence intervals calculated from Chebyshev’s inequality are very conservative since they must be wide

enough to accommodate any possible probability density for 77. Table 1 compares the sizes of Chebyshev

intervals and normal distribution intervals for some commonly used confidence levels. The ratio is the factor

(4.9)

Table 1: fc-values for Chebyshev inequality and standard normal distribution

a /c-Chebyshev /c-normal ratio

0.6667 1.732 0.967 1.79

0.95 4.472 1.960 2.28

0.99 10.000 2.575 3.88

0.999 31.622 3.295 9.60

by which the interval width must be expanded if the form of the error distribution is not known.
As an example, consider again Problem I and the best linear unbiased estimators for the 2-point averaging

window vectors. The bottom frame of Figure 4 is a plot of the 95% one-at-a-time confidence interval

12



150 X 121 Phillips Problem
One-at-a—time Confidence Intervals
Using Normal Distribution, a = 0.95

Classical Least Squares, 2-Point Averaging

*

150 X 121 Phillips Problem
One-at-a-time Confidence Intervals
Using Chebyshev Theorem, a = 0.95

Classical Least Squares, 2-Point Averaging

£

Figure 4: Classical 95% one-at-a^time confidence intervals for Problem I. Dashed lines are exact solution

x(£), and solid lines are histograms of estimated lower and upper bounds.

Top: 2-point averages from normality assumption. Bottom: 2-point averages from Chebyshev’s Inequality.
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bounds obtained from Chebyshev’s inequality for those averages. The solid lines are histograms of the

upper and lower bounds calculated from (4.8) using re = 4.472. These intervals are larger by a factor of

4.472/1.960 sa 2.28 than the corresponding intervals (in the top frame) obtained by assuming normally

distributed errors. The dashed line is the true solution. Note that none of the true values of the averages

lies outside the corresponding confidence interval.

5. The Geometry of Confidence Interval Estimation

5.1. Full Rank Problems

No matter what the relation between a and re, the corresponding confidence interval bounds for the best

linear unbiased estimator (3.9) can be calculated from either Eq. (4.7) or (4.8). It is not difficult to show

that the end-points of this interval are also defined by the two constrained estimation problems:

<j>

l° — min
{
wT x

| (y — Kx)T S 2
(y — Kx) = f2 + re

2

} ,

<^
up — max{io :r

a;
| (y — Kx)T S~

2

(y — Kx) = f
2 + re

2

} ,

(5.1)

where f
2

is the minimum sum of squares (3.12). These problems can be solved by Lagrange multipliers to

give solution vectors

• lo

• up

= x —

-
,= X +

\/wT(KT S~ 3K)~ 1w
re

s/wt{Kt S~ 3 K)~'w

(.KT S~ 3K

)

1 w
,

{KtS-*K)~'w
,

(5.2)

(5.3)

and values for cf>

l° and
<f>

up that are the same as the values given by (4.8).

The common constraint region for problems (5.1), i.e.,

<S(re) = {x
| (y - Kx)T S~ 2

(y - Kx) = f
2 + re

2

} ,

can also be written [17, Chapt. 2]

S(k
) — |

35
I

(* — x)
T Kt S~ 3K (x — x) — re

2

|
,

(5.4)

(5.5)

which defines the surface of an ellipsoid centered on the least squares solution x. The size of this ellipsoid

varies with re. For any value of the parameter </>, the set of points

H(w,<l>) = {
T~ = 4>}w x (5.6)

forms a hyperplane orthogonal to the vector w. Therefore, the bounds and <^
up are the values of 0 on

the two tangential support planes of the ellipsoid <5(re) that are orthogonal to w.

The location of the center of the ellipsoid <S(re) depends on y, and its size is scaled by the value of re,

but its orientation and shape are completely determined by the matrix K1
- S~ 3K

.

Let the singular value

decomposition of S'
-1

If be

S~'K = U ( 5 1 VT
, (5.7)

(5.8)

with

UTU = Im = UUT
,
VTV = In = VVT

,
27 = diag(<r lf <r3 ,...,an ) ,

with (7 1 > cti > • • • > crn . It follows then that

Kt S~ 3K = VSaVT
. (5.9)

It is easy to see [17, Chapt. 2] that the mutually orthogonal vectors «i, V 2 , ,
vn define the directions of

the major axes of *S(re), and the lengths of those axes are given by

2re

4j — ,
1=1,2,. ..,71

CTi

(5.10)
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1

2
-

4>
up - - 2k Y-a 2 {

VIW)
—

[;=i
a

J J = l

From (4.8), (5.9) and the definition of S, it follows that for any window vector w, the corresponding a-level

confidence interval has width

(5.11)

Since Vj is a unit vector (i.e., vjvj = 1), the scalar wT vj is just the projection of w on the jth major axis

of the ellipsoid, and ij is the length of that major axis.

Linear regression models obtained from first kind integral equations are almost always poorly conditioned.

The major axes of S(k
)
corresponding to the smaller singular values are, therefore, usually greatly elongated.

From (5.11) it follows that ifw has a non-zero projection on any of the singular vectors corresponding to the

smaller singular values, then the confidence interval for wT x will be very wide. Almost every window vector

designed to elicit information about the function *(£) will have non-zero components in the directions of these

elongated axes. In the extreme case, one or more of the singular values are zero and the corresponding axes

of<S(/c) are infinite in length, yielding infinite intervals. When such a problem is read into a computer, the

machine truncation errors almost always produce a full rank matrix on the machine, but there is no danger

of obtaining deceptively good confidence intervals as a result. If cm is the machine epsilon, then typically for

a fa whose true value is of order unity, the classical estimates (4.7) give intervals like [—0(eM ) i +^( eM
1

)]

which, though shorter than [— oo
,
+oo], are nevertheless useless.

5.2. Underdetermined Problems

For problems with m < n, the matrix is exactly rank deficient with <rm+ i = crm+2 = • • • = crn = 0. The
ellipsoid S(k) has at least n— m infinitely long major axes, and its center is not a single point x but rather

a coset of the subspace spanned by the singular vectors rm+i, vm -t_2i • • • >
v n, be., the set of points defined

by (3.14). In that expression, the set of points

Af(S-'K) =
{

[in - (5- 1
AT)

t

{S-'K)] z arbitrary
j

(5.12)

is the subspace, and

x = S^y (5.13)

is the displacement of the coset from the origin. If w is orthogonal to the subspace Af(S~ 1 K), then it is an

exact linear combination of the rows of K
,
so the best linear unbiased estimator for wT x is given by (3.16),

and its variance is given by (3.17). The confidence interval bounds are

<f>

l ° = wT x - Ky/wT(KT S- 3Kyw
,

= wTx + k^wt{Kt S~ 3Kyw
,

(5.14)

where x is the minimal length solution (5.13).

If w has a non-zero projection on any of the infinite axes of S(ic), then wTx is said to be inestimable

because there exists no unbiased estimator of the form <j> — uT y. The center coset does contain at least one

point

(5.15)x{z) = (S' 1 *:)' S~ l

y + Jn - (S XK

)

for which wT x(z
)
gives an unbiased estimate. Taking z — x would give such an estimate, but of course x is

unknown. Even if it were possible to find some z which gives an unbiased estimate, the confidence interval

for wT z would still be unbounded.

6. Classical Simultaneous Confidence Intervals

The method for estimating a set of a-level simultaneous confidence intervals for a whole set of window vectors

{tOu w 3 ,
. .

.
,wp } is based on an a-level confidence ellipsoid for the unknown vector x. For any positive

value 7^, the region in x-space defined by

«S(7n) = {
*

I
(* - x)

T KT S 3K (x - i) = 7^ }
(
6 . 1

)
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is an ellipsoid centered on the least squares solution vector x (3.11). It becomes an a-level confidence ellipsoid

for x if 7^ is determined so that

Pr
|

(a; — x)
T KT S 3K (x — x) < 7^ j

= a . (6.2)

The required set of simultaneous confidence intervals is constructed from the support planes for this ellipsoid.

In particular, the set of intervals Jfc(a; 7^) = , 4> ,
defined by

tfi

l ° — min {tufa;
|

(a: — x)
T KT S~ 3K (x — x) = 7^ |

,

— rrmx|tr^x
|

(x — x)
T KT S~ 3K (x — x

)
— 7^ j

i
^ — 1

1

2 , . .
. , p , (6.3)

satisfy

Pr
{

4>‘k < 4>k <
,
fc=l,2,...,p}>a

, (6.4)

and this result holds for any number of averaging vectors. These simultaneous confidence intervals are defined

by the support planes of an ellipsoid in the same way as are the one-at-a-time intervals given by (5.1). The

only difference is in the size of the defining ellipsoid. It is easy to see that if rank(AT) = n < m, then the

solutions to the constrained optimization problems (6.3) are

<t>k = n yJwl(KT S 3 K) 1 w k ,
1

A / / >
k — 1

>
2 , . . . , p

- ^** + 7n ^Jwl(K
T S~ 3 K)- 1w k

J

where x is the least squares solution vector (3.11).

(6.5)

6.1. Simultaneous Intervals for Normally Distributed Errors

For the case where e is normally distributed and K has full column rank,

so

)
~ X

2
(rc)

, (
6 . 6

)

} = J X
2 (n\q)dq

,
(6.7)

where X
2

{
n \q) is the probability density function for the x

2
(
n

)
distribution. Thus, for any probability a, if

7^ is defined by

/ X
2 {n;q)dq = a

,

Jo
(
6 . 8

)

then the corresponding ellipsoid S(yn )
will be a 100a% confidence ellipsoid. Most statistics handbooks

tabulate 7^ as a function of a and n for values n < 30 (cf. [1], Chapt. V.l). For larger values of n, the

random variable

v = y/2^ (6.9)

follows, to a good approximation, a standard normal distribution, so for a given a, the corresponding 7 ^ can

be computed by

7
2 =

\ [*« + V2n- l]
2

where A a is the a-point of the standard normal distribution, i.e.,

n(0 , 1 ; 77) dt) — a
OO

(
6 . 10

)

(
6 . 11

)
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Table 2: The ratio jn /^ for normally distributed errors

a n = 20 n = 30 n = 50 n = 70 n = 100 n = 150 n = 200

0.6667 4.9 5.9 7.6 8.9 10.6 13.0 14.9

0.95 2.9 3.4 4.2 4.9 5.7 6.8 7.8

0.99 2.4 2.8 3.4 3.9 4.5 5.4 6.1

0.999 2.0 2.3 2.8 3.2 3.7 4.4 4.9

It is interesting to compare the widths of the simultaneous intervals (6.5) with those of the one-at-a-time

intervals (4.7). The ratio of the corresponding interval widths is

simultaneous interval width 7n

single-dimensional interval width k
(
6 . 12

)

This quantity is tabulated in Table 2 for several values of a and n.

As an example, we again consider Problem I with 2-point averaging windows and seek 95% simultaneous

intervals. The 95%-point for the standard normal distribution is A a = 1.645 which, by Eq. (6.10), gives

7^ = 12.14. Using this value in (6.5) gives the intervals shown in the top frame of Figure 5. Comparing

this plot with the one in the top frame of Figure 4 gives a rough idea of the price that must be paid for the

additional certainty of simultaneous intervals.

6.2. Simultaneous Intervals from Chebyshev’s Inequality

If the form of the joint probability density function for e is unknown, then valid, though conservative,

confidence ellipsoids can be constructed from Chebyshev’s inequality. For a given a, it is necessary to

determine a corresponding jn such that

Pr {* 6 S(7n) } = Pr
j
(* - x)

T VS3V7 (x - x) < 7^ }
> a . (6.13)

A multivariate Chebyshev inequality given by Olkin and Pratt [13] ensures that

will be satisfied if
n

7n = r. •

V 1 — OL

for any a, (0 < a < 1), this

(6.14)

As an example we consider the simultaneous 95% confidence intervals corresponding to a set of 5-point

averaging windows for Problem I. The window vectors are given by (2.20) with v — 5. For n = 121 and

a = 0.95, the corresponding 7n is 7n = 541.1. The confidence bounds are plotted as histograms in the bottom

frame of Figure 5. In spite of the high degree of averaging, the demand for the certainty of simultaneous

intervals coupled with a lack of knowledge about the distribution of the errors has produced intervals that

are almost useless.

7. Nonnegatively Constrained Estimation

The least squares problem arising from the discretization of a system of first kind integral equations is usually

poorly conditioned with respect to small variations in the measured vector y. Quite often, the exact matrix

K is rank deficient which means, in the classical theory, that the linear functions cj> * = w^x may not even

be estimable. Fortunately, in cases where the solution x(£) of the integral equations is physically constrained

to be nonnegative, the imposition of those constraints on the solution vector x almost always stabilizes the

estimation problems and gives biased, but bounded, physically plausible solutions, no matter what the value

of rank(Ff). Therefore we append the constraint x > o to the linear estimation model (1.1), (1.2), i.e.

,

y = Kx + e
,

£(e) — o
, £ (^ee

T
j
= S 2

,
Pr {x > 0} = 1.0 . (7-1)
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150 X121 Phillips Problem
Simultaneous Confidence Intervals
Using Normal Distribution, a = 0.95

Classical Least Squares, 2-Point Averaging

*

150 X 121 Phillips Problem
Simultaneous Confidence Intervals
Using Chebyshev Theorem, a = 0.95

Classical Least Squares, 5-Point Averaging

*

Figure 5: Classical 95% simultaneous confidence intervals for Problem I. Dashed lines are the exact solution
2 (0> and solid lines are histograms of estimated lower and upper bounds.
Top: 2-point averages from normality assumption. Bottom: 5-point averages from Chebyshev’s Inequality.
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7.1. Constrained Point Estimation

When the nonnegativity constraint is appended, the point estimation problem becomes

Pmin = min {(Kx — y)
T S~ 2(Kx — y)} = r

2 + min {(x - x)
TKT S' 3 K(x - x)}

,
(7.2)

*>o x>o

with f 2 defined by (3.12). If x denotes the solution vector, i.e.
,
if

Pmin = (Kx-y)TS-\Kx-y)
, (7.3)

then estimates of the ensemble of averages can be computed by

<t>k=wlx, Jc - l,2,...,p
. (7.4)

Equation (7.2) defines a nonnegatively constrained least squares problem for which there is no explicit

closed form solution, but good algorithms for the numerical solution have been available since the mid-1970s

[10]. Figure 6 gives plots of these solutions for Problems I and II. Comparison of these plots with those in

Figure 1 shows that the nonnegativity constraints gave good, but not spectacular, improvement. For most

real-world ill-posed problems, the improvement is much more dramatic.

7.2. Constrained Interval Estimation

The classical method for estimating confidence intervals can also be extended to take the nonnegativity

constraints into account. For both one-at-a-time and simultaneous intervals, the classical, unconstrained

interval estimation problems can be written in the form

4>
l° — min

{
wTx

\ (y — Kx)T S 2(y—Kx)=/32

} ,

4>
up = max

{
wTx

| (y — Kx)T S~
2

(y — Kx) — (3
2

} ,X

where /3
2

is a constant chosen to give the desired confidence level a. We will show in the following that valid

nonnegatively constrained confidence intervals can be obtained by solving problems of the form

tj>
l° = min

{
wT x

X

$
up = max

{
wT x

(y-Kx)T S- 2(y-Kx) = y.
2

,

(y-Kx)T S- 2(y-Kx) = n
2

x > o
}

X > o
}

(7.6)

where y, = j3 for simultaneous confidence intervals, but p differs from (3 for one-at-a-time intervals.

The common constraint region in problems (7.6) is the intersection of the n -dimensional /i-ellipsoid with

the positive orthant. For any reasonable discretization of the integral equations, the value of n will be

large enough to assure that the positive orthant constitutes a very small fraction of n-space. The resulting

intersection is generally much smaller in all directions than is the /^-ellipsoid itself.

Even for rank deficient matrices K this intersection is almost always bounded. If K is rank deficient,

then one or more of the smallest eigenvalues of K'T S~ 3K will be zero, and the ellipsoid will be unbounded

in the directions of the corresponding eigenvectors. The intersection of the ellipsoid with the positive orthant

will, however, be unbounded only if at least one of these degenerate eigenvectors lies in the positive orthant.

Since a;-space has 2” orthants and KT S~ 3K has fewer than n degenerate eigenvalues, it will be a very rare

occurrence for one of the corresponding eigenvectors to extend into the positive orthant. In many physical

applications the matrix K is nonnegative, and in such cases, * > o, x ^ o => KT S~ 3 Kx ± 0 • x\ thus,

for these applications, no degenerate eigenvector could lie in the positive orthant.

It is not possible to write closed form solutions for the problems (7.6), but numerical calculation of the

solutions is possible. The first person to employ nonnegativity constraints in order to reduce the size of

estimated confidence intervals was Walter R. Burrus [2] who used the technique in neutron and gamma-ray

spectrum unfolding problems. Burrus did not give an algorithm for solving (7.6), but he and his colleagues

developed several algorithms [2], [3], [4], [15], [16] for computing suboptimal interval approximations to

l4>
l°

,(f>
up

]- In spite of the suboptimality, the intervals thus obtained were uniformly much better than

the classical intervals (4.7). O’Leary and Rust [12] have developed an algorithm called BRACKET-LS for

computing the optimal intervals. This algorithm was used to compute the confidence intervals given in the

remainder of this paper.
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150 X 121 Phillips Problem
Nonnegatively Constrained Least Squares Solution

*

108 X 121 Phillips Problem
Nonnegatively Constrained Least Squares Solution

£

Figure 6: Nonnegatively constrained solutions to the test problems. Dashed lines are exact solutions x(£),
and solid lines are least squares estimates = e^x.
Top: Problem I. Bottom: Problem II.
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7.3. Simultaneous Confidence Intervals

The extension of the classical theory to accommodate nonnegativity constraints in the estimation of one-at-

a-time intervals is complicated, so we defer it to the next section. The extension to estimating simultaneous

intervals is straightforward because the intersection of a confidence ellipsoid with the positive orthant is itself

a confidence region with the same confidence level as the ellipsoid. Let 7 be chosen so that

•5(7) = {*1 {y-Kx)T S 2
(y - Kx) < f2 + j

2

}

= j
x

|

(a; — x)
T Kt S~ 3K (x — x) < 7

2

j

’

is a 100q% confidence ellipsoid for x, and define events A and B by

A = {(y - Kx)T S~ 2
(y - Kx) < f 2 + 7

2
} ,

B = {x > 0} .

These events have probabilities

P(A) = a, P(B) = 1.0
,
P(AuS)=1.0,

so it follows from the elementary identity,

P(A nB) = P(A) + P(B) - P(A U B)
,

that

Pr
{ (y — Kx)t S~ 2

(y — Kx) < f
2

-f- 7
2

,
® > 0 }

= a .

Therefore, if

if>

l ° — min
{
w^x

| (y — Kx)T S~ 2
(y — Kx) < r2 + 7

2
,
x > 0

} ,

^p = max{ic^aj
| (y — Kx)T S~ 2

(y — Kx) < f2 + 7
2

,
x > 0

} ,

for k = 1
,
2 , . .

.

,

p, then it follows that

Pr{ 4>k < wlx < ft? ,
i = l ,2 pj = a

,

(7.7)

(7.8)

(7.9)

(7.10)

(7.11)

(7.12)

(7.13)

and this result holds for any number p of window vectors.

In Section 6.1 we saw that for full-rank problems with normally distributed errors, a 100a% confidence

ellipsoid is obtained by choosing 7
2 to be the a-point of the X

2
(
n

)
distribution [cf. Eq.

(
6 . 8 )]. With the ad-

dition of nonnegativity constraints, it becomes possible to estimate confidence intervals for underdetermined

problems, but the choice of 7
2

is different. Rust and Burrus [17, Chapt. 6
]
proved that if y is normally

distributed, and

. x = {S-'K)' S~ l

y = (IC1 S~*K) ] KT S~ 3
y ,

(7.14)

is the corresponding generalized inverse, least squares solution vector, then

(x — x)
TKT S~ 3K(x — x) ~ X

2
(
u

) i (7.15)

where u — rank(liC). Therefore, if 7 is taken to be the a-point of the x
2

(
l/

)
distribution, then Eqs. (7.12)

define the confidence interval which can be computed with BRACKET-LS algorithm [12]. Determining the

exact rank v is often a difficult and uncertain procedure, but it is better to overestimate the rank than to

underestimate it. In the former case, the confidence intervals will be suboptimal (larger than necessary to

assure the confidence level), but in the latter case they will be dishonest (too small to assure the claimed

confidence level). A conservative procedure is to choose v — min{m, n}.

Figure 7 gives plots of the simultaneous confidence intervals computed by BRACKET-LS for Problem I

using 2-point averaging, and Problem II using 3-point averaging, when the measuring errors are normally

distributed. The bounds for Problem I can be compared with those in the top frame of Figure 5 to assess

the improvement obtained by using the nonnegativity constraints. The improvement is even more dramatic

for Problem II because the intervals are all unbounded for the unconstrained problem. The nonnegativity
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Figure 7: Nonnegatively constrained, simultaneous 95% confidence intervals from the normal distribution.
Dashed lines are the exact solutions a:(£), and solid lines are histograms of estimated lower and upper bounds.
Top: Problem I, 2-point averages. Bottom: Problem II, 3-point averages.
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constraints make it possible to compute useful confidence intervals even though the underlying linear model

is underdetermined.

When the form of the error distribution is unknown, the procedure is the same except 7 is given by

(6.14). Figure 8 gives plots of the bounds obtained for both Problems I and II using 5-point averaging.

Even with this higher degree of averaging, the bounds are poor in comparison with those in Figure 7, but

they are considerably stronger than those in the bottom frame of Figure 5 which were obtained without the

nonnegativity constraints.

8. Constrained One-at-a-Time Confidence Intervals

8.1. The Burrus Conjecture

Nonnegatively constrained one-at-a-time confidence intervals cannot be defined in the same manner as con-

strained simultaneous intervals. More precisely, if k is defined by (4.9) or by (4.12), then valid 100a%
one-at-a-time intervals cannot be calculated from Equations (7.6) with p

2 = f
2 + k2

. In fact, it almost

always happens that

f
2 + K 2 < pmin - min {(y - Kx)T S~ 2

(y - Kx)}
, (8.1)

i.e., the ellipsoid (5.4) had no points in common with the positive orthant. This difficulty arises because the

regression models almost never have m >> n. Accordingly, the classical least squares procedure produces a

solution vector x which models a large portion of the measurement errors e and hence gives an unrealistically

low value for f 2
. This fact was pointed out by Walter R. Burrus [2] who also noted that the ellipsoid defined

by

(y - Kx)T S~ 2
(y - Kx) < Pmin + «2

(8.2)

always has a non-empty intersection with the positive orthant. He conjectured [17, Chapt. 6] that valid

confidence intervals could be obtained by using that intersection as the constraint region, i.e., by solving the

problems

<p
l ° - nun

{
wTx

| (y — Kx)T S~ 2

(y - Kx) — p^n + /c
2

,
x > o

} ,

<f>

up - max
{
wT x

| (y - K

x

)

T S~ 2

(y - Kx) = Pmin + k2
,
x > o

}
.

X

We shall show in the following that this conjecture is indeed correct.

8.2. The Duality Theorem

In order to prove the Burrus Conjecture, it will be necessary to restate problems (8.3) in equivalent forms

defined by the Duality Theorem for Nonlinear Programming [20]:

Wolfe’s Duality Theorem. Suppose z is an iV-vector of unknown variables, /(z) is a scalar

function and y(z) is an M-vector function of z, and that /(z) and y(z) are all convex and

differentiable on an open set Z. If

4>P - min {/(z)
|

g(z)>o}, (8.4)

and the constraints g(z) > o satisfy a constraint qualification, then

<t>p = <t>D , (8-5)

where $£> is determined by the dual problem

4>d =
{

max j/(z) - g
Tv

|

V/(z) = v > 0
j

• (
8 - 6

)

Equation (8.4) is called the primal problem. The constraint qualification can be any one of several regularity

conditions on either the convexity or differentiability properties of the functions ft(z). More details on such

conditions can be found in [11, Chapts. 5, 7].
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Figure 8: Nonnegatively constrained, simultaneous 95% confidence intervals from Chebyshev’s Theorem.
Dashed lines are exact solutions z(£), and solid lines are histograms of estimated lower and upper bounds.
Top: Problem I, 5-point averages. Bottom: Problem II, 5-point averages.
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It is instructive to apply this theorem to the classical, full-rank interval estimation problems (5.1). To
simplify the notation, let

/i = +\/f 2 + k2
, (8.7)

and consider first the lower bound problem which can also be written with inequality constraints,

<j>

l ° = min
{
wTx

\ (y — Kx)
T S~ 2

(y — Kx) < y? } , (8-8)

because the indicated minimum is attained on the boundary of the ellipsoid. Many equivalent forms of the

dual problem can be derived, but it is easiest to get the form we need by using the artifice of writing the

problem in terms of the original variables x and the scaled residual vector

r = S 1
(y - Kx).

The vector r can be specified by two vector inequalities,

r — S -1
(y — Kx) > o

,

— r + S_1
(y — Kx) > o .

Reformulating (8.8) in terms of the
(
N — m + n) variables

z^(*T ,rT
)

T
,

gives

/ -S-1
(y - Kx) + r \ / o \

g{z)= +S~ 1

{y - Kx) - r > o

\ M - \/rT r ) \ o /

for the constraints and

f(z) = (wT
,
oT

)
z

for the objective function. The problem then becomes

4>
l° = 4>P = min { f(z)

|

g(z)>o}
,Z&Z

(8.9)

(
8 . 10

)

(
8 . 11

)

. (
8 . 12

)

(8.13)

(8.14)

where Z — 1Z
N

. The functions f(z) and g(z) are convex and differentiable everywhere, and the constraints

g(z) > o satisfy Slater’s constraint qualification (cf. [11, §5.4.3]), so the Duality Theorem is applicable.

Therefore

4>
l ° = <t>D = max^ j/(z) - g

Tv
|

V/(z) = v
,
v > °

|
, (

8 - 15
)

where v is a (

M

= 2m + l)-vector of dual variables that can also be written

T f T T \
T

V =
(
v{

,
t>£

,
V3 )

with subvectors v\ and v 2 of length m.

The derivatives required for the dual constraints are

so the constraints themselves can be written

iTT S- 1 (u 1 - v 2 )
= w

,
(t>i - v 2 )

- v3 -jZ— - o

V\ > O
,

V 2 > o
,

1)3 > 0 .

(8.16)

(8.17)

(8.18)

Note that the dual vectors Vi and v 2 appear only as components of the difference v\—v 2 . Even though Vi and

v 2 are constrained to be nonnegative, their difference is totally unconstrained. Defining new, unconstrained

dual variables

v0 = Vi - v 2 (8.19)
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allows the constraints to be written

Kt S 1 v0 — w ,
vq = v3

VrT r
,

^3 > 0
,

and eliminating the variable vq gives

KT S~ l
r

v3 - w ,V 3 > 0 .

V rT r

(8.20)

(8.21)

Note that r/VrT r is a unit vector, and v3 is simply a normalization parameter used to scale the length of

Kt S~ 1
times this vector to equal the length of w.

The objective function for the dual problem is

f(z)-gT (z)v = wT x + •

T S~ l — xTKT S~ x — r
1

(vi - v 2 ) + v3 (
V rT r - p.

= wTx 4- y
TS 1 — xtKtS 1 — r

T
|

vq + ^3 rT r — .

rT S~ lKx
= ^3- + (y

T S 1 — xTKt S 1 — r
T

)
+v3(VrT r—y,)

VrT r

= ^3
y
T s- l

r

VrT r
- M

To simplify, we introduce a change of variables

v3S
1
r

VrT r
u =

(
8 .22

)

(8.23)

(8.24)

(8.25)

(8.26)

and note that the variables u are constrained only by KTu = w. Then multiplying both sides of (8.26) by

S and “squaring” yields

uT S2u = U3 . (8.27)

Now we can write the dual objective function as

f(z) - g
T (z)v - y

Tu - y.V

u

T S 2
u,

yielding, after substitution of y, — \/r 2 + k2
,
our final form of the dual problem

ft
0 = max

|
uTy - (r

2 + k2)^ VuT S3u
|

uTK = wT
}

.

(8.28)

(8.29)

In a similar manner, it can be shown that the dual problem for the upper bound problem in (5.1) can be

written

(8.30)4>
ur = min

{
uTy + (f

2 + k2

)
* VuT S3 u

\

uTK = wT
}

It is easy to independently verify that these two dual problems are equivalent to the primals (5.1) because

they too can be solved by Lagrange multipliers. The solution vectors are

u l° - u + ^S^5' 3 (y- Kx)
,

'UP _ - _ VuT S 2U g-3
(8.31)

u r = u — S- 3(y-Ki
) ,

where u is given by (3.8) and x by (3.11). The corresponding optimal values are

(j>

l ° —
(
u lo

)

T
y — (f

2 + /c
2
)

J

yj(u
lo

)
T S2u° — uT y — k-\Zu

T S 2u
,

4>
up =

(
uup

)

T
y + (f

2 + /c
2
)^ yf(u

up )TS2uup = uTy + kVuTS2u

(8.32)
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which are the same as the values given by (4.7).

The primal problems (5.1) correspond to a Gaussian formulation of linear interval estimation while the

corresponding dual problems (8.29) and (8.30) correspond to the Markov formulation. In the objective

functions of the latter, the inner product uT y is a linear estimator of the unknown
<f>

and the quantity

uT S~ 3 u is the variance of that estimator. The constraint functions common to both problems require the

estimators to be unbiased. When nonnegativity constraints are imposed on the problems, the forms of the

objective functions are unaffected, but the constraint functions change in an interesting way.

8.3. Lower-biased and Upper-biased Estimators

Now consider the nonnegatively constrained interval estimation problems (8.3). The lower bound primal

problem is

= min
{
wT x

| (y — Kx)T S~ 2
(y — Kx ) < p

2
,
x > o } ,

(8.33)
•E

where

M = \/Pmin + K2
• (8.34)

The transformation of this problem to its dual form is similar to that given in the preceding section for the

unconstrained problem (8.8). The only difference is the additional set of n constraints x > o, which augment

the primal constraint relations (8.12). The dual vector (8.16) is also augmented by n additional variables

r 4 ,
i.e.,

vT = (v^
, ,

v3 ,
v%

)

T
, (8.35)

and the constraint expressions (8.18) are changed to

KTS l
(t>i - v 2 ) + v 4 = w

,

Vl > o
,

v 2 > O
,

(v 1 -v 2)-v3 T̂7 = 0
,

V3 > 0 ,
U 4 > O .

(8.36)

The objective function remains the same as it was for the classical problem, and the definition of Vo and

the determination of 1*3 are the same also. The net result is that

<f>

l° = max < y
T S~ 1

vo — fJ-\J

v

qVo
|

KT S~ 1 vq + = w
,

> o >
. (8.37)

The objective function does not depend on U4 ,
so the constraints can be written more simply as

Kt S~ x v0 < w . (8.38)

Defining u as in (8.26) and restoring the value of p, gives

4>
l° = max

|
uT y — (pmin + k2

)

3 VuT S3u
|

uTK < wT
|

. (8.39)

Similarly, the dual statement of the upper bound problem can be shown to be

0
up = min

|
uTy + (pmin + k2

)

3 VuT S3 u
\

uTK > wT
|

. (8.40)

The objective functions for the current dual problems differ from those of the classical duals (8.29) and

(8.30) only in the substitution of Pmin for r 2
. The constraints, however, are quite different. In the classical

case, the estimators uTy are required to be unbiased in both cases. For the nonnegatively constrained

problems, the estimator for the lower bound is required to be lower biased, and the estimator for the upper

bound is required to be upper biased. This equivalence of bias constraints in the Markov formulation to

nonnegativity constraints in the Gauss formulation is a surprising result whose significance we are at present

unable to assess. It seems very logical to use lower biased estimators when seeking a lower bound and

upper biased estimators when seeking an upper bound, but such constraints appear at first glance to be

less restrictive than the classical unbiasedness constraints. In practical problems, nonnegatively constrained

confidence intervals are smaller than the corresponding classical intervals, even though the substitution of

Pmin for r 2 in the objective functions should tend to increase the size of the former. It would seem then that

the upper and lower bias constraints are considerably stronger than the unbiasedness constraint.
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8.4. Proof of the Burrus Conjecture

Having established the equivalence of the dual problems (8.39) and (8.40) to the primals (8.3), it is not

difficult to prove the Burrus Conjecture which we now state as a theorem.

Theorem. Let y be a given nvvector, K a given m X n matrix, and x an unknown n-vector satisfying

(8.41)

and

y = Kx + e
,

e~ JV(o, S2

) ,

Pr { a: > o } = 1 .

Let pm

i

n be defined by

Pmin = min
{ (y — K x)T S 2(y—Kx

) |

x > o
}

.

Let a be a given probability (0 < a < 1), and suppose that the value /c is chosen so that

i r
+K

\[2* J-K
exp

(

—- )
dr] - a

(8.42)

(8.43)

(8.44)

If w is a given rvvector, and

<t>

l ° = min
{
wT x

| (y - Kx)T S~
2
(y - Kx) < pmin + k2

,
x>o

} ,

35

<j>

up — max
{
wT x

| (y — Kx)T S~ 2
(y — Kx) < pn,in + k.

2
,
x > o } ,

35

then

Pr
|

ft
0 < wT x < 4>

up

}
> Q .

Proof. For any nvvector it, consider the reduced random variable

uTy — uTKx
77 ~~

VuT S3u

which follows the standard normal distribution n(0, 1). It follows that

Pr
|
[uTy — k.Vut S3 uj < uTKx < [uTy + k.V

u

t S3 uj
j
= a .

Define constants and P2 by

Pr
|

(uTy — kVut S3
u^j < uTKx

j
= —

J
exP dy = a + P? ,

Pr
|
uTKx < (uTy + nV

u

T S3
u^j

j = J
exp dy = Pi + a

,

and note that

Pi + a + p2 = 1 .

We saw in the preceding section that tf>

l° and <j>
up can also be defined as

<t>

l° — max
|
uTy — (pmin + k2

)

3 VuT S3u
\

uTK < wT
j

,

4>
up = min

|
it
T
y + (pmi„ + «2

)

3
y/uT S3u

|

uTK > wT
j

.

Consider first the upper bound problem and let ttuP be its solution vector, i.e.,

4>
UP = ™lpy + (Pmin + K2

)

3

\J
Ulp S

3 Uup ,

(8.45)

(8.46)

(8.47)

(8.48)

(8.49)

(8.50)

(8.51)

(8.52)
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with

ul
v
K > wT .

From the second relation in (8.49), since k < pm ; n + *c
2

,
it follows that

(8.53)

Pr
{
U«p“K’* <

[

Uupy+ (pmin + K2

) ' ^ul
v
S3Uuv

J j
> 01 + Q

, (8.54)

or, by (8.52), that

Pr
{
uZPK* <

<t>

up

}
> 0i + q • (8.55)

Since x > o, it follows from (8.53) that

wT x < u^
p
Kx . (8.56)

Combining this inequality with (8.55) gives

Pr
|
wTx < 4>

up

|
> 0i + a . (8.57)

In a similar manner, it is easy to show that

Pr
|

<f>

l° < wT x
|

> a + 02 (8.58)

Now,

Pr
|

4>
l° < wT x < 0

up

|
= Pr

||
(j>

l° < wTx
} D {

<
<t>

up

} ]

- Pr
|
0

l ° < wTx
|
+ Pr

|
wTx <

<f>

up

|
(8.59)

— Pr
1 1

<p
l° < wTx

| (J |
wTx < if>

up

}] •

so by (8.57) and (8.58),

Pr
| <t>

l° < wTx < 0
up

|
> 0i + 2a + 02 - Pr

1 1
<^

io < wT x
| U {

wTx < <j>

up

| j

. (8.60)

From definition (8.45), we have 0
l° < <j>

up
, 30

Pr
[ {

4>
l° < wTx

} [J |
wTx <

(f>

up ||=1, (8.61)

which, when substituted into the above expression, gives

Pr
|

<f>

l° < wTx <
<f>

up

|
> 0i + 2q + 02 - 1 . (8.62)

It follows then from (8.50) that

Pr
|

(j>

l° < wT x <
<t>

up

|
> a

, (8.63)

which completes the proof of the theorem.

Note that the theorem makes no restrictions on m, n, or rank(if). For an underdetermined system in

which K has some negative elements, it is possible, but not very probable, that one of the two problems

(8.45) may be unbounded. In that case, the theorem is still true, but the confidence interval is semi-infinite.

In proving the theorem, we assumed that the errors e were normally distributed. This is generally not

a serious limitation in practice, but it is worth noting that the theorem can be proved for a wider class

of possible error distributions. The essential restriction required by the proof is that the reduced random

variable t] have the same probability distribution for all m-vectors u.
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Corollary 1 . Let y be a given m-vector, K a given m x n matrix, and x an unknown n-vector satisfying

y = Kx + e
,

£(e) — o
,

£ ^ee
T
^
= (8.64)

and

Pr{i>o}=l. (8.65)

Let pmin be defined by (8.43) and assume that the errors i are distributed in such a manner that the

reduced random variable

uTy — uTKx
1 = (8.66)

vu J S 3 u

has the same probability density function /(r?) for all nvvectors u. Let a be a given probability

(0 < a < 1), and suppose that the value k is chosen so that

Pr

/K.

f{r))dr) =
• K

If w is a given n-vector, and if </r° and <£
up are defined by (8.45), then

Pr
|

ft
0 < wT x < ]>

up

}
>

a .

a .

(8.67)

(
8 . 68

)

Proof. The proof differs from that of the Theorem only in the definitions of 0i and 02, i.e., Eqs. (8.49) are

replaced by

/

OO

/(7?) dr] = a + ,

- K,

Pr|wT ffa5 < [uTy + kV

u

t S3
u^j

| = J
f{ri)dri = (3\ + a .

The values and 02 satisfy (8.50), and the remainder of the proof follows exactly as before.

(8.69)

8.5. Examples

Consider first, confidence intervals based on the normality assumption. Figure 9 gives plots of 95% confidence

intervals for both Problems I and II using 2-point averaging. The Problem I bounds can be compared with

those in the top frame of Figure 4 in order to assess the improvement to be attributed to the nonnegativity

constraints. Problem I is not a bad problem, so the improvement is less striking than that normally attained

for real-world problems. The bounds for Problem II do represent a striking improvement since, in the absence

of the nonnegativity constraints, all the confidence intervals are unbounded. The bounds for Problem II are

unimpressive when compared with those for Problem I, but they could be significantly improved by using

3-point averaging.

9. A Real-World Problem

We conclude with a gamma-ray unfolding problem suggested by a series of measurements made by Faddegon,

et al. [7]. The data from these experiments have been archived [5] and were made available to us by Dr.

Faddegon. In one experiment, a beam of electrons with energies tightly clustered around 15 MeV was incident

on the end of a cylinder of lead just thick enough to stop them. A sodium iodide scintillation detector coupled

to a photomultiplier tube was used to measure the resulting bremsstrahlung photon spectrum at an angle

of 60° from the axis of the cylinder. In this problem, the variable £ becomes the energy £ of the photons

incident on the detector, and the subscripts i become the bin numbers of the pulse height bins into which

the photons are counted. The underlying integral equations are

OO

R(El,£)Af{£)d£ + e\
,

* = l,2,...,m, (9.1)N(Ei)dEi = dEi f
J t
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150 X 121 Phillips Problem
One—at—a-time Confidence Itervals
Using Normal Distribution, a = 0.95

£

108 X 121 Phillips Problem
One-at-a-time Confidence Intervals
Using Normal Distirbution, a = 0.95

Nonneg. constraints, 2-Point Averaging

£

Figure 9: Nonnegatively constrained, one-at-a-time 95% confidence intervals from the normal distribution.
Dashed lines are exact solutions x(£), and solid lines are histograms of estimated lower and upper bounds.
Top: Problem I, 2-point averages. Bottom: Problem II, 2-point averages.
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where Eq is the threshold energy for detection, Ex is the central energy of the zth pulse-height bin, dEi is

the width of the pulse-height bin, N(E{)dEi is the total number of photons counted in the bin, Af{£) is

the unknown photon spectrum
(
Af(£)d£ is the number of photons in an energy band of width d£ centered

on energy £ ), R(Ei,£)dE{ is the instrument response function
(
the probability that a photon of energy £

will produce a count in the zth bin ), and is the measurement error. The £x were due mostly to counting

errors and thus were approximately Poisson distributed, but the counts were also corrected for background

radiation and various hardware effects. The details on the calculation of the standard deviations sx are given

in [7]. We assume that the normal distribution n(0,$i) gives a sufficiently accurate approximation to the

e't-distribution and that the errors were not correlated with one another. Thus,

e~jV(o, S2

) ,
S = diag(si,s 2 ,...,sm ) , (9.2)

Discrete approximations to the detector response functions, i.e.,

Rij = R(Ei,£j)dEi
, J = 1, 2, . . ., n , (9.3)

were determined by a combination of calculations and high-precision measurements described in [6]. Using

those values to approximate the system (9.1) gives

n

N(Ej)dEj - Rj
tj
Af(£j)A£j + £ ,

i = l,2,...,m, (9.4)

j=i

where A £j = £j — £j~\. For the particular set of measurements that concerns us here, the values of m and

n are 56 and 66 respectively. It was necessary to choose n > m because the response functions, which are

shown in Figures 10 and 11, have nonzero values outside the range [£0 ,
£n ]. Thus, the numbers counted in

the lower bins can be affected by photons with energies less than that of the lowest bin and counts in the

upper bins can similarly be affected by photons with energies higher than that of the highest bin. These

extra columns can be dropped from the response matrix if it is known with certainty that the spectrum of

incident photons is zero at the corresponding energies.

The measured spectrum, normalized to unity, is plotted in Figure 12 as a histogram with two horizontal

lines plotted for each bin. The top line gives the measured value plus one standard deviation and the bottom

line gives the value minus one standard deviation. Since the actual value cannot be negative, it is possible

to compute confidence interval estimates for the true spectrum even though the matrix of the system has

more columns than rows. In order to compute 95% one-at-a-time confidence intervals for the estimates of

the actual value, we took ic = 1.96 and applied the BRACKET-LS algorithm, first with two-point averaging

and then with no averaging. The top panel of Figure 13 gives the results for two-point averaging. Note that

the averaging gave a bin structure similar to that of the measured spectrum. The maximum of the spectrum

occurs in the bin containing the .511 MeV electron-positron annihilation energy. The pronounced shoulder

to the right of this peak, together with the relatively small interval widths encouraged us to repeat the

calculation with no averaging. The results are shown in the bottom panel of the Figure. The dark vertical

lines represent the calculated confidence intervals, and the dashed line, which connects the non-negatively

constrained point estimates, was added only as a visual aid. With the given data, it is not possible to

estimate the spectrum at the intermediate points, but the results that were obtained suggest that higher

energy resolution would be possible if the response functions could be computed on a denser £-mesh. In

particular, there is a hint that a smaller peak might be resolved in the vicinity 0.7 MeV .
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Sodium Iodide Photon Detector

Instrument Response Functions

Figure 10. Response functions R+j for the Nal gamma-ray detector. For clarity, we have plotted only every
2nd ordinate in each of the abscissa directions. To show the structure at higher energies, we have plotted
l°Sio(l “h ^*,j) rather than Ri tJ

itself. Note the finer mesh spacing and higher energy resolution at the lower
energies.
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Response

Response

Sodium Iodide Photon Detector

Selected Response Functions
30.0

10.0-

o.o

12.0

o.o

i
( V A TV /V /v ^

10' 1

10° ltf

Incident Energy (MeV)

Selected Response Functions

i i ( i
|

l | t

Pulse Height Energy (MeV)
Figure 11: Cross-section views of the response functions Rij.
Top: Responses for pulse height bins centered on Sj = 0.182, 0.758, 1.945, 3.93, 6.88, 10.95, 16.96 MeV
Bottom: Responses for incident energy bins centered on 25* = 0.546, 1.545, 3.29, 5.95, 9.70, 15.30 MeV .
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Normalized

Counts

(MeV)

Measured Bremsstrahlung Spectrum
15 MeV Electrons on Pb Cylinder
Photon Yield at 60-deg. Angle

Figure 12: Measured pulse-height spectrum for bremsstrahlung yields produced at 60° from the axis by 15
MeV electrons incident on the end of the Pb cylinder. The two levels plotted in each bin are

(
dS/dE\ ± s, .
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Normalized

Counts

(MeV)

Normalized

Counts

(MeV)

Unfolded Bremsstrahlung Spectrum

Two—point Averaging, a = 0.95

No Averaging, a = 0.95

Figure 13: Estimated 95% one-at-a^time confidence intervals for the actual yields
(
dS/d£)j .

Top: Average values over the intervals £j - £j_ l .

Bottom: Confidence intervals for the individual
(
dS/d£)j . The dashed line connects the point estimates.
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